Today's Outline - October 31, 2016

Today's Outline - October 31, 2016

- Dumond diagrams

Today's Outline - October 31, 2016

- Dumond diagrams
- Monochromators

Today's Outline - October 31, 2016

- Dumond diagrams
- Monochromators
- Photoelectric absorption

Today's Outline - October 31, 2016

- Dumond diagrams
- Monochromators
- Photoelectric absorption
- Cross-section of an isolated atom

Today's Outline - October 31, 2016

- Dumond diagrams
- Monochromators
- Photoelectric absorption
- Cross-section of an isolated atom
- X-ray absorption spectroscopy

Today's Outline - October 31, 2016

- Dumond diagrams
- Monochromators
- Photoelectric absorption
- Cross-section of an isolated atom
- X-ray absorption spectroscopy
- EXAFS of NFA steels

Today's Outline - October 31, 2016

- Dumond diagrams
- Monochromators
- Photoelectric absorption
- Cross-section of an isolated atom
- X-ray absorption spectroscopy
- EXAFS of NFA steels

Today's Outline - October 31, 2016

- Dumond diagrams
- Monochromators
- Photoelectric absorption
- Cross-section of an isolated atom
- X-ray absorption spectroscopy
- EXAFS of NFA steels

Homework Assignment \#05:
Chapter 5: 1, 3, 7, 9, 10
due Wednesday, November 02, 2016

Today's Outline - October 31, 2016

- Dumond diagrams
- Monochromators
- Photoelectric absorption
- Cross-section of an isolated atom
- X-ray absorption spectroscopy
- EXAFS of NFA steels

Homework Assignment \#05:
Chapter 5: 1, 3, 7, 9, 10
due Wednesday, November 02, 2016
Homework Assignment \#06:
Chapter 6: 1,6,7,8,9
due Monday, November 14, 2016

Today's Outline - October 31, 2016

- Dumond diagrams
- Monochromators
- Photoelectric absorption
- Cross-section of an isolated atom
- X-ray absorption spectroscopy
- EXAFS of NFA steels

Homework Assignment \#05:
Chapter 5: 1, 3, 7, 9, 10
due Wednesday, November 02, 2016
Homework Assignment \#06:
Chapter 6: 1,6,7,8,9
due Monday, November 14, 2016
No class on Wednesday, November 09, 2016

Final projects \& presentations

In-class student presentations on research topics

- Choose a research article which features a synchrotron technique
- Get it approved by instructor first!
- Schedule a 15 minute time on Final Exam Day (tentatively, Monday, December 5, 2016, will confirm times)

Final projects \& presentations

In-class student presentations on research topics

- Choose a research article which features a synchrotron technique
- Get it approved by instructor first!
- Schedule a 15 minute time on Final Exam Day (tentatively, Monday, December 5, 2016, will confirm times)

Final project - writing a General User Proposal

- Think of a research problem (could be yours) that can be approached using synchrotron radiation techniques
- Make proposal and get approval from instructor before starting
- Must be different techique than your presentation!

Asymmetric geometry

In general the diffracting planes are not precisely aligned with the surface of the crystal.

Asymmetric geometry

In general the diffracting planes are not precisely aligned with the surface of the crystal.

Parameterized by the asymmetry angle $0<\alpha<\theta_{\text {Bragg }}$

Asymmetric geometry

In general the diffracting planes are not precisely aligned with the surface of the crystal.

Parameterized by the asymmetry angle $0<\alpha<\theta_{\text {Bragg }}$

This leads to a beam compression

Asymmetric geometry

In general the diffracting planes are not precisely aligned with the surface of the crystal.

Parameterized by the asymmetry angle $0<\alpha<\theta_{\text {Bragg }}$

This leads to a beam compression

$$
b=\frac{\sin \theta_{i}}{\sin \theta_{e}}
$$

Asymmetric geometry

In general the diffracting planes are not precisely aligned with the surface of the crystal.

Parameterized by the asymmetry angle $0<\alpha<\theta_{\text {Bragg }}$

This leads to a beam compression

$$
b=\frac{\sin \theta_{i}}{\sin \theta_{e}}=\frac{\sin (\theta+\alpha)}{\sin (\theta-\alpha)}
$$

Asymmetric geometry

In general the diffracting planes are not precisely aligned with the surface of the crystal.

Parameterized by the asymmetry angle $0<\alpha<\theta_{\text {Bragg }}$

This leads to a beam compression

$$
\begin{aligned}
b & =\frac{\sin \theta_{i}}{\sin \theta_{e}}=\frac{\sin (\theta+\alpha)}{\sin (\theta-\alpha)} \\
H_{e} & =\frac{H_{i}}{b}
\end{aligned}
$$

Asymmetric geometry

In general the diffracting planes are not precisely aligned with the surface of the crystal.

Parameterized by the asymmetry angle $0<\alpha<\theta_{\text {Bragg }}$

This leads to a beam compression

$$
\begin{aligned}
b & =\frac{\sin \theta_{i}}{\sin \theta_{e}}=\frac{\sin (\theta+\alpha)}{\sin (\theta-\alpha)} \\
H_{e} & =\frac{H_{i}}{b}
\end{aligned}
$$

according to Liouville's theorem, the divergence of the beam must also change

Asymmetric geometry

In general the diffracting planes are not precisely aligned with the surface of the crystal.

Parameterized by the asymmetry angle $0<\alpha<\theta_{\text {Bragg }}$

This leads to a beam compression

$$
\begin{aligned}
b & =\frac{\sin \theta_{i}}{\sin \theta_{e}}=\frac{\sin (\theta+\alpha)}{\sin (\theta-\alpha)} \\
H_{e} & =\frac{H_{i}}{b}
\end{aligned}
$$

according to Liouville's theorem, the divergence of the beam must

$$
\delta \theta_{e}=\sqrt{b}\left(\zeta_{D} \tan \theta\right)
$$ also change

Asymmetric geometry

In general the diffracting planes are not precisely aligned with the surface of the crystal.

