Today's Outline - October 12, 2016

Today's Outline - October 12, 2016

- SAXS review

Today's Outline - October 12, 2016

- SAXS review
- Polydispersivity

Today's Outline - October 12, 2016

- SAXS review
- Polydispersivity
- SAXS papers

Today's Outline - October 12, 2016

- SAXS review
- Polydispersivity
- SAXS papers
- Lattice \& basis functions

Today's Outline - October 12, 2016

- SAXS review
- Polydispersivity
- SAXS papers
- Lattice \& basis functions
- Reciprocal lattice for FCC

Today's Outline - October 12, 2016

- SAXS review
- Polydispersivity
- SAXS papers
- Lattice \& basis functions
- Reciprocal lattice for FCC
- Crystal structure factor

Today's Outline - October 12, 2016

- SAXS review
- Polydispersivity
- SAXS papers
- Lattice \& basis functions
- Reciprocal lattice for FCC
- Crystal structure factor

Reading assignment: Chapter 5.2

Today's Outline - October 12, 2016

- SAXS review
- Polydispersivity
- SAXS papers
- Lattice \& basis functions
- Reciprocal lattice for FCC
- Crystal structure factor

Reading assignment: Chapter 5.2
Homework Assignment \#04:
Chapter 4: 2, 4, 6, 7, 10
due Monday, October 24, 2016

SAXS review

The SAXS scattered intensity from a dilute solution depends on the single particle form factor, $\mathcal{F}(\vec{Q})$, the volume of the particle, V_{p}, and the density difference from the solvent, $\Delta \rho=\left(\rho_{s l, p}-\rho_{s l, 0}\right)$

SAXS review

The SAXS scattered intensity from

$$
\left.\right|^{S A X S}(\vec{Q})=\Delta \rho^{2} V_{p}^{2}|\mathcal{F}(\vec{Q})|^{2}
$$ a dilute solution depends on the single particle form factor, $\mathcal{F}(\vec{Q})$, the volume of the particle, V_{p}, and the density difference from the solvent, $\Delta \rho=\left(\rho_{s l, p}-\rho_{s l, 0}\right)$

SAXS review

The SAXS scattered intensity from

$$
I^{S A X S}(\vec{Q})=\Delta \rho^{2} V_{p}^{2}|\mathcal{F}(\vec{Q})|^{2}
$$ a dilute solution depends on the single particle form factor, $\mathcal{F}(\vec{Q})$, the volume of the particle, V_{p}, and the density difference from the solvent, $\Delta \rho=\left(\rho_{s l, p}-\rho_{s l, 0}\right)$

the long wavelength limit $(Q R \rightarrow$ 0) is called the Guinier regime and it is possible to extract the radius of gyration R_{g} of the particle

SAXS review

The SAXS scattered intensity from a dilute solution depends on the single particle form factor, $\mathcal{F}(\vec{Q})$, the volume of the particle, V_{p}, and the density difference from the solvent, $\Delta \rho=\left(\rho_{s l, p}-\rho_{s l, 0}\right)$
the long wavelength limit $(Q R \rightarrow$ 0) is called the Guinier regime and it is possible to extract the radius of gyration R_{g} of the particle

SAXS review

The SAXS scattered intensity from a dilute solution depends on the single particle form factor, $\mathcal{F}(\vec{Q})$, the volume of the particle, V_{p}, and the density difference from the solvent, $\Delta \rho=\left(\rho_{s l, p}-\rho_{s l, 0}\right)$
the long wavelength limit $(Q R \rightarrow$ 0) is called the Guinier regime and it is possible to extract the radius of gyration R_{g} of the particle

$$
\begin{aligned}
& I^{S A X S}(\vec{Q})=\Delta \rho^{2} V_{p}^{2}|\mathcal{F}(\vec{Q})|^{2} \\
& I^{S A X S}(Q) \approx \Delta \rho^{2} V_{p}^{2} e^{-Q^{2} R_{g}^{2} / 3}
\end{aligned}
$$

