Today's Outline - November 21, 2016

Today's Outline - November 21, 2016

- Imaging

Today's Outline - November 21, 2016

- Imaging
- Computed tomography

Today's Outline - November 21, 2016

- Imaging
- Computed tomography
- Microscopy

Today's Outline - November 21, 2016

- Imaging
- Computed tomography
- Microscopy
- Phase contrast imaging

Today's Outline - November 21, 2016

- Imaging
- Computed tomography
- Microscopy
- Phase contrast imaging
- Grating interferometry

Today's Outline - November 21, 2016

- Imaging
- Computed tomography
- Microscopy
- Phase contrast imaging
- Grating interferometry
- Coherent diffraction imaging

Today's Outline - November 21, 2016

- Imaging
- Computed tomography
- Microscopy
- Phase contrast imaging
- Grating interferometry
- Coherent diffraction imaging
- Holography

Today's Outline - November 21, 2016

- Imaging
- Computed tomography
- Microscopy
- Phase contrast imaging
- Grating interferometry
- Coherent diffraction imaging
- Holography

Homework Assignment \#7:
Chapter 7: 2,3,9,10,11
due Monday, November 28, 2016

Today's Outline - November 21, 2016

- Imaging
- Computed tomography
- Microscopy
- Phase contrast imaging
- Grating interferometry
- Coherent diffraction imaging
- Holography

Homework Assignment \#7:
Chapter 7: 2,3,9,10,11
due Monday, November 28, 2016
Final Exam, Wednesday, December 7, 2016, Stuart Building 213
2 sessions: 09:00-12:00; 13:00-17:00; (this may change)

Today's Outline - November 21, 2016

- Imaging
- Computed tomography
- Microscopy
- Phase contrast imaging
- Grating interferometry
- Coherent diffraction imaging
- Holography

Homework Assignment \#7:
Chapter 7: 2,3,9,10,11
due Monday, November 28, 2016
Final Exam, Wednesday, December 7, 2016, Stuart Building 213
2 sessions: 09:00-12:00; 13:00-17:00; (this may change)
Provide me with the paper you intend to present and a preferred session
for the exam

Today's Outline - November 21, 2016

- Imaging
- Computed tomography
- Microscopy
- Phase contrast imaging
- Grating interferometry
- Coherent diffraction imaging
- Holography

Homework Assignment \#7:
Chapter 7: 2,3,9,10,11 due Monday, November 28, 2016
Final Exam, Wednesday, December 7, 2016, Stuart Building 213
2 sessions: 09:00-12:00; 13:00-17:00; (this may change)
Provide me with the paper you intend to present and a preferred session
for the exam
Send me your presentation in Powerpoint or PDF format before before your session

Phase difference in scattering

Phase difference in scattering

All imaging can be broken into a three step process

Phase difference in scattering

All imaging can be broken into a three step process
(1) x-ray interaction with sample

Phase difference in scattering

All imaging can be broken into a three step process
(1) x-ray interaction with sample
(2) scattered x-ray propagation

Phase difference in scattering

All imaging can be broken into a three step process
(1) x-ray interaction with sample
(2) scattered x-ray propagation
(3) interaction with detector

Phase difference in scattering

All imaging can be broken into a three step process

The scattered waves from O and P will travel different distances
(1) x-ray interaction with sample
(2) scattered x-ray propagation
(3) interaction with detector

Phase difference in scattering

All imaging can be broken into a three step process
(1) x-ray interaction with sample
(2) scattered x-ray propagation
(3) interaction with detector

The scattered waves from O and P will travel different distances

In the far field, the phase difference is $\phi \approx \vec{Q} \cdot \vec{r}$ with $\vec{Q}=\vec{k}^{\prime}-\vec{k}$

Phase difference in scattering

All imaging can be broken into a three step process
(1) x-ray interaction with sample
(2) scattered x-ray propagation
(3) interaction with detector

The scattered waves from O and P will travel different distances

In the far field, the phase difference is $\phi \approx \vec{Q} \cdot \vec{r}$ with $\vec{Q}=\vec{k}^{\prime}-\vec{k}$ Since $\vec{k} \perp \vec{r}, \phi \approx \vec{Q} \cdot \vec{r}=\overrightarrow{k^{\prime}} \cdot \vec{r}$

Phase difference in scattering

All imaging can be broken into a three step process
(1) x-ray interaction with sample
(2) scattered x-ray propagation
(3) interaction with detector

The scattered waves from O and P will travel different distances

In the far field, the phase difference is $\phi \approx \vec{Q} \cdot \vec{r}$ with $\vec{Q}=\vec{k}^{\prime}-\vec{k}$ Since $\vec{k} \perp \vec{r}, \phi \approx \vec{Q} \cdot \vec{r}=\overrightarrow{k^{\prime}} \cdot \vec{r}$

The path length difference corresponding to this phase shift is $\hat{k}^{\prime} \cdot r=\overline{O F^{\prime}}$

Franuhofer, Fresnel, and contact regimes

The path length difference computed with the far field approximation has a built in error of $\Delta=\overline{F F^{\prime}}$ which sets a scale for different kinds of imaging

Franuhofer, Fresnel, and contact regimes

The path length difference computed with the far field approximation has a built in error of $\Delta=\overline{F F^{\prime}}$ which sets a scale for different kinds of imaging

$$
\Delta=R-R \cos \psi
$$

Franuhofer, Fresnel, and contact regimes

The path length difference computed with the far field approximation has a built in error of $\Delta=\overline{F F^{\prime}}$ which sets a scale for different kinds of imaging

$$
\begin{aligned}
\Delta & =R-R \cos \psi \\
& \approx R\left(1-\left(1-\psi^{2} / 2\right)\right)
\end{aligned}
$$

Franuhofer, Fresnel, and contact regimes

The path length difference computed with the far field approximation has a built in error of $\Delta=\overline{F F^{\prime}}$ which sets a scale for different kinds of imaging

$$
\begin{aligned}
\Delta & =R-R \cos \psi \\
& \approx R\left(1-\left(1-\psi^{2} / 2\right)\right) \\
& =R \frac{a^{2}}{2 R^{2}}
\end{aligned}
$$