Parameterized by the asymmetry angle $0<\alpha<\theta_{\text {Bragg }}$
This leads to a beam compression

$$
\begin{aligned}
b & =\frac{\sin \theta_{i}}{\sin \theta_{e}}=\frac{\sin (\theta+\alpha)}{\sin (\theta-\alpha)} \\
H_{e} & =\frac{H_{i}}{b}
\end{aligned}
$$

according to Liouville's theorem, the divergence of the beam must also change

$$
\begin{aligned}
\delta \theta_{e} & =\sqrt{b}\left(\zeta_{D} \tan \theta\right) \\
\delta \theta_{i} & =\frac{1}{\sqrt{b}}\left(\zeta_{D} \tan \theta\right)
\end{aligned}
$$

Asymmetric geometry

In general the diffracting planes are not precisely aligned with the surface of the crystal.

Parameterized by the asymmetry angle $0<\alpha<\theta_{\text {Bragg }}$
This leads to a beam compression

$$
\begin{aligned}
b & =\frac{\sin \theta_{i}}{\sin \theta_{e}}=\frac{\sin (\theta+\alpha)}{\sin (\theta-\alpha)} \\
H_{e} & =\frac{H_{i}}{b}
\end{aligned}
$$

according to Liouville's theorem, the divergence of the beam must also change

$$
\begin{aligned}
\delta \theta_{e} & =\sqrt{b}\left(\zeta_{D} \tan \theta\right) \\
\delta \theta_{i} & =\frac{1}{\sqrt{b}}\left(\zeta_{D} \tan \theta\right)
\end{aligned}
$$

$$
\delta \theta_{i} H_{i}
$$

Asymmetric geometry

In general the diffracting planes are not precisely aligned with the surface of the crystal.

Parameterized by the asymmetry angle $0<\alpha<\theta_{\text {Bragg }}$
This leads to a beam compression

$$
\begin{aligned}
b & =\frac{\sin \theta_{i}}{\sin \theta_{e}}=\frac{\sin (\theta+\alpha)}{\sin (\theta-\alpha)} \\
H_{e} & =\frac{H_{i}}{b}
\end{aligned}
$$

according to Liouville's theorem, the divergence of the beam must also change

$$
\delta \theta_{i} H_{i}=\frac{1}{\sqrt{b}}\left(\zeta_{D} \tan \theta\right) b H_{e}
$$

$$
\begin{aligned}
\delta \theta_{e} & =\sqrt{b}\left(\zeta_{D} \tan \theta\right) \\
\delta \theta_{i} & =\frac{1}{\sqrt{b}}\left(\zeta_{D} \tan \theta\right)
\end{aligned}
$$

Asymmetric geometry

In general the diffracting planes are not precisely aligned with the surface of the crystal.

Parameterized by the asymmetry angle $0<\alpha<\theta_{\text {Bragg }}$
This leads to a beam compression

$$
\begin{aligned}
b & =\frac{\sin \theta_{i}}{\sin \theta_{e}}=\frac{\sin (\theta+\alpha)}{\sin (\theta-\alpha)} \\
H_{e} & =\frac{H_{i}}{b}
\end{aligned}
$$

according to Liouville's theorem, the divergence of the beam must also change

$$
\delta \theta_{i} H_{i}=\frac{1}{\sqrt{b}}\left(\zeta_{D} \tan \theta\right) b H_{e}=\sqrt{b}\left(\zeta_{D} \tan \theta\right) H_{e}
$$

Asymmetric geometry

In general the diffracting planes are not precisely aligned with the surface of the crystal.

Parameterized by the asymmetry angle $0<\alpha<\theta_{\text {Bragg }}$
This leads to a beam compression

$$
\begin{aligned}
b & =\frac{\sin \theta_{i}}{\sin \theta_{e}}=\frac{\sin (\theta+\alpha)}{\sin (\theta-\alpha)} \\
H_{e} & =\frac{H_{i}}{b}
\end{aligned}
$$

according to Liouville's theorem, the divergence of the beam must also change

$$
\delta \theta_{i} H_{i}=\frac{1}{\sqrt{b}}\left(\zeta_{D} \tan \theta\right) b H_{e}=\sqrt{b}\left(\zeta_{D} \tan \theta\right) H_{e}=\delta \theta_{e} H_{e}
$$

Rocking curve measurements

The measured "rocking" curve from a two crystal system is a convolution of the Darwin curves of both crystals.

Rocking curve measurements

The measured "rocking" curve from a two crystal system is a convolution of the Darwin curves of both crystals. When the two crystals have a matched asymmetry, we get a triangle.
$\mathrm{Si}(111) \mathrm{b}=4.3-\mathrm{Si}(111) \mathrm{b}=0.23$

output divergence on left, input divergence on right

Rocking curve measurements

The measured "rocking" curve from a two crystal system is a convolution of the Darwin curves of both crystals. When the two crystals have a matched asymmetry, we get a triangle.
$\mathrm{Si}(111) \mathrm{b}=4.3-\mathrm{Si}(111) \mathrm{b}=0.23$

$\operatorname{Si}(111) \mathrm{b}=0.23-\mathrm{Si}(111) \mathrm{b}=4.3$

output divergence on left, input divergence on right

Rocking curve measurements

The measured "rocking" curve from a two crystal system is a convolution of the Darwin curves of both crystals. When the two crystals have a matched asymmetry, we get a triangle. When one asymmetry is much higher, then we can measure the Darwin curve of a single crystal.

output divergence on left, input divergence on right

Dumond diagram: no Darwin width

Transfer function of an optical element parameterized by angle and wavelength.

Dumond diagram: no Darwin width

Transfer function of an optical element parameterized by angle and wavelength. Here Darwin width is ignored.

Dumond diagram: symmetric Bragg

Including the Darwin width, we have a bandpass in wavelength.

Dumond diagram: symmetric Bragg

Including the Darwin width, we have a bandpass in wavelength. If input beam is perfectly collimated, so is output (vertical black line).

Dumond diagram: asymmetric Bragg

For asymmetric crystal, the output beam is no longer collimated but acquires a divergence α_{e}

Double crystal monochromators

Double crystal monochromators

Double crystal monochromators

Double crystal monochromators

Total cross section

The total cross-section for photon "absorption" includes elastic (or coherent) scattering, Compton (inelastic) scattering, and photoelectric absorption.

Total cross section

The total cross-section for photon "absorption" includes elastic (or coherent) scattering, Compton (inelastic) scattering, and photoelectric absorption.

