Today's Outline - November 14, 2016

Today's Outline - November 14, 2016

- Kramers-Kronig relations

Today's Outline - November 14, 2016

- Kramers-Kronig relations
- Friedel's Law

Today's Outline - November 14, 2016

- Kramers-Kronig relations
- Friedel's Law
- Bijvoet (Bay-voot) Pairs

Today's Outline - November 14, 2016

- Kramers-Kronig relations
- Friedel's Law
- Bijvoet (Bay-voot) Pairs
- MAD Phasing

Today's Outline - November 14, 2016

- Kramers-Kronig relations
- Friedel's Law
- Bijvoet (Bay-voot) Pairs
- MAD Phasing
- Quantum Origin of Resonant Scattering

Today's Outline - November 14, 2016

- Kramers-Kronig relations
- Friedel's Law
- Bijvoet (Bay-voot) Pairs
- MAD Phasing
- Quantum Origin of Resonant Scattering
- Imaging

Today's Outline - November 14, 2016

- Kramers-Kronig relations
- Friedel's Law
- Bijvoet (Bay-voot) Pairs
- MAD Phasing
- Quantum Origin of Resonant Scattering
- Imaging

Homework Assignment \#7:
Chapter 7: 2,3,9,10,11
due Monday, November 28, 2016

Today's Outline - November 14, 2016

- Kramers-Kronig relations
- Friedel's Law
- Bijvoet (Bay-voot) Pairs
- MAD Phasing
- Quantum Origin of Resonant Scattering
- Imaging

Homework Assignment \#7:
Chapter 7: 2,3,9,10,11
due Monday, November 28, 2016
Final Exam, Wednesday, December 7, 2016, Stuart Building 213
2 sessions: 09:00-12:00; 13:00-17:00; (this may change) 16:00-18:00

Today's Outline - November 14, 2016

- Kramers-Kronig relations
- Friedel's Law
- Bijvoet (Bay-voot) Pairs
- MAD Phasing
- Quantum Origin of Resonant Scattering
- Imaging

Homework Assignment \#7:
Chapter 7: 2,3,9,10,11
due Monday, November 28, 2016
Final Exam, Wednesday, December 7, 2016, Stuart Building 213
2 sessions: 09:00-12:00; 13:00-17:00; (this may change) 16:00-18:00
Provide me with the paper you intend to present and a preferred session for the exam

Today's Outline - November 14, 2016

- Kramers-Kronig relations
- Friedel's Law
- Bijvoet (Bay-voot) Pairs
- MAD Phasing
- Quantum Origin of Resonant Scattering
- Imaging

Homework Assignment \#7:
Chapter 7: 2,3,9,10,11
due Monday, November 28, 2016
Final Exam, Wednesday, December 7, 2016, Stuart Building 213
2 sessions: 09:00-12:00; 13:00-17:00; (this may change) 16:00-18:00
Provide me with the paper you intend to present and a preferred session for the exam
Send me your presentation in Powerpoint or PDF format before before your session

Refractive index

Scattering and refraction are alternative ways to approach the phenomenon of x-ray interaction with matter.

Refractive index

Scattering and refraction are alternative ways to approach the phenomenon of x-ray interaction with matter. Thus the resonant response we have seen in scattering must be manifested in the index of refraction as well.

Refractive index

Scattering and refraction are alternative ways to approach the phenomenon of x-ray interaction with matter. Thus the resonant response we have seen in scattering must be manifested in the index of refraction as well.
the electric field from the x rays, $\vec{E}(t)$, induces a polarization response, $\vec{P}(t)$, in the material,

Refractive index

Scattering and refraction are alternative ways to approach the phenomenon of x-ray interaction with matter. Thus the resonant response we have seen in scattering must be manifested in the index of refraction as well.
the electric field from the x rays, $\vec{E}(t)$, induces a polar-

$$
\vec{P}(t)=\epsilon_{0} \chi \vec{E}(t)
$$ ization response, $\vec{P}(t)$, in the material,

Refractive index

Scattering and refraction are alternative ways to approach the phenomenon of x-ray interaction with matter. Thus the resonant response we have seen in scattering must be manifested in the index of refraction as well.
the electric field from the x rays, $\vec{E}(t)$, induces a polar-

$$
\vec{P}(t)=\epsilon_{0} \chi \vec{E}(t)=\left(\epsilon-\epsilon_{0}\right) \vec{E}(t)
$$ ization response, $\vec{P}(t)$, in the material,

Refractive index

Scattering and refraction are alternative ways to approach the phenomenon of x-ray interaction with matter. Thus the resonant response we have seen in scattering must be manifested in the index of refraction as well.
the electric field from the x rays, $\vec{E}(t)$, induces a polar-

$$
\vec{P}(t)=\epsilon_{0} \chi \vec{E}(t)=\left(\epsilon-\epsilon_{0}\right) \vec{E}(t)
$$ ization response, $\vec{P}(t)$, in the material, where

$\chi=\left(\epsilon / \epsilon_{0}-1\right)$
is the electric susceptibility

Refractive index

Scattering and refraction are alternative ways to approach the phenomenon of x-ray interaction with matter. Thus the resonant response we have seen in scattering must be manifested in the index of refraction as well.
the electric field from the x rays, $\vec{E}(t)$, induces a polar-

$$
\vec{P}(t)=\epsilon_{0} \chi \vec{E}(t)=\left(\epsilon-\epsilon_{0}\right) \vec{E}(t)
$$ ization response, $\vec{P}(t)$, in the material, where

