
Today’s Outline - October 31, 2016

• Dumond diagrams

• Monochromators

• Photoelectric absorption

• Cross-section of an isolated atom

• X-ray absorption spectroscopy

• EXAFS of NFA steels

Homework Assignment #05:
Chapter 5: 1, 3, 7, 9, 10
due Wednesday, November 02, 2016

Homework Assignment #06:
Chapter 6: 1,6,7,8,9
due Monday, November 14, 2016

No class on Wednesday, November 09, 2016
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Final projects & presentations

In-class student presentations on research topics

• Choose a research article which features a synchrotron
technique

• Get it approved by instructor first!

• Schedule a 15 minute time on Final Exam Day
(tentatively, Monday, December 5, 2016, will confirm
times)

Final project - writing a General User Proposal

• Think of a research problem (could be yours) that can
be approached using synchrotron radiation techniques

• Make proposal and get approval from instructor before
starting

• Must be different techique than your presentation!
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Asymmetric geometry

In general the diffracting planes are not precisely aligned with the surface
of the crystal.

Parameterized by the asymmetry
angle 0 < α < θBragg

This leads to a beam compression

b =
sin θi
sin θe

=
sin(θ + α)

sin(θ − α)

He =
Hi

b

according to Liouville’s theorem,
the divergence of the beam must
also change

δθe =
√
b(ζD tan θ)

δθi =
1√
b

(ζD tan θ)

δθiHi

=
1√
b

(ζD tan θ)bHe =
√
b(ζD tan θ)He

= δθeHe
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Rocking curve measurements

The measured “rocking” curve from a two crystal system is a convolution
of the Darwin curves of both crystals.

When the two crystals have a
matched asymmetry, we get a triangle. When one asymmetry is much
higher, then we can measure the Darwin curve of a single crystal.

output divergence on left, input divergence on right
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Dumond diagram: no Darwin width

Transfer function of an optical element parameterized by angle and
wavelength.

Here Darwin width is ignored.

0 0θi-θB θe-θB

 λ

2d

∆θ

cosθΒ ∆θ

s
in

θ
B
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Dumond diagram: symmetric Bragg

Including the Darwin width, we have a bandpass in wavelength.

If input
beam is perfectly collimated, so is output (vertical black line).

0 0θi-θB θe-θB

 λ

2d

w0=sinθB ζD
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Dumond diagram: asymmetric Bragg

For asymmetric crystal, the output beam is no longer collimated but
acquires a divergence αe

0 0θi-θB θe-θB

 λ

2d w0  b

b

w0

αe
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Double crystal monochromators

∆θin
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Total cross section

The total cross-section for
photon “absorption” in-
cludes elastic (or coher-
ent) scattering, Compton
(inelastic) scattering, and
photoelectric absorption.

Characteristic absorption
jumps depend on the ele-
ment

These quantities vary significantly over many decades but can easily put
on an equal footing.
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Scaled absorption

T =
I

I0
= e−µz

µ =
ρmNA

M
σa

σa ∼
Z 4

E 3

scale σa for different ele-
ments by E 3/Z 4 and plot
together

remarkably, all values lie on a common curve above the K edge and
between the L and K edges and below the L edge
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Calculation of σa

From first-order perturbation theory, the absorption cross section is given
by

σa =
2π

~c
V 2

4π3

∫
|Mif |2δ(Ef − Ei )q2 sin θdqdθdϕ

where the matrix element Mif be-
tween the initial, 〈i |, and final, |f 〉,
states is given by

The interaction Hamiltonian is ex-
pressed in terms of the electromag-
netic vector potential

Mif = 〈i |HI |f 〉

HI =
e~p · ~A
m

+
e2A2

2m

~A = ε̂

√
~

2ε0Vω

[
ake

i~k·~r + a†ke
−i~k·~r

]
The first term gives absorption while the second produces Thomson
scattering so we take only the first into consideration now.
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i~k·~r + a†ke
−i~k·~r
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Free electron approximation

In order to evaluate the Mif matrix element we define the initial and final
states

the initial state has a photon and a K electron
(no free electron)

similarly, the final state has no photon and an
ejected free electron (ignoring the core hole
and charged ion)

|i〉 = |1〉γ |0〉e

〈f | = e〈1|γ〈0|

Thus

Mif =
e

m

√
~

2ε0Vω

[
e〈1|γ〈0|(~p · ε̂)ae i

~k·~r + (~p · ε̂)a†e−i
~k·~r |1〉γ |0〉e

]
The calculation is simplified if the interaction Hamiltonian is applied to the
left since the final state has only a free electron and no photon
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Free electron approximation

e〈1|~p = (~~q)e〈1|

γ〈n|a = (
√
n + 1)γ〈n + 1|a

γ〈n|a† = (
√
n)γ〈n − 1|a

The free electron state is an eigen-
function of the electron momentum
operator

The annihilation operator applied
to the left creates a photon while
the creation operator annihilates a
photon when applied to the left.

