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SAXS review

The SAXS scattered intensity from
a dilute solution depends on the
single particle form factor, F(~Q),
the volume of the particle, Vp, and
the density difference from the sol-
vent, ∆ρ = (ρsl ,p − ρsl ,0)

the long wavelength limit (QR →
0) is called the Guinier regime and
it is possible to extract the radius
of gyration Rg of the particle

the short wavelength limit (QR �
0) can be used to determine the
shape of the particle

I SAXS(~Q) = ∆ρ2V 2
p |F(~Q)|2

I SAXS(Q) ≈ ∆ρ2V 2
p e
−Q2R2
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Polydispersivity

Analysis is simple when all particles are the same size, i.e. monodispersed
and dilute,

more complex models must be used when the particles are
polydispersed with a distribution function D(R)

I SAXS(Q) = ∆ρ2
∫ ∞
0

D(R)Vp(R)2|F(Q,R)|2 dR

the Schulz function is com-
monly used to model D(R)
as it goes to a delta function
as the percentage polydisper-
sivity, p → 0

p = 0
p = 10%
p = 20%
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Inter-particle interactions

Many interesting problems fall outside the dilute limit.

In these cases, the SAXS modeling must include not only the particle form
factor but an additional structure factor, S(Q)

I SAXS(Q) = ∆ρ2V 2
p |F(~Q)|2S(Q)

The book has an example of this and we will look at a couple of others
from recent journal articles

• SAXS of irradiated Zn nanoparticles

• Nucleation and growth of & glycine crystals
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SAXS of irradiated Zn nanoparticles

Zn nanoparticles formed in SiO2 by ion implantation are irradiated with
high energy Xe+14 ions.

SAXS is measured using 18 keV x-rays both parallel and perpendicular to
the direction of Xe+14 irradiation.

Expt. geometry Irradiated ‖ x-rays Irradiated ⊥ x-rays

“Shape elongation of embedded Zn nanoparticles induced by swift heavy ion irradiation: A SAXS study”, H. Amekura, K. Kono,
N. Okubo, and N. Ishikawa, Phys. Status Solidi B 252, 165-169 (2015).
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SAXS of irradiated Zn nanoparticles

SAXS intensity for ‖ and ⊥ x-ray
incidence

Interparticle distance as a function
of irradiation fluence

“Shape elongation of embedded Zn nanoparticles induced by swift heavy ion irradiation: A SAXS study”, H. Amekura, K. Kono,
N. Okubo, and N. Ishikawa, Phys. Status Solidi B 252, 165-169 (2015).
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SAXS of irradiated Zn nanoparticles

growth of interparticle spacing is due to dissolution and re-agglomeration
with fluence

“Shape elongation of embedded Zn nanoparticles induced by swift heavy ion irradiation: A SAXS study”, H. Amekura, K. Kono,
N. Okubo, and N. Ishikawa, Phys. Status Solidi B 252, 165-169 (2015).
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Nucleation & growth of glycine

Can SAXS help us understand the nucleation and growth of a simple
molecule which is the prototype for pharmaceutical compounds?

initial studies at 12 keV show change but no crystallization

C. Segre (IIT) PHYS 570 - Fall 2016 October 12, 2016 8 / 25



Glycine nucleation
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Glycine Rg
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aqueous solution

acidic solution

in aqueous solution, Rg implies
dimerization and increases due to
aggregation until crystallization

in acidic solution, Rg remains small
and implies that no dimerization
or aggregation occurs before nucle-
ation

“Relationship between Self-Association of Glycine Molecules in Supersaturated Solution and Solid State Outcome”,
D. Erdemir et al. Phys. Rev. Lett. 99, 115702 (2007)
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Size exclusion chromatography SAXS

SAXS of biological molecules is an excellent way of getting some
information about the molecules as they exist in solution.

Obtaining information about Rg and the Porod region, combined with
modeling and the known crystallographic structures can give a more
complete picture of how these molecules function.

A major problem in these systems is aggregation and impurities.
Pre-purification of samples is important but if they are left for some time
before the SAXS mefasurement is performed, there can be decomposition.

Even without any aggregation or decomposition, separation into a
monodisperse molecule size is challenging.

Matthew, Mirza & Menhart, “liquid-chromatography-coupled SAXS for
accurate sizing of aggregating proteins,” J. Synchrotron Rad. 11, 314-318
(2004) developed a technique which is now being used routinely in
biological SAXS, called Size Exclusion Chromatography SAXS.
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Pre-purification of samples is important but if they are left for some time
before the SAXS mefasurement is performed, there can be decomposition.

Even without any aggregation or decomposition, separation into a
monodisperse molecule size is challenging.