SAXS review

The SAXS scattered intensity from a dilute solution depends on the single particle form factor, $\mathcal{F}(\vec{Q})$, the volume of the particle, V_{p}, and the density difference from the solvent, $\Delta \rho=\left(\rho_{s l, p}-\rho_{s l, 0}\right)$
the long wavelength limit $(Q R \rightarrow$ 0) is called the Guinier regime and it is possible to extract the radius of gyration R_{g} of the particle the short wavelength limit ($Q R \gg$ 0) can be used to determine the shape of the particle

$$
I^{S A X S}(\vec{Q})=\Delta \rho^{2} V_{p}^{2}|\mathcal{F}(\vec{Q})|^{2}
$$

$$
I^{S A X S}(Q) \approx \Delta \rho^{2} V_{p}^{2} e^{-Q^{2} R_{g}^{2} / 3}
$$

SAXS review

The SAXS scattered intensity from a dilute solution depends on the single particle form factor, $\mathcal{F}(\vec{Q})$, the volume of the particle, V_{p}, and the density difference from the solvent, $\Delta \rho=\left(\rho_{s l, p}-\rho_{s l, 0}\right)$
the long wavelength limit $(Q R \rightarrow$ 0) is called the Guinier regime and it is possible to extract the radius of gyration R_{g} of the particle the short wavelength limit ($Q R$ 0) can be used to determine the shape of the particle

$$
\begin{aligned}
& I^{S A X S}(\vec{Q})=\Delta \rho^{2} V_{p}^{2}|\mathcal{F}(\vec{Q})|^{2} \\
& I^{S A X S}(Q) \approx \Delta \rho^{2} V_{p}^{2} e^{-Q^{2} R_{g}^{2} / 3}
\end{aligned}
$$

Polydispersivity

Analysis is simple when all particles are the same size, i.e. monodispersed and dilute,

Polydispersivity

Analysis is simple when all particles are the same size, i.e. monodispersed and dilute, more complex models must be used when the particles are polydispersed with a distribution function $D(R)$

Polydispersivity

Analysis is simple when all particles are the same size, i.e. monodispersed and dilute, more complex models must be used when the particles are polydispersed with a distribution function $D(R)$

$$
I^{S A X S}(Q)=\Delta \rho^{2} \int_{0}^{\infty} D(R) V_{p}(R)^{2}|\mathcal{F}(Q, R)|^{2} d R
$$

Polydispersivity

Analysis is simple when all particles are the same size, i.e. monodispersed and dilute, more complex models must be used when the particles are polydispersed with a distribution function $D(R)$

$$
I^{S A X S}(Q)=\Delta \rho^{2} \int_{0}^{\infty} D(R) V_{p}(R)^{2}|\mathcal{F}(Q, R)|^{2} d R
$$

the Schulz function is commonly used to model $D(R)$ as it goes to a delta function as the percentage polydispersivity, $p \rightarrow 0$

Polydispersivity

Analysis is simple when all particles are the same size, i.e. monodispersed and dilute, more complex models must be used when the particles are polydispersed with a distribution function $D(R)$

$$
I^{S A X S}(Q)=\Delta \rho^{2} \int_{0}^{\infty} D(R) V_{p}(R)^{2}|\mathcal{F}(Q, R)|^{2} d R
$$

the Schulz function is commonly used to model $D(R)$ as it goes to a delta function as the percentage polydispersivity, $p \rightarrow 0$
$\mathrm{p}=0$
$\mathrm{p}=10 \%$
$p=20 \%$

Inter-particle interactions

Many interesting problems fall outside the dilute limit.

Inter-particle interactions

Many interesting problems fall outside the dilute limit.
In these cases, the SAXS modeling must include not only the particle form factor but an additional structure factor, $S(Q)$

Inter-particle interactions

Many interesting problems fall outside the dilute limit.
In these cases, the SAXS modeling must include not only the particle form factor but an additional structure factor, $S(Q)$

$$
I^{S A X S}(Q)=\Delta \rho^{2} V_{p}^{2}|\mathcal{F}(\vec{Q})|^{2} S(Q)
$$

Inter-particle interactions

Many interesting problems fall outside the dilute limit.
In these cases, the SAXS modeling must include not only the particle form factor but an additional structure factor, $S(Q)$

$$
I^{S A X S}(Q)=\Delta \rho^{2} V_{p}^{2}|\mathcal{F}(\vec{Q})|^{2} S(Q)
$$

The book has an example of this and we will look at a couple of others from recent journal articles

