Today’s Outline - February 13, 2018
• Ideal refractive surface
Today’s Outline - February 13, 2018

- Ideal refractive surface
- Fresnel lenses and zone plates
Today’s Outline - February 13, 2018

- Ideal refractive surface
- Fresnel lenses and zone plates
- Research papers on refraction
• Ideal refractive surface
• Fresnel lenses and zone plates
• Research papers on refraction
• Kinematical diffraction
Today’s Outline - February 13, 2018

- Ideal refractive surface
- Fresnel lenses and zone plates
- Research papers on refraction
- Kinematical diffraction

Homework Assignment #02:
Problems on Blackboard
due Tuesday, February 13, 2018
Refractive optics

Just as with visible light, it is possible to make refractive optics for x-rays.

\[n \approx 1 - \delta, \quad \delta \approx 10^{-5} \]

\[f \approx 100 \text{m}! \]

x-ray lenses are complementary to those for visible light. Getting manageable focal distances requires making compound lenses.
Refractive optics

Just as with visible, light, it is possible to make refractive optics for x-rays:

visible light:

\[n \sim 1.2 - 1.5 \]
\[f \sim 0.1m \]
Refractive optics

Just as with visible, light, it is possible to make refractive optics for x-rays:

Visible light:

\[n \sim 1.2 - 1.5 \]
\[f \sim 0.1m \]

X-rays:

\[n \approx 1 - \delta, \ \delta \sim 10^{-5} \]
\[f \sim 100m! \]
Refractive optics

Just as with visible light, it is possible to make refractive optics for x-rays.

Visible light:

\[n \sim 1.2 - 1.5 \]
\[f \sim 0.1 \text{m} \]

X-rays:

\[n \approx 1 - \delta, \quad \delta \sim 10^{-5} \]
\[f \sim 100 \text{m!} \]

X-ray lenses are complementary to those for visible light.
Refractive optics

Just as with visible, light, it is possible to make refractive optics for x-rays:

visible light:
\[
\begin{align*}
n & \sim 1.2 - 1.5 \\
f & \sim 0.1 \text{m}
\end{align*}
\]

x-rays:
\[
\begin{align*}
n & \approx 1 - \delta, \ \delta \sim 10^{-5} \\
f & \sim 100 \text{m!}
\end{align*}
\]

x-ray lenses are complementary to those for visible light getting manageable focal distances requires making compound lenses.
Focal length of a compound lens

Start with a 3-element compound lens, calculate effective focal length.
Focal length of a compound lens

Start with a 3-element compound lens, calculate effective focal length assuming each lens has the same focal length, f

$$\frac{1}{i} + \frac{1}{o} = \frac{1}{f}$$
Focal length of a compound lens

Start with a 3-element compound lens, calculate effective focal length assuming each lens has the same focal length, f

\[
\frac{1}{i} + \frac{1}{o} = \frac{1}{f} \rightarrow \frac{1}{i} = \frac{1}{f} - \frac{1}{o}
\]
Start with a 3-element compound lens, calculate effective focal length assuming each lens has the same focal length, f.

$$\frac{1}{i} + \frac{1}{o} = \frac{1}{f} \Rightarrow \frac{1}{i} = \frac{1}{f} - \frac{1}{o}$$

$$\frac{1}{i_1} = \frac{1}{f_1} - \frac{1}{o_1}$$
Start with a 3-element compound lens, calculate effective focal length assuming each lens has the same focal length, f

\[f_1 = f, \quad o_1 = \infty \]
Start with a 3-element compound lens, calculate effective focal length assuming each lens has the same focal length, \(f \)

\[
\begin{align*}
\frac{1}{i} + \frac{1}{o} &= \frac{1}{f} \rightarrow \frac{1}{i} &= \frac{1}{f} - \frac{1}{o} \\
\frac{1}{i_1} &= \frac{1}{f_1} - \frac{1}{o_1} \rightarrow \frac{1}{i_1} &= \frac{1}{f} \rightarrow i_1 = f
\end{align*}
\]

\(f_1 = f, \ o_1 = \infty \)
Start with a 3-element compound lens, calculate effective focal length assuming each lens has the same focal length, f

$$f_1 = f, \ o_1 = \infty$$

for the second lens, the image i_1 is a virtual object, $o_2 = -i_1$
Focal length of a compound lens

Start with a 3-element compound lens, calculate effective focal length assuming each lens has the same focal length, f

1. For the first lens, $f_1 = f$, $o_1 = \infty$

2. For the second lens, the image i_1 is a virtual object, $o_2 = -i_1$
Focal length of a compound lens

Start with a 3-element compound lens, calculate effective focal length assuming each lens has the same focal length, f

\[\frac{1}{i_1} = \frac{1}{f_1} - \frac{1}{o_1} \rightarrow \frac{1}{i_1} = \frac{1}{f} \rightarrow i_1 = f \]

\[\frac{1}{i_2} = \frac{1}{f_2} - \frac{1}{o_2} \rightarrow \frac{1}{i_2} = \frac{1}{f} + \frac{1}{f} \rightarrow i_2 = \frac{f}{2} \]

for the second lens, the image i_1 is a virtual object, $o_2 = -i_1$
Focal length of a compound lens

Start with a 3-element compound lens, calculate effective focal length assuming each lens has the same focal length, f

$$f_1 = f, \quad o_1 = \infty$$

for the second lens, the image i_1 is a virtual object, $o_2 = -i_1$

similarly for the third lens, $o_3 = -i_2$
Focal length of a compound lens

Start with a 3-element compound lens, calculate effective focal length assuming each lens has the same focal length, f

$f_1 = f$, $o_1 = \infty$

for the second lens, the image i_1 is a virtual object, $o_2 = -i_1$

similarly for the third lens, $o_3 = -i_2$
Start with a 3-element compound lens, calculate effective focal length assuming each lens has the same focal length, f

$$f_1 = f, \quad o_1 = \infty$$

for the second lens, the image i_1 is a virtual object, $o_2 = -i_1$

similarly for the third lens, $o_3 = -i_2$
Focal length of a compound lens

Start with a 3-element compound lens, calculate effective focal length assuming each lens has the same focal length, \(f \)

\[
\frac{1}{i} + \frac{1}{o} = \frac{1}{f} \rightarrow \frac{1}{i} = \frac{1}{f} - \frac{1}{o}
\]

\[
\frac{1}{i_1} = \frac{1}{f_1} - \frac{1}{o_1} \rightarrow \frac{1}{i_1} = \frac{1}{f} \rightarrow i_1 = f
\]

\[
\frac{1}{i_2} = \frac{1}{f_2} - \frac{1}{o_2} \rightarrow \frac{1}{i_2} = \frac{1}{f} + \frac{1}{f} \rightarrow i_2 = \frac{f}{2}
\]

\[
\frac{1}{i_2} = \frac{1}{f_2} - \frac{1}{o_2} \rightarrow \frac{1}{i_2} = \frac{1}{f} + \frac{2}{f} \rightarrow i_2 = \frac{f}{3}
\]

so for \(N \) lenses \(f_{\text{eff}} = f/N \)
Rephasing distance

A spherical surface is not the ideal lens as it introduces aberrations. Derive the ideal shape for perfect focusing of x-rays.
Rephasing distance

A spherical surface is not the ideal lens as it introduces aberrations. Derive the ideal shape for perfect focusing of x-rays.

consider two waves, one traveling inside the solid and the other in vacuum,

\[\lambda = \lambda_0 / (1 - \delta) \approx \lambda_0 (1 + \delta) \]
Rephasing distance

A spherical surface is not the ideal lens as it introduces aberrations. Derive the ideal shape for perfect focusing of x-rays.

Consider two waves, one traveling inside the solid and the other in vacuum,

\[\lambda = \lambda_0 / (1 - \delta) \approx \lambda_0 (1 + \delta) \]

\(\lambda_0 \) \(\lambda_0 (1+\delta) \)
Rephasing distance

A spherical surface is not the ideal lens as it introduces aberrations. Derive the ideal shape for perfect focusing of x-rays.

Consider two waves, one traveling inside the solid and the other in vacuum.

\[\lambda = \frac{\lambda_0}{1 - \delta} \approx \lambda_0 (1 + \delta) \]

If the two waves start in phase, they will be in phase once again after a distance

\[\Lambda = (N + 1)\lambda_0 = N\lambda_0 (1 + \delta) \]
Rephasing distance

A spherical surface is not the ideal lens as it introduces aberrations. Derive the ideal shape for perfect focusing of x-rays.

