
Today’s Outline - October 26, 2016

• Bragg & Laue geometries

• Kinematical approach for many layers

• Dynamical diffraction theory

• Characteristics of the Darwin curve

• Asymmetric reflections

• Dumond diagrams

• Monochromators

Homework Assignment #05:
Chapter 5: 1, 3, 7, 9, 10
due Wednesday, November 02, 2016

Friday, October 28 APS visit is cancelled!

C. Segre (IIT) PHYS 570 - Fall 2016 October 26, 2016 1 / 20



Today’s Outline - October 26, 2016

• Bragg & Laue geometries

• Kinematical approach for many layers

• Dynamical diffraction theory

• Characteristics of the Darwin curve

• Asymmetric reflections

• Dumond diagrams

• Monochromators

Homework Assignment #05:
Chapter 5: 1, 3, 7, 9, 10
due Wednesday, November 02, 2016

Friday, October 28 APS visit is cancelled!

C. Segre (IIT) PHYS 570 - Fall 2016 October 26, 2016 1 / 20



Today’s Outline - October 26, 2016

• Bragg & Laue geometries

• Kinematical approach for many layers

• Dynamical diffraction theory

• Characteristics of the Darwin curve

• Asymmetric reflections

• Dumond diagrams

• Monochromators

Homework Assignment #05:
Chapter 5: 1, 3, 7, 9, 10
due Wednesday, November 02, 2016

Friday, October 28 APS visit is cancelled!

C. Segre (IIT) PHYS 570 - Fall 2016 October 26, 2016 1 / 20



Today’s Outline - October 26, 2016

• Bragg & Laue geometries

• Kinematical approach for many layers

• Dynamical diffraction theory

• Characteristics of the Darwin curve

• Asymmetric reflections

• Dumond diagrams

• Monochromators

Homework Assignment #05:
Chapter 5: 1, 3, 7, 9, 10
due Wednesday, November 02, 2016

Friday, October 28 APS visit is cancelled!

C. Segre (IIT) PHYS 570 - Fall 2016 October 26, 2016 1 / 20



Today’s Outline - October 26, 2016

• Bragg & Laue geometries

• Kinematical approach for many layers

• Dynamical diffraction theory

• Characteristics of the Darwin curve

• Asymmetric reflections

• Dumond diagrams

• Monochromators

Homework Assignment #05:
Chapter 5: 1, 3, 7, 9, 10
due Wednesday, November 02, 2016

Friday, October 28 APS visit is cancelled!

C. Segre (IIT) PHYS 570 - Fall 2016 October 26, 2016 1 / 20



Today’s Outline - October 26, 2016

• Bragg & Laue geometries

• Kinematical approach for many layers

• Dynamical diffraction theory

• Characteristics of the Darwin curve

• Asymmetric reflections

• Dumond diagrams

• Monochromators

Homework Assignment #05:
Chapter 5: 1, 3, 7, 9, 10
due Wednesday, November 02, 2016

Friday, October 28 APS visit is cancelled!

C. Segre (IIT) PHYS 570 - Fall 2016 October 26, 2016 1 / 20



Today’s Outline - October 26, 2016

• Bragg & Laue geometries

• Kinematical approach for many layers

• Dynamical diffraction theory

• Characteristics of the Darwin curve

• Asymmetric reflections

• Dumond diagrams

• Monochromators

Homework Assignment #05:
Chapter 5: 1, 3, 7, 9, 10
due Wednesday, November 02, 2016

Friday, October 28 APS visit is cancelled!

C. Segre (IIT) PHYS 570 - Fall 2016 October 26, 2016 1 / 20



Today’s Outline - October 26, 2016

• Bragg & Laue geometries

• Kinematical approach for many layers

• Dynamical diffraction theory

• Characteristics of the Darwin curve

• Asymmetric reflections

• Dumond diagrams

• Monochromators

Homework Assignment #05:
Chapter 5: 1, 3, 7, 9, 10
due Wednesday, November 02, 2016

Friday, October 28 APS visit is cancelled!

C. Segre (IIT) PHYS 570 - Fall 2016 October 26, 2016 1 / 20



Today’s Outline - October 26, 2016

• Bragg & Laue geometries

• Kinematical approach for many layers

• Dynamical diffraction theory

• Characteristics of the Darwin curve

• Asymmetric reflections

• Dumond diagrams

• Monochromators

Homework Assignment #05:
Chapter 5: 1, 3, 7, 9, 10
due Wednesday, November 02, 2016

Friday, October 28 APS visit is cancelled!

