Today's Outline - October 26, 2016

Today's Outline - October 26, 2016

- Bragg \& Laue geometries

Today's Outline - October 26, 2016

- Bragg \& Laue geometries
- Kinematical approach for many layers

Today's Outline - October 26, 2016

- Bragg \& Laue geometries
- Kinematical approach for many layers
- Dynamical diffraction theory

Today's Outline - October 26, 2016

- Bragg \& Laue geometries
- Kinematical approach for many layers
- Dynamical diffraction theory
- Characteristics of the Darwin curve

Today's Outline - October 26, 2016

- Bragg \& Laue geometries
- Kinematical approach for many layers
- Dynamical diffraction theory
- Characteristics of the Darwin curve
- Asymmetric reflections

Today's Outline - October 26, 2016

- Bragg \& Laue geometries
- Kinematical approach for many layers
- Dynamical diffraction theory
- Characteristics of the Darwin curve
- Asymmetric reflections
- Dumond diagrams

Today's Outline - October 26, 2016

- Bragg \& Laue geometries
- Kinematical approach for many layers
- Dynamical diffraction theory
- Characteristics of the Darwin curve
- Asymmetric reflections
- Dumond diagrams
- Monochromators

Today's Outline - October 26, 2016

- Bragg \& Laue geometries
- Kinematical approach for many layers
- Dynamical diffraction theory
- Characteristics of the Darwin curve
- Asymmetric reflections
- Dumond diagrams
- Monochromators

Homework Assignment \#05:
Chapter 5: 1, 3, 7, 9, 10 due Wednesday, November 02, 2016

Friday, October 28 APS visit is cancelled!

Kinematical vs. dynamical diffraction

The kinematical approximation we have discussed so far applies to mosaic crystals. The size of the crystal is small enough that the wave field of the x-rays does not vary appreciably over the crystal.

Kinematical vs. dynamical diffraction

The kinematical approximation we have discussed so far applies to mosaic crystals. The size of the crystal is small enough that the wave field of the x-rays does not vary appreciably over the crystal.

For a perfect crystal, such as those used in monochromators, things are very different and we have to treat them specially using dynamical diffraction theory.

Kinematical vs. dynamical diffraction

Mosaic blocks of small perfect crystals

The kinematical approximation we have discussed so far applies to mosaic crystals. The size of the crystal is small enough that the wave field of the x-rays does not vary appreciably over the crystal.

For a perfect crystal, such as those used in monochromators, things are very different and we have to treat them specially using dynamical diffraction theory.

This theory takes into account multiple reflections, and attenuation of the x-ray beam as it propagates through the perfect crystal.

Bragg \& Laue geometries

Bragg \& Laue geometries

Bragg

symmetric

Bragg \& Laue geometries

Bragg

symmetric
asymmetric

Bragg \& Laue geometries

Bragg Laue

symmetric

asymmetric

Bragg \& Laue geometries

asymmetric

Bragg \& Laue geometries

asymmetric

Scattering geometry

Consider symmetric Bragg geometry

Scattering geometry

Consider symmetric Bragg geometry

Scattering geometry

Consider symmetric Bragg geometry

We expect the crystal to diffract in an energy bandwidth defined by Δk

Scattering geometry

Consider symmetric Bragg geometry

We expect the crystal to diffract in an energy bandwidth defined by Δk

This defines a spread of scattering vectors such that

$$
\zeta=\frac{\Delta Q}{Q}=\frac{\Delta k}{k}
$$

called the relative energy or wavelength bandwidth

Dynamical diffraction - Darwin approach

The Darwin approach treats a perfect crystal as an infinite stack of atomic planes.

Dynamical diffraction - Darwin approach

The Darwin approach treats a perfect crystal as an infinite stack of atomic planes.

Dynamical diffraction - Darwin approach

The Darwin approach treats a perfect crystal as an infinite stack of atomic planes.

Considering a single thin slab with electron density ρ and thickness $d \ll \lambda$, the reflected and transmitted waves are

Dynamical diffraction - Darwin approach

The Darwin approach treats a perfect crystal as an infinite stack of atomic planes.

Considering a single thin slab with electron density ρ and thickness $d \ll \lambda$, the reflected and transmitted waves are

$$
S=-i g T
$$

Dynamical diffraction - Darwin approach

The Darwin approach treats a perfect crystal as an infinite stack of atomic planes.

Considering a single thin slab with electron density ρ and thickness $d \ll \lambda$, the reflected and transmitted waves are

$$
\begin{aligned}
S & =-i g T \\
\left(1-i g_{0}\right) T & \approx e^{-i g_{0} T}
\end{aligned}
$$

Dynamical diffraction - Darwin approach

The Darwin approach treats a perfect crystal as an infinite stack of atomic planes.

