
Today’s Outline - November 21, 2016

• Imaging

• Computed tomography
• Microscopy
• Phase contrast imaging
• Grating interferometry
• Coherent diffraction imaging
• Holography

Homework Assignment #7:
Chapter 7: 2,3,9,10,11
due Monday, November 28, 2016

Final Exam, Wednesday, December 7, 2016, Stuart Building 213
2 sessions: 09:00-12:00; 13:00-17:00; (this may change)

Provide me with the paper you intend to present and a preferred session
for the exam
Send me your presentation in Powerpoint or PDF format before before
your session
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Phase difference in scattering
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All imaging can be broken into a
three step process

1 x-ray interaction with sample

2 scattered x-ray propagation

3 interaction with detector

The scattered waves from O and P
will travel different distances

In the far field, the phase difference
is φ ≈ ~Q ·~r with ~Q = ~k ′ − ~k

Since ~k ⊥ ~r , φ ≈ ~Q ·~r = ~k ′ ·~r

The path length difference corresponding to this phase shift is k̂ ′ · r = OF ′
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Franuhofer, Fresnel, and contact regimes
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The path length difference computed with the far field approximation has
a built in error of ∆ = FF ′ which sets a scale for different kinds of imaging

∆ = R − R cosψ

≈ R(1− (1− ψ2/2))

= R
a2

2R2
=

a2

2R

R � a2

λ
Fraunhofer

R ≈ a2

λ
Fresnel

R � a2

λ
Contact
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Detector placement
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If λ = 1 Å and the distance to be resolved is a = 1 Å, then a2/λ = 1 Å
and any detector placement is in the Fraunhofer (far field) regime

if a = µm, then a2/λ = 10 mm and the imaging regime can be selected by
detector placement

if a = 1 mm, then a2/λ = 10 km and the detector will always be in the
contact regime
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Contact to far-field imaging

C. Segre (IIT) PHYS 570 - Fall 2016 November 21, 2016 5 / 24



Radiography to tomography

Radiography started immedi-
ately after the discovery of
x-rays in 1895.

In 1970
Computer Tomography revo-
lutionized x-ray imaging

Assume the object to be im-
aged has a non uniform ab-
sorption coefficient µ(x , y)
The line integral of the ab-
sorption coefficient at a par-
ticular value of x ′ is mea-
sured as the ratio of the
transmitted to the incident
beam

I = I0e
−

∫
µ(x ,y)dy ′

ln

(
I0
I

)
=

∫
µ(x , y)dy ′

The radon transform R(θ, x ′) is used to reconstruct the 3D absorption
image of the object numerically.
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Fourier slice theorem

Start with a general function
f (x , y) which is projected onto the
x-axis

the Fourier transform of the projec-
tion is

p(x) =

∫
f (x , y)dy

P(qx) =

∫
p(x)e iqxxdx

What is the relationship of the Fourier transform, P(qx), to the original
function, f (x , y)? The Fourier transform of f (x , y) is F (qx , qy ) and by
choosing qy ≡ 0, we get a slice

F (qx , qy ) =

∫ ∫
f (x , y)e iqxx+qyydxdy

F (qx , qy = 0) =

∫ [∫
f (x , y)dy

]
e iqxxdx =

∫
p(x)e iqxxdx = P(qx)

The Fourier transform of the projection is equal to a slice through the
Fourier transform of the object at the origin in the direction of propagation
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Fourier transform reconstruction

Fourier transform

Slice
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Sinograms
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Medical tomography
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Microscopy

The radius of the mth zone is
rm ≈

√
mλf

the width of the outermost
zone is

∆rM =
√
λf (
√
M −

√
M − 1)

≈
√
λf

2
√
M

f = 4M
(∆rM)2

λ

D = 2rM = 2
√
Mλf

= 2
√
M
√
λf = 4M∆rM

∆x = 1.22
λf

D
= 1.22∆rM
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Scanning transmission x-ray microscope
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Full field microscope
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Transmission x-ray microscope

C. Segre (IIT) PHYS 570 - Fall 2016 November 21, 2016 14 / 24



Angular deviation from refraction

When x-rays cross an inter-
face that is not normal to
their direction, there is re-
fraction

The angle of refraction α can
be calculated

λn =
λ

n
=

λ

1− δ
≈ λ(1 + δ)

α =
λ(1 + δ)− λ

∆x

= δ
λ

∆x
≈ δ tanω
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Angular deviation from graded density

In a similar way, there is
an angular deviation when
the material density varies
normal to the propagation
direction

The angle of refraction α
can be calculated

α =
λ(1 + δ(x + ∆x))− λ(1 + δ(x))

∆x
=
λ∆x ∂δ(x)∂x

∆x

δ(x + ∆x) ≈ δ(x) + ∆x
∂δ(x)

∂x

αgradient = λ
∂δ(x)

∂x
compare to αrefrac = λ

δ

∆x
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Phase shift from angular deviation

This deviation of the x-ray beam, leads to a phase shift φ(~r) = ~k ′ ·~r at a
specific position along the original propagation direction z

n̂ =
~k ′

k ′
=

λ

2π
∇φ(~r)

αx =
λ

2π

∂φ(x , y)

∂x

αy =
λ

2π

∂φ(x , y)

∂y

Thus the angular deviation, in each
of the x and y directions in the
plane perpendicular to the original
propagation direction becomes

By measuring the angular deviation
as a function of position in a sam-
ple, one can reconstruct the phase
shift φ(x , y) due to the sample by
integration.
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Phase contrast experiment
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Phase contrast experiment
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Imaging a silicon trough
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Imaging blood cells
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Wavefield propagation

In order to understand many of these imaging techniques, it is important
to have a good model for wave propagation in an optical system

start with a monochromatic plane wave propagating in the z direction,
described by the function e ikz with wavelength λ = 2π/k

when the wavefront passes through an optical element or a sample, it is
distorted such that the wavefield at z = 0 is now a function of the
transverse dimensions, x and y : ψ0(x , y)

our goal is to determine the wavefield at a distance z downstream and this
is done by constructing a propagation operator D̂z such that

ψz = D̂zψ0(x , y)

The Fourier transform is used to generate this propagation operator in the
following way (showing only the x dependence for simplicity)

ψ0(x) =
1

2π

∫
ψ̃0(kx)e−ikxxdkx
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Wavefield propagation

ψ0(x) =
1

2π

∫
ψ̃0(kx)e−ikxxdkx

in words, this says that at z = 0 the wavefield is a superposition of plane
waves each of which is a function of the total wavevector ~k = kx x̂ + kz ẑ

We can rewrite the relationships as follows but if kx � k we have

kz =
√

k2 − k2x ≈ k − k2x
2k

each of the plane waves ψ̃0e
−ikxx propagates to z by multiplication with a

phase factor

ψ̃0e
−ikxx → ψ̃0e

−ikxxe ikzz = ψ̃0e
−ikxxe ikze−ik

2
x z/2k = ψ̃z(kx)

ψz(x) = FT −1[ψ̃z(kx)] =
1

2π

∫
ψ̃z(kx)e−ikxxdkx

ψz(x , y) = D̂zψ0(x , y) = e ikz FT −1
[
e−iz(k

2
x+k2

y )/2k FT [ψ0(x , y)]
]
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