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Refractive index

Scattering and refraction are alternative ways to approach the phenomenon
of x-ray interaction with matter.

Thus the resonant response we have seen
in scattering must be manifested in the index of refraction as well.

the electric field from the x-
rays, ~E (t), induces a polar-
ization response, ~P(t), in the
material, where
χ = (ε/ε0 − 1)
is the electric susceptibility

given an electron density ρ
and using the displacement
function for the electrons in
the forced oscillator model

index of refraction can thus
be computed

~P(t) = ε0χ~E (t) = (ε− ε0)~E (t) = −eρx(t)

= −eρ
(
− e

m

) E0e
−iωt

(ω2
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E (t)
= ε− ε0 =

(
e2ρ

m

)
1

(ω2
s − ω2 − iωΓ)

n2 =
c2

v2
=

ε

ε0
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Refractive index
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Absorption cross-section

Electrons in atoms are bound and
therefore have resonant effects due
to the binding forces

the imaginary part of the resonant
scattering for an electron bound to
an atom shows a frequency depen-
dence with a peak at ω ≈ ωs

this single oscillator model, how-
ever, does not reproduce the
observed absorption cross-section
jump at an absorption edge

f ′′s (ω) =
ω2
sωΓ

(ω2 − ω2
s )2 + (ωΓ)2
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scattering for an electron bound to
an atom shows a frequency depen-
dence with a peak at ω ≈ ωs
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Multi-oscillator model

The damping constant, Γis gener-
ally much less than the resonant
frequency, ωs

thus the single oscillator is essen-
tially a delta function

in a real atom, exceeding the ab-
sorption edge allows the electron
to be excited into a continuum of
states which can be approximated
by a sum of resonant oscillators
with frequency distribution g(ωs)

σa(ω) = 2π2r0c
∑
s

g(ωs)δ(ω − ωs)

a similar effect is seen in the reso-
nant scattering term f ′(w)

σa,s(ω) = 4πr0c
ω2
s Γ

(ω2 − ω2
s )2 + (ωΓ)2

≈4πr0c
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Kramers-Kronig relations

It is generally not a good idea to rely on theoretical calculations of the
dispersion corrections.

However, if it is possible to obtain the experimental
absorption cross-section, σa, the resonant scattering can be computed.

first compute f ′′(ω) from the
measured absorption cross-
section

f ′′(ω) = −
(

ω

4πr0c

)
σa(ω)

then use the Kramers-Kronig relations which connect the resonant term to
the absorptive term and where all the integrals are “principal value”
integrals

f ′(ω) =
1

π
P
∫ +∞

−∞

f ′′(ω′)

(ω′ − ω)
dω′ =

2

π
P
∫ +∞

0

ω′f ′′(ω′)

(ω′2 − ω2)
dω′

f ′′(ω) = − 1

π
P
∫ +∞

−∞

f ′(ω′)

(ω′ − ω)
dω′ = −2ω

π
P
∫ +∞

0

f ′(ω′)

(ω′2 − ω2)
dω′
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Calculated cross-sections
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Scattering from two unlike atoms

Two unlike atoms with scatter-
ing factors f1 and f2 are oriented
by a vector pointing from the
larger to the smaller.

Consider two cases, with the
scattering vector Q in the same
direction as the orientation vec-
tor and opposite to the orienta-
tion vector.

Now compute the scattered in-
tensity in each case, assuming
scattering factors are purely real.
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Friedel’s Law

A(+Q) = f1 + f2e
+iQx

I (+Q) = (f1 + f2e
+iQx)(f1 + f2e

−iQx)

= f 21 + f 22 + 2f1f2 cos(Qx)

I (+Q) = I (−Q) Friedel′s Law

A(−Q) = f1 + f2e
−iQx

I (−Q) = (f1 + f2e
−iQx)(f1 + f2e

+iQx)

= f 21 + f 22 + 2f1f2 cos(Qx)
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Breakdown of Friedel’s Law

If the scattering factor has resonant terms which are not negligible, we
have to include them in the computation

fj = f 0j + f ′j + if ′′j

= rje
iφj

j = 1, 2 rj = |fj |
A(Q) = r1e

iφ1 + r2e
iφ2e iQx

I (Q) = (r1e
iφ1 + r2e

iφ2e iQx)(r1e
−iφ1 + r2e

−iφ2e−iQx)

= r21 + r22 + r1r2e
iφ1e−iφ2e−iQx + r1r2e

−iφ1e iφ2e iQx

= |f1|2 + |f2|2 + r1r2(e−(Qx+φ1−φ2) + e+(Qx+φ1−φ2))

I (Q) = |f1|2 + |f2|2 + 2r1r2 cos(Qx + φ1 − φ2) 6= I (−Q)

Thus, Friedel’s Law breaks down unless there is a center of symmetry:

F = r1e
−i(φ1+Qx1) + r1e

−i(φ1−Qx1) + r2e
−i(φ2+Qx2) + r2e

−i(φ2−Qx2)

= [2r1 cos(Qx1)]e−iφ1 + [2r2 cos(Qx2)]e−iφ2

I (Q) = 4|f1|2 + 4|f2|2 + 8|f1||f2| cos(Qx1) cos(Qx2) cos(φ2 − φ1)
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Argand diagram

This can all be described graphically using an Argand diagram:

no resonant terms

including resonant terms
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ZnS example

The ZnS structure is not cen-
trosymmetric and when viewed
along the 〈111〉 direction, it shows
alternating stacked planes of Zn
and S atoms.

Scattering from opposite faces of a
single crystal of ZnS gives a dif-
ferent scattering factor and one
can deduce the terminating surface
atom.
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Bijvoet pairs - chiral molecules

Consider a tetrahedral molecule of carbon with four different species at
each corner, oriented so the lightest is projected to the origin.
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Atomic scattering factors

Each of the three atoms not at the origin has a scattering factor for ~Q as
shown
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Left handed scattering factor

FS = |fs |+ |fm|e−iφme iφ + |fl |e−iφl e−iφ
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Right handed scattering factor

FR = |fs |+ |fm|e−iφme−iφ + |fl |e−iφl e iφ
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Scattering factor comparison

It is thus possible to tell the difference in handedness of chiral molecule
simply by x-ray scattering

s

∣∣∣|fs |+ |fm|e−iφme iφ + |fl |e−iφl e−iφ
∣∣∣2 6= ∣∣∣|fs |+ |fm|e−iφme−iφ + |fl |e−iφl e iφ

∣∣∣2
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MAD phasing
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Comparison of matrix elements

Absorption

e~A · ~p
m

Thomson scattering

e2A2

2m

Resonant scattering

(
e~A · ~p
m

)2
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