Considering a single thin slab with electron density ρ and thickness $d \ll \lambda$, the reflected and transmitted waves are where

$$
g=\frac{\lambda r_{0} \rho d}{\sin \theta}
$$

$$
\begin{aligned}
S & =-i g T \\
\left(1-i g_{0}\right) T & \approx e^{-i g_{0} T}
\end{aligned}
$$

Dynamical diffraction - Darwin approach

The Darwin approach treats a perfect crystal as an infinite stack of atomic planes.
Considering a single thin slab with electron density ρ and thickness $d \ll \lambda$, the reflected and transmitted waves are where

$$
g=\frac{\lambda r_{0} \rho d}{\sin \theta}
$$

if the layer is made up of unit cells with volume v_{c} and structure factor $F \xrightarrow{Q=0} Z$, the electron density is $\rho=|F| / v_{c}$ and using the Bragg condition, we can rewrite g as

$$
\begin{aligned}
S & =-i g T \\
\left(1-i g_{0}\right) T & \approx e^{-i g_{0} T}
\end{aligned}
$$

Dynamical diffraction - Darwin approach

The Darwin approach treats a perfect crystal as an infinite stack of atomic planes.
Considering a single thin slab with electron density ρ and thickness $d \ll \lambda$, the reflected and transmitted waves are where

$$
g=\frac{\lambda r_{0} \rho d}{\sin \theta}
$$

if the layer is made up of unit cells with volume v_{c} and structure factor $F \xrightarrow{Q=0} Z$, the electron density is $\rho=|F| / v_{c}$ and using the Bragg condition, we can rewrite g as

$$
g=\frac{[2 d \sin \theta / m] r_{0}\left(|F| / v_{c}\right) d}{\sin \theta}
$$

Dynamical diffraction - Darwin approach

The Darwin approach treats a perfect crystal as an infinite stack of atomic planes.
Considering a single thin slab with electron density ρ and thickness $d \ll \lambda$, the reflected and transmitted waves are where

$$
g=\frac{\lambda r_{0} \rho d}{\sin \theta}
$$

if the layer is made up of unit cells with volume v_{c} and structure factor $F \xrightarrow{Q=0} Z$, the electron density is $\rho=|F| / v_{c}$ and
 using the Bragg condition, we can rewrite g as

$$
g=\frac{[2 d \sin \theta / m] r_{0}\left(|F| / v_{c}\right) d}{\sin \theta}=\frac{1}{m} \frac{2 d^{2} r_{0}}{v_{c}}|F|
$$

Dynamical diffraction - Darwin approach

$$
g=\frac{1}{m} \frac{2 d^{2} r_{0}}{v_{c}}|F|
$$

$$
\begin{aligned}
S & =-i g T \\
\left(1-i g_{0}\right) T & \approx e^{-i g_{0} T}
\end{aligned}
$$

Dynamical diffraction - Darwin approach

$$
g=\frac{1}{m} \frac{2 d^{2} r_{0}}{v_{c}}|F|
$$

since $v_{c} \sim d^{3}$ then $g \sim r_{0} / d \approx 10^{-5}$

$$
\begin{aligned}
S & =-i g T \\
\left(1-i g_{0}\right) T & \approx e^{-i g_{0} T}
\end{aligned}
$$

Dynamical diffraction - Darwin approach

$$
g=\frac{1}{m} \frac{2 d^{2} r_{0}}{v_{c}}|F|
$$

since $v_{c} \sim d^{3}$ then $g \sim r_{0} / d \approx 10^{-5}$
the transmitted beam depends on

$$
g_{0}=\frac{\lambda \rho_{a t} f^{0}(0) r_{0} \Delta}{\sin \theta}
$$

$$
\begin{aligned}
S & =-i g T \\
\left(1-i g_{0}\right) T & \approx e^{-i i_{0} T} T
\end{aligned}
$$

Dynamical diffraction - Darwin approach

$$
g=\frac{1}{m} \frac{2 d^{2} r_{0}}{v_{c}}|F|
$$

since $v_{c} \sim d^{3}$ then $g \sim r_{0} / d \approx 10^{-5}$
the transmitted beam depends on

$$
g_{0}=\frac{\lambda \rho_{a t} f^{0}(0) r_{0} \Delta}{\sin \theta}
$$

which can be rewritten

$$
g_{0}=\frac{\left|F_{0}\right|}{|F|} g
$$

$$
\begin{aligned}
S & =-i g T \\
\left(1-i g_{0}\right) T & \approx e^{-i g_{0} T}
\end{aligned}
$$

Dynamical diffraction - Darwin approach

$$
g=\frac{1}{m} \frac{2 d^{2} r_{0}}{v_{c}}|F|
$$

since $v_{c} \sim d^{3}$ then $g \sim r_{0} / d \approx 10^{-5}$
the transmitted beam depends on

$$
g_{0}=\frac{\lambda \rho_{a t} f^{0}(0) r_{0} \Delta}{\sin \theta}
$$

which can be rewritten

$$
g_{0}=\frac{\left|F_{0}\right|}{|F|} g
$$

$$
\begin{aligned}
S & =-i g T \\
\left(1-i g_{0}\right) T & \approx e^{-i g_{0} T}
\end{aligned}
$$

where F_{0} is the forward scattering factor at $Q=\theta=0$

Kinematical Reflection

If we now extend this model to N layers we can use this kinematical approximation if $N g \ll 1$.