Characteristic absorption jumps depend on the element

Total cross section

The total cross-section for photon "absorption" includes elastic (or coherent) scattering, Compton (inelastic) scattering, and photoelectric absorption.

Characteristic absorption jumps depend on the element

These quantities vary significantly over many decades but can easily put on an equal footing.

Scaled absorption

$$
T=\frac{l}{l_{0}}=e^{-\mu z}
$$

Scaled absorption

$$
\begin{aligned}
& T=\frac{l}{l_{0}}=e^{-\mu z} \\
& \mu=\frac{\rho_{m} N_{A}}{M} \sigma_{a}
\end{aligned}
$$

Scaled absorption

$$
\begin{aligned}
T & =\frac{l}{l_{0}}=e^{-\mu z} \\
\mu & =\frac{\rho_{m} N_{A}}{M} \sigma_{a} \\
\sigma_{a} & \sim \frac{Z^{4}}{E^{3}}
\end{aligned}
$$

Scaled absorption

$$
\begin{aligned}
T & =\frac{l}{I_{0}}=e^{-\mu z} \\
\mu & =\frac{\rho_{m} N_{A}}{M} \sigma_{a} \\
\sigma_{a} & \sim \frac{Z^{4}}{E^{3}}
\end{aligned}
$$

scale σ_{a} for different elements by E^{3} / Z^{4} and plot together

Scaled absorption

$$
\begin{aligned}
T & =\frac{I}{I_{0}}=e^{-\mu z} \\
\mu & =\frac{\rho_{m} N_{A}}{M} \sigma_{a} \\
\sigma_{a} & \sim \frac{Z^{4}}{E^{3}}
\end{aligned}
$$

scale σ_{a} for different elements by E^{3} / Z^{4} and plot together
remarkably, all values lie on a common curve above the K edge and

Scaled absorption

$$
\begin{aligned}
T & =\frac{I}{l_{0}}=e^{-\mu z} \\
\mu & =\frac{\rho_{m} N_{A}}{M} \sigma_{a} \\
\sigma_{a} & \sim \frac{Z^{4}}{E^{3}}
\end{aligned}
$$

scale σ_{a} for different elements by E^{3} / Z^{4} and plot together

remarkably, all values lie on a common curve above the K edge and between the L and K edges and below the L edge

Calculation of σ_{a}

From first-order perturbation theory, the absorption cross section is given by

Calculation of σ_{a}

From first-order perturbation theory, the absorption cross section is given by

$$
\sigma_{a}=\frac{2 \pi}{\hbar c} \frac{V^{2}}{4 \pi^{3}} \int\left|M_{i f}\right|^{2} \delta\left(\mathcal{E}_{f}-\mathcal{E}_{i}\right) q^{2} \sin \theta d q d \theta d \varphi
$$

Calculation of σ_{a}

From first-order perturbation theory, the absorption cross section is given by

$$
\sigma_{a}=\frac{2 \pi}{\hbar c} \frac{V^{2}}{4 \pi^{3}} \int\left|M_{i f}\right|^{2} \delta\left(\mathcal{E}_{f}-\mathcal{E}_{i}\right) q^{2} \sin \theta d q d \theta d \varphi
$$

where the matrix element $M_{i f}$ between the initial, $\langle i|$, and final, $|f\rangle$, states is given by

Calculation of σ_{a}

From first-order perturbation theory, the absorption cross section is given by

$$
\sigma_{a}=\frac{2 \pi}{\hbar c} \frac{V^{2}}{4 \pi^{3}} \int\left|M_{i f}\right|^{2} \delta\left(\mathcal{E}_{f}-\mathcal{E}_{i}\right) q^{2} \sin \theta d q d \theta d \varphi
$$

where the matrix element $M_{\text {if }}$ be-

$$
M_{i f}=\langle i| \mathcal{H}_{l}|f\rangle
$$ tween the initial, $\langle i|$, and final, $|f\rangle$, states is given by

Calculation of σ_{a}

From first-order perturbation theory, the absorption cross section is given by

$$
\sigma_{a}=\frac{2 \pi}{\hbar c} \frac{V^{2}}{4 \pi^{3}} \int\left|M_{i f}\right|^{2} \delta\left(\mathcal{E}_{f}-\mathcal{E}_{i}\right) q^{2} \sin \theta d q d \theta d \varphi
$$

where the matrix element $M_{\text {if }}$ between the initial, $\langle i|$, and final, $|f\rangle$, states is given by

The interaction Hamiltonian is ex-

$$
\mathcal{H}_{l}=\frac{e \vec{p} \cdot \vec{A}}{m}+\frac{e^{2} A^{2}}{2 m}
$$ pressed in terms of the electromagnetic vector potential

Calculation of σ_{a}

From first-order perturbation theory, the absorption cross section is given by

$$
\sigma_{a}=\frac{2 \pi}{\hbar c} \frac{V^{2}}{4 \pi^{3}} \int\left|M_{i f}\right|^{2} \delta\left(\mathcal{E}_{f}-\mathcal{E}_{i}\right) q^{2} \sin \theta d q d \theta d \varphi
$$

where the matrix element $M_{\text {if }}$ be-

$$
M_{i f}=\langle i| \mathcal{H}_{l}|f\rangle
$$ tween the initial, $\langle i|$, and final, $|f\rangle$, states is given by

The interaction Hamiltonian is expressed in terms of the electromagnetic vector potential

$$
\mathcal{H}_{l}=\frac{e \vec{p} \cdot \vec{A}}{m}+\frac{e^{2} A^{2}}{2 m}
$$

$$
\vec{A}=\hat{\varepsilon} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}\left[a_{k} e^{i \vec{k} \cdot \vec{r}}+a_{k}^{\dagger} e^{-i \vec{k} \cdot \vec{r}}\right]
$$

Calculation of σ_{a}

From first-order perturbation theory, the absorption cross section is given by

$$
\sigma_{a}=\frac{2 \pi}{\hbar c} \frac{V^{2}}{4 \pi^{3}} \int\left|M_{i f}\right|^{2} \delta\left(\mathcal{E}_{f}-\mathcal{E}_{i}\right) q^{2} \sin \theta d q d \theta d \varphi
$$

where the matrix element $M_{\text {if }}$ be-

$$
M_{i f}=\langle i| \mathcal{H}_{l}|f\rangle
$$ tween the initial, $\langle i|$, and final, $|f\rangle$, states is given by