Matthew, Mirza & Menhart, “liquid-chromatography-coupled SAXS for
accurate sizing of aggregating proteins,” J. Synchrotron Rad. 11, 314-318
(2004) developed a technique which is now being used routinely in
biological SAXS, called Size Exclusion Chromatography SAXS.
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Size exclusion chromatography SAXS

2m SAXS camera, 1.03Å(12 keV) x-rays were used

2s exposure times every 20s, with 0.25 ml/min flow rate

samples of (1) cytochrome c, (2) plasminogen, (3) mixture of cytochrome
c bovine serum albumin, and blue dextran
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SEC-SAXS experimental setup

Matthew, Mirza & Menhart, “liquid-chromatography-coupled SAXS for accurate sizing of aggregating proteins,” J. Synchrotron
Rad. 11, 314-318 (2004).
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Cytochrome c

Matthew, Mirza & Menhart, “liquid-chromatography-coupled SAXS for accurate sizing of aggregating proteins,” J. Synchrotron
Rad. 11, 314-318 (2004).
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Cytochrome c - Guinier plots

Matthew, Mirza & Menhart, “liquid-chromatography-coupled SAXS for accurate sizing of aggregating proteins,” J. Synchrotron
Rad. 11, 314-318 (2004).
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Plasminogen

Matthew, Mirza & Menhart, “liquid-chromatography-coupled SAXS for accurate sizing of aggregating proteins,” J. Synchrotron
Rad. 11, 314-318 (2004).
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Plasminogen - Guinier plots

Matthew, Mirza & Menhart, “liquid-chromatography-coupled SAXS for accurate sizing of aggregating proteins,” J. Synchrotron
Rad. 11, 314-318 (2004).
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Three component mixture

Matthew, Mirza & Menhart, “liquid-chromatography-coupled SAXS for accurate sizing of aggregating proteins,” J. Synchrotron
Rad. 11, 314-318 (2004).
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Types of lattice vectors

a2

a1

a2

a1

a2

a1

~Rn = n1~a1 + n2~a2

primitive

non-primitive

non-conventional
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More about lattice vectors

a2

a1

a2

a1

sometimes conventional axes...

...are not primitive
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Miller indices
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Reciprocal lattice
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The lattice and basis functions

If the basis of a one-dimensional system is described by the function B(x)
then the crystal is described by the function

C(x) =
∑
n

B(x − na)

the lattice, which is a collection of points in space, can be written

L(x) =
∑
n

δ(x − na)

convoluting the lattice and basis function we write

L(x) ? B(x) =

∫ ∞
−∞
L(x ′)B(x − x ′)dx ′ =

∫ ∞
−∞

∑
n

δ(x ′ − na)B(x − x ′)dx ′

=
∑
n

∫ ∞
−∞

δ(x ′ − na)B(x − x ′)dx ′ =
∑
n

B(x − na) = C(x)
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Scattering amplitude

F crystal(~Q) =
N∑
l

fl(~Q)e i
~Q·~rl

=
N∑

~Rn+~rj

fj(~Q)e i
~Q·(~Rn+~rj )

=
∑
j

fj(~Q)e i
~Q·~rj
∑
n

e i
~Q·~Rn = F unit cellF lattice

Since F crystal(~Q) is simply the Fourier Transform of the crystal function,
C(x) = L(x) ? B(x), it must be the product of the Fourier Transforms of
L(x) and B(x). F lattice is a very large sum (∼ 1012) so the only time it
gives values appreciably greater than 1 is when:

~Q · ~Rn = 2πm, m = integer

~Ghkl = h~a∗1 + k~a∗2 + l~a∗3
~Ghkl · ~Rn = (n1~a1 + n2~a2 + n3~a3) · (h~a∗1 + k~a∗2 + l~a∗3)

= 2π(hn1 + kn2 + ln3) = 2πm

∴ ~Q = ~Ghkl
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The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

~a1 =
a

2
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(ẑ + x̂), ~a3 =
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which is a body-centered
cubic lattice
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ẑ

2
+

x̂

2
− ŷ
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ẑ

2
− x̂

2

)
~a∗2 =

4π

a

(
ẑ
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2

)

C. Segre (IIT) PHYS 570 - Fall 2016 October 12, 2016 25 / 25



The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

~a1 =
a

2
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which is a body-centered
cubic lattice

The volume of the unit cell is

vc = ~a1 ·~a2 ×~a3 = ~a1 ·
a2

4
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(ŷ + ẑ − x̂)

=
4π

a

(
ŷ
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2

)

C. Segre (IIT) PHYS 570 - Fall 2016 October 12, 2016 25 / 25



The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

~a1 =
a

2
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ẑ

2
+

x̂

2
− ŷ
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ŷ

2
− ẑ
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ẑ

2
+

x̂

2
− ŷ
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