Kinematical Reflection

If we now extend this model to N layers we can use this kinematical approximation if $N g \ll 1$.

Proceed by adding reflectivity from each layer with the usual phase factor

Kinematical Reflection

If we now extend this model to N layers we can use this kinematical approximation if $N g \ll 1$.

Proceed by adding reflectivity from each layer with the usual phase factor

$$
r_{N}(Q)=-i g \sum_{j=0}^{N-1} e^{i Q d j} e^{-i g_{0} j} e^{-i g_{0} j}
$$

Kinematical Reflection

If we now extend this model to N layers we can use this kinematical approximation if $N g \ll 1$.

Proceed by adding reflectivity from each layer with the usual phase factor

$$
r_{N}(Q)=-i g \sum_{j=0}^{N-1} e^{i Q d j} e^{-i g_{0} j} e^{-i g_{0} j}
$$

where the x -rays pass through each layer twice

Kinematical Reflection

If we now extend this model to N layers we can use this kinematical approximation if $N g \ll 1$.

Proceed by adding reflectivity from each layer with the usual phase factor

$$
r_{N}(Q)=-i g \sum_{j=0}^{N-1} e^{i Q d j} e^{-i g_{0} j} e^{-i g_{0} j}=-i g \sum_{j=0}^{N-1} e^{i\left(Q d-2 g_{0}\right) j}
$$

where the x -rays pass through each layer twice

Kinematical Reflection

If we now extend this model to N layers we can use this kinematical approximation if $N g \ll 1$.

Proceed by adding reflectivity from each layer with the usual phase factor

$$
r_{N}(Q)=-i g \sum_{j=0}^{N-1} e^{i Q d j} e^{-i g_{0} j} e^{-i g_{0} j}=-i g \sum_{j=0}^{N-1} e^{i\left(Q d-2 g_{0}\right) j}
$$

where the x-rays pass through each layer twice
these N unit cell layers will give a reciprocal lattice with points at multiples of $G=2 \pi / d$

Kinematical Reflection

If we now extend this model to N layers we can use this kinematical approximation if $N g \ll 1$.

Proceed by adding reflectivity from each layer with the usual phase factor

$$
r_{N}(Q)=-i g \sum_{j=0}^{N-1} e^{i Q d j} e^{-i g_{0} j} e^{-i g_{0} j}=-i g \sum_{j=0}^{N-1} e^{i\left(Q d-2 g_{0}\right) j}
$$

where the x-rays pass through each layer twice
these N unit cell layers will give a reciprocal lattice with points at multiples of $G=2 \pi / d$ we are interested in small deviations from the Bragg condition:

$$
\zeta=\frac{\Delta Q}{Q}=\frac{\Delta k}{k}=\frac{\Delta \mathcal{E}}{\mathcal{E}}=\frac{\Delta \lambda}{\lambda}
$$

Multiple Layer Reflection

$$
r_{N}(Q)=-i g \sum_{j=0}^{N-1} e^{i\left(Q d-2 g_{0}\right) j}
$$

Multiple Layer Reflection

The term in the phase factor now be-
comes

$$
Q d-2 g_{0}
$$

Multiple Layer Reflection

The term in the phase factor now be-

comes

$$
Q d-2 g_{0}=m G(1+\zeta) \frac{2 \pi}{G}-2 g_{0}
$$

Multiple Layer Reflection

The term in the phase factor now becomes

$$
\begin{aligned}
Q d-2 g_{0} & =m G(1+\zeta) \frac{2 \pi}{G}-2 g_{0} \\
& =2 \pi\left(m+m \zeta-\frac{g_{0}}{\pi}\right)
\end{aligned}
$$

Multiple Layer Reflection

The term in the phase factor now becomes

$$
\begin{aligned}
Q d-2 g_{0} & =m G(1+\zeta) \frac{2 \pi}{G}-2 g_{0} \\
& =2 \pi\left(m+m \zeta-\frac{g_{0}}{\pi}\right) \\
r_{N}(Q) & =-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m+m \zeta-g_{0} / \pi\right.}
\end{aligned}
$$