$\chi=\left(\epsilon / \epsilon_{0}-1\right)$
is the electric susceptibility
given an electron density ρ
and using the displacement function for the electrons in the forced oscillator model

Refractive index

Scattering and refraction are alternative ways to approach the phenomenon of x-ray interaction with matter. Thus the resonant response we have seen in scattering must be manifested in the index of refraction as well.
the electric field from the x rays, $\vec{E}(t)$, induces a polar-

$$
\vec{P}(t)=\epsilon_{0} \chi \vec{E}(t)=\left(\epsilon-\epsilon_{0}\right) \vec{E}(t)=-e \rho x(t)
$$ ization response, $\vec{P}(t)$, in the material, where

$\chi=\left(\epsilon / \epsilon_{0}-1\right)$
is the electric susceptibility
given an electron density ρ
and using the displacement function for the electrons in the forced oscillator model

Refractive index

Scattering and refraction are alternative ways to approach the phenomenon of x-ray interaction with matter. Thus the resonant response we have seen in scattering must be manifested in the index of refraction as well.
the electric field from the x rays, $\vec{E}(t)$, induces a polarization response, $\vec{P}(t)$, in the material, where
$\chi=\left(\epsilon / \epsilon_{0}-1\right)$

$$
\begin{aligned}
\vec{P}(t) & =\epsilon_{0} \chi \vec{E}(t)=\left(\epsilon-\epsilon_{0}\right) \vec{E}(t)=-e \rho x(t) \\
& =-e \rho\left(-\frac{e}{m}\right) \frac{E_{0} e^{-i \omega t}}{\left(\omega_{s}^{2}-\omega^{2}-i \omega \Gamma\right)}
\end{aligned}
$$

is the electric susceptibility
given an electron density ρ
and using the displacement function for the electrons in the forced oscillator model

Refractive index

Scattering and refraction are alternative ways to approach the phenomenon of x-ray interaction with matter. Thus the resonant response we have seen in scattering must be manifested in the index of refraction as well.
the electric field from the x rays, $\vec{E}(t)$, induces a polarization response, $\vec{P}(t)$, in the material, where
$\chi=\left(\epsilon / \epsilon_{0}-1\right)$

$$
\begin{aligned}
\vec{P}(t) & =\epsilon_{0} \chi \vec{E}(t)=\left(\epsilon-\epsilon_{0}\right) \vec{E}(t)=-e \rho x(t) \\
& =-e \rho\left(-\frac{e}{m}\right) \frac{E_{0} e^{-i \omega t}}{\left(\omega_{s}^{2}-\omega^{2}-i \omega \Gamma\right)}
\end{aligned}
$$

is the electric susceptibility
given an electron density ρ
and using the displacement function for the electrons in the forced oscillator model

Refractive index

Scattering and refraction are alternative ways to approach the phenomenon of x-ray interaction with matter. Thus the resonant response we have seen in scattering must be manifested in the index of refraction as well.
the electric field from the x rays, $\vec{E}(t)$, induces a polarization response, $\vec{P}(t)$, in the material, where
$\chi=\left(\epsilon / \epsilon_{0}-1\right)$

$$
\begin{aligned}
\vec{P}(t) & =\epsilon_{0} \chi \vec{E}(t)=\left(\epsilon-\epsilon_{0}\right) \vec{E}(t)=-e \rho x(t) \\
& =-e \rho\left(-\frac{e}{m}\right) \frac{E_{0} e^{-i \omega t}}{\left(\omega_{s}^{2}-\omega^{2}-i \omega \Gamma\right)}
\end{aligned}
$$

is the electric susceptibility
given an electron density ρ and using the displacement

$$
\frac{P(t)}{E(t)}=\epsilon-\epsilon_{0}=\left(\frac{e^{2} \rho}{m}\right) \frac{1}{\left(\omega_{s}^{2}-\omega^{2}-i \omega \Gamma\right)}
$$ the forced oscillator model

Refractive index

Scattering and refraction are alternative ways to approach the phenomenon of x-ray interaction with matter. Thus the resonant response we have seen in scattering must be manifested in the index of refraction as well.
the electric field from the x rays, $\vec{E}(t)$, induces a polarization response, $\vec{P}(t)$, in the material, where
$\chi=\left(\epsilon / \epsilon_{0}-1\right)$

$$
\begin{aligned}
\vec{P}(t) & =\epsilon_{0} \chi \vec{E}(t)=\left(\epsilon-\epsilon_{0}\right) \vec{E}(t)=-e \rho x(t) \\
& =-e \rho\left(-\frac{e}{m}\right) \frac{E_{0} e^{-i \omega t}}{\left(\omega_{s}^{2}-\omega^{2}-i \omega \Gamma\right)}
\end{aligned}
$$

is the electric susceptibility
given an electron density ρ and using the displacement

$$
\frac{P(t)}{E(t)}=\epsilon-\epsilon_{0}=\left(\frac{e^{2} \rho}{m}\right) \frac{1}{\left(\omega_{s}^{2}-\omega^{2}-i \omega \Gamma\right)}
$$

$$
n^{2}=\frac{c^{2}}{v^{2}}
$$

index of refraction can thus be computed

Refractive index

Scattering and refraction are alternative ways to approach the phenomenon of x-ray interaction with matter. Thus the resonant response we have seen in scattering must be manifested in the index of refraction as well.
the electric field from the x rays, $\vec{E}(t)$, induces a polarization response, $\vec{P}(t)$, in the material, where
$\chi=\left(\epsilon / \epsilon_{0}-1\right)$