Consider two waves, one traveling inside the solid and the other in vacuum, \(\lambda = \frac{\lambda_0}{1 - \delta} \approx \lambda_0 (1 + \delta) \)

If the two waves start in phase, they will be in phase once again after a distance

\[
\Lambda = (N + 1)\lambda_0 = N\lambda_0 (1 + \delta)
\]

\[
N\lambda_0 + \lambda_0 = N\lambda_0 + N\delta\lambda_0
\]
Rephasing distance

A spherical surface is not the ideal lens as it introduces aberrations. Derive the ideal shape for perfect focusing of x-rays.

Consider two waves, one traveling inside the solid and the other in vacuum, \(\lambda = \lambda_0/(1 - \delta) \approx \lambda_0(1 + \delta) \)

If the two waves start in phase, they will be in phase once again after a distance

\[
\Lambda = (N + 1)\lambda_0 = N\lambda_0(1 + \delta)
\]

\[
N\lambda_0 + \lambda_0 = N\lambda_0 + N\delta\lambda_0 \quad \rightarrow \quad \lambda_0 = N\delta\lambda_0
\]
Rephasing distance

A spherical surface is not the ideal lens as it introduces aberrations. Derive the ideal shape for perfect focusing of x-rays.

Consider two waves, one traveling inside the solid and the other in vacuum, \(\lambda = \frac{\lambda_0}{1 - \delta} \approx \lambda_0(1 + \delta) \)

If the two waves start in phase, they will be in phase once again after a distance

\[
\Lambda = (N + 1)\lambda_0 = N\lambda_0(1 + \delta)
\]

\[
N\lambda_0 + \lambda_0 = N\lambda_0 + N\delta\lambda_0 \quad \rightarrow \quad \lambda_0 = N\delta\lambda_0 \quad \rightarrow \quad N = \frac{1}{\delta}
\]
Rephasing distance

A spherical surface is not the ideal lens as it introduces aberrations. Derive the ideal shape for perfect focusing of x-rays.

Consider two waves, one traveling inside the solid and the other in vacuum, $\lambda = \lambda_0/(1 - \delta) \approx \lambda_0(1 + \delta)$.

If the two waves start in phase, they will be in phase once again after a distance $\Lambda = (N + 1)\lambda_0 = N\lambda_0(1 + \delta)$.

The phase difference is given by $N\lambda_0 + \lambda_0 = N\lambda_0 + N\delta\lambda_0 \implies \lambda_0 = N\delta\lambda_0 \implies N = \frac{1}{\delta}$.

The distance is $\Lambda = N\lambda_0 = \frac{\lambda_0}{\delta}$.
Rephasing distance

A spherical surface is not the ideal lens as it introduces aberrations. Derive the ideal shape for perfect focusing of x-rays.

Consider two waves, one traveling inside the solid and the other in vacuum,
\[\lambda = \frac{\lambda_0}{1 - \delta} \approx \lambda_0 (1 + \delta) \]

If the two waves start in phase, they will be in phase once again after a distance

\[\Lambda = (N + 1) \lambda_0 = N \lambda_0 (1 + \delta) \]

\[N \lambda_0 + \lambda_0 = N \lambda_0 + N \delta \lambda_0 \quad \rightarrow \quad \lambda_0 = N \delta \lambda_0 \quad \rightarrow \quad N = \frac{1}{\delta} \]

\[\Lambda = N \lambda_0 = \frac{\lambda_0}{\delta} = \frac{2\pi}{\lambda_0 r_0 \rho} \]
Rephasing distance

A spherical surface is not the ideal lens as it introduces aberrations. Derive the ideal shape for perfect focusing of x-rays.

Consider two waves, one traveling inside the solid and the other in vacuum,
\[\lambda = \frac{\lambda_0}{1 - \delta} \approx \lambda_0 (1 + \delta) \]

if the two waves start in phase, they will be in phase once again after a distance

\[\Lambda = (N + 1)\lambda_0 = N\lambda_0 (1 + \delta) \]

\[N\lambda_0 + \lambda_0 = N\lambda_0 + N\delta\lambda_0 \quad \rightarrow \quad \lambda_0 = N\delta\lambda_0 \quad \rightarrow \quad N = \frac{1}{\delta} \]

\[\Lambda = N\lambda_0 = \frac{\lambda_0}{\delta} = \frac{2\pi}{\lambda_0 r_0 \rho} \approx 10 \mu m \]
Ideal interface profile

The wave exits the material into vacuum through a surface of profile \(h(x) \), and is twisted by an angle \(\alpha \).

Follow the path of two points on the wave-front, \(A \) and \(A' \), as they propagate to \(B \) and \(B' \).

From the \(\Delta AA'B \) triangle and from the \(\Delta BCB' \) triangle using \(\Lambda = \frac{\lambda_0}{\delta} \frac{h'(x)}{\Delta x} \approx \lambda_0 h'(x) \delta \approx \lambda_0 \delta \Delta x = h'(x) \lambda_0 \Lambda \).
The wave exits the material into vacuum through a surface of profile \(h(x) \), and is twisted by an angle \(\alpha \).
The wave exits the material into vacuum through a surface of profile $h(x)$, and is twisted by an angle α. Follow the path of two points on the wavefront, A and A' as they propagate to B and B'.
The wave exits the material into vacuum through a surface of profile $h(x)$, and is twisted by an angle α. Follow the path of two points on the wavefront, A and A' as they propagate to B and B'. From the $AA'B'$ triangle
The wave exits the material into vacuum through a surface of profile $h(x)$, and is twisted by an angle α. Follow the path of two points on the wave-front, A and A' as they propagate to B and B'. From the $AA'B'$ triangle

$$\lambda_0 (1 + \delta) = h'(x) \Delta x$$
The wave exits the material into vacuum through a surface of profile $h(x)$, and is twisted by an angle α. Follow the path of two points on the wave-front, A and A' as they propagate to B and B'.

from the $AA'B'$ triangle

$$\lambda_0 (1 + \delta) = h'(x) \Delta x \quad \rightarrow \quad \Delta x \approx \frac{\lambda_0}{h'(x)}$$
The wave exits the material into vacuum through a surface of profile $h(x)$, and is twisted by an angle α. Follow the path of two points on the wave-front, A and A' as they propagate to B and B'.

From the $AA'B'$ triangle

and from the BCB' triangle

$$\lambda_0(1 + \delta) = h'(x)\Delta x \quad \Rightarrow \quad \Delta x \approx \frac{\lambda_0}{h'(x)}$$
The wave exits the material into vacuum through a surface of profile \(h(x) \), and is twisted by an angle \(\alpha \). Follow the path of two points on the wavefront, \(A \) and \(A' \) as they propagate to \(B \) and \(B' \).

From the \(AA'B' \) triangle

and from the \(BCB' \) triangle

The wave exits the material into vacuum through a surface of profile \(h(x) \), and is twisted by an angle \(\alpha \). Follow the path of two points on the wavefront, \(A \) and \(A' \) as they propagate to \(B \) and \(B' \).

\[
\lambda_0 (1 + \delta) = h'(x) \Delta x \quad \rightarrow \quad \Delta x \approx \frac{\lambda_0}{h'(x)}
\]

\[
\alpha(x) \approx \frac{\lambda_0 \delta}{\Delta x}
\]
The wave exits the material into vacuum through a surface of profile $h(x)$, and is twisted by an angle α. Follow the path of two points on the wavefront, A and A' as they propagate to B and B'.

from the $AA'B'$ triangle
and from the BCB' triangle

$$\lambda_0 (1 + \delta) = h'(x) \Delta x \quad \rightarrow \quad \Delta x \approx \frac{\lambda_0}{h'(x)}$$

$$\alpha(x) \approx \frac{\lambda_0 \delta}{\Delta x} = h'(x) \delta$$
The wave exits the material into vacuum through a surface of profile $h(x)$, and is twisted by an angle α. Follow the path of two points on the wave-front, A and A' as they propagate to B and B'.

from the $AA'B'$ triangle
and from the BCB' triangle
using $\Lambda = \lambda_0/\delta$

$$\lambda_0 (1 + \delta) = h'(x) \Delta x \quad \rightarrow \quad \Delta x \approx \frac{\lambda_0}{h'(x)}$$

$$\alpha(x) \approx \frac{\lambda_0 \delta}{\Delta x} = h'(x) \delta$$
Ideal interface profile

The wave exits the material into vacuum through a surface of profile $h(x)$, and is twisted by an angle α. Follow the path of two points on the wavefront, A and A' as they propagate to B and B'.

from the $AA'B'$ triangle
and from the BCB' triangle
using $\Lambda = \lambda_0 / \delta$

$$
\lambda_0 (1 + \delta) = h'(x) \Delta x \quad \rightarrow \quad \Delta x \approx \frac{\lambda_0}{h'(x)}
$$

$$
\alpha(x) \approx \frac{\lambda_0 \delta}{\Delta x} = h'(x) \delta = h'(x) \frac{\lambda_0}{\Lambda}
$$
Ideal interface profile