Multiple Layer Reflection

The term in the phase factor now becomes

$$
\begin{aligned}
Q d-2 g_{0} & =m G(1+\zeta) \frac{2 \pi}{G}-2 g_{0} \\
& =2 \pi\left(m+m \zeta-\frac{g_{0}}{\pi}\right) \\
r_{N}(Q) & =-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m+m \zeta-g_{0} / \pi\right.} \\
& =-i g \sum_{j=0}^{N-1} e^{i 2 \pi m j} e^{i 2 \pi\left(m \zeta-g_{0} / \pi\right)}
\end{aligned}
$$

Multiple Layer Reflection

The term in the phase factor now becomes

$$
\begin{aligned}
Q d-2 g_{0} & =m G(1+\zeta) \frac{2 \pi}{G}-2 g_{0} \\
& =2 \pi\left(m+m \zeta-\frac{g_{0}}{\pi}\right) \\
r_{N}(Q) & =-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m+m \zeta-g_{0} / \pi\right.} \\
& =-i g \sum_{j=0}^{N-1} e^{i 2 \pi m j} e^{i 2 \pi\left(m \zeta-g_{0} / \pi\right)} \\
& =-i g \sum_{j=0}^{N-1} 1 \cdot e^{i 2 \pi\left(m \zeta-g_{0} / \pi\right)}
\end{aligned}
$$

Multiple Layer Reflection

This geometric series can be summed as usual

$$
r_{N}(Q)=-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m \zeta-g_{0} / \pi\right)}
$$

Multiple Layer Reflection

This geometric series can be summed as usual

$$
\begin{aligned}
r_{N}(Q) & =-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m \zeta-g_{0} / \pi\right)} \\
\left|r_{N}(\zeta)\right| & =\left[\frac{\sin \left(\pi N\left[m \zeta-\zeta_{0}\right]\right)}{\sin \left(\pi\left[m \zeta-\zeta_{0}\right]\right)}\right]
\end{aligned}
$$

Multiple Layer Reflection

This geometric series can be summed as usual
where

$$
\begin{aligned}
\zeta_{0} & =\frac{g_{0}}{\pi} \\
& =\frac{2 d^{2}\left|F_{0}\right|}{\pi m v_{c}} r_{0}
\end{aligned}
$$

$$
\begin{aligned}
& r_{N}(Q)=-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m \zeta-g_{0} / \pi\right)} \\
& \left|r_{N}(\zeta)\right|=\left[\frac{\sin \left(\pi N\left[m \zeta-\zeta_{0}\right]\right)}{\sin \left(\pi\left[m \zeta-\zeta_{0}\right]\right)}\right]
\end{aligned}
$$

Multiple Layer Reflection

This geometric series can be summed as usual
where

$$
\begin{aligned}
\zeta_{0} & =\frac{g_{0}}{\pi} \\
& =\frac{2 d^{2}\left|F_{0}\right|}{\pi m v_{c}} r_{0}
\end{aligned}
$$

$$
\begin{aligned}
& r_{N}(Q)=-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m \zeta-g_{0} / \pi\right)} \\
& \left|r_{N}(\zeta)\right|=\left[\frac{\sin \left(\pi N\left[m \zeta-\zeta_{0}\right]\right)}{\sin \left(\pi\left[m \zeta-\zeta_{0}\right]\right)}\right]
\end{aligned}
$$

This describes a shift of the Bragg peak away from the reciprocal lattice point, the maximum being at $\zeta=\zeta_{0} / \mathrm{m}$

Multiple Layer Reflection

This geometric series can be summed as usual
where

$$
\begin{aligned}
\zeta_{0} & =\frac{g_{0}}{\pi} \\
& =\frac{2 d^{2}\left|F_{0}\right|}{\pi m v_{c}} r_{0}
\end{aligned}
$$

$$
\begin{aligned}
& r_{N}(Q)=-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m \zeta-g_{0} / \pi\right)} \\
& \left|r_{N}(\zeta)\right|=\left[\frac{\sin \left(\pi N\left[m \zeta-\zeta_{0}\right]\right)}{\sin \left(\pi\left[m \zeta-\zeta_{0}\right]\right)}\right]
\end{aligned}
$$

This describes a shift of the Bragg peak away from the reciprocal lattice point, the maximum being at $\zeta=\zeta_{0} / \mathrm{m}$

The kinematical approach now breaks down and we need to develop a new theory for dynamical diffraction.