$$
\begin{aligned}
\vec{P}(t) & =\epsilon_{0} \chi \vec{E}(t)=\left(\epsilon-\epsilon_{0}\right) \vec{E}(t)=-e \rho x(t) \\
& =-e \rho\left(-\frac{e}{m}\right) \frac{E_{0} e^{-i \omega t}}{\left(\omega_{s}^{2}-\omega^{2}-i \omega \Gamma\right)}
\end{aligned}
$$

is the electric susceptibility
given an electron density ρ and using the displacement

$$
\frac{P(t)}{E(t)}=\epsilon-\epsilon_{0}=\left(\frac{e^{2} \rho}{m}\right) \frac{1}{\left(\omega_{s}^{2}-\omega^{2}-i \omega \Gamma\right)}
$$

index of refraction can thus function for the electrons in the forced oscillator model

$$
n^{2}=\frac{c^{2}}{v^{2}}=\frac{\epsilon}{\epsilon_{0}}
$$ be computed

Refractive index

$$
n^{2}=1+\left(\frac{e^{2} \rho}{\epsilon_{0} m}\right) \frac{1}{\left(\omega_{s}^{2}-\omega^{2}-i \omega \Gamma\right)}
$$

Refractive index

$$
\begin{aligned}
n^{2} & =1+\left(\frac{e^{2} \rho}{\epsilon_{0} m}\right) \frac{1}{\left(\omega_{s}^{2}-\omega^{2}-i \omega \Gamma\right)} \\
& =1+\left(\frac{e^{2} \rho}{\epsilon_{0} m}\right) \frac{\omega_{s}^{2}-\omega^{2}}{\left(\omega_{s}^{2}-\omega^{2}\right)^{2}+(\omega \Gamma)^{2}}
\end{aligned}
$$

Refractive index

$$
\begin{aligned}
n^{2} & =1+\left(\frac{e^{2} \rho}{\epsilon_{0} m}\right) \frac{1}{\left(\omega_{s}^{2}-\omega^{2}-i \omega \Gamma\right)} \\
& =1+\left(\frac{e^{2} \rho}{\epsilon_{0} m}\right) \frac{\omega_{s}^{2}-\omega^{2}}{\left(\omega_{s}^{2}-\omega^{2}\right)^{2}+(\omega \Gamma)^{2}}+i \frac{\omega \Gamma}{\left(\omega_{s}^{2}-\omega^{2}\right)^{2}+(\omega \Gamma)^{2}}
\end{aligned}
$$

Absorption cross-section

Electrons in atoms are bound and therefore have resonant effects due to the binding forces

Absorption cross-section

Electrons in atoms are bound and therefore have resonant effects due to the binding forces

Absorption cross-section

Electrons in atoms are bound and therefore have resonant effects due to the binding forces
the imaginary part of the resonant scattering for an electron bound to an atom shows a frequency dependence with a peak at $\omega \approx \omega_{s}$

Absorption cross-section

Electrons in atoms are bound and therefore have resonant effects due to the binding forces
the imaginary part of the resonant scattering for an electron bound to an atom shows a frequency dependence with a peak at $\omega \approx \omega_{s}$
this single oscillator model, however, does not reproduce the observed absorption cross-section jump at an absorption edge

Absorption cross-section

Electrons in atoms are bound and therefore have resonant effects due

$$
f_{s}^{\prime \prime}(\omega)=\frac{\omega_{s}^{2} \omega \Gamma}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}} r_{0}^{2}
$$

to the binding forces
the imaginary part of the resonant scattering for an electron bound to an atom shows a frequency dependence with a peak at $\omega \approx \omega_{\text {s }}$
this single oscillator model, however, does not reproduce the observed absorption cross-section jump at an absorption edge

$$
\sigma_{a, s}(\omega)=4 \pi r_{0} c \frac{\omega_{s}^{2} \Gamma}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}}
$$

Absorption cross-section

Electrons in atoms are bound and therefore have resonant effects due to the binding forces
the imaginary part of the resonant scattering for an electron bound to an atom shows a frequency dependence with a peak at $\omega \approx \omega_{s}$ this single oscillator model, however, does not reproduce the observed absorption cross-section jump at an absorption edge

$$
f_{s}^{\prime \prime}(\omega)=\frac{\omega_{s}^{2} \omega \Gamma}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}} r_{0}^{2}
$$

$$
\sigma_{a, s}(\omega)=4 \pi r_{0} c \frac{\omega_{s}^{2} \Gamma}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}}
$$

Multi-oscillator model

The damping constant, Гis generally much less than the resonant frequency, ω_{s}

$$
\sigma_{a, s}(\omega)=4 \pi r_{0} c \frac{\omega_{s}^{2} \Gamma}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}}
$$

Multi-oscillator model

The damping constant, Гis generally much less than the resonant frequency, ω_{s}

$$
\sigma_{a, s}(\omega)=4 \pi r_{0} c \frac{\omega_{s}^{2} \Gamma}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}}
$$

thus the single oscillator is essentially a delta function

Multi-oscillator model

The damping constant, Гis generally much less than the resonant frequency, ω_{s}

$$
\begin{aligned}
& \sigma_{a, s}(\omega)=4 \pi r_{0} c \frac{\omega_{s}^{2} \Gamma}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}} \\
& \approx 4 \pi r_{0} c \frac{\pi}{2} \delta\left(\omega-\omega_{s}\right)
\end{aligned}
$$

thus the single oscillator is essentially a delta function

Multi-oscillator model

The damping constant, Гis generally much less than the resonant frequency, ω_{s}
thus the single oscillator is essentially a delta function
in a real atom, exceeding the absorption edge allows the electron to be excited into a continuum of states which can be approximated by a sum of resonant oscillators with frequency distribution $g\left(\omega_{s}\right)$

$$
\begin{aligned}
\sigma_{a, s}(\omega) & =4 \pi r_{0} c \frac{\omega_{s}^{2} \Gamma}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}} \\
& \approx 4 \pi r_{0} c \frac{\pi}{2} \delta\left(\omega-\omega_{s}\right)
\end{aligned}
$$

