
Today’s Outline - October 17, 2016

• Final project

• Structure factors

• Ewald construction

• Incommensurate crystals

Homework Assignment #04:
Chapter 4: 2, 4, 6, 7, 10
due Monday, October 24, 2016

C. Segre (IIT) PHYS 570 - Fall 2016 October 17, 2016 1 / 19



Today’s Outline - October 17, 2016

• Final project

• Structure factors

• Ewald construction

• Incommensurate crystals

Homework Assignment #04:
Chapter 4: 2, 4, 6, 7, 10
due Monday, October 24, 2016

C. Segre (IIT) PHYS 570 - Fall 2016 October 17, 2016 1 / 19



Today’s Outline - October 17, 2016

• Final project

• Structure factors

• Ewald construction

• Incommensurate crystals

Homework Assignment #04:
Chapter 4: 2, 4, 6, 7, 10
due Monday, October 24, 2016

C. Segre (IIT) PHYS 570 - Fall 2016 October 17, 2016 1 / 19



Today’s Outline - October 17, 2016

• Final project

• Structure factors

• Ewald construction

• Incommensurate crystals

Homework Assignment #04:
Chapter 4: 2, 4, 6, 7, 10
due Monday, October 24, 2016

C. Segre (IIT) PHYS 570 - Fall 2016 October 17, 2016 1 / 19



Today’s Outline - October 17, 2016

• Final project

• Structure factors

• Ewald construction

• Incommensurate crystals

Homework Assignment #04:
Chapter 4: 2, 4, 6, 7, 10
due Monday, October 24, 2016

C. Segre (IIT) PHYS 570 - Fall 2016 October 17, 2016 1 / 19



Today’s Outline - October 17, 2016

• Final project

• Structure factors

• Ewald construction

• Incommensurate crystals

Homework Assignment #04:
Chapter 4: 2, 4, 6, 7, 10
due Monday, October 24, 2016

C. Segre (IIT) PHYS 570 - Fall 2016 October 17, 2016 1 / 19



Final project

1 Come up with a potential experiment

2 Make sure it is a different technique than your final
presentation

3 Clear it with me!

4 Find appropriate beamline(s) and if needed contact
the beamline scientists (they are used to it)

5 Lay out proposed experiment (you can ask for help!)

6 Make sure to give reasonable answers forall the
questions

7 Put me as one of the investigators of the proposal

8 Add my graduate students too

Yujia Ding
Shankar Aryal
Nathaniel Beaver

Kamil Kucuk
Elahe Moazzen
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Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, we
consider the lattice sum

SN(~Q) =
∑
n

e i
~Q·~Rn

=
N−1∑
n=0

e iQna

|SN(Q)| =
sin(NQa/2)

sin(Qa/2)

|SN(Q)| =
sin(N[h + ξ]a∗a/2)

sin([h + ξ]a∗a/2)

First evaluate this sum in 1D.
~Rn = na, thus for N unit cells

Which has been evaluated previ-
ously as and leads to the Laue con-
dition for diffraction. Looking at
the regime where the Laue condid-
ion is not exactly fulfilled

Q = (h + ξ)a∗
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Lattice sum in 1D

but

leading to
peak height

with
half-width

|SN(Q)| =
sin(N[h + ξ]a∗a/2)

sin([h + ξ]a∗a/2)

=
sin(N[h + ξ]π)

sin([h + ξ]π)

sin(Nπ[h + ξ]) = sin(Nπh) cos(Nπξ) + cos(Nπh) sin(Nπξ)

= ± sin(Nπξ)

|SN(Q)| =
sin(Nπξ)

sin(πξ)
≈ Nπξ

πξ
→ N as ξ → 0

|SN(ξ)| → 0, Nπξ = π, ξ1/2 ≈
1

2N
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Lattice sum in 1D

the peak area can be obtained by integration

∫ +1/2N

−1/2N
|SN(ξ)| dξ =

∫ +1/2N

−1/2N

sin(Nπξ)

sin(πξ)
dξ ≈

∫ +1/2N

−1/2N

Nπξ

πξ
dξ

= N

∫ +1/2N

−1/2N
dξ = N

[
ξ
∣∣∣+1/2N

−1/2N
= 1

consequently, the lattice sum can be written

|SN(ξ)| → δ(ξ)