Multiple Layer Reflection

This geometric series can be summed as usual
where

$$
\zeta_{0}=\frac{g_{0}}{\pi}
$$

$$
\begin{aligned}
& r_{N}(Q)=-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m \zeta-g_{0} / \pi\right)} \\
& \left|r_{N}(\zeta)\right|=\left[\frac{\sin \left(\pi N\left[m \zeta-\zeta_{0}\right]\right)}{\sin \left(\pi\left[m \zeta-\zeta_{0}\right]\right)}\right]
\end{aligned}
$$

$$
=\frac{2 d^{2}\left|F_{0}\right|}{\pi m v_{c}} r_{0}
$$

This describes a shift of the Bragg peak away from the reciprocal lattice point, the maximum being at $\zeta=\zeta_{0} / \mathrm{m}$

The kinematical approach now breaks down and we need to develop a new theory for dynamical diffraction.

First, let's explore how the intensity would vary using the kinematical expression

Multiple Layer Reflection

This geometric series can be summed as usual
where

$$
\zeta_{0}=\frac{g_{0}}{\pi}
$$

$$
=\frac{2 d^{2}\left|F_{0}\right|}{\pi m v_{c}} r_{0}
$$

$$
\begin{aligned}
r_{N}(Q) & =-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m \zeta-g_{0} / \pi\right)} \\
\left|r_{N}(\zeta)\right| & =\left[\frac{\sin \left(\pi N\left[m \zeta-\zeta_{0}\right]\right)}{\sin \left(\pi\left[m \zeta-\zeta_{0}\right]\right)}\right] \\
\left|r_{N}(\zeta)\right|^{2} & \rightarrow \frac{g^{2}}{2 \sin ^{2}\left(\pi\left[m \zeta-\zeta_{0}\right]\right)}
\end{aligned}
$$

This describes a shift of the Bragg peak away from the reciprocal lattice point, the maximum being at $\zeta=\zeta_{0} / \mathrm{m}$

The kinematical approach now breaks down and we need to develop a new theory for dynamical diffraction.

First, let's explore how the intensity would vary using the kinematical expression

Multiple Layer Reflection

This geometric series can be summed as usual
where

$$
\zeta_{0}=\frac{g_{0}}{\pi}
$$

$$
=\frac{2 d^{2}\left|F_{0}\right|}{\pi m v_{c}} r_{0}
$$

$$
\begin{aligned}
r_{N}(Q) & =-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m \zeta-g_{0} / \pi\right)} \\
\left|r_{N}(\zeta)\right| & =\left[\frac{\sin \left(\pi N\left[m \zeta-\zeta_{0}\right]\right)}{\sin \left(\pi\left[m \zeta-\zeta_{0}\right]\right)}\right] \\
\left|r_{N}(\zeta)\right|^{2} & \rightarrow \frac{g^{2}}{2\left(\pi\left[m \zeta-\zeta_{0}\right]\right)^{2}}
\end{aligned}
$$

This describes a shift of the Bragg peak away from the reciprocal lattice point, the maximum being at $\zeta=\zeta_{0} / \mathrm{m}$

The kinematical approach now breaks down and we need to develop a new theory for dynamical diffraction.

First, let's explore how the intensity would vary using the kinematical expression

Diffraction in the kinematical limit

Recall that in the kinematical limit, the diffraction from many atomic layers is given by

Diffraction in the kinematical limit

Recall that in the kinematical limit, the diffraction from many atomic layers is given by

$$
\left|r_{N}(\zeta)\right|^{2} \rightarrow \frac{g^{2}}{2\left(\pi\left[m \zeta-\zeta_{0}\right]\right)^{2}}
$$

Diffraction in the kinematical limit

Difference equation review

Difference equation review

$$
\frac{g=\frac{\lambda r_{0} \rho d}{\sin \theta}, \quad g_{0}=\frac{\left|F_{0}\right|}{|F|} g}{2} \quad \Delta=m \pi \zeta, \quad \zeta=\frac{\Delta \lambda}{\lambda}
$$

Difference equation review

$$
\begin{aligned}
& g=\frac{\lambda r_{0} \rho d}{\sin \theta}, \quad g_{0}=\frac{\left|F_{0}\right|}{|F|} g \\
& \Delta=m \pi \zeta, \quad \zeta=\frac{\Delta \lambda}{\lambda}
\end{aligned}
$$

Where g_{0} is the absorption due to a single atomic layer, g is the reflection coefficient from a single atomic layer, and Δ is the small deviation from the Bragg condition of the phase angle $\phi=m \pi+\Delta$.

Difference equation review

$$
\begin{aligned}
T_{j+1} & =e^{-\eta} e^{i m \pi} T_{j} \\
g & =\frac{\lambda r_{0} \rho d}{\sin \theta}, \quad g_{0}=\frac{\left|F_{0}\right|}{|F|} g \\
\Delta & =m \pi \zeta, \quad \zeta=\frac{\Delta \lambda}{\lambda}
\end{aligned}
$$

Where g_{0} is the absorption due to a single atomic layer, g is the reflection coefficient from a single atomic layer, and Δ is the small deviation from the Bragg condition of the phase angle $\phi=m \pi+\Delta$.