If the desired focal length of this lens is f, the wave must be redirected at an angle which depends on the distance from the optical axis.

\[\alpha(x) = \frac{x}{f} \]

This can be directly integrated:

\[\Lambda = \frac{x^2}{2f\lambda_0} = \left[\frac{x}{\sqrt{2f\lambda_0}} \right]^2 \]

A parabola is the ideal surface shape for focusing by refraction.
If the desired focal length of this lens is f, the wave must be redirected at an angle which depends on the distance from the optical axis

$$\alpha(x) = \frac{x}{f}$$
Ideal interface profile

If the desired focal length of this lens is f, the wave must be redirected at an angle which depends on the distance from the optical axis:

$$\alpha(x) = \frac{x}{f}$$

Combining, we have

$$\frac{\lambda_0 h'(x)}{\Lambda} = \frac{x}{f}$$
Ideal interface profile

If the desired focal length of this lens is f, the wave must be redirected at an angle which depends on the distance from the optical axis

$$\alpha(x) = \frac{x}{f}$$

combining, we have

$$\frac{\lambda_0 h'(x)}{\Lambda} = \frac{x}{f} \Rightarrow \frac{h'(x)}{\Lambda} = \frac{x}{f \lambda_0}$$
If the desired focal length of this lens is f, the wave must be redirected at an angle which depends on the distance from the optical axis

$$\alpha(x) = \frac{x}{f}$$

combining, we have

$$\frac{\lambda_0 h'(x)}{\Lambda} = \frac{x}{f} \quad \rightarrow \quad \frac{h'(x)}{\Lambda} = \frac{x}{f\lambda_0}$$

this can be directly integrated
Ideal interface profile

If the desired focal length of this lens is f, the wave must be redirected at an angle which depends on the distance from the optical axis

$$\alpha(x) = \frac{x}{f}$$

combining, we have

$$\frac{\lambda_0 h'(x)}{\Lambda} = \frac{x}{f} \quad \implies \quad \frac{h'(x)}{\Lambda} = \frac{x}{f \lambda_0}$$

this can be directly integrated

$$\frac{h(x)}{\Lambda} = \frac{x^2}{2f \lambda_0}$$
Ideal interface profile

If the desired focal length of this lens is f, the wave must be redirected at an angle which depends on the distance from the optical axis

$$\alpha(x) = \frac{x}{f}$$

combining, we have

$$\frac{\lambda_0 h'(x)}{\Lambda} = \frac{x}{f} \quad \rightarrow \quad \frac{h'(x)}{\Lambda} = \frac{x}{f\lambda_0}$$

this can be directly integrated

$$\frac{h(x)}{\Lambda} = \frac{x^2}{2f\lambda_0} = \left[\frac{x}{\sqrt{2f\lambda_0}} \right]^2$$
Ideal interface profile

If the desired focal length of this lens is f, the wave must be redirected at an angle which depends on the distance from the optical axis

$$\alpha(x) = \frac{x}{f}$$

combining, we have

$$\frac{\lambda_0 h'(x)}{\Lambda} = \frac{x}{f} \quad \rightarrow \quad \frac{h'(x)}{\Lambda} = \frac{x}{f \lambda_0}$$

this can be directly integrated

$$\frac{h(x)}{\Lambda} = \frac{x^2}{2f \lambda_0} = \left[\frac{x}{\sqrt{2f \lambda_0}} \right]^2$$

a parabola is the ideal surface shape for focusing by refraction
Focal length of circular lens

From the previous expression for the ideal parabolic surface, the focal length can be written in terms of the surface profile.
Focal length of circular lens

From the previous expression for the ideal parabolic surface, the focal length can be written in terms of the surface profile.

\[
f = \frac{x^2 \Lambda}{2 \lambda_0 h(x)}
\]
Focal length of circular lens

From the previous expression for the ideal parabolic surface, the focal length can be written in terms of the surface profile.

\[f = \frac{x^2 \Lambda}{2 \lambda_0 h(x)} = \frac{1}{2 \delta} \frac{x^2}{h(x)} \]
Focal length of circular lens

From the previous expression for the ideal parabolic surface, the focal length can be written in terms of the surface profile.

\[f = \frac{x^2 \Lambda}{2 \lambda_0 h(x)} = \frac{1}{2 \delta} \frac{x^2}{h(x)} \]

or alternatively

\[f = \frac{1}{\delta} \frac{x}{h'(x)} \]
Focal length of circular lens

From the previous expression for the ideal parabolic surface, the focal length can be written in terms of the surface profile.

\[f = \frac{x^2 \Lambda}{2 \lambda_0 h(x)} = \frac{1}{2\delta} \frac{x^2}{h(x)} \quad \text{or alternatively} \quad f = \frac{1}{\delta} \frac{x}{h'(x)} \]

If the surface is a circle instead of a parabola

\[h(x) = \sqrt{R^2 - x^2} \]

and for \(x \ll R \)

\[h(x) \approx R (1 - \frac{x^2}{2R^2}) \]

so we have

\[f \approx \frac{R^2}{2} \delta \]

for \(N \) circular lenses

\[f_n \approx \frac{R^2}{2} N \delta \]
Focal length of circular lens

From the previous expression for the ideal parabolic surface, the focal length can be written in terms of the surface profile.

\[f = \frac{x^2 \Lambda}{2\lambda_0 h(x)} = \frac{1}{2\delta} \frac{x^2}{h(x)} \quad \text{or alternatively} \quad f = \frac{1}{\delta} \frac{x}{h'(x)} \]

If the surface is a circle instead of a parabola

\[h(x) = \sqrt{R^2 - x^2} \]
Focal length of circular lens

From the previous expression for the ideal parabolic surface, the focal length can be written in terms of the surface profile.

\[f = \frac{x^2 \Lambda}{2 \lambda_0 h(x)} = \frac{1}{2 \delta} \frac{x^2}{h(x)} \quad \text{or alternatively} \quad f = \frac{1}{\delta} \frac{x}{h'(x)} \]

If the surface is a circle instead of a parabola

\[h(x) = \sqrt{R^2 - x^2} \quad \text{and for } x \ll R \quad h(x) \approx R \left(1 - \frac{1}{2} \frac{x^2}{R^2}\right) \]
Focal length of circular lens

From the previous expression for the ideal parabolic surface, the focal length can be written in terms of the surface profile.

\[
f = \frac{x^2 \Lambda}{2 \lambda_0 h(x)} = \frac{1}{2 \delta} \frac{x^2}{h(x)}
\]

or alternatively

\[
f = \frac{1}{\delta} \frac{x}{h'(x)}
\]

If the surface is a circle instead of a parabola

\[
h(x) = \sqrt{R^2 - x^2} \quad \text{and for } x \ll R \quad h(x) \approx R \left(1 - \frac{1}{2} \frac{x^2}{R^2}\right)
\]

\[
x^2 = R^2 - h^2(x) \approx R^2
\]
Focal length of circular lens

From the previous expression for the ideal parabolic surface, the focal length can be written in terms of the surface profile.

\[f = \frac{x^2 \Lambda}{2 \lambda_0 h(x)} = \frac{1}{2 \delta} \frac{x^2}{h(x)} \quad \text{or alternatively} \quad f = \frac{1}{\delta} \frac{x}{h'(x)} \]

If the surface is a circle instead of a parabola

\[h(x) = \sqrt{R^2 - x^2} \quad \text{and for } x \ll R \quad h(x) \approx R \left(1 - \frac{1}{2} \frac{x^2}{R^2}\right) \]

\[x^2 = R^2 - h^2(x) \approx R^2 \quad \text{so we have} \quad f \approx \frac{R}{2\delta} \]
Focal length of circular lens

From the previous expression for the ideal parabolic surface, the focal length can be written in terms of the surface profile.

\[f = \frac{x^2 \Lambda}{2 \lambda_0 h(x)} = \frac{1}{2\delta} \frac{x^2}{h(x)} \quad \text{or alternatively} \quad f = \frac{1}{\delta} \frac{x}{h'(x)} \]

If the surface is a circle instead of a parabola

\[h(x) = \sqrt{R^2 - x^2} \quad \text{and for} \quad x \ll R \quad h(x) \approx R \left(1 - \frac{1}{2} \frac{x^2}{R^2} \right) \]

\[x^2 = R^2 - h^2(x) \approx R^2 \quad \text{so we have} \quad f \approx \frac{R}{2\delta} \]

for \(N \) circular lenses

\[f_n \approx \frac{R}{2N\delta} \]
Focussing by a beryllium lens

For 50 holes of radius $R = 1\text{mm}$ in beryllium (Be) at $E = 10\text{keV}$, we can calculate the focal length, knowing $\delta = 3.41 \times 10^{-6}$.

$$f = \frac{R^2}{N \delta} = \frac{1 \times 10^{-3} \text{m}^2}{50 \times (3.41 \times 10^{-6})} = 2.93 \text{m}$$

depending on the wall thickness of the lenslets, the transmission can be up to 74%.