Multi-oscillator model

The damping constant, 「is generally much less than the resonant frequency, ω_{s}
thus the single oscillator is essentially a delta function
in a real atom, exceeding the absorption edge allows the electron to be excited into a continuum of states which can be approximated by a sum of resonant oscillators with frequency distribution $g\left(\omega_{s}\right)$
$\sigma_{a}(\omega)=2 \pi^{2} r_{0} c \sum_{s} g\left(\omega_{s}\right) \delta\left(\omega-\omega_{s}\right)$

$$
\begin{aligned}
& \sigma_{a, s}(\omega)=4 \pi r_{0} c \frac{\omega_{s}^{2} \Gamma}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}} \\
& \approx 4 \pi r_{0} c \frac{\pi}{2} \delta\left(\omega-\omega_{s}\right)
\end{aligned}
$$

Multi-oscillator model

The damping constant, 「is generally much less than the resonant frequency, ω_{s}
thus the single oscillator is essentially a delta function

$$
\approx 4 \pi r_{0} \subset \frac{\pi}{2} \delta\left(\omega-\omega_{s}\right)
$$

in a real atom, exceeding the absorption edge allows the electron to be excited into a continuum of states which can be approximated by a sum of resonant oscillators with frequency distribution $g\left(\omega_{s}\right)$

$$
\sigma_{a}(\omega)=2 \pi^{2} r_{0} c \sum_{s} g\left(\omega_{s}\right) \delta\left(\omega-\omega_{s}\right)
$$

$$
\sigma_{a, s}(\omega)=4 \pi r_{0} c \frac{\omega_{s}^{2} \Gamma}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}}
$$

Multi-oscillator model

The damping constant, 「is generally much less than the resonant frequency, ω_{s}
thus the single oscillator is essentially a delta function

$$
\approx 4 \pi r_{0} c \frac{\pi}{2} \delta\left(\omega-\omega_{s}\right)
$$

in a real atom, exceeding the absorption edge allows the electron to be excited into a continuum of states which can be approximated by a sum of resonant oscillators with frequency distribution $g\left(\omega_{s}\right)$
$\sigma_{a}(\omega)=2 \pi^{2} r_{0} c \sum_{s} g\left(\omega_{s}\right) \delta\left(\omega-\omega_{s}\right)$
a similar effect is seen in the resonant scattering term $f^{\prime}(w)$

$$
\sigma_{a, s}(\omega)=4 \pi r_{0} c \frac{\omega_{s}^{2} \Gamma}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}}
$$

Multi-oscillator model

The damping constant, 「is generally much less than the resonant frequency, ω_{s}
thus the single oscillator is essentially a delta function

$$
\approx 4 \pi r_{0} c \frac{\pi}{2} \delta\left(\omega-\omega_{s}\right)
$$

in a real atom, exceeding the absorption edge allows the electron to be excited into a continuum of states which can be approximated by a sum of resonant oscillators with frequency distribution $g\left(\omega_{s}\right)$
$\sigma_{a}(\omega)=2 \pi^{2} r_{0} c \sum_{s} g\left(\omega_{s}\right) \delta\left(\omega-\omega_{s}\right)$
a similar effect is seen in the resonant scattering term $f^{\prime}(w)$

$$
\sigma_{a, s}(\omega)=4 \pi r_{0} c \frac{\omega_{s}^{2} \Gamma}{\left(\omega^{2}-\omega_{s}^{2}\right)^{2}+(\omega \Gamma)^{2}}
$$

Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of the dispersion corrections.

Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of the dispersion corrections. However, if it is possible to obtain the experimental absorption cross-section, σ_{a}, the resonant scattering can be computed.

Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of the dispersion corrections. However, if it is possible to obtain the experimental absorption cross-section, σ_{a}, the resonant scattering can be computed.
first compute $f^{\prime \prime}(\omega)$ from the measured absorption crosssection

Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of the dispersion corrections. However, if it is possible to obtain the experimental absorption cross-section, σ_{a}, the resonant scattering can be computed.
first compute $f^{\prime \prime}(\omega)$ from the measured absorption crosssection

$$
f^{\prime \prime}(\omega)=-\left(\frac{\omega}{4 \pi r_{0} c}\right) \sigma_{a}(\omega)
$$

Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of the dispersion corrections. However, if it is possible to obtain the experimental absorption cross-section, σ_{a}, the resonant scattering can be computed.
first compute $f^{\prime \prime}(\omega)$ from the measured absorption cross-

$$
f^{\prime \prime}(\omega)=-\left(\frac{\omega}{4 \pi r_{0} c}\right) \sigma_{a}(\omega)
$$

section
then use the Kramers-Kronig relations which connect the resonant term to the absorptive term

Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of the dispersion corrections. However, if it is possible to obtain the experimental absorption cross-section, σ_{a}, the resonant scattering can be computed.
first compute $f^{\prime \prime}(\omega)$ from the measured absorption cross-

$$
f^{\prime \prime}(\omega)=-\left(\frac{\omega}{4 \pi r_{0} c}\right) \sigma_{a}(\omega)
$$

section
then use the Kramers-Kronig relations which connect the resonant term to the absorptive term

$$
f^{\prime}(\omega)=\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}
$$

Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of the dispersion corrections. However, if it is possible to obtain the experimental absorption cross-section, σ_{a}, the resonant scattering can be computed.
first compute $f^{\prime \prime}(\omega)$ from the measured absorption crosssection
then use the Kramers-Kronig relations which connect the resonant term to the absorptive term

$$
\begin{aligned}
f^{\prime}(\omega) & =\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime} \\
f^{\prime \prime}(\omega) & =-\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}
\end{aligned}
$$

Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of the dispersion corrections. However, if it is possible to obtain the experimental absorption cross-section, σ_{a}, the resonant scattering can be computed.
first compute $f^{\prime \prime}(\omega)$ from the measured absorption crosssection
then use the Kramers-Kronig relations which connect the resonant term to the absorptive term

$$
\begin{aligned}
f^{\prime}(\omega) & =\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}=\frac{2}{\pi} \mathcal{P} \int_{0}^{+\infty} \frac{\omega^{\prime} f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime} \\
f^{\prime \prime}(\omega) & =-\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}
\end{aligned}
$$

$$
f^{\prime \prime}(\omega)=-\left(\frac{\omega}{4 \pi r_{0} c}\right) \sigma_{a}(\omega)
$$

Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of the dispersion corrections. However, if it is possible to obtain the experimental absorption cross-section, σ_{a}, the resonant scattering can be computed.
first compute $f^{\prime \prime}(\omega)$ from the measured absorption crosssection
then use the Kramers-Kronig relations which connect the resonant term to the absorptive term

$$
\begin{aligned}
f^{\prime}(\omega) & =\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}=\frac{2}{\pi} \mathcal{P} \int_{0}^{+\infty} \frac{\omega^{\prime} f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime} \\
f^{\prime \prime}(\omega) & =-\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}=-\frac{2 \omega}{\pi} \mathcal{P} \int_{0}^{+\infty} \frac{f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}
\end{aligned}
$$

Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of the dispersion corrections. However, if it is possible to obtain the experimental absorption cross-section, σ_{a}, the resonant scattering can be computed.
first compute $f^{\prime \prime}(\omega)$ from the measured absorption crosssection
then use the Kramers-Kronig relations which connect the resonant term to the absorptive term and where all the integrals are "principal value" integrals

$$
\begin{aligned}
f^{\prime}(\omega) & =\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}=\frac{2}{\pi} \mathcal{P} \int_{0}^{+\infty} \frac{\omega^{\prime} f^{\prime \prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime} \\
f^{\prime \prime}(\omega) & =-\frac{1}{\pi} \mathcal{P} \int_{-\infty}^{+\infty} \frac{f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-\omega\right)} d \omega^{\prime}=-\frac{2 \omega}{\pi} \mathcal{P} \int_{0}^{+\infty} \frac{f^{\prime}\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}
\end{aligned}
$$

Calculated cross-sections

Calculated cross-sections

Scattering from two unlike atoms

Two unlike atoms with scattering factors f_{1} and f_{2} are oriented by a vector pointing from the larger to the smaller.

Scattering from two unlike atoms

Two unlike atoms with scatter-
ing factors f_{1} and f_{2} are oriented
by a vector pointing from the
larger to the smaller.
Consider two cases, with the
scattering vector Q

Scattering from two unlike atoms

Two unlike atoms with scattering factors f_{1} and f_{2} are oriented by a vector pointing from the larger to the smaller.

Consider two cases, with the scattering vector Q in the same direction as the orientation vector

Scattering from two unlike atoms

Two unlike atoms with scattering factors f_{1} and f_{2} are oriented by a vector pointing from the larger to the smaller.

Consider two cases, with the scattering vector Q in the same direction as the orientation vector and opposite to the orientation vector.

Scattering from two unlike atoms

Two unlike atoms with scattering factors f_{1} and f_{2} are oriented by a vector pointing from the larger to the smaller.

Consider two cases, with the scattering vector Q in the same direction as the orientation vector and opposite to the orientation vector.

Now compute the scattered intensity in each case, assuming scattering factors are purely real.

Friedel's Law

Friedel's Law

Friedel's Law

$$
\begin{aligned}
& A(+Q)=f_{1}+f_{2} e^{+i Q x} \\
& I(+Q)=\left(f_{1}+f_{2} e^{+i Q x}\right)\left(f_{1}+f_{2} e^{-i Q x}\right) \\
& A(-Q)=f_{1}+f_{2} e^{-i Q x} \\
& I(-Q)=\left(f_{1}+f_{2} e^{-i Q x}\right)\left(f_{1}+f_{2} e^{+i Q x}\right)
\end{aligned}
$$

Friedel's Law

$$
\begin{aligned}
A(+Q) & =f_{1}+f_{2} e^{+i Q x} \\
I(+Q) & =\left(f_{1}+f_{2} e^{+i Q x}\right)\left(f_{1}+f_{2} e^{-i Q x}\right) \\
& =f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2} \cos (Q x) \\
A(-Q) & =f_{1}+f_{2} e^{-i Q x} \\
I(-Q) & =\left(f_{1}+f_{2} e^{-i Q x}\right)\left(f_{1}+f_{2} e^{+i Q x}\right) \\
& =f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2} \cos (Q x)
\end{aligned}
$$