Difference equation review

$$
\begin{aligned}
& T_{j+1}=e^{-\eta} e^{i m \pi} T_{j} \\
& S_{j+1}=e^{-\eta} e^{i m \pi} S_{j}
\end{aligned}
$$

$$
g=\frac{\lambda r_{0} \rho d}{\sin \theta}, \quad g_{0}=\frac{\left|F_{0}\right|}{|F|} g
$$

$$
\Delta=m \pi \zeta, \quad \zeta=\frac{\Delta \lambda}{\lambda}
$$

Where g_{0} is the absorption due to a single atomic layer, g is the reflection coefficient from a single atomic layer, and Δ is the small deviation from the Bragg condition of the phase angle $\phi=m \pi+\Delta$.

Difference equation review

$$
\begin{aligned}
T_{j+1} & =e^{-\eta} e^{i m \pi} T_{j} \\
S_{j+1} & =e^{-\eta} e^{i m \pi} S_{j} \\
i \eta & = \pm \sqrt{\left(\Delta-g_{0}\right)^{2}-g^{2}} \\
g & =\frac{\lambda r_{0} \rho d}{\sin \theta}, \quad g_{0}=\frac{\left|F_{0}\right|}{|F|} g \\
\Delta & =m \pi \zeta, \quad \zeta=\frac{\Delta \lambda}{\lambda}
\end{aligned}
$$

Where g_{0} is the absorption due to a single atomic layer, g is the reflection coefficient from a single atomic layer, and Δ is the small deviation from the Bragg condition of the phase angle $\phi=m \pi+\Delta$.

Reflectivity of a perfect crystal

In order to calculate the absolute reflectivity curve, solve for S_{0} and T_{0} using the solution and the recursive relations.

Reflectivity of a perfect crystal

In order to calculate the absolute reflectivity curve, solve for S_{0} and T_{0} using the solution and the recursive relations.

$$
\begin{aligned}
S_{j+1} & =e^{-\eta} e^{i m \pi} S_{j} \\
S_{j} & =-i g T_{j}+\left(1-g_{0}\right) S_{j+1} e^{i \phi}
\end{aligned}
$$

Reflectivity of a perfect crystal

In order to calculate the absolute reflectivity curve, solve for S_{0} and T_{0} using the solution and the recursive relations.

$$
\begin{aligned}
S_{1} & =e^{-\eta} e^{i m \pi} S_{0} \\
S_{j} & =-i g T_{j}+\left(1-g_{0}\right) S_{j+1} e^{i \phi}
\end{aligned}
$$

Reflectivity of a perfect crystal

In order to calculate the absolute reflectivity curve, solve for S_{0} and T_{0} using the solution and the recursive relations.

$$
\begin{aligned}
S_{1} & =e^{-\eta} e^{i m \pi} S_{0} \\
S_{0} & =-i g T_{0}+\left(1-g_{0}\right) S_{1} e^{i \phi} \\
S_{0} & =-i g T_{0} \\
& +\left(1-g_{0}\right) S_{0} e^{-\eta} e^{i m \pi} e^{i m \pi} e^{i \Delta}
\end{aligned}
$$

Reflectivity of a perfect crystal

In order to calculate the absolute reflectivity curve, solve for S_{0} and T_{0} using the solution and the recursive relations.

$$
S_{0}\left[1-\left(1-g_{0}\right) e^{-\eta} e^{i 2 m \pi} e^{i \Delta}\right]=-i g T_{0}
$$

Reflectivity of a perfect crystal

In order to calculate the absolute reflectivity curve, solve for S_{0} and T_{0} using the solution and the recursive relations.

$$
\begin{aligned}
& S_{1}=e^{-\eta} e^{i m \pi} S_{0} \\
& S_{0}=-i g T_{0}+\left(1-g_{0}\right) S_{1} e^{i \phi}
\end{aligned}
$$

$$
S_{0}=-i g T_{0}
$$

$$
+\left(1-g_{0}\right) S_{0} e^{-\eta} e^{i m \pi} e^{i m \pi} e^{i \Delta}
$$

$$
S_{0}\left[1-\left(1-g_{0}\right) e^{-\eta} e^{i 2 m \pi} e^{i \Delta}\right]=-i g T_{0}
$$

$$
\frac{S_{0}}{T_{0}}=\frac{-i g}{1-\left(1-g_{0}\right) e^{-\eta} e^{i 2 m \pi} e^{i \Delta}}
$$

Reflectivity of a perfect crystal

In order to calculate the absolute reflectivity curve, solve for S_{0} and T_{0} using the solution and the recursive relations.