ξ =
Q − ha∗

a∗
=

Q − Gh

a∗

|SN(Q)| → a∗
∑
Gh

δ(Q − Gh)

=
N−1∑
n=0

e iQna

That is, the lattice sum (scattering factor) is simply proportional to the
reciprocal space lattice
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Lattice sum modulus

the 1D modulus squared

in 2D, with N1×N2 = N unit
cells

and similarly in 3D

|SN(Q)|2 → Na∗
∑
Gh

δ(Q − Gh)

∣∣∣SN(~Q)
∣∣∣2 → (N1a

∗
1)(N2a

∗
2)
∑
~G

δ(~Q − ~Gh)

= NA∗
∑
~G

δ(~Q − ~Gh)

∣∣∣SN(~Q)
∣∣∣2 → NV ∗c

∑
~G

δ(~Q − ~Gh)
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Fourier transform of lattice function

Consider the Fourier transform of the lattice function, L(x), (in 1-D for
simplicity)

∫ ∞
−∞
L(x)e iQxdx =

∫ ∞
−∞

∑
n

δ(x − na)e iQxdx =
∑
n

∫ ∞
−∞

δ(x − na)e iQxdx

=
∑
n

e iQna = a∗
∑
h

δ(Q − ha∗) = a∗
∑
h

δ(Q − Gh)

in general ∫ ∞
−∞
L(~r)e i

~Q·~rdV = V ∗c
∑
h,k,l

δ(~Q − ~Ghkl)
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Bragg condition

θθ
d

k k

2d sin θ = λ

The Bragg condition for diffraction
is derived by assuming specular re-
flection from parallel planes sepa-
rated by a distance d .

The ray reflecting from the deeper
plane travels an extra distance
2d sin θ

If there is to be constructive in-
terference, this additional distance
must corresponde to an integern
number of wavelengths and we get
the Bragg condition
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Laue condition

The Laue condition states that the
scattering vector must be equal to
a reciprocal lattice vector

~Q = ~Ghk

Q = 2k sin θ

=
2π

d

2d sin θ =
2π

k

= λ

(0,1) (1,1)

(0,0) (1,0)

θ

θ

k

k

Q

2π

d

Thus the Bragg and Laue condi-
tions are equivalent
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General proof of Bragg-Laue equivalence

v1

v2

a1/h

a2/k

a3/l

Ghkl

Must show that for each point in
reciprocal space, there exists a set
of planes in the real space lattice
such that:

~Ghkl is perpendicular to the planes
with Miller indices (hkl) and

|~Ghkl | =
2π

dhkl
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General proof of Bragg-Laue equivalence

v1

v2

a1/h

a2/k

a3/l

Ghkl

The plane with Miller indices (hkl)
intersects the three basis vectors of
the lattice at a1/h, a2/k, and a3/l

Any vector, ~v , in this plane can be
expressed as a linear combination of
two non-parallel vectors, ~v1 and ~v2

~v1 =
~a3
l
−
~a1
h

, ~v2 =
~a1
h
−
~a2
k

~v = ε1~v1 + ε2~v2

~Ghkl · ~v = (h~a∗1 + k~a∗2 + l~a∗3) ·
(

(ε2 − ε1)
~a1
h
− ε2

~a2
k

+ ε1
~a3
l

)
= 2π(ε2 − ε1 − ε2 + ε1) = 0

Thus ~Ghkl is indeed normal to the plane with Miller indices (hkl)
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General proof of Bragg-Laue equivalence

v1

v2

a1/h

a2/k

a3/l

Ghkl

The spacing between planes (hkl) is
simply given by the distance from
the origin to the plane along a nor-
mal vector

This can be computed as the pro-
jection of any vector which con-
nects the origin to the plane onto
the unit vector in the ~Ghkl direc-
tion. In this case, we choose, ~a1/h