Franuhofer, Fresnel, and contact regimes

The path length difference computed with the far field approximation has a built in error of $\Delta=\overline{F F^{\prime}}$ which sets a scale for different kinds of imaging

$$
\begin{aligned}
\Delta & =R-R \cos \psi \\
& \approx R\left(1-\left(1-\psi^{2} / 2\right)\right) \\
& =R \frac{a^{2}}{2 R^{2}}=\frac{a^{2}}{2 R}
\end{aligned}
$$

Franuhofer, Fresnel, and contact regimes

The path length difference computed with the far field approximation has a built in error of $\Delta=\overline{F F^{\prime}}$ which sets a scale for different kinds of imaging

$$
\Delta=R-R \cos \psi
$$

$R \gg \frac{a^{2}}{\lambda} \quad$ Fraunhofer
$\approx R\left(1-\left(1-\psi^{2} / 2\right)\right)$
$=R \frac{a^{2}}{2 R^{2}}=\frac{a^{2}}{2 R}$

Franuhofer, Fresnel, and contact regimes

The path length difference computed with the far field approximation has a built in error of $\Delta=\overline{F F^{\prime}}$ which sets a scale for different kinds of imaging

$$
\begin{aligned}
\Delta & =R-R \cos \psi \\
& \approx R\left(1-\left(1-\psi^{2} / 2\right)\right) \\
& =R \frac{a^{2}}{2 R^{2}}=\frac{a^{2}}{2 R}
\end{aligned}
$$

$$
\begin{array}{lr}
R \gg \frac{a^{2}}{\lambda} & \text { Fraunhofer } \\
R \approx \frac{a^{2}}{\lambda} & \text { Fresnel }
\end{array}
$$

Franuhofer, Fresnel, and contact regimes

The path length difference computed with the far field approximation has a built in error of $\Delta=\overline{F F^{\prime}}$ which sets a scale for different kinds of imaging

$$
\begin{aligned}
\Delta & =R-R \cos \psi \\
& \approx R\left(1-\left(1-\psi^{2} / 2\right)\right) \\
& =R \frac{a^{2}}{2 R^{2}}=\frac{a^{2}}{2 R}
\end{aligned}
$$

$$
\begin{array}{rr}
R \gg \frac{a^{2}}{\lambda} & \text { Fraunhofer } \\
R \approx \frac{a^{2}}{\lambda} & \text { Fresnel } \\
R \ll \frac{a^{2}}{\lambda} & \text { Contact }
\end{array}
$$

Detector placement

If $\lambda=1 \AA$ and the distance to be resolved is $a=1 \AA$, then $a^{2} / \lambda=1 \AA$ and any detector placement is in the Fraunhofer (far field) regime

Detector placement

If $\lambda=1 \AA$ and the distance to be resolved is $a=1 \AA$, then $a^{2} / \lambda=1 \AA$ and any detector placement is in the Fraunhofer (far field) regime if $a=\mu \mathrm{m}$, then $a^{2} / \lambda=10 \mathrm{~mm}$ and the imaging regime can be selected by detector placement

Detector placement

If $\lambda=1 \AA$ and the distance to be resolved is $a=1 \AA$, then $a^{2} / \lambda=1 \AA$ and any detector placement is in the Fraunhofer (far field) regime
if $a=\mu \mathrm{m}$, then $a^{2} / \lambda=10 \mathrm{~mm}$ and the imaging regime can be selected by detector placement
if $a=1 \mathrm{~mm}$, then $a^{2} / \lambda=10 \mathrm{~km}$ and the detector will always be in the contact regime

Contact to far-field imaging

Radiography to tomography

Radiography started immediately after the discovery of x-rays in 1895.

Radiography to tomography

Radiography started immediately after the discovery of x-rays in 1895. In 1970 Computer Tomography revolutionized x-ray imaging

Radiography to tomography

Radiography started immediately after the discovery of x-rays in 1895. In 1970 Computer Tomography revolutionized x-ray imaging

Assume the object to be imaged has a non uniform absorption coefficient $\mu(x, y)$

Radiography to tomography

Radiography started immediately after the discovery of x-rays in 1895. In 1970 Computer Tomography revolutionized x-ray imaging

Assume the object to be imaged has a non uniform absorption coefficient $\mu(x, y)$ The line integral of the absorption coefficient at a par-
 ticular value of x^{\prime} is measured as the ratio of the transmitted to the incident beam

Radiography to tomography

Radiography started immediately after the discovery of x-rays in 1895. In 1970 Computer Tomography revolutionized x-ray imaging

Assume the object to be imaged has a non uniform absorption coefficient $\mu(x, y)$ The line integral of the absorption coefficient at a par-

$$
I=I_{0} e^{-\int \mu(x, y) d y^{\prime}}
$$ ticular value of x^{\prime} is measured as the ratio of the transmitted to the incident beam

Radiography to tomography

Radiography started immediately after the discovery of x-rays in 1895. In 1970 Computer Tomography revolutionized x-ray imaging

Assume the object to be imaged has a non uniform absorption coefficient $\mu(x, y)$ The line integral of the absorption coefficient at a par-

$$
\begin{aligned}
I & =I_{0} e^{-\int \mu(x, y) d y^{\prime}} \\
\ln \left(\frac{I_{0}}{I}\right) & =\int \mu(x, y) d y^{\prime}
\end{aligned}
$$

Radiography to tomography

Radiography started immediately after the discovery of x-rays in 1895. In 1970 Computer Tomography revolutionized x-ray imaging

Assume the object to be imaged has a non uniform absorption coefficient $\mu(x, y)$ The line integral of the absorption coefficient at a par-

$$
\begin{aligned}
& \text { ticular value of } X \text { is mea- } \\
& \text { sured as the ratin of the }
\end{aligned}
$$

$$
\begin{aligned}
I & =I_{0} e^{-\int \mu(x, y) d y^{\prime}} \\
\ln \left(\frac{I_{0}}{I}\right) & =\int \mu(x, y) d y^{\prime}
\end{aligned}
$$ transmitted to the incident beam

The radon transform $R\left(\theta, x^{\prime}\right)$ is used to reconstruct the 3D absorption image of the object numerically.