Focussing by a beryllium lens

For 50 holes of radius $R = 1\text{mm}$ in beryllium (Be) at $E = 10\text{keV}$, we can calculate the focal length, knowing $\delta = 3.41 \times 10^{-6}$

$$f_N = \frac{R}{2N\delta}$$

Focussing by a beryllium lens

For 50 holes of radius $R = 1\text{mm}$ in beryllium (Be) at $E = 10\text{keV}$, we can calculate the focal length, knowing $\delta = 3.41 \times 10^{-6}$

$$f_N = \frac{R}{2N\delta} = \frac{1 \times 10^{-3}\text{m}}{2(50)(3.41 \times 10^{-6})}$$

For 50 holes of radius $R = 1\text{mm}$ in beryllium (Be) at $E = 10\text{keV}$, we can calculate the focal length, knowing $\delta = 3.41 \times 10^{-6}$

$$f_N = \frac{R}{2N\delta} = \frac{1 \times 10^{-3}\text{m}}{2(50)(3.41 \times 10^{-6})} = 2.93\text{m}$$

For 50 holes of radius $R = 1\text{mm}$ in beryllium (Be) at $E = 10\text{keV}$, we can calculate the focal length, knowing $\delta = 3.41 \times 10^{-6}$

$$f_N = \frac{R}{2N\delta} = \frac{1 \times 10^{-3}\text{m}}{2(50)(3.41 \times 10^{-6})} = 2.93\text{m}$$

depending on the wall thickness of the lenslets, the transmission can be up to 74%.

Alligator-type lenses

Perhaps one of the most original x-ray lenses has been made by using old vinyl records in an “alligator” configuration.

Alligator-type lenses

Perhaps one of the most original x-ray lenses has been made by using old vinyl records in an “alligator” configuration.

This design has also been used to make lenses out of lithium metal.

Extruded Al lens

The compound refractive lenses (CRL) are useful for fixed focus but are difficult to use if a variable focal distance and a long focal length is required.

Extruded Al lens

The compound refractive lenses (CRL) are useful for fixed focus but are difficult to use if a variable focal distance and a long focal length is required.

Extruded Al lens

The compound refractive lenses (CRL) are useful for fixed focus but are difficult to use if a variable focal distance and a long focal length is required.

Extruded Al lens

The compound refractive lenses (CRL) are useful for fixed focus but are difficult to use if a variable focal distance and a long focal length is required.

Extruded aluminum lens with parabolic figure

Cut diagonally to expose variable number of “lenses” to a horizontal beam

Extruded Al lens

The compound refractive lenses (CRL) are useful for fixed focus but are difficult to use if a variable focal distance and a long focal length is required.

Extruded aluminum lens with parabolic figure

Cut diagonally to expose variable number of “lenses” to a horizontal beam

Horizontal translation allows change in focal length but it is quantized, not continuous

Variable focal length CRL

A continuously variable focal length is very important for two specific reasons: tracking sample position, and keeping the focal length constant as energy is changed.

Variable focal length CRL

A continuously variable focal length is very important for two specific reasons: tracking sample position, and keeping the focal length constant as energy is changed. This can be achieved with a rotating lens system

\[\text{Start with a 2 hole CRL. Rotate by an angle } \chi \text{ about vertical axis giving an effective change in the number of "lenses" by a factor } \frac{1}{\cos \chi}. \]

At \(E = 5.5 \text{ keV} \) and \(\chi = 0^\circ \), height is over 120 \(\mu \text{m} \). At \(\chi = 30^\circ \), it is under 50 \(\mu \text{m} \). Optimal focus is 20 \(\mu \text{m} \) at \(\chi = 40^\circ \).

A continuously variable focal length is very important for two specific reasons: tracking sample position, and keeping the focal length constant as energy is changed. This can be achieved with a rotating lens system.

Start with a 2 hole CRL.

Variable focal length CRL

A continuously variable focal length is very important for two specific reasons: tracking sample position, and keeping the focal length constant as energy is changed. This can be achieved with a rotating lens system.

Start with a 2 hole CRL. Rotate by an angle χ about vertical axis.

A continuously variable focal length is very important for two specific reasons: tracking sample position, and keeping the focal length constant as energy is changed. This can be achieved with a rotating lens system

Start with a 2 hole CRL. Rotate by an angle χ about vertical axis giving an effective change in the number of “lenses” by a factor $1/\cos \chi$.

A continuously variable focal length is very important for two specific reasons: tracking sample position, and keeping the focal length constant as energy is changed. This can be achieved with a rotating lens system.

Start with a 2 hole CRL. Rotate by an angle χ about vertical axis giving an effective change in the number of “lenses” by a factor $1/\cos \chi$.

At $E = 5.5$ keV and $\chi = 0^\circ$, height is over 120 μm.

Variable focal length CRL

A continuously variable focal length is very important for two specific reasons: tracking sample position, and keeping the focal length constant as energy is changed. This can be achieved with a rotating lens system.

Start with a 2 hole CRL. Rotate by an angle χ about vertical axis giving an effective change in the number of “lenses” by a factor $1/\cos \chi$.

at $E = 5.5\text{keV}$ and $\chi = 0^\circ$, height is over $120\mu\text{m}$

At $\chi = 30^\circ$, it is under $50\mu\text{m}$

A continuously variable focal length is very important for two specific reasons: tracking sample position, and keeping the focal length constant as energy is changed. This can be achieved with a rotating lens system.

Start with a 2 hole CRL. Rotate by an angle χ about vertical axis giving an effective change in the number of “lenses” by a factor $1/\cos \chi$.

at $E = 5.5\text{keV}$ and $\chi = 0^\circ$, height is over $120\mu\text{m}$

At $\chi = 30^\circ$, it is under $50\mu\text{m}$

Optimal focus is $20\mu\text{m}$ at $\chi = 40^\circ$

How to make a Fresnel lens

The ideal refracting lens has a parabolic shape (actually elliptical) but this is impractical to make.
How to make a Fresnel lens

The ideal refracting lens has a parabolic shape (actually elliptical) but this is impractical to make.

\[h(x) = \Lambda \left(\frac{x}{\sqrt{2\lambda_0 f}} \right)^2 \]
How to make a Fresnel lens

The ideal refracting lens has a parabolic shape (actually elliptical) but this is impractical to make.

\[h(x) = \Lambda \left(\frac{x}{\sqrt{2\lambda_0 f}} \right)^2 \]

when \(h(x) = 100\Lambda \sim 1000\,\mu\text{m} \)
How to make a Fresnel lens

The ideal refracting lens has a parabolic shape (actually elliptical) but this is impractical to make.

\[h(x) = \Lambda \left(\frac{x}{\sqrt{2\lambda_0 f}} \right)^2 \]

when \(h(x) = 100\Lambda \sim 1000\mu m \)

\[x = 10\sqrt{2\lambda_0 f} \sim 100\mu m \]
The ideal refracting lens has a parabolic shape (actually elliptical) but this is impractical to make.

\[h(x) = \Lambda \left(\frac{x}{\sqrt{2\lambda_0 f}} \right)^2 \]

when \(h(x) = 100\Lambda \sim 1000\mu m \)

\[x = 10\sqrt{2\lambda_0 f} \sim 100\mu m \]

aspect ratio too large for a stable structure and absorption would be too large!
How to make a Fresnel lens

Mark off the longitudinal zones (of thickness Λ) where the waves inside and outside the material are in phase.
How to make a Fresnel lens

Mark off the longitudinal zones (of thickness Λ) where the waves inside and outside the material are in phase.

Each block of thickness Λ serves no purpose for refraction but only attenuates the wave.
How to make a Fresnel lens

Mark off the longitudinal zones (of thickness Λ) where the waves inside and outside the material are in phase.

Each block of thickness Λ serves no purpose for refraction but only attenuates the wave.

