
Today’s Outline - October 24, 2016

• Modulated structures

• Lattice vibrations

• Powder diffraction

• Bragg & Laue geometries

• Reflection for a Single Layer

• Kinematical Approach for Many Layers

• Darwin Curve

• Dynamical Diffraction Theory

Homework Assignment #05:
Chapter 5: 1, 3, 7, 9, 10
due Wednesday, November 02, 2016

No class on Wednesday, November 9, 2016
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Modulated structures

By definition crystals have always been considered to have long range
order.

However, it is common to see structures where the positions of the atoms
is modulated (e.g. charge density waves, magnetic lattices, etc.) according
to xn = an + u cos(qan), where: a is the lattice parameter, u is the
amplitude of the displacement, and q = 2π/λm is the wave vector of the
modulation.

If λm is a multiple or a rational fraction of a, it is called a commensurate
modulation but if λm = ca, where c is an irrational number, then it is an
incommensurate modulation.
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Diffraction from a modulation

For simple a 1D modulated
structure, we can compute
the scattering

assuming

xn = an + u cos(qan)

and that the scattering factor
for each atom is set to unity

for the displacement u small,
this becomes

A(Q) =
N−1∑
n=0

e iQxn =
N−1∑
n=0

e iQ(an+cos(qan))

=
N−1∑
n=0

e iQane iQu cos(qan))

A(Q) ≈
N−1∑
n=0

e iQan [1 + iQu cos(qan) + · · · ]

A(Q) ≈
N−1∑
n=0

e iQan + i

(
Qu

2

)[
e i(Q+q)an + e−i(Q−q)an

]
I (Q) = N

(
2π

a

)∑
h

δ(Q−Gh) +

(
Qu

2

)2 [
δ(Q+q−Gh) + δ(Q−q−Gh)

]
the diffraction pattern has main Bragg peaks plus satellite peaks
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Quasiperiodic scattering

I (Q) = N

(
2π

a

)∑
h

δ(Q−Gh) +

(
Qu

2

)2 [
δ(Q+q−Gh) + δ(Q−q−Gh)

]

This kind of scattering pat-
tern holds for both commen-
surate and incommensurate
modulations and there are
multiple satellites around the
Q = 0 as well as every main
peak

If the modulation of the
structure is a multiple of the
lattice parameter, the modu-
lation is simply a superlattice
and the actual lattice param-
eter will be changed.

Q [2π/a]
0 1 2

In
te

n
s
it
y

10
0

10
4

10
6

10
2

q
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Quasicrystals

The only rotational symmetries which permit a space-filling lattice are 2-,
3-, 4-, and 6-fold.

In 1984, D. Schechtman and co-workers reported the first observation of a
“crystal” with long range order but no translational symmetry in rapidly
cooled Al86Mn14.

Initially this result was not accepted but as many new materials with the
same were discovered it was clear that a new kind of crystal had been
discovered.

In 2011 Shechtman was awarded the Nobel Prize in Chemistry

C. Segre (IIT) PHYS 570 - Fall 2016 October 24, 2016 5 / 20



Quasicrystals

The only rotational symmetries which permit a space-filling lattice are 2-,
3-, 4-, and 6-fold.

In 1984, D. Schechtman and co-workers reported the first observation of a
“crystal” with long range order but no translational symmetry in rapidly
cooled Al86Mn14.

Initially this result was not accepted but as many new materials with the
same were discovered it was clear that a new kind of crystal had been
discovered.

In 2011 Shechtman was awarded the Nobel Prize in Chemistry

C. Segre (IIT) PHYS 570 - Fall 2016 October 24, 2016 5 / 20



Quasicrystals

The only rotational symmetries which permit a space-filling lattice are 2-,
3-, 4-, and 6-fold.

In 1984, D. Schechtman and co-workers reported the first observation of a
“crystal” with long range order but no translational symmetry in rapidly
cooled Al86Mn14.

Initially this result was not accepted but as many new materials with the
same were discovered it was clear that a new kind of crystal had been
discovered.

In 2011 Shechtman was awarded the Nobel Prize in Chemistry

C. Segre (IIT) PHYS 570 - Fall 2016 October 24, 2016 5 / 20



Quasicrystals

The only rotational symmetries which permit a space-filling lattice are 2-,
3-, 4-, and 6-fold.

In 1984, D. Schechtman and co-workers reported the first observation of a
“crystal” with long range order but no translational symmetry in rapidly
cooled Al86Mn14.

Initially this result was not accepted but as many new materials with the
same were discovered it was clear that a new kind of crystal had been
discovered.