Inter-particle interactions

Many interesting problems fall outside the dilute limit.
In these cases, the SAXS modeling must include not only the particle form factor but an additional structure factor, $S(Q)$

$$
I^{S A X S}(Q)=\Delta \rho^{2} V_{p}^{2}|\mathcal{F}(\vec{Q})|^{2} S(Q)
$$

The book has an example of this and we will look at a couple of others from recent journal articles

- SAXS of irradiated Zn nanoparticles

Inter-particle interactions

Many interesting problems fall outside the dilute limit.
In these cases, the SAXS modeling must include not only the particle form factor but an additional structure factor, $S(Q)$

$$
I^{S A X S}(Q)=\Delta \rho^{2} V_{p}^{2}|\mathcal{F}(\vec{Q})|^{2} S(Q)
$$

The book has an example of this and we will look at a couple of others from recent journal articles

- SAXS of irradiated Zn nanoparticles
- Nucleation and growth of \& glycine crystals

SAXS of irradiated Zn nanoparticles

Zn nanoparticles formed in SiO_{2} by ion implantation are irradiated with high energy Xe^{+14} ions.

SAXS of irradiated Zn nanoparticles

Zn nanoparticles formed in SiO_{2} by ion implantation are irradiated with high energy Xe^{+14} ions.

SAXS is measured using 18 keV x-rays both parallel and perpendicular to the direction of Xe^{+14} irradiation.
"Shape elongation of embedded Zn nanoparticles induced by swift heavy ion irradiation: A SAXS study", H. Amekura, K. Kono, N. Okubo, and N. Ishikawa, Phys. Status Solidi B 252, 165-169 (2015).

SAXS of irradiated Zn nanoparticles

Zn nanoparticles formed in SiO_{2} by ion implantation are irradiated with high energy Xe^{+14} ions.

SAXS is measured using 18 keV x-rays both parallel and perpendicular to the direction of Xe^{+14} irradiation.

Expt. geometry
"Shape elongation of embedded Zn nanoparticles induced by swift heavy ion irradiation: A SAXS study", H. Amekura, K. Kono, N. Okubo, and N. Ishikawa, Phys. Status Solidi B 252, 165-169 (2015).

SAXS of irradiated Zn nanoparticles

Zn nanoparticles formed in SiO_{2} by ion implantation are irradiated with high energy Xe^{+14} ions.

SAXS is measured using 18 keV x-rays both parallel and perpendicular to the direction of Xe^{+14} irradiation.

Expt. geometry

(b) unirrad.

Unirradiated

"Shape elongation of embedded Zn nanoparticles induced by swift heavy ion irradiation: A SAXS study", H. Amekura, K. Kono, N. Okubo, and N. Ishikawa, Phys. Status Solidi B 252, 165-169 (2015).

SAXS of irradiated Zn nanoparticles

Zn nanoparticles formed in SiO_{2} by ion implantation are irradiated with high energy Xe^{+14} ions.

SAXS is measured using 18 keV x-rays both parallel and perpendicular to the direction of Xe^{+14} irradiation.

Expt. geometry
(g) $5 \times 10^{13} \mathrm{~cm}^{-2}$
ions \perp X-ray
Irradiated || x-rays
(h) $5 \times 10^{13} \mathrm{~cm}^{-2}$
ions // X-ray
Irradiated $\perp \mathrm{x}$-rays
"Shape elongation of embedded Zn nanoparticles induced by swift heavy ion irradiation: A SAXS study", H. Amekura, K. Kono, N. Okubo, and N. Ishikawa, Phys. Status Solidi B 252, 165-169 (2015).

SAXS of irradiated Zn nanoparticles

SAXS intensity for $\|$ and \perp x-ray incidence
"Shape elongation of embedded Zn nanoparticles induced by swift heavy ion irradiation: A SAXS study", H. Amekura, K. Kono, N. Okubo, and N. Ishikawa, Phys. Status Solidi B 252, 165-169 (2015).

SAXS of irradiated Zn nanoparticles

SAXS intensity for $\|$ and \perp x-ray incidence

Interparticle distance as a function of irradiation fluence
"Shape elongation of embedded Zn nanoparticles induced by swift heavy ion irradiation: A SAXS study", H. Amekura, K. Kono, N. Okubo, and N. Ishikawa, Phys. Status Solidi B 252, 165-169 (2015).