This material can be removed and the remaining material collapsed to produce a Fresnel lens which has the same optical properties as the parabolic lens as long as $f \gg N\Lambda$ where N is the number of zones.
The outermost zones become very small and thus limit the overall aperture of the zone plate. The dimensions of outermost zone, N can be calculated by first defining a scaled height and lateral dimension.
The outermost zones become very small and thus limit the overall aperture of the zone plate. The dimensions of outermost zone, \(N \) can be calculated by first defining a scaled height and lateral dimension

\[
\nu = \frac{h(x)}{\Lambda}
\]
The outermost zones become very small and thus limit the overall aperture of the zone plate. The dimensions of outermost zone, N can be calculated by first defining a scaled height and lateral dimension

$$\nu = \frac{h(x)}{\Lambda}, \quad \xi = \frac{x}{\sqrt{2\lambda_0 f}}$$
The outermost zones become very small and thus limit the overall aperture of the zone plate. The dimensions of outermost zone, N, can be calculated by first defining a scaled height and lateral dimension

$$\nu = \frac{h(x)}{\Lambda}, \quad \xi = \frac{x}{\sqrt{2\lambda_0 f}}$$

Since $\nu = \xi^2$, the position of the N^{th} zone is $\xi_N = \sqrt{N}$ and the scaled width of the N^{th} (outermost) zone is
The outermost zones become very small and thus limit the overall aperture of the zone plate. The dimensions of outermost zone, \(N \) can be calculated by first defining a scaled height and lateral dimension

\[
\nu = \frac{h(x)}{\Lambda} \quad \xi = \frac{x}{\sqrt{2\lambda_0 f}}
\]

Since \(\nu = \xi^2 \), the position of the \(N^{th} \) zone is \(\xi_N = \sqrt{N} \) and the scaled width of the \(N^{th} \) (outermost) zone is

\[
\Delta\xi_N = \xi_N - \xi_{N-1} = \sqrt{N} - \sqrt{N-1}
\]
Fresnel lens dimensions

\[\Delta \xi_N = \xi_N - \xi_{N-1} = \sqrt{N} - \sqrt{N-1} \]
The diameter of the entire lens is thus $2\xi_N = 2\sqrt{N} = \frac{\Delta\xi_N}{\sqrt{N}}$.
\[\Delta \xi_N = \xi_N - \xi_{N-1} = \sqrt{N} - \sqrt{N-1} \]
\[= \sqrt{N} \left(1 - \sqrt{1 - \frac{1}{N}} \right) \]
\[\approx \sqrt{N} \left(1 - \left[1 - \frac{1}{2N} \right] \right) \]

The diameter of the entire lens is thus
\[2 \xi_N = 2 \sqrt{N} = \frac{1}{2} \Delta \xi_N \]
The diameter of the entire lens is thus

$$2\xi_N = 2\sqrt{N} = 1 + \Delta\xi_N$$

$$\Delta\xi_N = \xi_N - \xi_{N-1} = \sqrt{N} - \sqrt{N - 1}$$

$$= \sqrt{N} \left(1 - \sqrt{1 - \frac{1}{N}} \right)$$

$$\approx \sqrt{N} \left(1 - \left[1 - \frac{1}{2N} \right] \right)$$

$$\Delta\xi_N \approx \frac{1}{2\sqrt{N}}$$
\[\Delta \xi_N = \xi_N - \xi_{N-1} = \sqrt{N} - \sqrt{N - 1} \]
\[= \sqrt{N} \left(1 - \sqrt{1 - \frac{1}{N}} \right) \]
\[\approx \sqrt{N} \left(1 - \left[1 - \frac{1}{2N} \right] \right) \]
\[\Delta \xi_N \approx \frac{1}{2\sqrt{N}} \]

The diameter of the entire lens is thus

\[2\xi_N = 2\sqrt{N} = \frac{1}{\Delta \xi_N} \]
Fresnel lens example

In terms of the unscaled variables

\[\Delta x_N = \Delta \xi_N \sqrt{2 \lambda_o f} \]
Fresnel lens example

In terms of the unscaled variables

\[\Delta x_N = \Delta \xi_N \sqrt{2 \lambda_o f} = \sqrt{\frac{\lambda_o f}{2N}} \]
Fresnel lens example

In terms of the unscaled variables

\[\Delta x_N = \Delta \xi_N \sqrt{2 \lambda_o f} = \sqrt{\frac{\lambda_o f}{2N}} \]

\[d_N = 2 \xi_N \]
Fresnel lens example

In terms of the unscaled variables

\[\Delta x_N = \Delta \xi_N \sqrt{2 \lambda_o f} = \sqrt{\frac{\lambda_o f}{2N}} \]

\[d_N = 2\xi_N = \frac{\sqrt{2 \lambda_o f}}{\Delta \xi_N} \]
Fresnel lens example

In terms of the unscaled variables

$$\Delta x_N = \Delta \xi_N \sqrt{2\lambda_o f} = \sqrt{\frac{\lambda_o f}{2N}}$$

$$d_N = 2\xi_N = \frac{\sqrt{2\lambda_o f}}{\Delta \xi_N} = 2\sqrt{N} \sqrt{2\lambda_o f} = \sqrt{2N\lambda_o f}$$
Fresnel lens example

In terms of the unscaled variables

\[
\Delta x_N = \Delta \xi_N \sqrt{2\lambda_o f} = \sqrt{\frac{\lambda_o f}{2N}}
\]

\[
d_N = 2\xi_N = \frac{\sqrt{2\lambda_o f}}{\Delta \xi_N} = 2\sqrt{N} \sqrt{2\lambda_o f} = \sqrt{2N\lambda_o f}
\]

If we take

\[
\lambda_o = 1\text{Å} = 1 \times 10^{-10} \text{m}
\]

\[
f = 50\text{cm} = 0.5\text{m}
\]

\[
N = 100
\]
Fresnel lens example

In terms of the unscaled variables

\[\Delta x_N = \Delta \xi_N \sqrt{2 \lambda_o f} = \sqrt{\frac{\lambda_o f}{2N}} \]

\[d_N = 2\xi_N = \frac{\sqrt{2 \lambda_o f}}{\Delta \xi_N} = 2\sqrt{N} \sqrt{2 \lambda_o f} = \sqrt{2N \lambda_o f} \]

If we take

\[\lambda_o = 1\text{Å} = 1 \times 10^{-10} \text{m} \]

\[f = 50\text{cm} = 0.5\text{m} \]

\[N = 100 \]

\[\Delta x_N = 5 \times 10^{-7} \text{m} = 500\text{nm} \]
Fresnel lens example

In terms of the unscaled variables

\[\Delta x_N = \Delta \xi_N \sqrt{2\lambda_0 f} = \sqrt{\frac{\lambda_0 f}{2N}} \]

\[d_N = 2\xi_N = \frac{\sqrt{2\lambda_0 f}}{\Delta \xi_N} = 2\sqrt{N} \sqrt{2\lambda_0 f} = \sqrt{2N\lambda_0 f} \]

If we take

\[\lambda_0 = 1\text{Å} = 1 \times 10^{-10} \text{m} \]

\[f = 50\text{cm} = 0.5\text{m} \]

\[N = 100 \]

\[\Delta x_N = 5 \times 10^{-7}\text{m} = 500\text{nm} \]

\[d_N = 2 \times 10^{-4}\text{m} = 100\mu\text{m} \]
The specific shape required for a zone plate is difficult to fabricate, consequently, it is convenient to approximate the nearly triangular zones with a rectangular profile.
Making a Fresnel zone plate

The specific shape required for a zone plate is difficult to fabricate, consequently, it is convenient to approximate the nearly triangular zones with a rectangular profile.

In practice, since the outermost zones are very small, zone plates are generally fabricated as alternating zones (rings for 2D) of materials with a large Z-contrast, such as Au/Si or W/C.
Making a Fresnel zone plate

The specific shape required for a zone plate is difficult to fabricate, consequently, it is convenient to approximate the nearly triangular zones with a rectangular profile.

In practice, since the outermost zones are very small, zone plates are generally fabricated as alternating zones (rings for 2D) of materials with a large Z-contrast, such as Au/Si or W/C.

This kind of zone plate is not as efficient as a true Fresnel lens would be in the x-ray regime. Nevertheless, efficiencies up to 35% have been achieved.
Zone plate fabrication

Making high aspect ratio zone plates is challenging but a new process has been developed to make plates with an aspect ratio as high as 25.

Zone plate fabrication

Making high aspect ratio zone plates is challenging but a new process has been developed to make plates with an aspect ratio as high as 25.

Start with Ultra nano crystalline diamond (UNCD) films on SiN.

Zone plate fabrication

Making high aspect ratio zone plates is challenging but a new process has been developed to make plates with an aspect ratio as high as 25.

Start with Ultra nano crystalline diamond (UNCD) films on SiN. Coat with hydrogen silsesquioxane (HSQ).

Zone plate fabrication

Making high aspect ratio zone plates is challenging but a new process has been developed to make plates with an aspect ratio as high as 25.

Start with Ultra nano crystalline diamond (UNCD) films on SiN. Coat with hydrogen silsesquioxane (HSQ). Pattern and develop the HSQ layer.

Zone plate fabrication

Making high aspect ratio zone plates is challenging but a new process has been developed to make plates with an aspect ratio as high as 25.

