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Monochromators

Photoelectric absorption

Cross-section of an isolated atom

X-ray absorption spectroscopy
EXAFS of NFA steels

Homework Assignment #05:

Chapter 5: 1, 3,7, 9, 10

due Wednesday, November 02, 2016
Homework Assignment #06:

Chapter 6: 1,6,7,8,9

due Monday, November 14, 2016

No class on Wednesday, November 09, 2016
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Final projects & presentations

In-class student presentations on research topics

e Choose a research article which features a synchrotron
technique

e Get it approved by instructor first!

e Schedule a 15 minute time on Final Exam Day
(tentatively, Monday, December 5, 2016, will confirm
times)
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Final projects & presentations

In-class student presentations on research topics
e Choose a research article which features a synchrotron
technique
e Get it approved by instructor first!

e Schedule a 15 minute time on Final Exam Day
(tentatively, Monday, December 5, 2016, will confirm
times)

Final project - writing a General User Proposal
e Think of a research problem (could be yours) that can
be approached using synchrotron radiation techniques

e Make proposal and get approval from instructor before
starting

e Must be different techique than your presentation!
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Asymmetric geometry

In general the diffracting planes are not precisely aligned with the surface
of the crystal.
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angle 0 < a < Opagg
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according to Liouville's theorem,
the divergence of the beam must
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Asymmetric geometry

In general the diffracting planes are not precisely aligned with the surface

of the crystal.

Parameterized by the asymmetry
angle 0 < a < Opagg

This leads to a beam compression

sinf;  sin(0 + )

b= =
sinfe  sin(f — «)
H;
He = =
b

according to Liouville's theorem,
the divergence of the beam must
also change

00;H; = (CD tan Q)bHe

1
Vb
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Rocking curve measurements

The measured “rocking” curve from a two crystal system is a convolution
of the Darwin curves of both crystals.
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The measured “rocking” curve from a two crystal system is a convolution

of the Darwin curves of both crystals. When the two crystals have a
matched asymmetry, we get a triangle.
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Rocking curve measurements

The measured “rocking” curve from a two crystal system is a convolution
of the Darwin curves of both crystals. When the two crystals have a
matched asymmetry, we get a triangle. When one asymmetry is much
higher, then we can measure the Darwin curve of a single crystal.

Si(111)b=4.3-Si(111)b=0.23 Si(111)b=0.23 - Si(111) b=0.23
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Dumond diagram: no Darwin width

Transfer function of an optical element parameterized by angle and
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Dumond diagram: no Darwin width

Transfer function of an optical element parameterized by angle and
wavelength. Here Darwin width is ignored.
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Dumond diagram: symmetric Bragg

Including the Darwin width, we have a bandpass in wavelength.
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Dumond diagram: symmetric Bragg

Including the Darwin width, we have a bandpass in wavelength. If input
beam is perfectly collimated, so is output (vertical black line).
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Dumond diagram: asymmetric Bragg

For asymmetric crystal, the output beam is no longer collimated but
acquires a divergence a,
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Double crystal monochromators
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Double crystal monochromators
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Double crystal monochromators
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Total cross section

Absorption cross-section [barn]
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Total cross section

Absorption cross-section [barn]

10 20
Photon energy [keV]

The total cross-section for
photon “absorption” in-
cludes elastic (or coher-
ent) scattering, Compton
(inelastic) scattering, and
photoelectric absorption.

Characteristic absorption
jumps depend on the ele-
ment

These quantities vary significantly over many decades but can easily put
on an equal footing.
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Scaled absorption
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Scaled absorption

Continuum
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Calculation of o,

From first-order perturbation theory, the absorption cross section is given
by
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Calculation of o,

From first-order perturbation theory, the absorption cross section is given

by
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Mie|?5(E % sin 0dqd0d
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The interaction Hamiltonian is ex-
pressed in terms of the electromag-
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Calculation of o,

From first-order perturbation theory, the absorption cross section is given

by
_2m v? 5(& 2 G Odadd
0a= 723 |Mie|26(Ef — £1)q? sin 0dqdOd
= (i|H,|f
where the matrix element M;r be- iy
tween the initial, (i|, and final, |f), L i
states is given by 4, = P~ €
m 2m

The interaction Hamiltonian is ex-

pressed in terms of the electromag- - i
. . A=2¢ { ik-¥ +ale
netic vector potential 20 Vw k€