$$
\begin{aligned}
& S_{1}=e^{-\eta} e^{i m \pi} S_{0} \\
& S_{0}=-i g T_{0}+\left(1-g_{0}\right) S_{1} e^{i \phi}
\end{aligned}
$$

$$
S_{0}=-i g T_{0}
$$

$$
+\left(1-g_{0}\right) S_{0} e^{-\eta} e^{i m \pi} e^{i m \pi} e^{i \Delta}
$$

$S_{0}\left[1-\left(1-g_{0}\right) e^{-\eta} e^{i 2 m \pi} e^{i \Delta}\right]=-i g T_{0}$
$\frac{S_{0}}{T_{0}} \approx \frac{-i g}{1-\left(1-i g_{0}\right)(1-\eta)(1+i \Delta)} \approx \frac{-i g}{i g_{0}+\eta-i \Delta}$

Reflectivity of a perfect crystal

In order to calculate the absolute reflectivity curve, solve for S_{0} and T_{0} using the solution and the recursive relations.

$$
\begin{aligned}
& S_{1}=e^{-\eta} e^{i m \pi} S_{0} \\
& S_{0}=-i g T_{0}+\left(1-g_{0}\right) S_{1} e^{i \phi}
\end{aligned}
$$

$$
S_{0}=-i g T_{0}
$$

$$
+\left(1-g_{0}\right) S_{0} e^{-\eta} e^{i m \pi} e^{i m \pi} e^{i \Delta}
$$

$S_{0}\left[1-\left(1-g_{0}\right) e^{-\eta} e^{i 2 m \pi} e^{i \Delta}\right]=-i g T_{0}$

$$
\frac{S_{0}}{T_{0}} \approx \frac{-i g}{1-\left(1-i g_{0}\right)(1-\eta)(1+i \Delta)} \approx \frac{-i g}{i g_{0}+\eta-i \Delta}=\frac{g}{i \eta+\left(\Delta-g_{0}\right)}
$$

Darwin reflectivity curve

Darwin reflectivity curve

Standing waves

$\longleftarrow x=-1$
out of phase

Standing waves

$$
x=+1 \longrightarrow
$$

in phase

Absorption effects

Energy dependence

Polarization dependence

Harmonic suppression

The displacement of the Darwin curve varies inversely as the order, m, of the reflection.

Harmonic suppression

The displacement of the Darwin curve varies inversely as the order, m, of the reflection.

$$
\zeta_{0}=\frac{g_{0}}{\pi}=\frac{2 d^{2}\left|F_{0}\right| r_{0}}{\pi m v_{c}}
$$

Harmonic suppression

The displacement of the Darwin curve varies inversely as the order, m, of the reflection. The width varies as the inverse squared.

Harmonic suppression

The displacement of the Darwin curve varies inversely as the order, m, of the reflection. The width varies as the inverse squared.

$$
\begin{aligned}
\zeta_{0} & =\frac{g_{0}}{\pi}=\frac{2 d^{2}\left|F_{0}\right| r_{0}}{\pi m v_{c}} \\
\zeta_{D} & =\frac{2 g}{m \pi}=\frac{4 d^{2}|F| r_{0}}{\pi m^{2} v_{c}}
\end{aligned}
$$

By tuning to the center of a lower order reflection, the high orders can be effectively suppressed.

Harmonic suppression

The displacement of the Darwin curve varies inversely as the order, m, of the reflection. The width varies as the inverse squared.

$$
\begin{aligned}
\zeta_{0} & =\frac{g_{0}}{\pi}=\frac{2 d^{2}\left|F_{0}\right| r_{0}}{\pi m v_{c}} \\
\zeta_{D} & =\frac{2 g}{m \pi}=\frac{4 d^{2}|F| r_{0}}{\pi m^{2} v_{c}}
\end{aligned}
$$

By tuning to the center of a lower order reflection, the high orders can be effectively suppressed.

By tuning a bit off on the "high" side we get even more suppression. This is called "detuning".

Angular offset

We can calculate the angular offset by noting that the offset and width have many common factors.

$$
\begin{aligned}
\zeta_{0} & =\frac{2 d^{2}\left|F_{0}\right| r_{0}}{\pi m v_{c}} \\
\zeta_{D} & =\frac{4 d^{2}|F| r_{0}}{\pi m^{2} v_{c}}
\end{aligned}
$$

Angular offset

We can calculate the angular offset by noting that the offset and width have many common factors.

$$
\begin{aligned}
\zeta_{0} & =\frac{2 d^{2}\left|F_{0}\right| r_{0}}{\pi m v_{c}} \\
\zeta_{D} & =\frac{4 d^{2}|F| r_{0}}{\pi m^{2} v_{c}} \\
\zeta^{o f f} & =\frac{\zeta_{0}}{m}=\frac{\zeta_{D}}{2} \frac{|F|}{\left|F_{0}\right|}
\end{aligned}
$$