Start with Ultra nano crystalline diamond (UNCD) films on SiN. Coat with hydrogen silsesquioxane (HSQ). Pattern and develop the HSQ layer. Reactive ion etch the UNCD to the substrate.

Zone plate fabrication

Making high aspect ratio zone plates is challenging but a new process has been developed to make plates with an aspect ratio as high as 25.

Start with Ultra nano crystalline diamond (UNCD) films on SiN. Coat with hydrogen silsesquioxane (HSQ). Pattern and develop the HSQ layer. Reactive ion etch the UNCD to the substrate. Plate with gold to make final zone plate.

Zone plate fabrication

Making high aspect ratio zone plates is challenging but a new process has been developed to make plates with an aspect ratio as high as 25.

Start with Ultra nano crystalline diamond (UNCD) films on SiN. Coat with hydrogen silsesquioxane (HSQ). Pattern and develop the HSQ layer. Reactive ion etch the UNCD to the substrate. Plate with gold to make final zone plate.

The whole 150nm diameter zone plate

Zone plate fabrication

Making high aspect ratio zone plates is challenging but a new process has been developed to make plates with an aspect ratio as high as 25.

Start with Ultra nano crystalline diamond (UNCD) films on SiN. Coat with hydrogen silsesquioxane (HSQ). Pattern and develop the HSQ layer. Reactive ion etch the UNCD to the substrate. Plate with gold to make final zone plate.

The whole 150nm diameter zone plate

Detail view of outer zones

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.
Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

\[\vec{Q} = (\vec{k} - \vec{k}') \]

\[|\vec{Q}| = 2k \sin \theta = \frac{4\pi}{\lambda} \sin \theta \]

The scattering from the second electron will have a phase shift of \(\phi = \vec{Q} \cdot \vec{r} \).

\[I(\vec{Q}) = A(\vec{Q})^* A(\vec{Q}) = r_0^2 (1 + e^{i\vec{Q} \cdot \vec{r}})(1 + e^{-i\vec{Q} \cdot \vec{r}}) = 2r_0^2 \cos(\vec{Q} \cdot \vec{r}) \]
Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

\[\vec{Q} = (\vec{k} - \vec{k}') \]

\[|\vec{Q}| = 2k \sin \theta = \frac{4\pi}{\lambda} \sin \theta \]

The scattering from the second electron will have a phase shift of \(\phi = \vec{Q} \cdot \vec{r} \).

\[A(\vec{Q}) = -r_0 (1 + e^{i \vec{Q} \cdot \vec{r}}) \]

\[I(\vec{Q}) = A(\vec{Q})^* A(\vec{Q}) = r_0^2 (1 + e^{i \vec{Q} \cdot \vec{r}} + e^{-i \vec{Q} \cdot \vec{r}} + 1) = 2r_0^2 (1 + \cos(\vec{Q} \cdot \vec{r})) \]
Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

\[\vec{Q} = (\vec{k} - \vec{k}') \]

\[\vec{Q} = 2 \vec{r} \sin \theta = 4 \pi \lambda \sin \theta \]

The scattering from the second electron will have a phase shift of \(\phi = \vec{Q} \cdot \vec{r} \).

\[A(\vec{Q}) = -r_0 (1 + e^{i \vec{Q} \cdot \vec{r}}) \]

\[I(\vec{Q}) = A(\vec{Q})^* A(\vec{Q}) = r_0^2 (1 + e^{i \vec{Q} \cdot \vec{r}})(1 + e^{-i \vec{Q} \cdot \vec{r}}) = 2 r_0^2 (1 + \cos(\vec{Q} \cdot \vec{r})) \]
Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

\[\vec{Q} = (\vec{k} - \vec{k}') \]
\[|\vec{Q}| = 2k \sin \theta = \frac{4\pi}{\lambda} \sin \theta \]
Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

\[\vec{Q} = (\vec{k} - \vec{k}') \]

\[|\vec{Q}| = 2k \sin \theta = \frac{4\pi}{\lambda} \sin \theta \]

The scattering from the second electron will have a phase shift of \(\phi = \vec{Q} \cdot \vec{r} \).
Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

\[\mathbf{Q} = (\mathbf{k} - \mathbf{k}') \]
\[|\mathbf{Q}| = 2k \sin \theta = \frac{4\pi}{\lambda} \sin \theta \]

The scattering from the second electron will have a phase shift of \(\phi = \mathbf{Q} \cdot \mathbf{r} \).

\[A(\mathbf{Q}) = -r_0 \left(1 + e^{i\mathbf{Q} \cdot \mathbf{r}} \right) \]
Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

\[\vec{Q} = (\vec{k} - \vec{k}') \]
\[|\vec{Q}| = 2k \sin \theta = \frac{4\pi}{\lambda} \sin \theta \]

The scattering from the second electron will have a phase shift of \(\phi = \vec{Q} \cdot \vec{r} \).

\[
A(\vec{Q}) = -r_0 \left(1 + e^{i\vec{Q} \cdot \vec{r}} \right)
\]

\[
I(\vec{Q}) = A(\vec{Q})^* A(\vec{Q})
\]
Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

\[\vec{Q} = (\vec{k} - \vec{k}') \]
\[|\vec{Q}| = 2k \sin \theta = \frac{4\pi}{\lambda} \sin \theta \]

The scattering from the second electron will have a phase shift of \(\phi = \vec{Q} \cdot \vec{r} \).

\[
A(\vec{Q}) = -r_0 \left(1 + e^{i\vec{Q} \cdot \vec{r}}\right)
\]
\[
I(\vec{Q}) = A(\vec{Q})^* A(\vec{Q}) = r_0^2 \left(1 + e^{i\vec{Q} \cdot \vec{r}}\right) \left(1 + e^{-i\vec{Q} \cdot \vec{r}}\right)
\]
Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

\[Q = (\vec{k} - \vec{k}') \]
\[|Q| = 2k \sin \theta = \frac{4\pi}{\lambda} \sin \theta \]

The scattering from the second electron will have a phase shift of \(\phi = \vec{Q} \cdot \vec{r} \).

\[A(\vec{Q}) = -r_0 \left(1 + e^{i\vec{Q} \cdot \vec{r}}\right) \]
\[I(\vec{Q}) = A(\vec{Q})^* A(\vec{Q}) \]
\[= r_0^2 \left(1 + e^{i\vec{Q} \cdot \vec{r}}\right) \left(1 + e^{-i\vec{Q} \cdot \vec{r}}\right) \]
\[I(\vec{Q}) = r_0^2 \left(1 + e^{i\vec{Q} \cdot \vec{r}} + e^{-i\vec{Q} \cdot \vec{r}} + 1\right) \]
Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

\[
\vec{Q} = (\vec{k} - \vec{k}')
\]

\[
|\vec{Q}| = 2k \sin \theta = \frac{4\pi}{\lambda} \sin \theta
\]

The scattering from the second electron will have a phase shift of \(\phi = \vec{Q} \cdot \vec{r} \).

\[
A(\vec{Q}) = -r_0 \left(1 + e^{i\vec{Q} \cdot \vec{r}} \right)
\]

\[
l(\vec{Q}) = A(\vec{Q})^* A(\vec{Q})
\]

\[
= r_0^2 \left(1 + e^{i\vec{Q} \cdot \vec{r}} \right) \left(1 + e^{-i\vec{Q} \cdot \vec{r}} \right)
\]

\[
l(\vec{Q}) = r_0^2 \left(1 + e^{i\vec{Q} \cdot \vec{r}} + e^{-i\vec{Q} \cdot \vec{r}} + 1 \right) = 2r_0^2 \left(1 + \cos(\vec{Q} \cdot \vec{r}) \right)
\]
Scattering from many electrons

for many electrons
Scattering from many electrons

for many electrons

\[A(\vec{Q}) = -r_0 \sum_j e^{i \vec{Q} \cdot \vec{r}_j} \]
Scattering from many electrons

for many electrons

\[A(\vec{Q}) = -r_0 \sum_j e^{i\vec{Q} \cdot \vec{r}_j} \]

generalizing to a crystal
Scattering from many electrons

for many electrons

generalizing to a crystal

\[A(\vec{Q}) = -r_0 \sum_j e^{i\vec{Q} \cdot \vec{r}_j} \]

\[A(\vec{Q}) = -r_0 \sum_N e^{i\vec{Q} \cdot \vec{R}_N} \sum_j e^{i\vec{Q} \cdot \vec{r}_j} \]
Scattering from many electrons

for many electrons

$$A(\vec{Q}) = -r_0 \sum_j e^{i\vec{Q} \cdot \vec{r}_j}$$

generalizing to a crystal

$$A(\vec{Q}) = -r_0 \sum_N e^{i\vec{Q} \cdot \vec{R}_N} \sum_j e^{i\vec{Q} \cdot \vec{r}_j}$$

Since experiments measure $I \propto A^2$, the phase information is lost. This is a problem if we don’t know the specific orientation of the scattering system relative to the x-ray beam.
Scattering from many electrons

for many electrons

\[A(\vec{Q}) = -r_0 \sum_j e^{i\vec{Q} \cdot \vec{r}_j} \]

generalizing to a crystal

\[A(\vec{Q}) = -r_0 \sum_N e^{i\vec{Q} \cdot \vec{R}_N} \sum_j e^{i\vec{Q} \cdot \vec{r}_j} \]

Since experiments measure \(I \propto A^2 \), the phase information is lost. This is a problem if we don’t know the specific orientation of the scattering system relative to the x-ray beam.