The first term gives absorption while the second produces Thomson
scattering so we take only the first into consideration now.
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Free electron approximation

In order to evaluate the Mj;s matrix element we define the initial and final
states

C. Segre (IIT) PHYS 570 - Fall 2016 October 31, 2016 13 /21



Free electron approximation

In order to evaluate the M;r matrix element we define the initial and final
states

the initial state has a photon and a K electron
(no free electron)

C. Segre (IIT) PHYS 570 - Fall 2016 October 31, 2016 13 /21



Free electron approximation

In order to evaluate the M;r matrix element we define the initial and final
states

the initial state has a photon and a K electron
(no free electron) .
1) = [1)410)e

C. Segre (IIT) PHYS 570 - Fall 2016 October 31, 2016 13 /21



Free electron approximation

In order to evaluate the M;r matrix element we define the initial and final
states

the initial state has a photon and a K electron

(no free electron) .
. . |7} = 11)510)e
similarly, the final state has no photon and an
ejected free electron (ignoring the core hole

and charged ion)

C. Segre (IIT) PHYS 570 - Fall 2016 October 31, 2016 13 /21



Free electron approximation

In order to evaluate the M;r matrix element we define the initial and final
states

the initial state has a photon and a K electron

(no free electron) .
. . |7} = 11)510)e
similarly, the final state has no photon and an
ejected free electron (ignoring the core hole

and charged ion) (f] = e(1],(0]

C. Segre (IIT) PHYS 570 - Fall 2016 October 31, 2016 13 /21



Free electron approximation

In order to evaluate the M;r matrix element we define the initial and final
states

the initial state has a photon and a K electron
(no free electron) .
i) = [1)410)

similarly, the final state has no photon and an
ejected free electron (ignoring the core hole
and charged ion)

Thus

_E h = A ik-7 = A J[—lkr
Mir =\ ey LT 013 - €)a™7 + (5 2)afe™*711),0).
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Free electron approximation

In order to evaluate the M;r matrix element we define the initial and final
states

the initial state has a photon and a K electron
(no free electron)

- . 1) = [1)410)e
similarly, the final state has no photon and an
ejected free electron (ignoring the core hole fl— 1100
and charged ion) (Fl = e(115{0l

Thus

My = £\ 5 [0 013 02657 + (5 - 2)ale 711, ).

The calculation is simplified if the interaction Hamiltonian is applied to the
left since the final state has only a free electron and no photon
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Free electron approximation

The free electron state is an eigen-
function of the electron momentum
operator
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The annihilation operator applied

to the left creates a photon
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Free electron approximation

The free electron state is an eigen-

e(1[p = (hg)(1| function of the electron momentum
operator
+(nla= (\/m)%n +1la The annihilation operator applied

to the left creates a photon
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Free electron approximation

The free electron state is an eigen-
(1P = (hG) (1] function of the electron momentum
operator
The annihilation operator applied
to the left creates a photon while
the creation operator annihilates a
photon when applied to the left.

Jnla = (VaF D)y (n+1]a
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Free electron approximation
e(1[p = (hg)(1|
y{nla=(vVn+1),(n+1a

7<”|3T = (Vn)y(n—1|a

e(15(0l(P - £)a =

(1], {0|( - )af

The free electron state is an eigen-
function of the electron momentum
operator

The annihilation operator applied
to the left creates a photon while
the creation operator annihilates a
photon when applied to the left.

(q-é)e<1\v<1!

€ h = A ik-F
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Free electron approximation
e(1[p = (hg)(1|
y{nla=(vVn+1),(n+1a

7<”|3T = (Vn)y(n—1|a

(1, (0l(P - £)a =
(1], (0l(B - &)a’
e h
Mif:% 260Vw
=y @ ettle o)
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The free electron state is an eigen-
function of the electron momentum
operator

The annihilation operator applied
to the left creates a photon while
the creation operator annihilates a
photon when applied to the left.