Angular offset

We can calculate the angular offset by noting that the offset and width have many common factors. Converting this to an angular offset.

$$
\begin{aligned}
\zeta_{0} & =\frac{2 d^{2}\left|F_{0}\right| r_{0}}{\pi m v_{c}} \\
\zeta_{D} & =\frac{4 d^{2}|F| r_{0}}{\pi m^{2} v_{c}} \\
\zeta^{\text {off }} & =\frac{\zeta_{0}}{m}=\frac{\zeta_{D}}{2} \frac{|F|}{\left|F_{0}\right|} \\
\Delta \theta^{\text {off }} & =\frac{\zeta_{D}}{2} \frac{|F|}{\left|F_{0}\right|} \tan \theta
\end{aligned}
$$

Angular offset

We can calculate the angular offset by noting that the offset and width have many common factors. Converting this to an angular offset.

$$
\begin{aligned}
\zeta_{0} & =\frac{2 d^{2}\left|F_{0}\right| r_{0}}{\pi m v_{c}} \\
\zeta_{D} & =\frac{4 d^{2}|F| r_{0}}{\pi m^{2} v_{c}} \\
\zeta^{\text {off }} & =\frac{\zeta_{0}}{m}=\frac{\zeta_{D}}{2} \frac{|F|}{\left|F_{0}\right|} \\
\Delta \theta^{\text {off }} & =\frac{\zeta_{D}}{2} \frac{|F|}{\left|F_{0}\right|} \tan \theta
\end{aligned}
$$

For the $\operatorname{Si}(111)$ at $\lambda=1.54056 \AA$

Angular offset

We can calculate the angular offset by noting that the offset and width have many common factors. Converting this to an angular offset.

$$
\begin{aligned}
\zeta_{0} & =\frac{2 d^{2}\left|F_{0}\right| r_{0}}{\pi m v_{c}} \\
\zeta_{D} & =\frac{4 d^{2}|F| r_{0}}{\pi m^{2} v_{c}} \\
\zeta^{\text {off }} & =\frac{\zeta_{0}}{m}=\frac{\zeta_{D}}{2} \frac{|F|}{\left|F_{0}\right|} \\
\Delta \theta^{\text {off }} & =\frac{\zeta_{D}}{2} \frac{|F|}{\left|F_{0}\right|} \tan \theta
\end{aligned}
$$

For the $\mathrm{Si}(111)$ at $\lambda=1.54056 \AA$

$$
\omega_{D}^{\text {total }}=0.0020^{\circ}
$$

Angular offset

We can calculate the angular offset by noting that the offset and width have many common factors. Converting this to an angular offset.

$$
\begin{aligned}
\zeta_{0} & =\frac{2 d^{2}\left|F_{0}\right| r_{0}}{\pi m v_{c}} \\
\zeta_{D} & =\frac{4 d^{2}|F| r_{0}}{\pi m^{2} v_{c}} \\
\zeta^{\text {off }} & =\frac{\zeta_{0}}{m}=\frac{\zeta_{D}}{2} \frac{|F|}{\left|F_{0}\right|} \\
\Delta \theta^{\text {off }} & =\frac{\zeta_{D}}{2} \frac{|F|}{\left|F_{0}\right|} \tan \theta
\end{aligned}
$$

For the $\mathrm{Si}(111)$ at $\lambda=1.54056 \AA$

$$
\omega_{D}^{\text {total }}=0.0020^{\circ} \quad \Delta \theta^{\text {off }}=0.0018^{\circ}
$$

Darwin widths

	$\zeta_{\mathrm{D}}^{\text {FWHM }} \times 10^{6}$								
	(111)			(220)			(400)		
$\begin{gathered} \text { Diamond } \\ a=3.5670 \AA \end{gathered}$	61.0			20.9			8.5		
	3.03	0.018	-0.01	1.96	0.018	-0.01	1.59	0.018	-0.01
$\begin{gathered} \text { Silicon } \\ a=5.4309 \AA \end{gathered}$	139.8			61.1			26.3		
	10.54	0.25	-0.33	8.72	0.25	-0.33	7.51	0.25	-0.33
Germanium$a=5.6578 \AA$	347.2			160.0			68.8		
	27.36	-1.1	-0.89	23.79	-1.1	-0.89	20.46	-1.1	-0.89

the quantities below the widths are $f^{0}(Q), f^{\prime}$, and $f^{\prime \prime}$ (for $\lambda=1.5405 \AA$). For an angular width, multiply times $\tan \theta$ and for π polarization, multiply by $\cos (2 \theta)$.