Friedel's Law

$$
\begin{aligned}
A(+Q) & =f_{1}+f_{2} e^{+i Q x} \\
I(+Q) & =\left(f_{1}+f_{2} e^{+i Q x}\right)\left(f_{1}+f_{2} e^{-i Q x}\right) \\
& =f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2} \cos (Q x)
\end{aligned}
$$

$$
\begin{aligned}
I(+Q) & =I(-Q) \quad \text { Friedel's Law } \\
A(-Q) & =f_{1}+f_{2} e^{-i Q x} \\
I(-Q) & =\left(f_{1}+f_{2} e^{-i Q x}\right)\left(f_{1}+f_{2} e^{+i Q x}\right) \\
& =f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2} \cos (Q x)
\end{aligned}
$$

Breakdown of Friedel's Law

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

Breakdown of Friedel's Law

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

$$
f_{j}=f_{j}^{0}+f_{j}^{\prime}+i f_{j}^{\prime \prime} \quad j=1,2
$$

Breakdown of Friedel's Law

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

$$
f_{j}=f_{j}^{0}+f_{j}^{\prime}+i f_{j}^{\prime \prime}=r_{j} e^{i \phi_{j}} \quad j=1,2 \quad r_{j}=\left|f_{j}\right|
$$

Breakdown of Friedel's Law

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

$$
\begin{aligned}
f_{j} & =f_{j}^{0}+f_{j}^{\prime}+i f_{j}^{\prime \prime}=r_{j} e^{i \phi_{j}} \quad j=1,2 \quad r_{j}=\left|f_{j}\right| \\
A(Q) & =r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x}
\end{aligned}
$$

Breakdown of Friedel's Law

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

$$
\begin{aligned}
f_{j} & =f_{j}^{0}+f_{j}^{\prime}+i f_{j}^{\prime \prime}=r_{j} e^{i \phi_{j}} \quad j=1,2 \quad r_{j}=\left|f_{j}\right| \\
A(Q) & =r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x} \\
I(Q) & =\left(r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x}\right)\left(r_{1} e^{-i \phi_{1}}+r_{2} e^{-i \phi_{2}} e^{-i Q x}\right)
\end{aligned}
$$

Breakdown of Friedel's Law

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

$$
\begin{aligned}
f_{j} & =f_{j}^{0}+f_{j}^{\prime}+i f_{j}^{\prime \prime}=r_{j} e^{i \phi_{j}} \quad j=1,2 \quad r_{j}=\left|f_{j}\right| \\
A(Q) & =r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x} \\
I(Q) & =\left(r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x}\right)\left(r_{1} e^{-i \phi_{1}}+r_{2} e^{-i \phi_{2}} e^{-i Q x}\right) \\
& =r_{1}^{2}+r_{2}^{2}+r_{1} r_{2} e^{i \phi_{1}} e^{-i \phi_{2}} e^{-i Q x}+r_{1} r_{2} e^{-i \phi_{1}} e^{i \phi_{2}} e^{i Q x}
\end{aligned}
$$

Breakdown of Friedel's Law

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

$$
\begin{aligned}
f_{j} & =f_{j}^{0}+f_{j}^{\prime}+i f_{j}^{\prime \prime}=r_{j} e^{i \phi_{j}} \quad j=1,2 \quad r_{j}=\left|f_{j}\right| \\
A(Q) & =r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x} \\
I(Q) & =\left(r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x}\right)\left(r_{1} e^{-i \phi_{1}}+r_{2} e^{-i \phi_{2}} e^{-i Q x}\right) \\
& =r_{1}^{2}+r_{2}^{2}+r_{1} r_{2} e^{i \phi_{1}} e^{-i \phi_{2}} e^{-i Q x}+r_{1} r_{2} e^{-i \phi_{1}} e^{i \phi_{2}} e^{i Q x} \\
& =\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}+r_{1} r_{2}\left(e^{-\left(Q x+\phi_{1}-\phi_{2}\right)}+e^{+\left(Q x+\phi_{1}-\phi_{2}\right)}\right)
\end{aligned}
$$

Breakdown of Friedel's Law

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

$$
\begin{aligned}
f_{j} & =f_{j}^{0}+f_{j}^{\prime}+i f_{j}^{\prime \prime}=r_{j} e^{i \phi_{j}} \quad j=1,2 \quad r_{j}=\left|f_{j}\right| \\
A(Q) & =r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x} \\
I(Q) & =\left(r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x}\right)\left(r_{1} e^{-i \phi_{1}}+r_{2} e^{-i \phi_{2}} e^{-i Q x}\right) \\
& =r_{1}^{2}+r_{2}^{2}+r_{1} r_{2} e^{i \phi_{1}} e^{-i \phi_{2}} e^{-i Q x}+r_{1} r_{2} e^{-i \phi_{1}} e^{i \phi_{2}} e^{i Q x} \\
& =\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}+r_{1} r_{2}\left(e^{-\left(Q x+\phi_{1}-\phi_{2}\right)}+e^{+\left(Q x+\phi_{1}-\phi_{2}\right)}\right) \\
I(Q) & =\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}+2 r_{1} r_{2} \cos \left(Q x+\phi_{1}-\phi_{2}\right)
\end{aligned}
$$

