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Phase difference in scattering

k

All imaging can be broken into a The scattered waves from O and P
three step process will travel different distances

@ x-ray interaction with sample In the far field, the phase dlfference

® scattered x-ray propagation iIs ¢ ~ Q r with Q

© interaction with detector Since k L roo~ Q F=k
The path length difference corresponding to this phase shift is k' - r = OF’
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Detector placement

If A =1 A and the distance to be resolved is a =1 A, then a>°/A =1 A
and any detector placement is in the Fraunhofer (far field) regime

if a= um, then a®/\ = 10 mm and the imaging regime can be selected by
detector placement

if a=1 mm, then a?/\ = 10 km and the detector will always be in the
contact regime
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Contact to far-field imaging

w
Sample d
. Detector
0.1 mm
' mm 10 mm
Contact  Near Field 1000 man
Towards
Far Field

C. Segre (IIT) PHYS 570 - Fall 2016

November 21, 2016 5/ 24



Radiography to tomography

Radiography started immedi-
ately after the discovery of
x-rays in 1895.
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n

The radon transform R(6, x’) is used to reconstruct the 3D absorption
image of the object numerically.
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Fourier slice theorem

Start with a general function
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X-axis

C. Segre (IIT) PHYS 570 - Fall 2016

November 21, 2016

724



Fourier slice theorem

Start with a general function

f(x,y) which is projected onto the
X-axis

C. Segre (IIT) PHYS 570 - Fall 2016

p(x) = / f(x, y)dy

November 21, 2016

724



Fourier slice theorem

Start with a general function x)= [ f(x,y)d
f(x,y) which is projected onto the PRI = R
X-axis

the Fourier transform of the projec-
tion is

C. Segre (lIT) PHYS 570 - Fall 2016 November 21, 2016 7/ 24



Fourier slice theorem

Start with a general function ()= [ f(x,y)d
f(x,y) which is projected onto the P = il
X-axis

:i};enFi(:urier transform of the projec- P(gy) = /p(x)eiqxxdx

C. Segre (IIT) PHYS 570 - Fall 2016 November 21, 2016 7 /24



Fourier slice theorem

Start with a general function ()= [ f(x,y)d
f(x,y) which is projected onto the P = il
X-axis

:i};enFi(:urier transform of the projec- P(gy) = /p(x)eiqxxdx

What is the relationship of the Fourier transform, P(qy), to the original
function, f(x, y)?

C. Segre (IIT) PHYS 570 - Fall 2016 November 21, 2016 7 /24



Fourier slice theorem

Start with a general function ()= [ f(x,y)d
f(x,y) which is projected onto the P = il
X-axis

:i};enFi(:urier transform of the projec- P(gy) = /p(x)eiqxxdx

What is the relationship of the Fourier transform, P(qy), to the original
function, f(x, y)? The Fourier transform of f(x,y) is F(qx, qy)

C. Segre (IIT) PHYS 570 - Fall 2016 November 21, 2016

7/ 24



Fourier slice theorem

Start with a general function ()= [ f(x,y)d
f(x,y) which is projected onto the P = il
X-axis

:i};enFi(:urier transform of the projec- P(gy) = /p(x)eiqxxdx

What is the relationship of the Fourier transform, P(qy), to the original
function, f(x, y)? The Fourier transform of f(x,y) is F(qx, qy)

F(qx,qy) ://f(x,y)einerqyydxdy

C. Segre (IIT) PHYS 570 - Fall 2016 November 21, 2016 7 /24



Fourier slice theorem

Start with a general function ()= [ f(x,y)d
f(x,y) which is projected onto the P = il
X-axis

:i};enFi(:urier transform of the projec- P(gy) = /p(x)eiqxxdx

What is the relationship of the Fourier transform, P(qy), to the original
function, f(x,y)? The Fourier transform of f(x,y) is F(qx, qy) and by
choosing g, = 0, we get a slice

F(qx,qy) ://f(x,y)einerqyydxdy

C. Segre (IIT) PHYS 570 - Fall 2016 November 21, 2016 7 /24



Fourier slice theorem

Start with a general function ()= [ f(x,y)d
f(x,y) which is projected onto the P = il
X-axis