Fourier slice theorem

Start with a general function $f(x, y)$ which is projected onto the x-axis

Fourier slice theorem

Start with a general function $f(x, y)$ which is projected onto the

$$
p(x)=\int f(x, y) d y
$$ x-axis

Fourier slice theorem

Start with a general function
$f(x, y)$ which is projected onto the
x-axis
the Fourier transform of the projec-
tion is

Fourier slice theorem

Start with a general function $f(x, y)$ which is projected onto the x-axis
the Fourier transform of the projection is

$$
p(x)=\int f(x, y) d y
$$

$$
P\left(q_{x}\right)=\int p(x) e^{i q_{x} x} d x
$$

Fourier slice theorem

Start with a general function $f(x, y)$ which is projected onto the x-axis
the Fourier transform of the projection is

$$
p(x)=\int f(x, y) d y
$$

$$
P\left(q_{x}\right)=\int p(x) e^{i q_{x} x} d x
$$

What is the relationship of the Fourier transform, $P\left(q_{x}\right)$, to the original function, $f(x, y)$?

Fourier slice theorem

Start with a general function $f(x, y)$ which is projected onto the x-axis
the Fourier transform of the projection is

$$
p(x)=\int f(x, y) d y
$$

$$
P\left(q_{x}\right)=\int p(x) e^{i q_{x} x} d x
$$

What is the relationship of the Fourier transform, $P\left(q_{x}\right)$, to the original function, $f(x, y)$? The Fourier transform of $f(x, y)$ is $F\left(q_{x}, q_{y}\right)$

Fourier slice theorem

Start with a general function $f(x, y)$ which is projected onto the x-axis
the Fourier transform of the projection is

$$
p(x)=\int f(x, y) d y
$$

$$
P\left(q_{x}\right)=\int p(x) e^{i q_{x} x} d x
$$

What is the relationship of the Fourier transform, $P\left(q_{x}\right)$, to the original function, $f(x, y)$? The Fourier transform of $f(x, y)$ is $F\left(q_{x}, q_{y}\right)$

$$
F\left(q_{x}, q_{y}\right)=\iint f(x, y) e^{i q_{x} x+q_{y} y} d x d y
$$

Fourier slice theorem

Start with a general function $f(x, y)$ which is projected onto the x-axis
the Fourier transform of the projection is

$$
p(x)=\int f(x, y) d y
$$

$$
P\left(q_{x}\right)=\int p(x) e^{i q_{x} x} d x
$$

What is the relationship of the Fourier transform, $P\left(q_{x}\right)$, to the original function, $f(x, y)$? The Fourier transform of $f(x, y)$ is $F\left(q_{x}, q_{y}\right)$ and by choosing $q_{y} \equiv 0$, we get a slice

$$
F\left(q_{x}, q_{y}\right)=\iint f(x, y) e^{i q_{x} x+q_{y} y} d x d y
$$

Fourier slice theorem

Start with a general function $f(x, y)$ which is projected onto the x-axis
the Fourier transform of the projection is

$$
p(x)=\int f(x, y) d y
$$

$$
P\left(q_{x}\right)=\int p(x) e^{i q_{x} x} d x
$$

What is the relationship of the Fourier transform, $P\left(q_{x}\right)$, to the original function, $f(x, y)$? The Fourier transform of $f(x, y)$ is $F\left(q_{x}, q_{y}\right)$ and by choosing $q_{y} \equiv 0$, we get a slice

$$
\begin{aligned}
F\left(q_{x}, q_{y}\right) & =\iint f(x, y) e^{i q_{x} x+q_{y} y} d x d y \\
F\left(q_{x}, q_{y}=0\right) & =\int\left[\int f(x, y) d y\right] e^{i q_{x} x} d x
\end{aligned}
$$

Fourier slice theorem

Start with a general function $f(x, y)$ which is projected onto the x-axis
the Fourier transform of the projection is

$$
p(x)=\int f(x, y) d y
$$

$$
P\left(q_{x}\right)=\int p(x) e^{i q_{x} x} d x
$$

What is the relationship of the Fourier transform, $P\left(q_{x}\right)$, to the original function, $f(x, y)$? The Fourier transform of $f(x, y)$ is $F\left(q_{x}, q_{y}\right)$ and by choosing $q_{y} \equiv 0$, we get a slice

$$
\begin{aligned}
F\left(q_{x}, q_{y}\right) & =\iint f(x, y) e^{i q_{x} x+q_{y} y} d x d y \\
F\left(q_{x}, q_{y}=0\right) & =\int\left[\int f(x, y) d y\right] e^{i q_{x} x} d x=\int p(x) e^{i q_{x} x} d x
\end{aligned}
$$

Fourier slice theorem

Start with a general function $f(x, y)$ which is projected onto the x-axis
the Fourier transform of the projection is

$$
p(x)=\int f(x, y) d y
$$

$$
P\left(q_{x}\right)=\int p(x) e^{i q_{x} x} d x
$$

What is the relationship of the Fourier transform, $P\left(q_{x}\right)$, to the original function, $f(x, y)$? The Fourier transform of $f(x, y)$ is $F\left(q_{x}, q_{y}\right)$ and by choosing $q_{y} \equiv 0$, we get a slice

$$
\begin{aligned}
F\left(q_{x}, q_{y}\right) & =\iint f(x, y) e^{i q_{x} x+q_{y} y} d x d y \\
F\left(q_{x}, q_{y}=0\right) & =\int\left[\int f(x, y) d y\right] e^{i q_{x} x} d x=\int p(x) e^{i q_{x} x} d x=P\left(q_{x}\right)
\end{aligned}
$$