The interaction Hamiltonian is expressed in terms of the electromagnetic vector potential

$$
\mathcal{H}_{I}=\frac{e \vec{p} \cdot \vec{A}}{m}+\frac{e^{2} A^{2}}{2 m}
$$

$$
\vec{A}=\hat{\varepsilon} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}\left[a_{k} e^{i \vec{k} \cdot \vec{r}}+a_{k}^{\dagger} e^{-i \vec{k} \cdot \vec{r}}\right]
$$

The first term gives absorption

Calculation of σ_{a}

From first-order perturbation theory, the absorption cross section is given by

$$
\sigma_{a}=\frac{2 \pi}{\hbar c} \frac{V^{2}}{4 \pi^{3}} \int\left|M_{i f}\right|^{2} \delta\left(\mathcal{E}_{f}-\mathcal{E}_{i}\right) q^{2} \sin \theta d q d \theta d \varphi
$$

where the matrix element $M_{\text {if }}$ be-

$$
M_{i f}=\langle i| \mathcal{H}_{l}|f\rangle
$$ tween the initial, $\langle i|$, and final, $|f\rangle$, states is given by

The interaction Hamiltonian is expressed in terms of the electromagnetic vector potential

$$
\mathcal{H}_{l}=\frac{e \vec{p} \cdot \vec{A}}{m}+\frac{e^{2} A^{2}}{2 m}
$$

$$
\vec{A}=\hat{\varepsilon} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}\left[a_{k} e^{i \vec{k} \cdot \vec{r}}+a_{k}^{\dagger} e^{-i \vec{k} \cdot \vec{r}}\right]
$$

The first term gives absorption while the second produces Thomson scattering so we take only the first into consideration now.

Free electron approximation

In order to evaluate the $M_{\text {if }}$ matrix element we define the initial and final states

Free electron approximation

In order to evaluate the $M_{\text {if }}$ matrix element we define the initial and final states
the initial state has a photon and a K electron (no free electron)

Free electron approximation

In order to evaluate the $M_{\text {if }}$ matrix element we define the initial and final states
the initial state has a photon and a K electron (no free electron)

$$
|i\rangle=|1\rangle_{\gamma}|0\rangle_{e}
$$

Free electron approximation

In order to evaluate the $M_{\text {if }}$ matrix element we define the initial and final states
the initial state has a photon and a K electron (no free electron)
similarly, the final state has no photon and an ejected free electron (ignoring the core hole and charged ion)

Free electron approximation

In order to evaluate the $M_{\text {if }}$ matrix element we define the initial and final states
the initial state has a photon and a K electron (no free electron)
similarly, the final state has no photon and an ejected free electron (ignoring the core hole and charged ion)

$$
\begin{aligned}
& |i\rangle=|1\rangle_{\gamma}|0\rangle_{e} \\
& \langle f|={ }_{e}\left\langle\left. 1\right|_{\gamma}\langle 0|\right.
\end{aligned}
$$

Free electron approximation

In order to evaluate the $M_{\text {if }}$ matrix element we define the initial and final states
the initial state has a photon and a K electron (no free electron)
similarly, the final state has no photon and an ejected free electron (ignoring the core hole and charged ion)

$$
\begin{aligned}
& |i\rangle=|1\rangle_{\gamma}|0\rangle_{e} \\
& \langle f|={ }_{e}\left\langle\left. 1\right|_{\gamma}\langle 0|\right.
\end{aligned}
$$

Thus

$$
M_{i f}=\frac{e}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}\left[e\left\langle\left. 1\right|_{\gamma}\langle 0|(\vec{p} \cdot \hat{\varepsilon}) a e^{i \vec{k} \cdot \vec{r}}+(\vec{p} \cdot \hat{\varepsilon}) a^{\dagger} e^{-i \vec{k} \cdot \vec{r}} \mid 1\right\rangle_{\gamma}|0\rangle_{e}\right]
$$

Free electron approximation

In order to evaluate the $M_{\text {if }}$ matrix element we define the initial and final states
the initial state has a photon and a K electron (no free electron)
similarly, the final state has no photon and an ejected free electron (ignoring the core hole and charged ion)

$$
\begin{aligned}
& |i\rangle=|1\rangle_{\gamma}|0\rangle_{e} \\
& \langle f|={ }_{e}\left\langle\left. 1\right|_{\gamma}\langle 0|\right.
\end{aligned}
$$

Thus

$$
M_{i f}=\frac{e}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}\left[e\left\langle\left. 1\right|_{\gamma}\langle 0|(\vec{p} \cdot \hat{\varepsilon}) a e^{i \vec{k} \cdot \vec{r}}+(\vec{p} \cdot \hat{\varepsilon}) a^{\dagger} e^{-i \vec{k} \cdot \vec{r}} \mid 1\right\rangle_{\gamma}|0\rangle_{e}\right]
$$

The calculation is simplified if the interaction Hamiltonian is applied to the left since the final state has only a free electron and no photon

Free electron approximation

The free electron state is an eigenfunction of the electron momentum operator

Free electron approximation

$$
e^{\langle } 11 \mid \vec{p}=(\hbar \vec{q})_{e}\langle 1|
$$

The free electron state is an eigenfunction of the electron momentum operator

Free electron approximation

$$
e^{\langle } 11\left|\vec{p}=(\hbar \vec{q})_{e}<1\right|
$$

The free electron state is an eigenfunction of the electron momentum operator
The annihilation operator applied to the left creates a photon

Free electron approximation

$$
\begin{aligned}
& e\langle 1| \vec{p}=(\hbar \vec{q})_{e}\langle 1| \\
& { }_{\gamma}\langle n| a=(\sqrt{n+1})_{\gamma}\langle n+1| a
\end{aligned}
$$

The free electron state is an eigenfunction of the electron momentum operator
The annihilation operator applied to the left creates a photon

Free electron approximation

$$
\begin{aligned}
& e^{\langle 1| \vec{p}=(\hbar \vec{q})_{e}\langle 1|} \\
& { }_{\gamma}\langle n| a=(\sqrt{n+1})_{\gamma}\langle n+1| a
\end{aligned}
$$

The free electron state is an eigenfunction of the electron momentum operator
The annihilation operator applied to the left creates a photon while the creation operator annihilates a photon when applied to the left.