SAXS of irradiated Zn nanoparticles

"Shape elongation of embedded Zn nanoparticles induced by swift heavy ion irradiation: A SAXS study", H. Amekura, K. Kono, N. Okubo, and N. Ishikawa, Phys. Status Solidi B 252, 165-169 (2015).

SAXS of irradiated Zn nanoparticles

growth of interparticle spacing is due to dissolution and re-agglomeration with fluence
"Shape elongation of embedded Zn nanoparticles induced by swift heavy ion irradiation: A SAXS study", H. Amekura, K. Kono, N. Okubo, and N. Ishikawa, Phys. Status Solidi B 252, 165-169 (2015).

Nucleation \& growth of glycine

Can SAXS help us understand the nucleation and growth of a simple molecule which is the prototype for pharmaceutical compounds?

initial studies at 12 keV show change but no crystallization

Glycine nucleation

change to 25 keV x-rays
study neutral (top) and acidic (bottom) solutions

Glycine nucleation

change to 25 keV x-rays study neutral (top) and acidic (bottom) solutions

Glycine Rg_{g}

in aqueous solution, R_{g} implies dimerization and increases due to aggregation until crystallization
in acidic solution, Rg remains small and implies that no dimerization or aggregation occurs before nucleation

[^0]D. Erdemir et al. Phys. Rev. Lett. 99, 115702 (2007)

Size exclusion chromatography SAXS

Size exclusion chromatography SAXS

SAXS of biological molecules is an excellent way of getting some information about the molecules as they exist in solution.

Size exclusion chromatography SAXS

SAXS of biological molecules is an excellent way of getting some information about the molecules as they exist in solution.

Obtaining information about R_{g} and the Porod region, combined with modeling and the known crystallographic structures can give a more complete picture of how these molecules function.

Size exclusion chromatography SAXS

SAXS of biological molecules is an excellent way of getting some information about the molecules as they exist in solution.

Obtaining information about R_{g} and the Porod region, combined with modeling and the known crystallographic structures can give a more complete picture of how these molecules function.

A major problem in these systems is aggregation and impurities.
Pre-purification of samples is important but if they are left for some time before the SAXS mefasurement is performed, there can be decomposition.

Size exclusion chromatography SAXS

SAXS of biological molecules is an excellent way of getting some information about the molecules as they exist in solution.

Obtaining information about R_{g} and the Porod region, combined with modeling and the known crystallographic structures can give a more complete picture of how these molecules function.
A major problem in these systems is aggregation and impurities. Pre-purification of samples is important but if they are left for some time before the SAXS mefasurement is performed, there can be decomposition.

Even without any aggregation or decomposition, separation into a monodisperse molecule size is challenging.

Size exclusion chromatography SAXS

SAXS of biological molecules is an excellent way of getting some information about the molecules as they exist in solution.

Obtaining information about R_{g} and the Porod region, combined with modeling and the known crystallographic structures can give a more complete picture of how these molecules function.
A major problem in these systems is aggregation and impurities.
Pre-purification of samples is important but if they are left for some time before the SAXS mefasurement is performed, there can be decomposition.

Even without any aggregation or decomposition, separation into a monodisperse molecule size is challenging.

Matthew, Mirza \& Menhart, "liquid-chromatography-coupled SAXS for accurate sizing of aggregating proteins," J. Synchrotron Rad. 11, 314-318 (2004) developed a technique which is now being used routinely in biological SAXS, called Size Exclusion Chromatography SAXS.

Size exclusion chromatography SAXS

Size exclusion chromatography SAXS

2 m SAXS camera, $1.03 \AA \AA(12 \mathrm{keV})$ x-rays were used

Size exclusion chromatography SAXS

2 m SAXS camera, $1.03 \AA ̊(12 \mathrm{keV})$ x-rays were used
2 s exposure times every 20 s , with $0.25 \mathrm{ml} / \mathrm{min}$ flow rate

Size exclusion chromatography SAXS

2 m SAXS camera, $1.03 \AA \AA(12 \mathrm{keV})$ x-rays were used
2 s exposure times every 20 s , with $0.25 \mathrm{ml} / \mathrm{min}$ flow rate
samples of (1) cytochrome c, (2) plasminogen, (3) mixture of cytochrome c bovine serum albumin, and blue dextran

SEC-SAXS experimental setup

Matthew, Mirza \& Menhart, "liquid-chromatography-coupled SAXS for accurate sizing of aggregating proteins," J. Synchrotron Rad. 11, 314-318 (2004).