In 2011 Shechtman was awarded the Nobel Prize in Chemistry

C. Segre (IIT) PHYS 570 - Fall 2016 October 24, 2016 5 / 20



Quasicrystals

The only rotational symmetries which permit a space-filling lattice are 2-,
3-, 4-, and 6-fold.

In 1984, D. Schechtman and co-workers reported the first observation of a
“crystal” with long range order but no translational symmetry in rapidly
cooled Al86Mn14.

Initially this result was not accepted but as many new materials with the
same were discovered it was clear that a new kind of crystal had been
discovered.

In 2011 Shechtman was awarded the Nobel Prize in Chemistry

C. Segre (IIT) PHYS 570 - Fall 2016 October 24, 2016 5 / 20



Quasicrystals

The only rotational symmetries which permit a space-filling lattice are 2-,
3-, 4-, and 6-fold.

In 1984, D. Schechtman and co-workers reported the first observation of a
“crystal” with long range order but no translational symmetry in rapidly
cooled Al86Mn14.

Initially this result was not accepted but as many new materials with the
same were discovered it was clear that a new kind of crystal had been
discovered.

In 2011 Shechtman was awarded the Nobel Prize in Chemistry

C. Segre (IIT) PHYS 570 - Fall 2016 October 24, 2016 5 / 20



Quasicrystals

The only rotational symmetries which permit a space-filling lattice are 2-,
3-, 4-, and 6-fold.

In 1984, D. Schechtman and co-workers reported the first observation of a
“crystal” with long range order but no translational symmetry in rapidly
cooled Al86Mn14.

Initially this result was not accepted but as many new materials with the
same were discovered it was clear that a new kind of crystal had been
discovered.

In 2011 Shechtman was awarded the Nobel Prize in Chemistry

C. Segre (IIT) PHYS 570 - Fall 2016 October 24, 2016 5 / 20



5-fold symmetry

The electron micrographs
show that there must be long
range order to be able to get
such sharp diffraction peaks

The 5-fold symmetry is ev-
ident in the 10 spots sur-
rounding the center of the
left image and the pentago-
nal arrangements of atoms in
the image on the right.

This metastable phase was also found with Fe and Cr in the place of Mn.

Other groups have discovered stable icosahedral phases with three and two
elements.

“Metallic phase with long-range orientational order and no translational symmetry,” D. Shechtman, I. Blech, D. Gratias, and
J.W. Cahn, Phys. Rev. Lett. 53, 1951-1953 (1984)
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elements.

“Metallic phase with long-range orientational order and no translational symmetry,” D. Shechtman, I. Blech, D. Gratias, and
J.W. Cahn, Phys. Rev. Lett. 53, 1951-1953 (1984)
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Quasicrystal diffraction patterns

The Al65Cu20Fe15 system was one of the first stable quasicrystals to be
discovered. Later discovery of stable quasicrystals in the Ta-Te, Cd-Ca,
and Cd-Yb systems enabled large crystals to be grown.

The diffraction pattern and
SEM images show the hall-
mark of an icosahedral crystal

“A stable quasicrystal in Al-Cu-Fe system,” A.-P. Tsai, A. Inoue, and T. Masumoto, Jap. J. Appl. Phys. 26, L1505 (1987)
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Lattice Vibrations

Atoms on a lattice are not rigid but vibrate. There is zero-point motion as
well as thermal motion. These vibrations influence the x-ray scattering.

For a 1D lattice, we replace the position of the atom with its
instantaneous position, ~Rn + ~un where ~un is the displacement from the
equilibrium position, ~Rn. Computing the intensity:

I =

〈∑
m

f (~Q)e i
~Q·(~Rm+~um)

∑
n

f ∗(~Q)e−i
~Q·(~Rn+~un)

〉
=
∑
m

∑
n

f (~Q)f ∗(~Q)e i
~Q·(~Rm−~Rn)

〈
e i
~Q·(~um−~un)

〉
The last term is a time average which can be simplified using the
Baker-Hausdorff theorem,

〈
e ix
〉

= e−〈x
2〉/2〈

e i
~Q·(~um−~un)

〉
=
〈
e iQ(uQm−uQn)

〉
= e−〈Q

2(uQm−uQn)2〉/2
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Lattice Vibrations

〈
e iQ(uQm−uQn)

〉
= e−Q

2〈u2
Qm〉/2e−Q

2〈u2
Qn〉/2eQ

2〈uQmuQn〉

= e−Q
2〈u2

Q〉eQ
2〈uQmuQn〉 = e−2MeQ

2〈uQmuQn〉

= e−2M
[
1 + eQ

2〈uQmuQn〉 − 1
]

Substituting into the expression for intensity

I =
∑
m

∑
n

f (~Q)e−Me i
~Q·~Rm f ∗(~Q)e−Me−i

~Q·~Rn

+
∑
m

∑
n

f (~Q)e−Me i
~Q·~Rm f ∗(~Q)e−Me−i

~Q·~Rn

[
eQ

2〈uQmuQn〉 − 1
]

The first term is just the elastic scattering from the lattice with the

addition of the term e−M = e−Q
2〈u2

Q〉/2, called the Debye-Waller factor.