Free electron approximation

$$
\begin{aligned}
& e^{\langle }\langle 1| \vec{p}=(\hbar \vec{q})_{e}\langle 1| \\
& { }_{\gamma}\langle n| a=(\sqrt{n+1})_{\gamma}\langle n+1| a \\
& { }_{\gamma}\langle n| a^{\dagger}=(\sqrt{n})_{\gamma}\langle n-1| a
\end{aligned}
$$

The free electron state is an eigenfunction of the electron momentum operator
The annihilation operator applied to the left creates a photon while the creation operator annihilates a photon when applied to the left.

Free electron approximation

$$
\begin{aligned}
& { }_{e}\langle 1| \vec{p}=(\hbar \vec{q})_{e}\langle 1| \\
& { }_{\gamma}\langle n| a=(\sqrt{n+1})_{\gamma}\langle n+1| a \\
& { }_{\gamma}\langle n| a^{\dagger}=(\sqrt{n})_{\gamma}\langle n-1| a
\end{aligned}
$$

The free electron state is an eigenfunction of the electron momentum operator
The annihilation operator applied to the left creates a photon while the creation operator annihilates a photon when applied to the left.

$$
e^{\left\langle\left. 1\right|_{\gamma}\langle 0|(\vec{p} \cdot \hat{\varepsilon}) a=\hbar(\vec{q} \cdot \hat{\varepsilon})_{e}\left\langle\left. 1\right|_{\gamma}\langle 1|\right.\right.}
$$

Free electron approximation

$$
\begin{aligned}
e^{\langle }\langle 1| \vec{p} & =(\hbar \vec{q})_{e}\langle 1| \\
\gamma^{\langle }\langle n| a & =(\sqrt{n+1})_{\gamma}\langle n+1| a \\
{ }_{\gamma}\langle n| a^{\dagger} & =(\sqrt{n})_{\gamma}\langle n-1| a
\end{aligned}
$$

The free electron state is an eigenfunction of the electron momentum operator
The annihilation operator applied to the left creates a photon while the creation operator annihilates a photon when applied to the left.

$$
\begin{aligned}
\left.e^{\langle 1}\right|_{\gamma}\langle 0|(\vec{p} \cdot \hat{\varepsilon}) a & =\hbar(\vec{q} \cdot \hat{\varepsilon})_{e}\left\langle\left. 1\right|_{\gamma}\langle 1|\right. \\
\left.e^{\langle 1}\right|_{\gamma}\langle 0|(\vec{p} \cdot \hat{\varepsilon}) a^{\dagger} & =0
\end{aligned}
$$

Free electron approximation

$$
\begin{aligned}
& e^{\langle }\langle 1| \vec{p}=(\hbar \vec{q}){ }_{e}\langle 1| \\
& { }_{\gamma}\langle n| a=(\sqrt{n+1})_{\gamma}\langle n+1| a \\
& { }_{\gamma}\langle n| a^{\dagger}=(\sqrt{n}){ }_{\gamma}\langle n-1| a \\
& \text { operator } \\
& e^{\langle }\left\langle 1{ }_{\gamma}\langle 0|(\vec{p} \cdot \hat{\varepsilon}) a=\hbar(\vec{q} \cdot \hat{\varepsilon}){ }_{e}\left\langle\left. 1\right|_{\gamma}\langle 1|\right.\right. \\
& e^{\langle 1} \mid{ }_{\gamma}\langle 0|(\vec{p} \cdot \hat{\varepsilon}) a^{\dagger}=0 \\
& M_{i f}=\frac{e}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}\left[\hbar(\vec{q} \cdot \hat{\varepsilon})_{e}\left\langle\left. 1\right|_{\gamma}\langle 1| e^{i \vec{k} \cdot \vec{r}} \mid 1\right\rangle_{\gamma}|0\rangle_{e}+0\right]
\end{aligned}
$$

The free electron state is an eigenfunction of the electron momentum

The annihilation operator applied to the left creates a photon while the creation operator annihilates a photon when applied to the left.

Free electron approximation

$$
\begin{aligned}
& { }_{e}\langle 1| \vec{p}=(\hbar \vec{q}){ }_{e}\langle 1| \\
& { }_{\gamma}\langle n| a=(\sqrt{n+1}){ }_{\gamma}\langle n+1| a \\
& { }_{\gamma}\langle n| a^{\dagger}=(\sqrt{n})_{\gamma}\langle n-1| a \\
& e^{\left\langle\left. 1\right|_{\gamma}\langle 0|(\vec{p} \cdot \hat{\varepsilon}) a=\hbar(\vec{q} \cdot \hat{\varepsilon}){ }_{e}\left\langle\left. 1\right|_{\gamma}\langle 1|\right.\right.} \\
& e^{\langle }\left\langle 1{ }_{\gamma}\langle 0|(\vec{p} \cdot \hat{\varepsilon}) a^{\dagger}=0\right. \\
& M_{i f}=\frac{e}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}\left[\hbar(\vec{q} \cdot \hat{\varepsilon})_{e}\left\langle\left. 1\right|_{\gamma}\langle 1| e^{i \vec{k} \cdot \vec{r}} \mid 1\right\rangle_{\gamma}|0\rangle_{e}+0\right] \\
& =\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon})_{e}\langle 1| e^{i \vec{k} \cdot \vec{r}}|0\rangle_{e}
\end{aligned}
$$