e〈1|γ〈0|(~p · ε̂)a = ~(~q · ε̂)e〈1|γ〈1|

e〈1|γ〈0|(~p · ε̂)a† = 0

Mif =
e

m

√
~

2ε0Vω

[
~(~q · ε̂)e〈1|γ〈1|e i

~k·~r |1〉γ |0〉e + 0
]

=
e~
m

√
~

2ε0Vω
(~q · ε̂)e〈1|e i

~k·~r |0〉e =
e~
m

√
~

2ε0Vω
(~q · ε̂)

∫
ψ∗f e

i~k·~rψid~r
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Photoelectron integral

Mif =
e~
m

√
~

2ε0Vω
(~q · ε̂)

∫
ψ∗f e

i~k·~rψid~r

=
e~
m

√
~

2ε0Vω
(~q · ε̂)φ(~Q)

ψi = ψ1s(~r) ψf =

√
1

V
e i~q·~r

φ(~Q) =

√
1

V

∫
e−i~q·~re i

~k·~rψ1s(~r)d~r

=

√
1

V

∫
ψ1s(~r)e i(

~k−~q)·~rd~r

=

√
1

V

∫
ψ1s(~r)e i

~Q·~rd~r

The initial electron wavefunction is
simply that of a 1s atomic state
while the final state is approxi-
mated as a plane wave

The integral thus becomes

which is the Fourier transform of
the initial state 1s electron wave
function
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Photoelectron cross-section

the overall matrix element squared for a particular photoelectron final
direction (ϕ, θ) is

|Mif |2 =

(
e~
m

)2 ~
2ε0V 2ω

(q2 sin2 θ cos2 ϕ)φ2(~Q)

and the final cross-section per K electron can now be computed as

σa =
2π

~c
V 2

4π3

(
e~
m

)2 ~
2ε0V 2ω

I3 =

(
e~
m

)2 1

4π2ε0cω
I3

where the integral I3 is given by

I3 =

∫
φ2(~Q)q2 sin2 θ cos2 ϕδ(Ef − Ei )q2 sin θdqdθdφ
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Calculated cross section
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What is XAFS?

X-ray Absorption Fine-Structure (XAFS) is the modulation of the x-ray
absorption coefficient at energies near and above an x-ray absorption edge.
XAFS is also referred to as X-ray Absorption Spectroscopy (XAS) and is
broken into 2 regimes:

XANES X-ray Absorption Near-Edge Spectroscopy
EXAFS Extended X-ray Absorption Fine-Structure

which contain related, but slightly different information about an element’s
local coordination and chemical state.

EXAFS

XANES
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µ

(
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)

77007600750074007300720071007000

2.0

1.5
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Fe K-edge XAFS for FeO

XAFS Characteristics:

• local atomic coordination

• chemical / oxidation state

• applies to any element

• works at low concentrations

• minimal sample requirements
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The x-ray absorption process

An x-ray is absorbed by an
atom when the energy of the
x-ray is transferred to a core-
level electron (K, L, or M
shell).

The atom is in an excited
state with an empty elec-
tronic level: a core hole.

Any excess energy from
the x-ray is given to an
ejected photoelectron

, which
expands as a spherical wave,
reaches the neighboring elec-
tron clouds, and scatters
back to the core hole, cre-
ating interference patterns
called XANES and EXAFS.
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EXAFS data extraction

normalize by fitting pre-edge
and post-edge trends

remove “smooth” µ0 back-
ground

convert to photoelectron mo-
mentum space

k =
2π

hc

√
E − E0

weight by appropriate power
of k to obtain “good” enve-
lope which clearly shows that
EXAFS is a sum of oscilla-
tions with varying frequen-
cies and phases

Fourier transform to get real
space EXAFS
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XANES edge shifts and pre-edge peaks
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The shift of the edge position
can be used to determine the
valence state.

The heights and positions of
pre-edge peaks can also be re-
liably used to determine ionic
ratios for many atomic species.

XANES can be used as a fin-
gerprint of phases and XANES
analysis can be as simple as
making linear combinations of
“known” spectra to get com-
position.

Modern codes, such as FEFF9,
are able to accurately compute
XANES features.
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