Cytochrome c

Matthew, Mirza \& Menhart, "liquid-chromatography-coupled SAXS for accurate sizing of aggregating proteins," J. Synchrotron Rad. 11, 314-318 (2004).

Cytochrome c - Guinier plots

Matthew, Mirza \& Menhart, "liquid-chromatography-coupled SAXS for accurate sizing of aggregating proteins," J. Synchrotron Rad. 11, 314-318 (2004).

Plasminogen

Matthew, Mirza \& Menhart, "liquid-chromatography-coupled SAXS for accurate sizing of aggregating proteins," J. Synchrotron Rad. 11, 314-318 (2004).

Plasminogen - Guinier plots

Matthew, Mirza \& Menhart, "liquid-chromatography-coupled SAXS for accurate sizing of aggregating proteins," J. Synchrotron Rad. 11, 314-318 (2004).

Three component mixture

Matthew, Mirza \& Menhart, "liquid-chromatography-coupled SAXS for accurate sizing of aggregating proteins," J. Synchrotron Rad. 11, 314-318 (2004).

Types of lattice vectors

$$
\vec{R}_{n}=n_{1} \vec{a}_{1}+n_{2} \vec{a}_{2}
$$

Types of lattice vectors

$$
\vec{R}_{n}=n_{1} \vec{a}_{1}+n_{2} \vec{a}_{2}
$$

primitive

Types of lattice vectors

Types of lattice vectors

$$
\vec{R}_{n}=n_{1} \vec{a}_{1}+n_{2} \vec{a}_{2}
$$

primitive

non-primitive
non-conventional

More about lattice vectors

sometimes conventional axes...

More about lattice vectors

sometimes conventional axes...

> ...are not primitive

Miller indices

Miller indices

Miller indices

planes designated (hk), intercept the unit cell axes at

$$
\frac{a_{1}}{h}, \quad \frac{a_{2}}{k}
$$

for a lattice with orthogonal unit vectors

$$
\frac{1}{d_{h k}^{2}}=\frac{h^{2}}{a_{1}^{2}}+\frac{k^{2}}{a_{2}^{2}}
$$

Reciprocal lattice

Reciprocal lattice

$\vec{a}_{1}^{*}=\frac{2 \pi}{V_{c}} \vec{a}_{2} \times \vec{a}_{3} \quad \vec{a}_{2}^{*}=\frac{2 \pi}{V_{c}} \vec{a}_{3} \times \vec{a}_{1} \quad \vec{a}_{3}^{*}=\frac{2 \pi}{V_{c}} \vec{a}_{1} \times \vec{a}_{2}$

Reciprocal lattice

$$
\vec{a}_{1}^{*}=\frac{2 \pi}{V_{c}} \vec{a}_{2} \times \vec{a}_{3} \quad \vec{a}_{2}^{*}=\frac{2 \pi}{V_{c}} \vec{a}_{3} \times \vec{a}_{1} \quad \vec{a}_{3}^{*}=\frac{2 \pi}{V_{c}} \vec{a}_{1} \times \vec{a}_{2}
$$

The lattice and basis functions

If the basis of a one-dimensional system is described by the function $\mathcal{B}(x)$ then the crystal is described by the function

The lattice and basis functions

If the basis of a one-dimensional system is described by the function $\mathcal{B}(x)$ then the crystal is described by the function

$$
\mathcal{C}(x)=\sum_{n} \mathcal{B}(x-n a)
$$

The lattice and basis functions

If the basis of a one-dimensional system is described by the function $\mathcal{B}(x)$ then the crystal is described by the function

$$
\mathcal{C}(x)=\sum_{n} \mathcal{B}(x-n a)
$$

the lattice, which is a collection of points in space, can be written

The lattice and basis functions

If the basis of a one-dimensional system is described by the function $\mathcal{B}(x)$ then the crystal is described by the function

$$
\mathcal{C}(x)=\sum_{n} \mathcal{B}(x-n a)
$$

the lattice, which is a collection of points in space, can be written

$$
\mathcal{L}(x)=\sum_{n} \delta(x-n a)
$$

The lattice and basis functions

If the basis of a one-dimensional system is described by the function $\mathcal{B}(x)$ then the crystal is described by the function

