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Today's Outline - November 07, 2016

e Lithiation of Sn-based anodes
e Photoemission

e Resonant Scattering

No class on Wednesday, November 09, 2016

Homework Assignment #06:
Chapter 6: 1,6,7,8,9
due Monday, November 14, 2016

Homework Assignment #7:
Chapter 7: 2,3,9,10,11
due Monday, November 28, 2018
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Synthesis of Sn-graphite nanocomposites

One-pot synthesis
produces evenly  dis-
tributed Sn;0,(0OH),

nanoparticles on graphite
nanoplatelets

XRD shows a small
amount of Sn metal in
addition to Sn30,(OH),
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In situ XAS studies of lithiation
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In situ battery box

Pouch cell clamped against front window in helium environment
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In situ battery box

Suitable for both transmission and fluorescence measurements
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In situ XAS studies of lithiation
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In situ XAS studies of lithiation
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In situ XAS
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Fresh electrode can be fit
with SnzO,(OH), struc-
ture which is dominated
by the near neighbor Sn-
O distances

Only a small amount of
metallic Sn-Sn distances
can be seen
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In situ XAS studies of lithiation
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Metallic Sn-Sn distances
appear but Sn-Li paths
are still present, further
reduction in Sn-O near
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In situ XAS studies of lithiation
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In situ XAS studies of lithiation

Number of Li
near neighbors
1 oscillates with the
charge/discharge
cycles but never
returns to zero

. In situ cell pro-
motes accelerated
aging because of
Sn  swelling and
the reduced pres-
sure of the thin
PEEK pouch cell
assembly

Number of Neighbors
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In situ XAS studies of lithiation

During 1%t Charge
Li intercalate in Sn;0,(OH), Sn aggregates in
center of clusters

After 1% Charge Reversible Cycling
—_— D ———
Li,O is formed

Each cluster expands/retracts
with Li insertion/removal

Crystalline Sn,0,(OH), Atomic Sn-Li clusters partially
isolated with Li,0

C. Pelliccione, E.V. Timofeeva, and C.U. Segre, “In situ XAS study of the capacity fading mechanism in hybrid
Snz0,(OH), /graphite battery anode nanomaterials” Chem. Mater. 27, 574-580 (2015).
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The photoemission process

Photoemission is the comple- Erin
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The photoemission process
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Hemispherical mirror analyzer

The electric field between the
two hemispheres has a R? de-
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Hemispherical mirror analyzer

The electric field between the
two hemispheres has a R? de-
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Hemispherical mirror analyzer

The electric field between the
two hemispheres has a R? de-
pendence from the center of the
hemispheres

Electrons with &y, called the
“pass energy”, will follow a cir-
cular path of radius

Ro = (R + R2)/2

Electrons with lower energy will
fall inside this circular path while
those with higher enegy will fall
outside
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A better scattering model

Up to now, scattering has been treated classically and the result of
radiation interaction with “free” electrons.

C. Segre (IIT) PHYS 570 - Fall 2016 November 07, 2016 13 /19



A better scattering model

Up to now, scattering has been treated classically and the result of
radiation interaction with “free” electrons.

This is not a good approximation since we know:

C. Segre (IIT) PHYS 570 - Fall 2016 November 07, 2016

13 /19



A better scattering model

Up to now, scattering has been treated classically and the result of
radiation interaction with “free” electrons.

This is not a good approximation since we know:

F(Q,w) = Q) + f'(w) + if"(w)
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Photon energy
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A better scattering model

Up to now, scattering has been treated classically and the result of
radiation interaction with “free” electrons.

This is not a good approximation since we know:

F(Q,w) = Q) + f'(w) + if"(w)

The absorption cross section can be

=

w (©)
9 8) modeled as a sum of forced, dissi-
pative oscillators with distribution
e” g(ws).

Photon energy
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A better scattering model

Up to now, scattering has been treated classically and the result of
radiation interaction with “free” electrons.

This is not a good approximation since we know:

F(Q,w) = Q) + f'(w) + if"(w)

=

© The absorption cross section can be
‘ modeled as a sum of forced, dissi-
pative oscillators with distribution

=3 g(ws).
This will produce the resonant scat-
tering term but not the XANES and
EXAFS, which are purely quantum

effects.

g(w,)

Photon energy

C. Segre (lIT) PHYS 570 - Fall 2016 November 07, 2016 13 /19



A better scattering model

Up to now, scattering has been treated classically and the result of
radiation interaction with “free” electrons.

This is not a good approximation since we know:

F(Q,w) = fO(Q) + f'(w) + if"(w)

g(w,) (d) The absorption cross section can b.e
modeled as a sum of forced, dissi-
pative oscillators with distribution

o g(ws)-
| This will produce the resonant scat-
| J tering term but not the XANES and

EXAFS, which are purely quantum
effects.