(q-é)e<1\v<1!
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Free electron approximation

(1| = (hg)e(1]
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Photoelectron integral
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Photoelectron integral
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Photoelectron integral
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C. Segre (IIT) PHYS 570 - Fall 2016 October 31, 2016 15 /21



Photoelectron integral
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Photoelectron integral

eh

h h
Mif—* ‘

x _ik-F _ -
(G- /1/1 e'“";dr 20 Voo

—

G- &)¢(Q)

2¢€0 ch

C— o (7 The initial electron wavefunction is
Y = L/}ls(r) . .
simply that of a 1s atomic state
while the final state is approxi-
mated as a plane wave

C. Segre (IIT) PHYS 570 - Fall 2016 October 31, 2016 15 /21



Photoelectron integral
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Photoelectron integral
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Photoelectron integral
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Photoelectron integral
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Photoelectron integral
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Photoelectron cross-section

the overall matrix element squared for a particular photoelectron final
direction (¢, ) is
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Calculated cross section

Absorption cross-section [barn]
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Calculated cross section
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Calculated cross section
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What is XAFS?

X-ray Absorption Fine-Structure (XAFS) is the modulation of the x-ray
absorption coefficient at energies near and above an x-ray absorption edge.
XAFS is also referred to as X-ray Absorption Spectroscopy (XAS) and is
broken into 2 regimes:

XANES X-ray Absorption Near-Edge Spectroscopy
EXAFS Extended X-ray Absorption Fine-Structure

which contain related, but slightly different information about an element'’s
local coordination and chemical state.

— XAFS Characteristics:
e |ocal atomic coordination

e chemical / oxidation state

e applies to any element
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Fe K-edge XAFS for FeO
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The x-ray absorption process

An x-ray is absorbed by an
atom when the energy of the
x-ray is transferred to a core-
level electron (K, L, or M
shell).
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The x-ray absorption process

An x-ray is absorbed by an
atom when the energy of the
x-ray is transferred to a core-
level electron (K, L, or M
shell).

The atom is in an excited
state with an empty elec-
tronic level: a core hole.

Any excess energy from
the x-ray is given to an
ejected photoelectron, which
expands as a spherical wave,
reaches the neighboring elec-
tron clouds, and scatters
back to the core hole, cre-
ating interference patterns
called XANES and EXAFS.
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EXAFS data extraction

normalize by fitting pre-edge
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EXAFS data extraction

normalize by fitting pre-edge L ]
and post-edge trends

In(I,/1)

0.5 4

11500 12000 12500

E(eV)

C. Segre (IIT) PHYS 570 - Fall 2016 October 31, 2016 20 /21



EXAFS data extraction

normalize by fitting pre-edge L ]
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remove “smooth” o back- s FP A A
ground

In(I,/1)

11500 12000 12500

E(eV)

C. Segre (lIT) PHYS 570 - Fall 2016 October 31, 2016 20 /21



EXAFS data extraction
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EXAFS data extraction

normalize by fitting pre-edge
and post-edge trends

remove “smooth” o back-
ground

convert to photoelectron mo-
mentum space
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hc
weight by appropriate power
of k to obtain “good” enve-
lope which clearly shows that
EXAFS is a sum of oscilla-
tions with varying frequen-
cies and phases
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EXAFS data extraction

normalize by fitting pre-edge
and post-edge trends

remove “smooth” 1 back-
ground

convert to photoelectron mo-
mentum space

k= %\/5—50

weight by appropriate power
of k to obtain “good” enve-
lope which clearly shows that
EXAFS is a sum of oscilla-
tions with varying frequen-
cies and phases

Fourier transform to get real
space EXAFS
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XANES edge shifts and pre-edge peaks
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XANES edge shifts and pre-edge peaks

The shift of the edge position
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XANES edge shifts and pre-edge peaks

- The shift of the edge position
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XANES edge
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The shift of the edge position
can be used to determine the
valence state.

The heights and positions of
pre-edge peaks can also be re-
liably used to determine ionic
ratios for many atomic species.

XANES can be used as a fin-
gerprint of phases and XANES
analysis can be as simple as
making linear combinations of
“known" spectra to get com-
position.
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XANES
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edge shifts and pre-edge peaks

The shift of the edge position
can be used to determine the
valence state.

The heights and positions of
pre-edge peaks can also be re-
liably used to determine ionic
ratios for many atomic species.

XANES can be used as a fin-
gerprint of phases and XANES
analysis can be as simple as
making linear combinations of
“known" spectra to get com-
position.

Modern codes, such as FEFF9,
are able to accurately compute
XANES features.
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