We will now look at the consequences of this orientation and generalize to more than two electrons.
Two electrons — fixed orientation

The expression

\[I(\vec{Q}) = 2r_0^2 \left(1 + \cos(\vec{Q} \cdot \vec{r}) \right) \]

assumes that the two electrons have a specific, fixed orientation. In this case the intensity as a function of \(Q \) is.
Two electrons — fixed orientation

The expression

\[I(\vec{Q}) = 2r_0^2 \left(1 + \cos(\vec{Q} \cdot \vec{r}) \right) \]

assumes that the two electrons have a specific, fixed orientation. In this case the intensity as a function of \(Q \) is.
Two electrons — fixed orientation

The expression

\[I(\vec{Q}) = 2r_0^2 \left(1 + \cos(\vec{Q} \cdot \vec{r}) \right) \]

assumes that the two electrons have a specific, fixed orientation. In this case the intensity as a function of \(Q \) is.

Fixed orientation is not the usual case, particularly for solution and small-angle scattering.
Orientation averaging

Consider scattering from two arbitrary electron distributions, f_1 and f_2. $A(\vec{Q})$, is given by
Consider scattering from two arbitrary electron distributions, \(f_1 \) and \(f_2 \). \(A(\vec{Q}) \), is given by

\[
A(\vec{Q}) = f_1 + f_2 e^{i\vec{Q} \cdot \vec{r}}
\]
Consider scattering from two arbitrary electron distributions, f_1 and f_2. $A(\vec{Q})$, is given by

and the intensity, $I(\vec{Q})$, is
Orientation averaging

\[
A(\vec{Q}) = f_1 + f_2 e^{i\vec{Q} \cdot \vec{r}}
\]
\[
I(\vec{Q}) = f_1^2 + f_2^2 + f_1 f_2 e^{i\vec{Q} \cdot \vec{r}} + f_1 f_2 e^{-i\vec{Q} \cdot \vec{r}}
\]

Consider scattering from two arbitrary electron distributions, \(f_1 \) and \(f_2 \). \(A(\vec{Q}) \), is given by and the intensity, \(I(\vec{Q}) \), is
Consider scattering from two arbitrary electron distributions, \(f_1 \) and \(f_2 \). \(A(\vec{Q}) \), is given by
\[
A(\vec{Q}) = f_1 + f_2 e^{i\vec{Q} \cdot \vec{r}}
\]
and the intensity, \(I(\vec{Q}) \), is
\[
I(\vec{Q}) = f_1^2 + f_2^2 + f_1 f_2 e^{i\vec{Q} \cdot \vec{r}} + f_1 f_2 e^{-i\vec{Q} \cdot \vec{r}}
\]
if the distance between the scatterers, \(\vec{r} \), remains constant (no vibrations) but is allowed to orient randomly in space.
Orientation averaging

Consider scattering from two arbitrary electron distributions, f_1 and f_2. $A(\vec{Q})$, is given by

$$A(\vec{Q}) = f_1 + f_2 e^{i \vec{Q} \cdot \vec{r}}$$

and the intensity, $I(\vec{Q})$, is

$$I(\vec{Q}) = f_1^2 + f_2^2 + f_1 f_2 e^{i \vec{Q} \cdot \vec{r}} + f_1 f_2 e^{-i \vec{Q} \cdot \vec{r}}$$

if the distance between the scatterers, \vec{r}, remains constant (no vibrations) but is allowed to orient randomly in space.
Consider scattering from two arbitrary electron distributions, \(f_1 \) and \(f_2 \). \(A(\vec{Q}) \), is given by

\[
A(\vec{Q}) = f_1 + f_2 e^{i \vec{Q} \cdot \vec{r}}
\]

\(I(\vec{Q}) = f_1^2 + f_2^2 + f_1 f_2 e^{i \vec{Q} \cdot \vec{r}} + f_1 f_2 e^{-i \vec{Q} \cdot \vec{r}} \)

\[
\langle I(\vec{Q}) \rangle = f_1^2 + f_2^2 + 2f_1 f_2 \left\langle e^{i \vec{Q} \cdot \vec{r}} \right\rangle
\]

and the intensity, \(I(\vec{Q}) \), is if the distance between the scatterers, \(\vec{r} \), remains constant (no vibrations) but is allowed to orient randomly in space and we take \(\vec{Q} \) along the z-axis.
Consider scattering from two arbitrary electron distributions, f_1 and f_2. $A(\vec{Q})$, is given by

$$A(\vec{Q}) = f_1 + f_2 e^{i\vec{Q} \cdot \vec{r}}$$

and the intensity, $I(\vec{Q})$, is

$$I(\vec{Q}) = f_1^2 + f_2^2 + f_1 f_2 e^{i\vec{Q} \cdot \vec{r}} + f_1 f_2 e^{-i\vec{Q} \cdot \vec{r}}$$

$$\langle I(\vec{Q}) \rangle = f_1^2 + f_2^2 + 2f_1 f_2 \langle e^{i\vec{Q} \cdot \vec{r}} \rangle$$

$$\langle e^{i\vec{Q} \cdot \vec{r}} \rangle = \frac{\int e^{iQr \cos \theta} \sin \theta d\theta d\phi}{\int \sin \theta d\theta d\phi}$$

if the distance between the scatterers, \vec{r}, remains constant (no vibrations) but is allowed to orient randomly in space and we take \vec{Q} along the z-axis.
Orientation averaging

\[A(\vec{Q}) = f_1 + f_2 e^{i\vec{Q} \cdot \vec{r}} \]
\[I(\vec{Q}) = f_1^2 + f_2^2 + f_1 f_2 e^{i\vec{Q} \cdot \vec{r}} + f_1 f_2 e^{-i\vec{Q} \cdot \vec{r}} \]
\[\langle I(\vec{Q}) \rangle = f_1^2 + f_2^2 + 2f_1 f_2 \langle e^{i\vec{Q} \cdot \vec{r}} \rangle \]
\[\langle e^{i\vec{Q} \cdot \vec{r}} \rangle = \frac{\int e^{iQr \cos \theta} \sin \theta d\theta d\phi}{\int \sin \theta d\theta d\phi} \]
\[= \frac{1}{4\pi} 2\pi \int_0^\pi e^{iQr \cos \theta} \sin \theta d\theta \]

Consider scattering from two arbitrary electron distributions, \(f_1 \) and \(f_2 \). \(A(\vec{Q}) \), is given by

and the intensity, \(I(\vec{Q}) \), is

if the distance between the scatterers, \(\vec{r} \), remains constant (no vibrations) but is allowed to orient randomly in space and we take \(\vec{Q} \) along the z-axis
Orientation averaging

\[A(\vec{Q}) = f_1 + f_2 e^{i\vec{Q} \cdot \vec{r}} \]

\[I(\vec{Q}) = f_1^2 + f_2^2 + f_1 f_2 e^{i\vec{Q} \cdot \vec{r}} + f_1 f_2 e^{-i\vec{Q} \cdot \vec{r}} \]

\[\langle I(\vec{Q}) \rangle = f_1^2 + f_2^2 + 2f_1 f_2 \left\langle e^{i\vec{Q} \cdot \vec{r}} \right\rangle \]

\[\left\langle e^{i\vec{Q} \cdot \vec{r}} \right\rangle = \frac{\int e^{iQr \cos \theta \sin \theta} \cos \theta \sin \theta d\theta d\phi}{\int \sin \theta d\theta d\phi} \]

\[= \frac{1}{4\pi} 2\pi \int_0^\pi e^{iQr \cos \theta} \sin \theta d\theta \]