Free electron approximation

$$
\begin{aligned}
& e^{\langle }\langle 1| \vec{p}=(\hbar \vec{q}){ }_{e}\langle 1| \\
& { }_{\gamma}\langle n| a=(\sqrt{n+1}){ }_{\gamma}\langle n+1| a \\
& { }_{\gamma}\langle n| a^{\dagger}=(\sqrt{n})_{\gamma}\langle n-1| a \\
& \text { function of the electron momentum } \\
& \text { operator } \\
& \text { The annihilation operator applied } \\
& \text { to the left creates a photon while } \\
& \text { the creation operator annihilates a } \\
& \text { photon when applied to the left. } \\
& { }_{e}\left\langle\left. 1\right|_{\gamma}\langle 0|(\vec{p} \cdot \hat{\varepsilon}) a=\hbar(\vec{q} \cdot \hat{\varepsilon})_{e}\left\langle\left. 1\right|_{\gamma}\langle 1|\right.\right. \\
& e^{\langle }\left\langle 1{ }_{\gamma}\langle 0|(\vec{p} \cdot \hat{\varepsilon}) a^{\dagger}=0\right. \\
& M_{i f}=\frac{e}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}\left[\hbar(\vec{q} \cdot \hat{\varepsilon})_{e}\left\langle\left. 1\right|_{\gamma}\langle 1| e^{i \vec{k} \cdot \vec{r}} \mid 1\right\rangle_{\gamma}|0\rangle_{e}+0\right] \\
& =\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon})_{e}\langle 1| e^{i \vec{k} \cdot \vec{r}}|0\rangle_{e}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \int \psi_{f}^{*} e^{i \vec{k} \cdot \vec{r}} \psi_{i} d \vec{r}
\end{aligned}
$$

The free electron state is an eigen-

Photoelectron integral

$$
M_{i f}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \int \psi_{f}^{*} e^{i \vec{k} \cdot \vec{r}} \psi_{i} d \vec{r}
$$

Photoelectron integral

$$
M_{i f}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \int \psi_{f}^{*} e^{i \vec{k} \cdot \vec{r}} \psi_{i} d \vec{r}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \phi(\vec{Q})
$$

Photoelectron integral

$$
M_{i f}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \int \psi_{f}^{*} e^{i \vec{k} \cdot \vec{r}} \psi_{i} d \vec{r}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \phi(\vec{Q})
$$

The initial electron wavefunction is simply that of a $1 s$ atomic state

Photoelectron integral

$$
M_{i f}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \int \psi_{f}^{*} e^{i \vec{k} \cdot \vec{r}} \psi_{i} d \vec{r}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \phi(\vec{Q})
$$

$$
\psi_{i}=\psi_{1 s}(\vec{r})
$$

The initial electron wavefunction is simply that of a $1 s$ atomic state

Photoelectron integral

$$
M_{i f}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \int \psi_{f}^{*} e^{i \vec{k} \cdot \vec{r}} \psi_{i} d \vec{r}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \phi(\vec{Q})
$$

$$
\psi_{i}=\psi_{1 s}(\vec{r})
$$

The initial electron wavefunction is simply that of a 1 s atomic state while the final state is approximated as a plane wave

Photoelectron integral

$$
M_{i f}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \int \psi_{f}^{*} e^{i \vec{k} \cdot \vec{r}} \psi_{i} d \vec{r}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \phi(\vec{Q})
$$

$$
\psi_{i}=\psi_{1 s}(\vec{r}) \quad \psi_{f}=\sqrt{\frac{1}{V}} e^{i \vec{q} \cdot \vec{r}}
$$

The initial electron wavefunction is simply that of a 1 s atomic state while the final state is approximated as a plane wave

Photoelectron integral

$$
M_{i f}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \int \psi_{f}^{*} e^{i \vec{k} \cdot \vec{r}} \psi_{i} d \vec{r}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \phi(\vec{Q})
$$

$$
\psi_{i}=\psi_{1 s}(\vec{r}) \quad \psi_{f}=\sqrt{\frac{1}{V}} e^{i \vec{q} \cdot \vec{r}}
$$

The initial electron wavefunction is simply that of a 1 s atomic state while the final state is approximated as a plane wave

The integral thus becomes

Photoelectron integral

$$
M_{i f}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \int \psi_{f}^{*} e^{i \vec{k} \cdot \vec{r}} \psi_{i} d \vec{r}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \phi(\vec{Q})
$$

$$
\psi_{i}=\psi_{1 s}(\vec{r}) \quad \psi_{f}=\sqrt{\frac{1}{V}} e^{i \vec{q} \cdot \vec{r}}
$$

The initial electron wavefunction is simply that of a 1 s atomic state

$$
\phi(\vec{Q})=\sqrt{\frac{1}{V}} \int e^{-i \vec{q} \cdot \vec{r}} e^{i \vec{k} \cdot \vec{r}} \psi_{1 s}(\vec{r}) d \vec{r}
$$ while the final state is approximated as a plane wave

The integral thus becomes

Photoelectron integral

$$
M_{i f}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \int \psi_{f}^{*} e^{i \vec{k} \cdot \vec{r}} \psi_{i} d \vec{r}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \phi(\vec{Q})
$$

$$
\psi_{i}=\psi_{1 s}(\vec{r}) \quad \psi_{f}=\sqrt{\frac{1}{V}}^{i \vec{q} \cdot \vec{r}}
$$

The initial electron wavefunction is

$$
\phi(\vec{Q})=\sqrt{\frac{1}{V}} \int e^{-i \vec{q} \cdot \vec{r}} e^{i \vec{k} \cdot \vec{F}} \psi_{1 s}(\vec{r}) d \vec{r}
$$ simply that of a $1 s$ atomic state while the final state is approximated as a plane wave

$$
=\sqrt{\frac{1}{V}} \int \psi_{1 s}(\vec{r}) e^{i(\vec{k}-\vec{q}) \cdot \vec{r}} d \vec{r}
$$

The integral thus becomes

Photoelectron integral

$$
\begin{aligned}
M_{i f} & =\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \int \psi_{f}^{*} e^{i \vec{k} \cdot \vec{r}} \psi_{i} d \vec{r}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \phi(\vec{Q}) \\
\psi_{i} & =\psi_{1 s}(\vec{r}) \quad \psi_{f}=\sqrt{\frac{1}{V}} e^{i \vec{q} \cdot \vec{r}} \quad \begin{array}{ll}
\text { The initial electron wavefunction is } \\
\text { simply that of a 1s atomic state } \\
\text { while the final state is approxi- } \\
\text { mated as a plane wave }
\end{array} \\
\phi(\vec{Q}) & =\sqrt{\frac{1}{V} \int e^{-i \vec{q} \cdot \vec{r}} e^{i \vec{k} \cdot \vec{r}} \psi_{1 s}(\vec{r}) d \vec{r}} \quad \\
& =\sqrt{\frac{1}{V} \int \psi_{1 s}(\vec{r}) e^{i(\vec{k}-\vec{q}) \cdot \vec{r}} d \vec{r}} \quad \begin{array}{ll}
\text { The integral thus becomes }
\end{array} \\
& =\sqrt{\frac{1}{V} \int \psi_{1 s}(\vec{r}) e^{i \vec{Q} \cdot \vec{r}} d \vec{r}} \quad
\end{aligned}
$$