C. Segre (IIT) PHYS 570 - Fall 2016 October 26, 2016 1 / 20



Kinematical vs. dynamical diffraction

The kinematical approximation we have discussed so far applies to mosaic
crystals. The size of the crystal is small enough that the wave field of the
x-rays does not vary appreciably over the crystal.

For a perfect crystal, such as those used in monochromators, things are
very different and we have to treat them specially using dynamical
diffraction theory.

This theory takes into account multiple reflections, and attenuation of the
x-ray beam as it propagates through the perfect crystal.
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Scattering geometry

Consider symmetric Bragg geometry

We expect the crystal to diffract in an
energy bandwidth defined by ∆k

This defines a spread of scattering vec-
tors such that

ζ =
∆Q

Q
=

∆k

k

called the relative energy or wavelength
bandwidth

Q=mG

∆k

Q=mG(1+ζ)
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Dynamical diffraction - Darwin approach

The Darwin approach treats a perfect
crystal as an infinite stack of atomic
planes.

Considering a single thin slab with elec-
tron density ρ and thickness d � λ, the
reflected and transmitted waves are

where

g =
λr0ρd

sin θ

if the layer is made up of unit cells with

volume vc and structure factor F
Q=0−−−→ Z ,

the electron density is ρ = |F |/vc and
using the Bragg condition, we can rewrite
g as

d

T S

θθ

S = −igT
(1− ig0)T ≈ e−ig0T

g =
[2d sin θ/m]r0(|F |/vc )d

sin θ
=

1

m

2d2r0
vc
|F |
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Dynamical diffraction - Darwin approach

g =
1

m

2d2r0
vc
|F |

since vc ∼ d3 then g ∼ r0/d ≈ 10−5

the transmitted beam depends on

g0 =
λρat f

0(0)r0∆

sin θ

which can be rewritten

g0 =
|F0|
|F |

g

where F0 is the forward scattering factor
at Q = θ = 0

d

T S

θθ

S = −igT
(1− ig0)T ≈ e−ig0T
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Kinematical Reflection

If we now extend this model to N layers we can use this kinematical
approximation if Ng � 1.

Proceed by adding reflectivity from each layer with the usual phase factor

rN(Q) = −ig
N−1∑
j=0

e iQdje−ig0je−ig0j = −ig
N−1∑
j=0

e i(Qd−2g0)j

Q=mG

∆k

Q=mG(1+ζ) where the x-rays pass through each layer
twice

these N unit cell layers will give a recip-
rocal lattice with points at multiples of
G = 2π/d we are interested in small de-
viations from the Bragg condition:

ζ =
∆Q

Q
=

∆k

k
=

∆E
E

=
∆λ

λ
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Multiple Layer Reflection

rN(Q) = −ig
N−1∑
j=0

e i(Qd−2g0)j

Q=mG

∆k

Q=mG(1+ζ)

The term in the phase factor now be-
comes

Qd − 2g0 = mG (1 + ζ)
2π

G
− 2g0

= 2π(m + mζ − g0

π
)

rN(Q) = −ig
N−1∑
j=0

e i2π(m+mζ−g0/π

= −ig
N−1∑
j=0

e i2πmje i2π(mζ−g0/π)

= −ig
N−1∑
j=0

1 · e i2π(mζ−g0/π)
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Multiple Layer Reflection

This geometric series can be
summed as usual

where

ζ0 =
g0

π

=
2d2|F0|
πmvc

r0

rN(Q) = −ig
N−1∑
j=0

e i2π(mζ−g0/π)

|rN(ζ)| =

[
sin(πN[mζ − ζ0])

sin(π[mζ − ζ0])

]
|rN(ζ)|2 → g2

2(π[mζ − ζ0])2

This describes a shift of the Bragg peak away from the reciprocal lattice
point, the maximum being at ζ = ζ0/m

The kinematical approach now breaks down and we need to develop a new
theory for dynamical diffraction.

First, let’s explore how the intensity would vary using the kinematical
expression
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Diffraction in the kinematical limit

Recall that in the
kinematical limit, the
diffraction from many
atomic layers is given
by

|rN(ζ)|2 → g2

2(π[mζ − ζ0])2
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Difference equation review

Tj Sj

M

A’A

T   ej+1
-iϕ S   ej+1

+iϕ

Tj+1 = e−ηe imπTj

Sj+1 = e−ηe imπSj

iη = ±
√

(∆− g0)2 − g2

g =
λr0ρd

sin θ
, g0 =

|F0|
|F |

g

∆ = mπζ, ζ =
∆λ

λ

Where g0 is the absorption due to a single atomic layer, g is the reflection
coefficient from a single atomic layer, and ∆ is the small deviation from
the Bragg condition of the phase angle φ = mπ + ∆.
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Reflectivity of a perfect crystal