:i};enFi(:urier transform of the projec- P(gy) = /p(x)eiqxxdx

What is the relationship of the Fourier transform, P(qy), to the original
function, f(x,y)? The Fourier transform of f(x,y) is F(qx, qy) and by
choosing g, = 0, we get a slice

F(qx,qy) ://f(x,y)einerqyydxdy

F(qx,q, =0) = / [ / f(x, y)dy] ' dx

C. Segre (IIT) PHYS 570 - Fall 2016 November 21, 2016 7 /24



Fourier slice theorem

Start with a general function ()= [ f(x,y)d
f(x,y) which is projected onto the P = il
X-axis

:i};enFi(:urier transform of the projec- P(gy) = /p(x)eiqxxdx

What is the relationship of the Fourier transform, P(qy), to the original
function, f(x,y)? The Fourier transform of f(x,y) is F(qx, qy) and by
choosing g, = 0, we get a slice

F(qx,qy) ://f(x,y)einerqyydxdy

Flaa, =0)= [ | [ fleiay| erax= [ ptxjenax

C. Segre (IIT) PHYS 570 - Fall 2016 November 21, 2016 7 /24



Fourier slice theorem

Start with a general function ()= [ f(x,y)d
f(x,y) which is projected onto the P = il
X-axis

:i};enFi(:urier transform of the projec- P(gy) = /p(x)eiqxxdx

What is the relationship of the Fourier transform, P(qy), to the original
function, f(x,y)? The Fourier transform of f(x,y) is F(qx, qy) and by
choosing g, = 0, we get a slice

F(qx,qy) ://f(x,y)einerqyydxdy

F(qx,q, = 0) = / [ / f(x, y)dy] el dx = / p(x)e P dx = P(qx)

C. Segre (IIT) PHYS 570 - Fall 2016 November 21, 2016

7/ 24



Fourier slice theorem

Start with a general function
f(x,y) which is projected onto the
X-axis

p(x) = / f(x, y)dy

the Fourier transform of the projec-
tion is

P(ax) :/p(X)e’qudX
What is the relationship of the Fourier transform, P(qy), to the original

function, f(x,y)? The Fourier transform of f(x,y) is F(qx, qy) and by
choosing g, = 0, we get a slice

F(qx,qy) = //f(x,y)eiquJrqyydxdy
F(gx,q, = 0) = / [ / F(x, y)dy] ey — / p(x)e™*dx = P(qy)

The Fourier transform of the projection is equal to a slice through the

Fourier transform of the object at the origin in the direction of propagation
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Fourier transform reconstruction
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/
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Medical tomography
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Microscopy
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Scanning transmission x-ray microscope

Zone Plate
Lens

@ Sample

Translations
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Full field microscope

Zone Plate
Lens

@ Pixelated
area detector

Sample
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Transmission x-ray microscope

Source Condenser Objective

Condenser

| zone plate

Plane
mirror

Pinhole

Micro

zone plate X-ray

. sensitive CCD
Bending magnet or

insertion device Sample
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Angular deviation from refraction

When x-rays cross an inter-
face that is not normal to
their direction, there is re-
fraction
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Angular deviation from graded density

In a similar way, there is
an angular deviation when
the material density varies
normal to the propagation
direction
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Phase shift from angular deviation

This deviation of the x-ray beam, leads to a phase shift ¢(7) = kK'-Fata
specific position along the original propagation direction z
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Phase shift from angular deviation
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Phase shift from angular deviation

This deviation of the x-ray beam, leads to a phase shift ¢(7) = k' - 7 at a
specific position along the original propagation direction z

. Thus the angular deviation, in each
k' _ A Vo(7) of the x and y directions in the

= K~ 2m plane perpendicular to the original
propagation direction becomes
= A 9(x,y) By measuring the angular deviation
2t Ox as a function of position in a sam-
ple, one can reconstruct the phase
A 06(x,y) shift ¢(x,y) due to the sample by
Ay = 2 dy integration.
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Phase contrast experiment

Areca detector
Focussed beam I

Sample

Scanning :
stage y
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Imaging a silicon trough
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Imaging blood cells
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Wavefield propagation

In order to understand many of these imaging techniques, it is important
to have a good model for wave propagation in an optical system
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Wavefield propagation
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Fresnel zone plates
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