Fourier slice theorem

Start with a general function $f(x, y)$ which is projected onto the x-axis
the Fourier transform of the projection is

$$
\begin{gathered}
p(x)=\int f(x, y) d y \\
P\left(q_{x}\right)=\int p(x) e^{i q_{x} x} d x
\end{gathered}
$$

What is the relationship of the Fourier transform, $P\left(q_{x}\right)$, to the original function, $f(x, y)$? The Fourier transform of $f(x, y)$ is $F\left(q_{x}, q_{y}\right)$ and by choosing $q_{y} \equiv 0$, we get a slice

$$
\begin{aligned}
F\left(q_{x}, q_{y}\right) & =\iint f(x, y) e^{i q_{x} x+q_{y} y} d x d y \\
F\left(q_{x}, q_{y}=0\right) & =\int\left[\int f(x, y) d y\right] e^{i q_{x} x} d x=\int p(x) e^{i q_{x} x} d x=P\left(q_{x}\right)
\end{aligned}
$$

The Fourier transform of the projection is equal to a slice through the Fourier transform of the object at the origin in the direction of propagation

Fourier transform reconstruction

Sinograms

(c) Model $f(x, y)$

(e) Reconstructed $f(x, y)$

Medical tomography

Microscopy

The radius of the $m^{t h}$ zone is $r_{m} \approx \sqrt{m \lambda f}$
(a)
(b)

Microscopy

The radius of the $m^{t h}$ zone is $r_{m} \approx \sqrt{m \lambda f}$
the width of the outermost zone is

Microscopy

The radius of the $m^{t h}$ zone is $r_{m} \approx \sqrt{m \lambda f}$
the width of the outermost zone is

$$
\Delta r_{M}=\sqrt{\lambda f}(\sqrt{M}-\sqrt{M-1})
$$

(b)

Microscopy

The radius of the $m^{t h}$ zone is $r_{m} \approx \sqrt{m \lambda f}$
the width of the outermost zone is

$$
\begin{aligned}
\Delta r_{M} & =\sqrt{\lambda f}(\sqrt{M}-\sqrt{M-1}) \\
& \approx \frac{\sqrt{\lambda f}}{2 \sqrt{M}}
\end{aligned}
$$

(a)
(b)

Microscopy

The radius of the $m^{t h}$ zone is $r_{m} \approx \sqrt{m \lambda f}$
the width of the outermost zone is

$$
\begin{aligned}
\Delta r_{M} & =\sqrt{\lambda f}(\sqrt{M}-\sqrt{M-1}) \\
& \approx \frac{\sqrt{\lambda f}}{2 \sqrt{M}} \\
f & =4 M \frac{\left(\Delta r_{M}\right)^{2}}{\lambda}
\end{aligned}
$$

(a)
(b)

Microscopy

The radius of the $m^{t h}$ zone is $r_{m} \approx \sqrt{m \lambda f}$
the width of the outermost zone is

$$
\begin{aligned}
\Delta r_{M} & =\sqrt{\lambda f}(\sqrt{M}-\sqrt{M-1}) \\
& \approx \frac{\sqrt{\lambda f}}{2 \sqrt{M}} \\
f & =4 M \frac{\left(\Delta r_{M}\right)^{2}}{\lambda} \\
D & =2 r_{M}
\end{aligned}
$$

Microscopy

The radius of the $m^{t h}$ zone is $r_{m} \approx \sqrt{m \lambda f}$
the width of the outermost zone is

$$
\begin{aligned}
\Delta r_{M} & =\sqrt{\lambda f}(\sqrt{M}-\sqrt{M-1}) \\
& \approx \frac{\sqrt{\lambda f}}{2 \sqrt{M}} \\
f & =4 M \frac{\left(\Delta r_{M}\right)^{2}}{\lambda} \\
D & =2 r_{M}=2 \sqrt{M \lambda f}
\end{aligned}
$$

Microscopy

The radius of the $m^{t h}$ zone is $r_{m} \approx \sqrt{m \lambda f}$
the width of the outermost zone is

$$
\begin{aligned}
\Delta r_{M} & =\sqrt{\lambda f}(\sqrt{M}-\sqrt{M-1}) \\
& \approx \frac{\sqrt{\lambda f}}{2 \sqrt{M}} \\
f & =4 M \frac{\left(\Delta r_{M}\right)^{2}}{\lambda} \\
D & =2 r_{M}=2 \sqrt{M \lambda f} \\
& =2 \sqrt{M} \sqrt{\lambda f}
\end{aligned}
$$

(a)
(b)

Microscopy

The radius of the $m^{t h}$ zone is $r_{m} \approx \sqrt{m \lambda f}$
the width of the outermost zone is

$$
\begin{aligned}
\Delta r_{M} & =\sqrt{\lambda f}(\sqrt{M}-\sqrt{M-1}) \\
& \approx \frac{\sqrt{\lambda f}}{2 \sqrt{M}} \\
f & =4 M \frac{\left(\Delta r_{M}\right)^{2}}{\lambda} \\
D & =2 r_{M}=2 \sqrt{M \lambda f} \\
& =2 \sqrt{M} \sqrt{\lambda f}=4 M \Delta r_{M}
\end{aligned}
$$

(a)
(b)

Microscopy

The radius of the $m^{t h}$ zone is $r_{m} \approx \sqrt{m \lambda f}$
the width of the outermost zone is

$$
\begin{aligned}
\Delta r_{M} & =\sqrt{\lambda f}(\sqrt{M}-\sqrt{M-1}) \\
& \approx \frac{\sqrt{\lambda f}}{2 \sqrt{M}} \\
f & =4 M \frac{\left(\Delta r_{M}\right)^{2}}{\lambda} \\
D & =2 r_{M}=2 \sqrt{M \lambda f} \\
& =2 \sqrt{M} \sqrt{\lambda f}=4 M \Delta r_{M} \\
\Delta x & =1.22 \frac{\lambda f}{D}
\end{aligned}
$$

(a)
(b)