Breakdown of Friedel's Law

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

$$
\begin{aligned}
f_{j} & =f_{j}^{0}+f_{j}^{\prime}+i f_{j}^{\prime \prime}=r_{j} e^{i \phi_{j}} \quad j=1,2 \quad r_{j}=\left|f_{j}\right| \\
A(Q) & =r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x} \\
I(Q) & =\left(r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x}\right)\left(r_{1} e^{-i \phi_{1}}+r_{2} e^{-i \phi_{2}} e^{-i Q x}\right) \\
& =r_{1}^{2}+r_{2}^{2}+r_{1} r_{2} e^{i \phi_{1}} e^{-i \phi_{2}} e^{-i Q x}+r_{1} r_{2} e^{-i \phi_{1}} e^{i \phi_{2}} e^{i Q x} \\
& =\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}+r_{1} r_{2}\left(e^{-\left(Q x+\phi_{1}-\phi_{2}\right)}+e^{+\left(Q x+\phi_{1}-\phi_{2}\right)}\right) \\
I(Q) & =\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}+2 r_{1} r_{2} \cos \left(Q x+\phi_{1}-\phi_{2}\right) \neq I(-Q)
\end{aligned}
$$

Breakdown of Friedel's Law

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

$$
\begin{aligned}
f_{j} & =f_{j}^{0}+f_{j}^{\prime}+i f_{j}^{\prime \prime}=r_{j} e^{i \phi_{j}} \quad j=1,2 \quad r_{j}=\left|f_{j}\right| \\
A(Q) & =r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x} \\
I(Q) & =\left(r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x}\right)\left(r_{1} e^{-i \phi_{1}}+r_{2} e^{-i \phi_{2}} e^{-i Q x}\right) \\
& =r_{1}^{2}+r_{2}^{2}+r_{1} r_{2} e^{i \phi_{1}} e^{-i \phi_{2}} e^{-i Q x}+r_{1} r_{2} e^{-i \phi_{1}} e^{i \phi_{2}} e^{i Q x} \\
& =\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}+r_{1} r_{2}\left(e^{-\left(Q x+\phi_{1}-\phi_{2}\right)}+e^{+\left(Q x+\phi_{1}-\phi_{2}\right)}\right) \\
I(Q) & =\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}+2 r_{1} r_{2} \cos \left(Q x+\phi_{1}-\phi_{2}\right) \neq I(-Q)
\end{aligned}
$$

Thus, Friedel's Law breaks down unless there is a center of symmetry:

Breakdown of Friedel's Law

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

$$
\begin{aligned}
f_{j} & =f_{j}^{0}+f_{j}^{\prime}+i f_{j}^{\prime \prime}=r_{j} e^{i \phi_{j}} \quad j=1,2 \quad r_{j}=\left|f_{j}\right| \\
A(Q) & =r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x} \\
I(Q) & =\left(r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x}\right)\left(r_{1} e^{-i \phi_{1}}+r_{2} e^{-i \phi_{2}} e^{-i Q x}\right) \\
& =r_{1}^{2}+r_{2}^{2}+r_{1} r_{2} e^{i \phi_{1}} e^{-i \phi_{2}} e^{-i Q x}+r_{1} r_{2} e^{-i \phi_{1}} e^{i \phi_{2}} e^{i Q x} \\
& =\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}+r_{1} r_{2}\left(e^{-\left(Q x+\phi_{1}-\phi_{2}\right)}+e^{+\left(Q x+\phi_{1}-\phi_{2}\right)}\right) \\
I(Q) & =\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}+2 r_{1} r_{2} \cos \left(Q x+\phi_{1}-\phi_{2}\right) \neq I(-Q)
\end{aligned}
$$

Thus, Friedel's Law breaks down unless there is a center of symmetry:

$$
F=r_{1} e^{-i\left(\phi_{1}+Q x_{1}\right)}+r_{1} e^{-i\left(\phi_{1}-Q x_{1}\right)}+r_{2} e^{-i\left(\phi_{2}+Q x_{2}\right)}+r_{2} e^{-i\left(\phi_{2}-Q x_{2}\right)}
$$

Breakdown of Friedel's Law

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

$$
\begin{aligned}
f_{j} & =f_{j}^{0}+f_{j}^{\prime}+i f_{j}^{\prime \prime}=r_{j} e^{i \phi_{j}} \quad j=1,2 \quad r_{j}=\left|f_{j}\right| \\
A(Q) & =r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x} \\
I(Q) & =\left(r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x}\right)\left(r_{1} e^{-i \phi_{1}}+r_{2} e^{-i \phi_{2}} e^{-i Q x}\right) \\
& =r_{1}^{2}+r_{2}^{2}+r_{1} r_{2} e^{i \phi_{1}} e^{-i \phi_{2}} e^{-i Q x}+r_{1} r_{2} e^{-i \phi_{1}} e^{i \phi_{2}} e^{i Q x} \\
& =\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}+r_{1} r_{2}\left(e^{-\left(Q x+\phi_{1}-\phi_{2}\right)}+e^{+\left(Q x+\phi_{1}-\phi_{2}\right)}\right) \\
I(Q) & =\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}+2 r_{1} r_{2} \cos \left(Q x+\phi_{1}-\phi_{2}\right) \neq I(-Q)
\end{aligned}
$$

Thus, Friedel's Law breaks down unless there is a center of symmetry:

$$
\begin{aligned}
F & =r_{1} e^{-i\left(\phi_{1}+Q x_{1}\right)}+r_{1} e^{-i\left(\phi_{1}-Q x_{1}\right)}+r_{2} e^{-i\left(\phi_{2}+Q x_{2}\right)}+r_{2} e^{-i\left(\phi_{2}-Q x_{2}\right)} \\
& =\left[2 r_{1} \cos \left(Q x_{1}\right)\right] e^{-i \phi_{1}}+\left[2 r_{2} \cos \left(Q x_{2}\right)\right] e^{-i \phi_{2}}
\end{aligned}
$$