Photon energy
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Forced charged oscillator

Consider an electron under the in-

fluence of an oscillating electric
field E;, = XEge™'“*.
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Forced charged oscillator

Consider an electron under the in-

—_— . ) _ ) eEy\ .
fluence of an oscillating electric X+Tx4wx=—(—7)e ot
field E;, = XEge™'“*. m
where [ is the damping constant,

ws is the resonant frequency of the
oscillator, and ' <« ws.
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Forced charged oscillator

Consider an electron under the in- £
fluence of an oscillating electric X4+ Tx —|—w§x - _ (eo) o iwt
field E;, = XEge™'“*. m

where [ is the damping constant,
ws is the resonant frequency of the
oscillator, and ' <« ws.

assuming a solution of the form
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Forced charged oscillator

Consider an electron under the in-

fluenc_g of an ospillating electric X4+ Tx —|—w§x - _ <eEO) e~ iwt
field E;, = XEge™'“*. m

where [ is the damping constant,

ws is the resonant frequency of the X = xp€~
oscillator, and ' <« ws.

jwt

assuming a solution of the form
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Forced charged oscillator

Consider an electron under the in-
fluence of an oscillating electric
field E;, = XEge™'“*.

where [ is the damping constant,
ws is the resonant frequency of the
oscillator, and ' <« ws.

assuming a solution of the form
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Forced charged oscillator

Consider an electron under the in-
fluence of an oscillating electric
field E;, = XEge™'“*.

where [ is the damping constant,

ws is the resonant frequency of the
oscillator, and ' <« ws.

assuming a solution of the form

E .
%4 Tx+wix = — (eo) it

m

x = xge 't
X = —jwxpe "Wt
X = _w2XOef/wt

, E, ,
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Forced charged oscillator
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field E;, = XEge™'“*. m

where [ is the damping constant,
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Forced charged oscillator

Consider an electron under the in-

fluence of an oscillating electric X4+ Tx 4 w?x = — (eEO) o iwt
field E;, = XEge™"*. m

where [ is the damping constant, _

ws is the resonant frequency of the x = xpe "t

oscillator, and I' < ws. X = —iwxpe @t
assuming a solution of the form X = —w?xge Wt

m

eEO 1
x=-|(—
0 m ) (w? —w? — iwl)

The amplitude of the response has a resonance and dissipation

, E, ,
(—w? — iwl 4+ w?)xpe "t = — (eo> e 'Vt
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Radiated field

The radiated (scattered) electric field at a distance R from the electron is
directly proportional to the electron’s acceleration with a retarded time
t' =t — R/c (allowing for the travel time to the detector).
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Radiated field

The radiated (scattered) electric field at a distance R from the electron is
directly proportional to the electron’s acceleration with a retarded time
t' =t — R/c (allowing for the travel time to the detector).

Eaa(R.1) = (- Spcs ) X(e— RO
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Radiated field

The radiated (scattered) electric field at a distance R from the electron is
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Radiated field

The radiated (scattered) electric field at a distance R from the electron is
directly proportional to the electron’s acceleration with a retarded time
t' =t — R/c (allowing for the travel time to the detector).
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Radiated field

The radiated (scattered) electric field at a distance R from the electron is

directly proportional to the electron’s acceleration with a retarded time
t' =t — R/c (allowing for the travel time to the detector).

(wi —
Eng(Rot) _ w? e R\
En -2+ \ R )~

which is an outgoing spherical wave
with scattering amplitude
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Dispersion corrections

The scattering factor can be 5
rewritten f. =

(w? — w2 4 iwlh)
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Dispersion corrections
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Dispersion corrections

The scattering factor can be W2 4 (=62 4 il) — (—w? + iwh)
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° (w? — w2 + iwl)
14 w2 — jwl

(w? — w2 + iwl)
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Dispersion corrections

The scattering factor can be
rewritten

and since [ < ws
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Dispersion corrections

The scattering factor can be

rewritten £ w? 4+ (—w? + iwl) = (—w? + iwl)
’ (w? — w2 + iwl)
and since [ < wq P wg il
N (w? — w2 + iwlh)
~1+ wg

(w? — w2 + iwl)
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Dispersion corrections

The scattering factor can be
rewritten

and since [ < ws

the second term being the
dispersion correction
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Dispersion corrections
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dispersion correction
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Dispersion corrections

The scattering factor can be
rewritten

and since [ < ws

the second term being the
dispersion correction

C. Segre (lIT)

PHYS 570 - Fall 2016

w? + (—w? + iwl) — (—w? + iwl)
(w? — w2 + iwl)
w2 — jwl
(w? — w2 + iwl)
ws
L+ (w? — w2 + iwl
ws

(w? — w? + iwl)

1+

November 07, 2016 16 / 19



Dispersion corrections

The scattering factor can be
rewritten

and since [ < ws

the second term being the
dispersion correction whose
real and imaginary compo-
nents can be extracted
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Dispersion corrections

The scattering factor can be
rewritten

w? + (—w? + iwl) — (—w? + iwl)
(w? — w2 + iwl)

and since [ < ws w2 — jwl
1+ -— I,
(W2 — w2 + iwl)
the second term being the 14 w?
dispersion correction whose (w2 — wg + jwl
real and imaginary compo- 2
nents can be egxtraZted ’ x(w) = +if] = . :
(w? — w? + iwl)
() w? (w? — w? — jwl)
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Dispersion corrections

The scattering factor can be
rewritten

and since [ < ws

the second term being the
dispersion correction whose
real and imaginary compo-
nents can be extracted
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Dispersion corrections

The scattering factor can be
rewritten

and since [ < ws

the second term being the
dispersion correction whose
real and imaginary compo-
nents can be extracted
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Dispersion corrections

The scattering factor can be

w? + (—w? + iwl) — (—w? + iwl)

rewritten fe = -
° (w? — w2 + iwl)
and since [ < ws 14 w2 — jwl
(w? — w2 + iwl)
the second term being the ~14 w?
dispersion correction whose ~ (w2 — wg + jwl
real and imaginary compo- w2
! 1/
nents can be extracted x(w) = fi +ify = (W2 — w§S+ iwl)
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Single oscillator dispersion terms

These dispersion terms give
resonant corrections to the
scattering factor
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Total cross-section

The total cross-section for scatter-
ing from a free electron is
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Refractive index
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Refractive index
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Refractive index
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