Microscopy

The radius of the $m^{t h}$ zone is $r_{m} \approx \sqrt{m \lambda f}$
the width of the outermost zone is

$$
\begin{aligned}
\Delta r_{M} & =\sqrt{\lambda f}(\sqrt{M}-\sqrt{M-1}) \\
& \approx \frac{\sqrt{\lambda f}}{2 \sqrt{M}} \\
f & =4 M \frac{\left(\Delta r_{M}\right)^{2}}{\lambda} \\
D & =2 r_{M}=2 \sqrt{M \lambda f} \\
& =2 \sqrt{M} \sqrt{\lambda f}=4 M \Delta r_{M} \\
\Delta x & =1.22 \frac{\lambda f}{D}=1.22 \Delta r_{M}
\end{aligned}
$$

Scanning transmission x-ray microscope

Zone Plate

Lens

Sample

Translations \downarrow

Full field microscope

Transmission x-ray microscope

Angular deviation from refraction

When x-rays cross an interface that is not normal to their direction, there is refraction

Angular deviation from refraction

When x-rays cross an interface that is not normal to their direction, there is refraction

The angle of refraction α can be calculated

Angular deviation from refraction

When x-rays cross an interface that is not normal to their direction, there is refraction

The angle of refraction α can be calculated

Angular deviation from refraction

When x-rays cross an interface that is not normal to their direction, there is refraction

The angle of refraction α can be calculated

$$
\lambda_{n}=\frac{\lambda}{n}
$$

Angular deviation from refraction

When x-rays cross an interface that is not normal to their direction, there is refraction

The angle of refraction α can be calculated

$$
\lambda_{n}=\frac{\lambda}{n}=\frac{\lambda}{1-\delta}
$$

Angular deviation from refraction

When x-rays cross an interface that is not normal to their direction, there is refraction

The angle of refraction α can be calculated

$$
\begin{aligned}
\lambda_{n} & =\frac{\lambda}{n}=\frac{\lambda}{1-\delta} \\
& \approx \lambda(1+\delta)
\end{aligned}
$$

Angular deviation from refraction

When x-rays cross an interface that is not normal to their direction, there is refraction

The angle of refraction α can be calculated

$$
\begin{aligned}
\lambda_{n} & =\frac{\lambda}{n}=\frac{\lambda}{1-\delta} \\
& \approx \lambda(1+\delta) \\
\alpha & =\frac{\lambda(1+\delta)-\lambda}{\Delta x}
\end{aligned}
$$

Angular deviation from refraction

When x-rays cross an interface that is not normal to their direction, there is refraction

The angle of refraction α can be calculated

$$
\begin{aligned}
\lambda_{n} & =\frac{\lambda}{n}=\frac{\lambda}{1-\delta} \\
& \approx \lambda(1+\delta) \\
\alpha & =\frac{\lambda(1+\delta)-\lambda}{\Delta x} \\
& =\delta \frac{\lambda}{\Delta x}
\end{aligned}
$$

Angular deviation from refraction

When x-rays cross an interface that is not normal to their direction, there is refraction

The angle of refraction α can be calculated

$$
\begin{aligned}
\lambda_{n} & =\frac{\lambda}{n}=\frac{\lambda}{1-\delta} \\
& \approx \lambda(1+\delta) \\
\alpha & =\frac{\lambda(1+\delta)-\lambda}{\Delta x} \\
& =\delta \frac{\lambda}{\Delta x} \approx \delta \tan \omega
\end{aligned}
$$

Angular deviation from graded density

In a similar way, there is an angular deviation when the material density varies normal to the propagation direction

Angular deviation from graded density

In a similar way, there is an angular deviation when the material density varies normal to the propagation direction

The angle of refraction α can be calculated

Angular deviation from graded density

In a similar way, there is an angular deviation when the material density varies normal to the propagation direction

The angle of refraction α can be calculated

$$
\alpha=\frac{\lambda(1+\delta(x+\Delta x))-\lambda(1+\delta(x))}{\Delta x}
$$

Angular deviation from graded density

In a similar way, there is an angular deviation when the material density varies normal to the propagation direction

The angle of refraction α can be calculated

$$
\begin{array}{r}
\alpha=\frac{\lambda(1+\delta(x+\Delta x))-\lambda(1+\delta(x))}{\Delta x} \\
\delta(x+\Delta x) \approx \delta(x)+\Delta x \frac{\partial \delta(x)}{\partial x}
\end{array}
$$

Angular deviation from graded density

In a similar way, there is an angular deviation when the material density varies normal to the propagation direction

The angle of refraction α can be calculated

$$
\begin{gathered}
\alpha=\frac{\lambda(1+\delta(x+\Delta x))-\lambda(1+\delta(x))}{\Delta x}=\frac{\lambda \Delta x \frac{\partial \delta(x)}{\partial x}}{\Delta x} \\
\delta(x+\Delta x) \approx \delta(x)+\Delta x \frac{\partial \delta(x)}{\partial x}
\end{gathered}
$$

Angular deviation from graded density

In a similar way, there is an angular deviation when the material density varies normal to the propagation direction

The angle of refraction α can be calculated

$$
\begin{aligned}
\alpha= & \frac{\lambda(1+\delta(x+\Delta x))-\lambda(1+\delta(x))}{\Delta x}=\frac{\lambda \Delta x \frac{\partial \delta(x)}{\partial x}}{\Delta x} \\
& \delta(x+\Delta x) \approx \delta(x)+\Delta x \frac{\partial \delta(x)}{\partial x} \\
\alpha_{\text {gradient }}= & \lambda \frac{\partial \delta(x)}{\partial x}
\end{aligned}
$$

Angular deviation from graded density

In a similar way, there is an angular deviation when the material density varies normal to the propagation direction

The angle of refraction α can be calculated

$$
\begin{gathered}
\alpha=\frac{\lambda(1+\delta(x+\Delta x))-\lambda(1+\delta(x))}{\Delta x}=\frac{\lambda \Delta x \frac{\partial \delta(x)}{\partial x}}{\Delta x} \\
\delta(x+\Delta x) \approx \delta(x)+\Delta x \frac{\partial \delta(x)}{\partial x} \\
\alpha_{\text {gradient }}=\lambda \frac{\partial \delta(x)}{\partial x} \quad \text { compare to } \quad \alpha_{\text {refrac }}=\lambda \frac{\delta}{\Delta x}
\end{gathered}
$$