Ĝhkl =
~Ghkl

|~Ghkl |

Ĝhkl ·
~a1
h

=
(h~a∗1 + k~a∗2 + l~a∗3)

|~Ghkl |
·
~a1
h

=
2π

|~Ghkl |
= dhkl
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BCC structure factor

In the body centered cubic structure, there are 2 atoms in the
conventional, cubic unit cell. These are located at

~r1 = 0, ~r2 =
1

2
(~a1 +~a2 +~a3)

the unit cell structure factor is thus

F bcc
hkl = f (~G )

∑
j

e i
~G ·~rj

= f (~G )
(

1 + e iπ(h+k+l)
)

= f (~G )×

{
2 h + k + l = 2n

0 otherwise
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FCC structure factor

In the face centered cubic structure, there are 4 atoms in the conventional,
cubic unit cell. These are located at

~r1 = 0, ~r2 =
1

2
(~a1 +~a2), ~r3 =

1

2
(~a2 +~a3), ~r4 =

1

2
(~a1 +~a3)

the unit cell structure factor is thus

F fcc
hkl = f (~G )

∑
j

e i
~G ·~rj

= f (~G )
(

1 + e iπ(h+k) + e iπ(k+l) + e iπ(h+l)
)

= f (~G )×

{
4 h + k , k + l , h + l = 2n

0 otherwise
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Diamond structure

This is a face centered cubic structure with two atoms in the basis which
leads to 8 atoms in the conventional unit cell. These are located at

~r1 = 0, ~r2 =
1

2
(~a1 +~a2), ~r3 =

1

2
(~a2 +~a3) ~r4 =

1

2
(~a1 +~a3)

~r5 =
1

4
(~a1 +~a2 +~a3), ~r6 =

1

4
(3~a1 + 3~a2 +~a3)

~r7 =
1

4
(~a1 + 3~a2 + 3~a3), ~r8 =

1

4
(3~a1 +~a2 + 3~a3)

F diamond
hkl = f (~G )

(
1 + e iπ(h+k) + e iπ(k+l)

+ e iπ(h+l) + e iπ(h+k+l)/2 + e iπ(3h+3k+l)/2

+ e iπ(h+3k+3l)/2 + e iπ(3h+k+3l)/2
)

This is non-zero when h,k,l all even and h +
k + l = 4n or h,k ,l all odd
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Heteroatomic structures

← bcc

sc →

← diamond
fcc →
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The Ewald sphere

The Ewald sphere is a construct which per-
mits the enumeration of reflections which ful-
fill the Laue diffraction condition.

The sphere radius is set by the length of the ~k
and ~k ′ vectors which characterize the incident
and scattered (where the detector is placed)
x-rays and ∆~k being the bandwidth of the
incident x-rays

As the detector moves, ~k ′ rotates but the
Ewald sphere remains constant.

k

Q

∆k

k

The xrayview program can be used to gain a more intuitive understanding
of the Ewald sphere.

http://www.bioc.rice.edu/ georgep/xrayviewform.html
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Ewald sphere & the reciprocal lattice

a*1

a*2

The reciprocal lattice is
defined by the unit vec-
tors ~a∗1 and ~a∗2.

The key parameter is the
relative orientation of the
incident wave vector ~k

As the crystal is rotated
with respect to the inci-
dent beam, the reciprocal
lattice also rotates

When the Ewald sphere intersects a reciprocal lattice point there will be a
diffraction peak in the direction of the scattered x-rays. The diffraction
vector, ~Q, is thus a reciprocal lattice vector

~Ghlk = h~a∗1 + k~a∗2
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Ewald construction

It is often more con-
venient to visualize the
Ewald sphere by keep-
ing the reciprocal lattice
fixed and “rotating” the
incident beam to visual-
ize the scattering geome-
try.

In directions of ~k ′ (detec-
tor position) where there
is no reciprocal lattice
point, there can be no
diffraction peak.

If the crystal is rotated slightly with respect to the incident beam, ~k , there
may be no Bragg reflections possible at all.
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