The second term is the Thermal Diffuse Scattering and actually increases
with mean squared displacement.
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Thermal Diffuse Scattering

ITDS =
∑
m

∑
n

f (~Q)e−Me i
~Q·~Rm f ∗(~Q)e−Me−i

~Q·~Rn

[
eQ

2〈uQmuQn〉 − 1
]

The TDS has a width deter-
mined by the correlated dis-
placement of atoms which is
much broader than a Bragg
peak.

These correlated motions are
just phonons.

A 0.5mm Si wafer illumi-
nated by 28keV x-rays from
an APS undulator were used
to measure the phonon dis-
persion curves of silicon

incident beam along (100)

M. Holt, et al. Phys. Rev. Lett. 83, 3317 (1999).
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]

The TDS has a width deter-
mined by the correlated dis-
placement of atoms which is
much broader than a Bragg
peak.
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Properties of the Debye-Waller Factor

For crystals with several different
types of atoms, we generalize the
unit cell scattering factor.

B j
T = 8π2〈u2

Qj〉

for isotropic atomic vibrations

〈u2〉 = 〈u2
x + u2

y + u2
z 〉

= 3〈u2
x 〉 = 3〈u2

Q〉

F u.c. =
∑
j

fj(~Q)e−Mj e i
~Q·~rj

Mj =
1

2
Q2〈u2

Qj〉

=
1

2

(
4π

λ

)2

sin2 θ〈u2
Qj〉

Mj = B j
T

(
sin θ

λ

)2

B iso
T =

8π2

3
〈u2〉

In general, Debye-Waller factors can be anisotropic
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The Debye Model

The Debye model can be used to
compute BT by integrating a lin-
ear phonon dispersion relation up
to a cutoff frequency, ωD , called
the Debye frequency.

BT is given as a function of the
Debye temperature Θ.

BT =
6h2

mAkBΘ

[
φ(Θ/T )

Θ/T
+

1

4

]
φ(x) =

1

x

∫ Θ/T

0

ξ

eξ − 1
dξ

BT [Å
2
] =

11492T[K]

AΘ2[K2]
φ(Θ/T) +

2873

AΘ[K]
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Debye Temperatures

BT =
11492T

AΘ2
φ(Θ/T )

+
2873

AΘ

diamond is very stiff and Θ
does not vary much with
temperature

copper has a much lower
Debye temperature and a
wider variation of thermal
factor with temperature

A Θ B4.2 B77 B293

(K) (Å2)

C∗ 12 2230 0.11 0.11 0.12
Al 27 428 0.25 0.30 0.72
Cu 63.5 343 0.13 0.17 0.47
∗diamond
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Powder diffraction
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CaO-CaO2 reaction kinetics

CaO is a possible material to be used for carbon sequestration

CaO will absorb CO2 at temperatures as low as 450◦C forming CaCO3 and
can be regenerated by calcination at temperatures above 700◦C

It is important to understand the fundamental reaction kinetics of thse
processes in order to be able to design carbon sequestration procedures.

Measurements heretofore have been performed in TGA systems which have
fundamental mass flow limitations. These experiments were performed at
Sector 17-BM of the APS. Samples were loaded in quartz capillaries and a
2D area detector was used to take snaps at up to 0.25s/frame.

Rietveld refinement was used to measure the lattice parameters, crystallite
sizes and phase fractions during carbonation and calcination cycles

A. Biasin, C.U. Segre, G. Salviulo, F. Zorzi, and M. Strumendo, Chemical Eng. Sci.
127, 13-24 (2015)
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CaO-CaO2 reaction kinetics
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CaO-CaO2 reaction kinetics

Final conversion fraction de-
pends on temperature but
also some other parameter
(what?)
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CaO-CaO2 reaction kinetics

Reaction kinetics much
faster than previously
observed (0.28/s)
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CaO-CaO2 reaction kinetics
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CaO-CaO2 reaction kinetics

Initial crystallite size is one of the determining factors in inital rate
of conversion and fraction converted.

CaO crystallite size can be related to porosity which is key to the
conversion process.
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