Photoelectron integral

$$
\begin{array}{rlrl}
M_{i f} & =\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \int \psi_{f}^{*} e^{i \vec{k} \cdot \vec{r}} \psi_{i} d \vec{r}=\frac{e \hbar}{m} \sqrt{\frac{\hbar}{2 \epsilon_{0} V \omega}}(\vec{q} \cdot \hat{\varepsilon}) \phi(\vec{Q}) \\
\psi_{i} & =\psi_{1 s}(\vec{r}) \quad \psi_{f}=\sqrt{\frac{1}{V}} e^{i \vec{q} \cdot \vec{r}} & \begin{array}{l}
\text { The initial electron wavefunction is } \\
\text { simply that of a 1s atomic state } \\
\text { while the final state is approxi- } \\
\text { mated as a plane wave }
\end{array} \\
\phi(\vec{Q}) & =\sqrt{\frac{1}{V}} \int e^{-i \vec{q} \cdot \vec{r}} e^{i \vec{k} \cdot \vec{r}} \psi_{1 s}(\vec{r}) d \vec{r} & \begin{array}{l}
\text { The integral thus becomes }
\end{array} \\
& =\sqrt{\frac{1}{V} \int \psi_{1 s}(\vec{r}) e^{i(\vec{k}-\vec{q}) \cdot \vec{r}} d \vec{r}} \quad \begin{array}{ll}
\text { which is the Fourier transform of } \\
\text { the initial state 1s electron wave } \\
\text { function }
\end{array} &
\end{array}
$$

Photoelectron cross-section

the overall matrix element squared for a particular photoelectron final direction (φ, θ) is

Photoelectron cross-section

the overall matrix element squared for a particular photoelectron final direction (φ, θ) is

$$
\left|M_{i f}\right|^{2}=\left(\frac{e \hbar}{m}\right)^{2} \frac{\hbar}{2 \epsilon_{0} V^{2} \omega}\left(q^{2} \sin ^{2} \theta \cos ^{2} \varphi\right) \phi^{2}(\vec{Q})
$$

Photoelectron cross-section

the overall matrix element squared for a particular photoelectron final direction (φ, θ) is

$$
\left|M_{i f}\right|^{2}=\left(\frac{e \hbar}{m}\right)^{2} \frac{\hbar}{2 \epsilon_{0} V^{2} \omega}\left(q^{2} \sin ^{2} \theta \cos ^{2} \varphi\right) \phi^{2}(\vec{Q})
$$

and the final cross-section per K electron can now be computed as

Photoelectron cross-section

the overall matrix element squared for a particular photoelectron final direction (φ, θ) is

$$
\left|M_{i f}\right|^{2}=\left(\frac{e \hbar}{m}\right)^{2} \frac{\hbar}{2 \epsilon_{0} V^{2} \omega}\left(q^{2} \sin ^{2} \theta \cos ^{2} \varphi\right) \phi^{2}(\vec{Q})
$$

and the final cross-section per K electron can now be computed as

$$
\sigma_{a}=\frac{2 \pi}{\hbar c} \frac{V^{2}}{4 \pi^{3}}\left(\frac{e \hbar}{m}\right)^{2} \frac{\hbar}{2 \epsilon_{0} V^{2} \omega} I_{3}
$$

Photoelectron cross-section

the overall matrix element squared for a particular photoelectron final direction (φ, θ) is

$$
\left|M_{i f}\right|^{2}=\left(\frac{e \hbar}{m}\right)^{2} \frac{\hbar}{2 \epsilon_{0} V^{2} \omega}\left(q^{2} \sin ^{2} \theta \cos ^{2} \varphi\right) \phi^{2}(\vec{Q})
$$

and the final cross-section per K electron can now be computed as

$$
\sigma_{a}=\frac{2 \pi}{\hbar c} \frac{V^{2}}{4 \pi^{3}}\left(\frac{e \hbar}{m}\right)^{2} \frac{\hbar}{2 \epsilon_{0} V^{2} \omega} I_{3}=\left(\frac{e \hbar}{m}\right)^{2} \frac{1}{4 \pi^{2} \epsilon_{0} c \omega} I_{3}
$$

Photoelectron cross-section

the overall matrix element squared for a particular photoelectron final direction (φ, θ) is

$$
\left|M_{i f}\right|^{2}=\left(\frac{e \hbar}{m}\right)^{2} \frac{\hbar}{2 \epsilon_{0} V^{2} \omega}\left(q^{2} \sin ^{2} \theta \cos ^{2} \varphi\right) \phi^{2}(\vec{Q})
$$

and the final cross-section per K electron can now be computed as

$$
\sigma_{a}=\frac{2 \pi}{\hbar c} \frac{V^{2}}{4 \pi^{3}}\left(\frac{e \hbar}{m}\right)^{2} \frac{\hbar}{2 \epsilon_{0} V^{2} \omega} I_{3}=\left(\frac{e \hbar}{m}\right)^{2} \frac{1}{4 \pi^{2} \epsilon_{0} c \omega} I_{3}
$$

where the integral I_{3} is given by

Photoelectron cross-section

the overall matrix element squared for a particular photoelectron final direction (φ, θ) is

$$
\left|M_{i f}\right|^{2}=\left(\frac{e \hbar}{m}\right)^{2} \frac{\hbar}{2 \epsilon_{0} V^{2} \omega}\left(q^{2} \sin ^{2} \theta \cos ^{2} \varphi\right) \phi^{2}(\vec{Q})
$$

and the final cross-section per K electron can now be computed as

$$
\sigma_{a}=\frac{2 \pi}{\hbar c} \frac{V^{2}}{4 \pi^{3}}\left(\frac{e \hbar}{m}\right)^{2} \frac{\hbar}{2 \epsilon_{0} V^{2} \omega} I_{3}=\left(\frac{e \hbar}{m}\right)^{2} \frac{1}{4 \pi^{2} \epsilon_{0} c \omega} I_{3}
$$

where the integral I_{3} is given by

$$
I_{3}=\int \phi^{2}(\vec{Q}) q^{2} \sin ^{2} \theta \cos ^{2} \varphi \delta\left(\mathcal{E}_{f}-\mathcal{E}_{i}\right) q^{2} \sin \theta d q d \theta d \phi
$$

Calculated cross section

Calculated cross section

Calculated cross section

What is XAFS?