Phase shift from angular deviation

This deviation of the x-ray beam, leads to a phase shift $\phi(\vec{r})=\vec{k}^{\prime} \cdot \vec{r}$ at a specific position along the original propagation direction z

Phase shift from angular deviation

This deviation of the x-ray beam, leads to a phase shift $\phi(\vec{r})=\vec{k}^{\prime} \cdot \vec{r}$ at a specific position along the original propagation direction z

$$
\hat{n}=\frac{\vec{k}^{\prime}}{k^{\prime}}
$$

Phase shift from angular deviation

This deviation of the x-ray beam, leads to a phase shift $\phi(\vec{r})=\vec{k}^{\prime} \cdot \vec{r}$ at a specific position along the original propagation direction z

$$
\hat{n}=\frac{\vec{k}^{\prime}}{k^{\prime}}=\frac{\lambda}{2 \pi} \nabla \phi(\vec{r})
$$

Phase shift from angular deviation

This deviation of the x-ray beam, leads to a phase shift $\phi(\vec{r})=\vec{k}^{\prime} \cdot \vec{r}$ at a specific position along the original propagation direction z

$$
\hat{n}=\frac{\vec{k}^{\prime}}{k^{\prime}}=\frac{\lambda}{2 \pi} \nabla \phi(\vec{r})
$$

Thus the angular deviation, in each of the x and y directions in the plane perpendicular to the original propagation direction becomes

Phase shift from angular deviation

This deviation of the x-ray beam, leads to a phase shift $\phi(\vec{r})=\vec{k}^{\prime} \cdot \vec{r}$ at a specific position along the original propagation direction z

$$
\hat{n}=\frac{\vec{k}^{\prime}}{k^{\prime}}=\frac{\lambda}{2 \pi} \nabla \phi(\vec{r})
$$

Thus the angular deviation, in each of the x and y directions in the plane perpendicular to the original propagation direction becomes

$$
\alpha_{x}=\frac{\lambda}{2 \pi} \frac{\partial \phi(x, y)}{\partial x}
$$

Phase shift from angular deviation

This deviation of the x-ray beam, leads to a phase shift $\phi(\vec{r})=\vec{k}^{\prime} \cdot \vec{r}$ at a specific position along the original propagation direction z

$$
\hat{n}=\frac{\vec{k}^{\prime}}{k^{\prime}}=\frac{\lambda}{2 \pi} \nabla \phi(\vec{r})
$$

Thus the angular deviation, in each of the x and y directions in the plane perpendicular to the original propagation direction becomes

$$
\begin{aligned}
& \alpha_{x}=\frac{\lambda}{2 \pi} \frac{\partial \phi(x, y)}{\partial x} \\
& \alpha_{y}=\frac{\lambda}{2 \pi} \frac{\partial \phi(x, y)}{\partial y}
\end{aligned}
$$

Phase shift from angular deviation

This deviation of the x-ray beam, leads to a phase shift $\phi(\vec{r})=\vec{k}^{\prime} \cdot \vec{r}$ at a specific position along the original propagation direction z

$$
\begin{aligned}
\hat{n} & =\frac{\vec{k}^{\prime}}{k^{\prime}}=\frac{\lambda}{2 \pi} \nabla \phi(\vec{r}) \\
\alpha_{x} & =\frac{\lambda}{2 \pi} \frac{\partial \phi(x, y)}{\partial x} \\
\alpha_{y} & =\frac{\lambda}{2 \pi} \frac{\partial \phi(x, y)}{\partial y}
\end{aligned}
$$

Thus the angular deviation, in each of the x and y directions in the plane perpendicular to the original propagation direction becomes
By measuring the angular deviation as a function of position in a sample, one can reconstruct the phase shift $\phi(x, y)$ due to the sample by integration.

Phase contrast experiment

Phase contrast experiment

Imaging a silicon trough

Imaging blood cells

Wavefield propagation

In order to understand many of these imaging techniques, it is important to have a good model for wave propagation in an optical system

Wavefield propagation

In order to understand many of these imaging techniques, it is important to have a good model for wave propagation in an optical system
start with a monochromatic plane wave propagating in the z direction, described by the function $e^{i k z}$ with wavelength $\lambda=2 \pi / k$

Wavefield propagation

In order to understand many of these imaging techniques, it is important to have a good model for wave propagation in an optical system
start with a monochromatic plane wave propagating in the z direction, described by the function $e^{i k z}$ with wavelength $\lambda=2 \pi / k$
when the wavefront passes through an optical element or a sample, it is distorted such that the wavefield at $z=0$ is now a function of the transverse dimensions, x and $y: \psi_{0}(x, y)$

Wavefield propagation

In order to understand many of these imaging techniques, it is important to have a good model for wave propagation in an optical system
start with a monochromatic plane wave propagating in the z direction, described by the function $e^{i k z}$ with wavelength $\lambda=2 \pi / k$
when the wavefront passes through an optical element or a sample, it is distorted such that the wavefield at $z=0$ is now a function of the transverse dimensions, x and $y: \psi_{0}(x, y)$
our goal is to determine the wavefield at a distance z downstream and this is done by constructing a propagation operator \hat{D}_{z} such that

Wavefield propagation

In order to understand many of these imaging techniques, it is important to have a good model for wave propagation in an optical system
start with a monochromatic plane wave propagating in the z direction, described by the function $e^{i k z}$ with wavelength $\lambda=2 \pi / k$
when the wavefront passes through an optical element or a sample, it is distorted such that the wavefield at $z=0$ is now a function of the transverse dimensions, x and $y: \psi_{0}(x, y)$
our goal is to determine the wavefield at a distance z downstream and this is done by constructing a propagation operator \hat{D}_{z} such that

$$
\psi_{z}=\hat{D}_{z} \psi_{0}(x, y)
$$

Wavefield propagation

In order to understand many of these imaging techniques, it is important to have a good model for wave propagation in an optical system
start with a monochromatic plane wave propagating in the z direction, described by the function $e^{i k z}$ with wavelength $\lambda=2 \pi / k$
when the wavefront passes through an optical element or a sample, it is distorted such that the wavefield at $z=0$ is now a function of the transverse dimensions, x and $y: \psi_{0}(x, y)$
our goal is to determine the wavefield at a distance z downstream and this is done by constructing a propagation operator \hat{D}_{z} such that

$$
\psi_{z}=\hat{D}_{z} \psi_{0}(x, y)
$$

The Fourier transform is used to generate this propagation operator in the following way (showing only the x dependence for simplicity)