In order to calculate the absolute reflectivity curve, solve for S0 and T0

using the solution and the recursive relations.

d

T0 S0

Tj Sj

Tj+1 Sj+1

j

j+1

S1 = e−ηe imπS0

S0 = −igT0 + (1− g0)S1e
iφ

S0 = −igT0

+ (1− g0)S0e
−ηe imπe imπe i∆

S0

[
1− (1− g0)e−ηe i2mπe i∆

]
= −igT0

S0

T0
≈ −ig

1− (1− ig0)(1− η)(1 + i∆)
≈ −ig

ig0 + η − i∆
=

g

iη + (∆− g0)
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Darwin reflectivity curve

r =
S0

T0
=

g

iη + ε
=

g

ε±
√
ε2 − g2

, ε = ∆− g0 = mπζ − πζ0
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Standing waves

←− x = −1
out of phase

x = +1 −→
in phase
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Absorption effects
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Energy dependence
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Polarization dependence
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Harmonic suppression

The displacement of the Darwin curve varies inversely as the order, m, of
the reflection.

The width varies as the inverse squared.

ζ0 =
g0

π
=

2d2|F0|r0
πmvc

ζD =
2g

mπ
=

4d2|F |r0
πm2vc

By tuning to the center
of a lower order reflec-
tion, the high orders can
be effectively suppressed.

By tuning a bit off on the “high” side we get even more suppression. This
is called “detuning”.

C. Segre (IIT) PHYS 570 - Fall 2016 October 26, 2016 18 / 20



Harmonic suppression

The displacement of the Darwin curve varies inversely as the order, m, of
the reflection.

The width varies as the inverse squared.

ζ0 =
g0

π
=

2d2|F0|r0
πmvc

ζD =
2g

mπ
=

4d2|F |r0
πm2vc

By tuning to the center
of a lower order reflec-
tion, the high orders can
be effectively suppressed.

By tuning a bit off on the “high” side we get even more suppression. This
is called “detuning”.

C. Segre (IIT) PHYS 570 - Fall 2016 October 26, 2016 18 / 20



Harmonic suppression

The displacement of the Darwin curve varies inversely as the order, m, of
the reflection. The width varies as the inverse squared.

ζ0 =
g0

π
=

2d2|F0|r0
πmvc

ζD =
2g

mπ
=

4d2|F |r0
πm2vc

By tuning to the center
of a lower order reflec-
tion, the high orders can
be effectively suppressed.

By tuning a bit off on the “high” side we get even more suppression. This
is called “detuning”.

C. Segre (IIT) PHYS 570 - Fall 2016 October 26, 2016 18 / 20



Harmonic suppression

The displacement of the Darwin curve varies inversely as the order, m, of
the reflection. The width varies as the inverse squared.

ζ0 =
g0

π
=

2d2|F0|r0
πmvc

ζD =
2g

mπ
=

4d2|F |r0
πm2vc

By tuning to the center
of a lower order reflec-
tion, the high orders can
be effectively suppressed.

By tuning a bit off on the “high” side we get even more suppression. This
is called “detuning”.

C. Segre (IIT) PHYS 570 - Fall 2016 October 26, 2016 18 / 20



Harmonic suppression

The displacement of the Darwin curve varies inversely as the order, m, of
the reflection. The width varies as the inverse squared.

ζ0 =
g0

π
=

2d2|F0|r0
πmvc

ζD =
2g

mπ
=

4d2|F |r0
πm2vc

By tuning to the center
of a lower order reflec-
tion, the high orders can
be effectively suppressed.

By tuning a bit off on the “high” side we get even more suppression. This
is called “detuning”.

C. Segre (IIT) PHYS 570 - Fall 2016 October 26, 2016 18 / 20



Angular offset

We can calculate the angular offset by noting that the offset and width
have many common factors.

Converting this to an angular offset.

ζ0 =
2d2|F0|r0
πmvc

ζD =
4d2|F |r0
πm2vc

ζoff =
ζ0

m
=
ζD

2

|F |
|F0|

∆θoff =
ζD

2

|F |
|F0|

tan θ

For the Si(111) at λ = 1.54056Å

ωtotal
D = 0.0020◦ ∆θoff = 0.0018◦
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have many common factors.
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Darwin widths

the quantities below the widths are f 0(Q), f ′, and f ′′ (for
λ = 1.5405 Å). For an angular width, multiply times tan θ
and for π polarization, multiply by cos(2θ).
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