Breakdown of Friedel's Law

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

$$
\begin{aligned}
f_{j} & =f_{j}^{0}+f_{j}^{\prime}+i f_{j}^{\prime \prime}=r_{j} e^{i \phi_{j}} \quad j=1,2 \quad r_{j}=\left|f_{j}\right| \\
A(Q) & =r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x} \\
I(Q) & =\left(r_{1} e^{i \phi_{1}}+r_{2} e^{i \phi_{2}} e^{i Q x}\right)\left(r_{1} e^{-i \phi_{1}}+r_{2} e^{-i \phi_{2}} e^{-i Q x}\right) \\
& =r_{1}^{2}+r_{2}^{2}+r_{1} r_{2} e^{i \phi_{1}} e^{-i \phi_{2}} e^{-i Q x}+r_{1} r_{2} e^{-i \phi_{1}} e^{i \phi_{2}} e^{i Q x} \\
& =\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}+r_{1} r_{2}\left(e^{-\left(Q x+\phi_{1}-\phi_{2}\right)}+e^{+\left(Q x+\phi_{1}-\phi_{2}\right)}\right) \\
I(Q) & =\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}+2 r_{1} r_{2} \cos \left(Q x+\phi_{1}-\phi_{2}\right) \neq I(-Q)
\end{aligned}
$$

Thus, Friedel's Law breaks down unless there is a center of symmetry:

$$
\begin{aligned}
F & =r_{1} e^{-i\left(\phi_{1}+Q x_{1}\right)}+r_{1} e^{-i\left(\phi_{1}-Q x_{1}\right)}+r_{2} e^{-i\left(\phi_{2}+Q x_{2}\right)}+r_{2} e^{-i\left(\phi_{2}-Q x_{2}\right)} \\
& =\left[2 r_{1} \cos \left(Q x_{1}\right)\right] e^{-i \phi_{1}}+\left[2 r_{2} \cos \left(Q x_{2}\right)\right] e^{-i \phi_{2}} \\
I(Q) & =4\left|f_{1}\right|^{2}+4\left|f_{2}\right|^{2}+8\left|f_{1}\right|\left|f_{2}\right| \cos \left(Q x_{1}\right) \cos \left(Q x_{2}\right) \cos \left(\phi_{2}-\phi_{1}\right)
\end{aligned}
$$

Argand diagram

This can all be described graphically using an Argand diagram:

no resonant terms

Argand diagram

This can all be described graphically using an Argand diagram:

no resonant terms

including resonant terms

ZnS example

The ZnS structure is not centrosymmetric and when viewed along the $\langle 111\rangle$ direction, it shows alternating stacked planes of Zn and S atoms.

ZnS example

The ZnS structure is not centrosymmetric and when viewed along the $\langle 111\rangle$ direction, it shows alternating stacked planes of Zn and S atoms.

Scattering from opposite faces of a single crystal of ZnS gives a different scattering factor and one can deduce the terminating surface atom.

Bijvoet pairs - chiral molecules

Consider a tetrahedral molecule of carbon with four different species at each corner, oriented so the lightest is projected to the origin.

Bijvoet pairs - chiral molecules

Consider a tetrahedral molecule of carbon with four different species at each corner, oriented so the lightest is projected to the origin.

Atomic scattering factors

Each of the three atoms not at the origin has a scattering factor for \vec{Q} as shown

Left handed scattering factor

Left handed scattering factor

$$
F_{S}=\left|f_{s}\right|+\left|f_{m}\right| e^{-i \phi_{m}} e^{i \phi}+\left|f_{i}\right| e^{-i \phi_{1}} e^{-i \phi}
$$

Right handed scattering factor

Right handed scattering factor

$$
F_{R}=\left|f_{s}\right|+\left|f_{m}\right| e^{-i \phi_{m}} e^{-i \phi}+\left|f_{l}\right| e^{-i \phi_{l}} e^{i \phi}
$$

Scattering factor comparison

It is thus possible to tell the difference in handedness of chiral molecule simply by x-ray scattering

Scattering factor comparison

It is thus possible to tell the difference in handedness of chiral molecule simply by x-ray scattering

$$
\left|\left|f_{s}\right|+\left|f_{m}\right| e^{-i \phi_{m}} e^{i \phi}+\left|f_{l}\right| e^{-i \phi_{l}} e^{-i \phi}\right|^{2} \neq\left|\left|f_{s}\right|+\left|f_{m}\right| e^{-i \phi_{m}} e^{-i \phi}+\left|f_{l}\right| e^{-i \phi_{l}} e^{i \phi}\right|^{2}
$$

MAD phasing

(b)

MAD phasing

(b)

MAD phasing

(b)
(a) $\omega<\omega_{\mathrm{K}}$

MAD phasing

(b)
(a) $\omega<\omega_{K}$

Comparison of matrix elements

Absorption

$$
\frac{e \vec{A} \cdot \vec{p}}{m}
$$

Comparison of matrix elements

Absorption

$$
\frac{e \vec{A} \cdot \vec{p}}{m}
$$

Thomson scattering

$$
\frac{e^{2} A^{2}}{2 m}
$$

Comparison of matrix elements

Absorption

Thomson scattering
Resonant scattering

$$
\frac{e^{2} A^{2}}{2 m}
$$

$$
\left(\frac{e \vec{A} \cdot \vec{p}}{m}\right)^{2}
$$