Wavefield propagation

In order to understand many of these imaging techniques, it is important to have a good model for wave propagation in an optical system
start with a monochromatic plane wave propagating in the z direction, described by the function $e^{i k z}$ with wavelength $\lambda=2 \pi / k$
when the wavefront passes through an optical element or a sample, it is distorted such that the wavefield at $z=0$ is now a function of the transverse dimensions, x and $y: \psi_{0}(x, y)$
our goal is to determine the wavefield at a distance z downstream and this is done by constructing a propagation operator \hat{D}_{z} such that

$$
\psi_{z}=\hat{D}_{z} \psi_{0}(x, y)
$$

The Fourier transform is used to generate this propagation operator in the following way (showing only the x dependence for simplicity)

$$
\psi_{0}(x)=\frac{1}{2 \pi} \int \tilde{\psi}_{0}\left(k_{x}\right) e^{-i k_{x} x} d k_{x}
$$

Wavefield propagation

$$
\psi_{0}(x)=\frac{1}{2 \pi} \int \tilde{\psi}_{0}\left(k_{x}\right) e^{-i k_{x} x} d k_{x}
$$

Wavefield propagation

$$
\psi_{0}(x)=\frac{1}{2 \pi} \int \tilde{\psi}_{0}\left(k_{x}\right) e^{-i k_{x} x} d k_{x}
$$

in words, this says that at $z=0$ the wavefield is a superposition of plane waves each of which is a function of the total wavevector $\vec{k}=k_{x} \hat{x}+k_{z} \hat{z}$

Wavefield propagation

$$
\psi_{0}(x)=\frac{1}{2 \pi} \int \tilde{\psi}_{0}\left(k_{x}\right) e^{-i k_{x} x} d k_{x}
$$

in words, this says that at $z=0$ the wavefield is a superposition of plane waves each of which is a function of the total wavevector $\vec{k}=k_{x} \hat{x}+k_{z} \hat{z}$

We can rewrite the relationships as follows

Wavefield propagation

$$
\psi_{0}(x)=\frac{1}{2 \pi} \int \tilde{\psi}_{0}\left(k_{x}\right) e^{-i k_{x} x} d k_{x}
$$

in words, this says that at $z=0$ the wavefield is a superposition of plane waves each of which is a function of the total wavevector $\vec{k}=k_{x} \hat{x}+k_{z} \hat{z}$

We can rewrite the relationships as follows

$$
k_{z}=\sqrt{k^{2}-k_{x}^{2}}
$$

Wavefield propagation

$$
\psi_{0}(x)=\frac{1}{2 \pi} \int \tilde{\psi}_{0}\left(k_{x}\right) e^{-i k_{x} x} d k_{x}
$$

in words, this says that at $z=0$ the wavefield is a superposition of plane waves each of which is a function of the total wavevector $\vec{k}=k_{x} \hat{x}+k_{z} \hat{z}$

We can rewrite the relationships as follows but if $k_{x} \ll k$ we have

$$
k_{z}=\sqrt{k^{2}-k_{x}^{2}}
$$

Wavefield propagation

$$
\psi_{0}(x)=\frac{1}{2 \pi} \int \tilde{\psi}_{0}\left(k_{x}\right) e^{-i k_{x} x} d k_{x}
$$

in words, this says that at $z=0$ the wavefield is a superposition of plane waves each of which is a function of the total wavevector $\vec{k}=k_{x} \hat{x}+k_{z} \hat{z}$

We can rewrite the relationships as follows but if $k_{x} \ll k$ we have

$$
k_{z}=\sqrt{k^{2}-k_{x}^{2}} \approx k-\frac{k_{x}^{2}}{2 k}
$$

Wavefield propagation

$$
\psi_{0}(x)=\frac{1}{2 \pi} \int \tilde{\psi}_{0}\left(k_{x}\right) e^{-i k_{x} x} d k_{x}
$$

in words, this says that at $z=0$ the wavefield is a superposition of plane waves each of which is a function of the total wavevector $\vec{k}=k_{x} \hat{x}+k_{z} \hat{z}$

We can rewrite the relationships as follows but if $k_{x} \ll k$ we have

$$
k_{z}=\sqrt{k^{2}-k_{x}^{2}} \approx k-\frac{k_{x}^{2}}{2 k}
$$

each of the plane waves $\tilde{\psi}_{0} e^{-i k_{x} x}$ propagates to z by multiplication with a phase factor

Wavefield propagation

$$
\psi_{0}(x)=\frac{1}{2 \pi} \int \tilde{\psi}_{0}\left(k_{x}\right) e^{-i k_{x} x} d k_{x}
$$

in words, this says that at $z=0$ the wavefield is a superposition of plane waves each of which is a function of the total wavevector $\vec{k}=k_{x} \hat{x}+k_{z} \hat{z}$

We can rewrite the relationships as follows but if $k_{x} \ll k$ we have

$$
k_{z}=\sqrt{k^{2}-k_{x}^{2}} \approx k-\frac{k_{x}^{2}}{2 k}
$$

each of the plane waves $\tilde{\psi}_{0} e^{-i k_{x} x}$ propagates to z by multiplication with a phase factor

$$
\tilde{\psi}_{0} e^{-i k_{x} x} \rightarrow \tilde{\psi}_{0} e^{-i k_{x} x} e^{i k_{z} z}
$$