X-ray Absorption Fine-Structure (XAFS) is the modulation of the x-ray absorption coefficient at energies near and above an x-ray absorption edge. XAFS is also referred to as X-ray Absorption Spectroscopy (XAS) and is broken into 2 regimes:
$\begin{array}{ll}\text { XANES } & \text { X-ray Absorption Near-Edge Spectroscopy } \\ \text { EXAFS } & \text { Extended X-ray Absorption Fine-Structure }\end{array}$
which contain related, but slightly different information about an element's local coordination and chemical state.

Fe K-edge XAFS for FeO

XAFS Characteristics:

- local atomic coordination
- chemical / oxidation state
- applies to any element
- works at low concentrations
- minimal sample requirements

The x-ray absorption process

An x-ray is absorbed by an atom when the energy of the x-ray is transferred to a corelevel electron (K, L, or M shell).

The x-ray absorption process

An x-ray is absorbed by an atom when the energy of the x-ray is transferred to a corelevel electron (K, L, or M shell).
The atom is in an excited state with an empty electronic level: a core hole.

The x-ray absorption process

An x-ray is absorbed by an atom when the energy of the x-ray is transferred to a corelevel electron (K, L, or M shell).
The atom is in an excited state with an empty electronic level: a core hole.
Any excess energy from the x-ray is given to an ejected photoelectron

The x-ray absorption process

An x-ray is absorbed by an atom when the energy of the x-ray is transferred to a corelevel electron (K, L, or M shell).
The atom is in an excited state with an empty electronic level: a core hole.
Any excess energy from the x-ray is given to an ejected photoelectron, which expands as a spherical wave

The x-ray absorption process

An x-ray is absorbed by an atom when the energy of the x-ray is transferred to a corelevel electron (K, L, or M shell).
The atom is in an excited state with an empty electronic level: a core hole.
Any excess energy from the x-ray is given to an ejected photoelectron, which expands as a spherical wave

The x-ray absorption process

An x-ray is absorbed by an atom when the energy of the x-ray is transferred to a corelevel electron (K, L, or M shell).
The atom is in an excited state with an empty electronic level: a core hole.
Any excess energy from the x-ray is given to an ejected photoelectron, which expands as a spherical wave, reaches the neighboring electron clouds

The x-ray absorption process

An x-ray is absorbed by an atom when the energy of the x-ray is transferred to a corelevel electron (K, L, or M shell).
The atom is in an excited state with an empty electronic level: a core hole.
Any excess energy from the x-ray is given to an ejected photoelectron, which expands as a spherical wave, reaches the neighboring electron clouds, and scatters
 back to the core hole

The x-ray absorption process

An x-ray is absorbed by an atom when the energy of the x-ray is transferred to a corelevel electron (K, L, or M shell).
The atom is in an excited state with an empty electronic level: a core hole.

Any excess energy from the x-ray is given to an ejected photoelectron, which expands as a spherical wave, reaches the neighboring electron clouds, and scatters back to the core hole

The x-ray absorption process

An x-ray is absorbed by an atom when the energy of the x-ray is transferred to a corelevel electron (K, L, or M shell).
The atom is in an excited state with an empty electronic level: a core hole.

Any excess energy from the x-ray is given to an ejected photoelectron, which expands as a spherical wave, reaches the neighboring electron clouds, and scatters back to the core hole, creating interference patterns called XANES and EXAFS.

EXAFS data extraction

normalize by fitting pre-edge and post-edge trends

EXAFS data extraction

normalize by fitting pre-edge and post-edge trends

EXAFS data extraction

normalize by fitting pre-edge and post-edge trends remove "smooth" μ_{0} background

EXAFS data extraction

normalize by fitting pre-edge and post-edge trends remove "smooth" μ_{0} background
convert to photoelectron momentum space

$$
k=\frac{2 \pi}{h c} \sqrt{\mathcal{E}-\mathcal{E}_{0}}
$$

EXAFS data extraction

normalize by fitting pre-edge and post-edge trends remove "smooth" μ_{0} background
convert to photoelectron momentum space

$$
k=\frac{2 \pi}{h c} \sqrt{\mathcal{E}-\mathcal{E}_{0}}
$$

weight by appropriate power of k to obtain "good" envelope which clearly shows that EXAFS is a sum of oscillations with varying frequencies and phases

EXAFS data extraction

normalize by fitting pre-edge and post-edge trends
remove "smooth" μ_{0} background
convert to photoelectron momentum space

$$
k=\frac{2 \pi}{h c} \sqrt{\mathcal{E}-\mathcal{E}_{0}}
$$

weight by appropriate power of k to obtain "good" envelope which clearly shows that EXAFS is a sum of oscillations with varying frequencies and phases
Fourier transform to get real space EXAFS

XANES edge shifts and pre-edge peaks

XANES edge shifts and pre-edge peaks

The shift of the edge position can be used to determine the valence state.

XANES edge shifts and pre-edge peaks

The shift of the edge position can be used to determine the valence state.
The heights and positions of pre-edge peaks can also be reliably used to determine ionic ratios for many atomic species.

XANES edge shifts and pre-edge peaks

The shift of the edge position can be used to determine the valence state.
The heights and positions of pre-edge peaks can also be reliably used to determine ionic ratios for many atomic species. XANES can be used as a fingerprint of phases and XANES analysis can be as simple as making linear combinations of "known" spectra to get composition.

XANES edge shifts and pre-edge peaks

The shift of the edge position can be used to determine the valence state.
The heights and positions of pre-edge peaks can also be reliably used to determine ionic ratios for many atomic species. XANES can be used as a fingerprint of phases and XANES analysis can be as simple as making linear combinations of "known" spectra to get composition.
Modern codes, such as FEFF9, are able to accurately compute XANES features.