Consider scattering from two arbitrary electron distributions, \(f_1 \) and \(f_2 \). \(A(\vec{Q}) \), is given by and the intensity, \(I(\vec{Q}) \), is if the distance between the scatterers, \(\vec{r} \), remains constant (no vibrations) but is allowed to orient randomly in space and we take \(\vec{Q} \) along the z-axis substituting \(x = iQr \cos \theta \) and \(dx = -iQr \sin \theta d\theta \)
Consider scattering from two arbitrary electron distributions, \(f_1 \) and \(f_2 \). \(A(\vec{Q}) \), is given by

\[
A(\vec{Q}) = f_1 + f_2 e^{i\vec{Q} \cdot \vec{r}}
\]

and the intensity, \(I(\vec{Q}) \), is

\[
\langle I(\vec{Q}) \rangle = f_1^2 + f_2^2 + f_1 f_2 e^{i\vec{Q} \cdot \vec{r}} + f_1 f_2 e^{-i\vec{Q} \cdot \vec{r}}
\]

\[
\langle e^{i\vec{Q} \cdot \vec{r}} \rangle = \frac{\int e^{iQr \cos \theta} \sin \theta d\theta d\phi}{\int \sin \theta d\theta d\phi}
\]

\[
= \frac{1}{4\pi} 2\pi \int_0^\pi e^{iQr \cos \theta} \sin \theta d\theta
\]

\[
= 2\pi \left(-\frac{1}{iQr} \right) \int_{iQr}^{-iQr} e^x dx
\]

\[
= \frac{2\pi}{4\pi} \left(-\frac{1}{iQr} \right) \left[e^{iQr} - e^{-iQr} \right]
\]

\[
= \frac{1}{2} \left[e^{iQr} - e^{-iQr} \right]
\]

\[
= \sin(Qr)
\]

considering \(Qr \approx 0 \)
Orientation averaging

\[A(\vec{Q}) = f_1 + f_2 e^{i \vec{Q} \cdot \vec{r}} \]

\[I(\vec{Q}) = f_1^2 + f_2^2 + f_1 f_2 e^{i \vec{Q} \cdot \vec{r}} + f_1 f_2 e^{-i \vec{Q} \cdot \vec{r}} \]

\[\langle I(\vec{Q}) \rangle = f_1^2 + f_2^2 + 2 f_1 f_2 \langle e^{i \vec{Q} \cdot \vec{r}} \rangle \]

\[\langle e^{i \vec{Q} \cdot \vec{r}} \rangle = \frac{\int e^{i Q r \cos \theta \sin \theta} \sin \theta d\theta d\phi}{\int \sin \theta d\theta d\phi} \]

\[= \frac{1}{4\pi} \frac{2\pi}{4\pi} \left(-\frac{1}{i Q r} \right) \int_{i Q r}^{-i Q r} e^x dx \]

\[= \frac{2\pi}{4\pi} \left(-\frac{1}{i Q r} \right) \int_{-i Q r}^{i Q r} \frac{\sin(Q r)}{Q r} \]

Consider scattering from two arbitrary electron distributions, \(f_1 \) and \(f_2 \). \(A(\vec{Q}) \), is given by

and the intensity, \(I(\vec{Q}) \), is

if the distance between the scatterers, \(\vec{r} \), remains constant (no vibrations) but is allowed to orient randomly in space and we take \(\vec{Q} \) along the z-axis

substituting \(x = i Q r \cos \theta \) and \(dx = -i Q r \sin \theta d\theta \)
Consider scattering from two arbitrary electron distributions, \(f_1 \) and \(f_2 \). \(A(\vec{Q}) \), is given by

\[
A(\vec{Q}) = f_1 + f_2 e^{i \vec{Q} \cdot \vec{r}}
\]

and the intensity, \(I(\vec{Q}) \), is

\[
I(\vec{Q}) = f_1^2 + f_2^2 + f_1 f_2 e^{i \vec{Q} \cdot \vec{r}} + f_1 f_2 e^{-i \vec{Q} \cdot \vec{r}}
\]

\[
\langle I(\vec{Q}) \rangle = f_1^2 + f_2^2 + 2 f_1 f_2 \langle e^{i \vec{Q} \cdot \vec{r}} \rangle
\]

\[
\langle e^{i \vec{Q} \cdot \vec{r}} \rangle = \frac{\int e^{iQr \cos \theta} \sin \theta \, d\theta \, d\phi}{\int \sin \theta \, d\theta \, d\phi}
\]

\[
= \frac{1}{4\pi} 2\pi \int_0^\pi e^{iQr \cos \theta} \sin \theta \, d\theta
\]

\[
= \frac{2\pi}{4\pi} \left(-\frac{1}{iQr} \right) \int_{iQr}^{-iQr} e^x \, dx
\]

\[
= \frac{1}{2} \frac{\sin(Qr)}{Qr} = \frac{\sin(Qr)}{Qr}
\]
Consider scattering from two arbitrary electron distributions, \(f_1 \) and \(f_2 \). \(A(\mathbf{Q}) \), is given by

\[
A(\mathbf{Q}) = f_1 + f_2 e^{i\mathbf{Q} \cdot \mathbf{r}}
\]

and the intensity, \(I(\mathbf{Q}) \), is

\[
I(\mathbf{Q}) = f_1^2 + f_2^2 + f_1 f_2 e^{i\mathbf{Q} \cdot \mathbf{r}} + f_1 f_2 e^{-i\mathbf{Q} \cdot \mathbf{r}}
\]

\[
\left< I(\mathbf{Q}) \right> = f_1^2 + f_2^2 + 2f_1 f_2 \left< e^{i\mathbf{Q} \cdot \mathbf{r}} \right>
\]

\[
\left< e^{i\mathbf{Q} \cdot \mathbf{r}} \right> = \frac{\int e^{iQr \cos \theta \sin \theta} \sin \theta d\theta d\phi}{\int \sin \theta d\theta d\phi}
\]

\[
= \frac{1}{4\pi} 2\pi \int_0^\pi e^{iQr \cos \theta} \sin \theta d\theta
\]

\[
= \frac{2\pi}{4\pi} \left(-\frac{1}{iQr} \right) \int_{iQr}^{-iQr} e^x dx
\]

\[
= \frac{1}{2} \frac{\sin(Qr)}{Qr} = \frac{\sin(Qr)}{Qr}
\]

\[
\left< I(\mathbf{Q}) \right> = f_1^2 + f_2^2 + 2f_1 f_2 \frac{\sin(Qr)}{Qr}
\]
Randomly oriented electrons

\[
\langle I(\vec{Q}) \rangle = f_1^2 + f_2^2 + 2f_1f_2 \frac{\sin(Qr)}{Qr}
\]
Randomly oriented electrons

\[\langle I(\vec{Q}) \rangle = f_1^2 + f_2^2 + 2f_1f_2 \frac{\sin(Qr)}{Qr} \]

Recall that when we had a fixed orientation of the two electrons, we had an intensity variation

\[I(\vec{Q}) = 2r_0^2 (1 + \cos(Qr)). \]
Randomly oriented electrons

\[
\langle I(\vec{Q}) \rangle = f_1^2 + f_2^2 + 2f_1f_2 \frac{\sin(Qr)}{Qr}
\]

Recall that when we had a fixed orientation of the two electrons, we had an intensity variation

\[
I(\vec{Q}) = 2r_0^2 (1 + \cos(Qr)).
\]
Randomly oriented electrons

\[
\langle I(\vec{Q}) \rangle = f_1^2 + f_2^2 + 2f_1f_2 \frac{\sin(Qr)}{Qr}
\]

Recall that when we had a fixed orientation of the two electrons, we had an intensity variation

\[
I(\vec{Q}) = 2r_0^2 (1 + \cos(Qr)).
\]

When we now replace the two arbitrary scattering distributions with electrons \((f_1, f_2 \to -r_0)\), we change the intensity profile significantly.
Randomly oriented electrons

\[\langle I(\vec{Q}) \rangle = f_1^2 + f_2^2 + 2f_1f_2 \frac{\sin(Qr)}{Qr} \]

Recall that when we had a fixed orientation of the two electrons, we had and intensity variation \(I(\vec{Q}) = 2r_0^2 (1 + \cos(Qr)) \).

When we now replace the two arbitrary scattering distributions with electrons \((f_1, f_2 \rightarrow -r_0)\), we change the intensity profile significantly.

\[\langle I(\vec{Q}) \rangle = 2r_0^2 \left(1 + \frac{\sin(Qr)}{Qr} \right) \]
Randomly oriented electrons

\[\langle I(\vec{Q}) \rangle = f_1^2 + f_2^2 + 2f_1f_2 \frac{\sin(Qr)}{Qr} \]

Recall that when we had a fixed orientation of the two electrons, we had an intensity variation

\[I(\vec{Q}) = 2r_0^2 \left(1 + \cos(Qr)\right) \]

When we now replace the two arbitrary scattering distributions with electrons \((f_1, f_2 \rightarrow -r_0)\), we change the intensity profile significantly.

\[\langle I(\vec{Q}) \rangle = 2r_0^2 \left(1 + \frac{\sin(Qr)}{Qr}\right) \]