Wavefield propagation

$$
\psi_{0}(x)=\frac{1}{2 \pi} \int \tilde{\psi}_{0}\left(k_{x}\right) e^{-i k_{x} x} d k_{x}
$$

in words, this says that at $z=0$ the wavefield is a superposition of plane waves each of which is a function of the total wavevector $\vec{k}=k_{x} \hat{x}+k_{z} \hat{z}$

We can rewrite the relationships as follows but if $k_{x} \ll k$ we have

$$
k_{z}=\sqrt{k^{2}-k_{x}^{2}} \approx k-\frac{k_{x}^{2}}{2 k}
$$

each of the plane waves $\tilde{\psi}_{0} e^{-i k_{x} x}$ propagates to z by multiplication with a phase factor

$$
\tilde{\psi}_{0} e^{-i k_{x} x} \rightarrow \tilde{\psi}_{0} e^{-i k_{x} x} e^{i k_{z} z}=\tilde{\psi}_{0} e^{-i k_{x} x} e^{i k z} e^{-i k_{x}^{2} z / 2 k}=\tilde{\psi}_{z}\left(k_{x}\right)
$$

Wavefield propagation

$$
\psi_{0}(x)=\frac{1}{2 \pi} \int \tilde{\psi}_{0}\left(k_{x}\right) e^{-i k_{x} x} d k_{x}
$$

in words, this says that at $z=0$ the wavefield is a superposition of plane waves each of which is a function of the total wavevector $\vec{k}=k_{x} \hat{x}+k_{z} \hat{z}$

We can rewrite the relationships as follows but if $k_{x} \ll k$ we have

$$
k_{z}=\sqrt{k^{2}-k_{x}^{2}} \approx k-\frac{k_{x}^{2}}{2 k}
$$

each of the plane waves $\tilde{\psi}_{0} e^{-i k_{x} x}$ propagates to z by multiplication with a phase factor

$$
\begin{aligned}
\tilde{\psi}_{0} e^{-i k_{x} x} & \rightarrow \tilde{\psi}_{0} e^{-i k_{x} x} e^{i k_{z} z}=\tilde{\psi}_{0} e^{-i k_{x} x} e^{i k z} e^{-i k_{x}^{2} z / 2 k}=\tilde{\psi}_{z}\left(k_{x}\right) \\
\psi_{z}(x) & =\mathcal{F} \mathcal{T}^{-1}\left[\tilde{\psi}_{z}\left(k_{x}\right)\right]
\end{aligned}
$$

Wavefield propagation

$$
\psi_{0}(x)=\frac{1}{2 \pi} \int \tilde{\psi}_{0}\left(k_{x}\right) e^{-i k_{x} x} d k_{x}
$$

in words, this says that at $z=0$ the wavefield is a superposition of plane waves each of which is a function of the total wavevector $\vec{k}=k_{x} \hat{x}+k_{z} \hat{z}$

We can rewrite the relationships as follows but if $k_{x} \ll k$ we have

$$
k_{z}=\sqrt{k^{2}-k_{x}^{2}} \approx k-\frac{k_{x}^{2}}{2 k}
$$

each of the plane waves $\tilde{\psi}_{0} e^{-i k_{x} x}$ propagates to z by multiplication with a phase factor

$$
\begin{aligned}
\tilde{\psi}_{0} e^{-i k_{x} x} & \rightarrow \tilde{\psi}_{0} e^{-i k_{x} x} e^{i k_{z} z}=\tilde{\psi}_{0} e^{-i k_{x} x} e^{i k z} e^{-i k_{x}^{2} z / 2 k}=\tilde{\psi}_{z}\left(k_{x}\right) \\
\psi_{z}(x) & =\mathcal{F} \mathcal{T}^{-1}\left[\tilde{\psi}_{z}\left(k_{x}\right)\right]=\frac{1}{2 \pi} \int \tilde{\psi}_{z}\left(k_{x}\right) e^{-i k_{x} x} d k_{x}
\end{aligned}
$$

Wavefield propagation

$$
\psi_{0}(x)=\frac{1}{2 \pi} \int \tilde{\psi}_{0}\left(k_{x}\right) e^{-i k_{x} x} d k_{x}
$$

in words, this says that at $z=0$ the wavefield is a superposition of plane waves each of which is a function of the total wavevector $\vec{k}=k_{x} \hat{x}+k_{z} \hat{z}$ We can rewrite the relationships as follows but if $k_{x} \ll k$ we have

$$
k_{z}=\sqrt{k^{2}-k_{x}^{2}} \approx k-\frac{k_{x}^{2}}{2 k}
$$

each of the plane waves $\tilde{\psi}_{0} e^{-i k_{x} x}$ propagates to z by multiplication with a phase factor

$$
\begin{aligned}
\tilde{\psi}_{0} e^{-i k_{x} x} & \rightarrow \tilde{\psi}_{0} e^{-i k_{x} x} e^{i k_{z} z}=\tilde{\psi}_{0} e^{-i k_{x} x} e^{i k z} e^{-i k_{x}^{2} z / 2 k}=\tilde{\psi}_{z}\left(k_{x}\right) \\
\psi_{z}(x) & =\mathcal{F} \mathcal{T}^{-1}\left[\tilde{\psi}_{z}\left(k_{x}\right)\right]=\frac{1}{2 \pi} \int \tilde{\psi}_{z}\left(k_{x}\right) e^{-i k_{x} x} d k_{x} \\
\psi_{z}(x, y) & =\hat{D}_{z} \psi_{0}(x, y)=e^{i k z} \mathcal{F} \mathcal{T}^{-1}\left[e^{-i z\left(k_{x}^{2}+k_{y}^{2}\right) / 2 k} \mathcal{F} \mathcal{T}\left[\psi_{0}(x, y)\right]\right]
\end{aligned}
$$

Fresnel zone plates

Fresnel Zone Phase Plate

Wave Propagation

Amplitude profile

Fresnel zone plates

Fresnel Zone Phase Plate

Wave Propagation

Amplitude profile

Fresnel Zone Absorption Plate

Wave Propagation

Amplitude profile