$$
\mathcal{C}(x)=\sum_{n} \mathcal{B}(x-n a)
$$

the lattice, which is a collection of points in space, can be written

$$
\mathcal{L}(x)=\sum_{n} \delta(x-n a)
$$

convoluting the lattice and basis function we write

The lattice and basis functions

If the basis of a one-dimensional system is described by the function $\mathcal{B}(x)$ then the crystal is described by the function

$$
\mathcal{C}(x)=\sum_{n} \mathcal{B}(x-n a)
$$

the lattice, which is a collection of points in space, can be written

$$
\mathcal{L}(x)=\sum_{n} \delta(x-n a)
$$

convoluting the lattice and basis function we write

$$
\mathcal{L}(x) \star \mathcal{B}(x)=\int_{-\infty}^{\infty} \mathcal{L}\left(x^{\prime}\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime}
$$

The lattice and basis functions

If the basis of a one-dimensional system is described by the function $\mathcal{B}(x)$ then the crystal is described by the function

$$
\mathcal{C}(x)=\sum_{n} \mathcal{B}(x-n a)
$$

the lattice, which is a collection of points in space, can be written

$$
\mathcal{L}(x)=\sum_{n} \delta(x-n a)
$$

convoluting the lattice and basis function we write

$$
\mathcal{L}(x) \star \mathcal{B}(x)=\int_{-\infty}^{\infty} \mathcal{L}\left(x^{\prime}\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime}=\int_{-\infty}^{\infty} \sum_{n} \delta\left(x^{\prime}-n a\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime}
$$

The lattice and basis functions

If the basis of a one-dimensional system is described by the function $\mathcal{B}(x)$ then the crystal is described by the function

$$
\mathcal{C}(x)=\sum_{n} \mathcal{B}(x-n a)
$$

the lattice, which is a collection of points in space, can be written

$$
\mathcal{L}(x)=\sum_{n} \delta(x-n a)
$$

convoluting the lattice and basis function we write

$$
\begin{aligned}
\mathcal{L}(x) \star \mathcal{B}(x) & =\int_{-\infty}^{\infty} \mathcal{L}\left(x^{\prime}\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime}=\int_{-\infty}^{\infty} \sum_{n} \delta\left(x^{\prime}-n a\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime} \\
& =\sum_{n} \int_{-\infty}^{\infty} \delta\left(x^{\prime}-n a\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime}
\end{aligned}
$$

The lattice and basis functions

If the basis of a one-dimensional system is described by the function $\mathcal{B}(x)$ then the crystal is described by the function

$$
\mathcal{C}(x)=\sum_{n} \mathcal{B}(x-n a)
$$

the lattice, which is a collection of points in space, can be written

$$
\mathcal{L}(x)=\sum_{n} \delta(x-n a)
$$

convoluting the lattice and basis function we write

$$
\begin{aligned}
\mathcal{L}(x) \star \mathcal{B}(x) & =\int_{-\infty}^{\infty} \mathcal{L}\left(x^{\prime}\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime}=\int_{-\infty}^{\infty} \sum_{n} \delta\left(x^{\prime}-n a\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime} \\
& =\sum_{n} \int_{-\infty}^{\infty} \delta\left(x^{\prime}-n a\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime}=\sum_{n} \mathcal{B}(x-n a)
\end{aligned}
$$

The lattice and basis functions

If the basis of a one-dimensional system is described by the function $\mathcal{B}(x)$ then the crystal is described by the function

$$
\mathcal{C}(x)=\sum_{n} \mathcal{B}(x-n a)
$$

the lattice, which is a collection of points in space, can be written

$$
\mathcal{L}(x)=\sum_{n} \delta(x-n a)
$$

convoluting the lattice and basis function we write

$$
\begin{aligned}
\mathcal{L}(x) \star \mathcal{B}(x) & =\int_{-\infty}^{\infty} \mathcal{L}\left(x^{\prime}\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime}=\int_{-\infty}^{\infty} \sum_{n} \delta\left(x^{\prime}-n a\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime} \\
& =\sum_{n} \int_{-\infty}^{\infty} \delta\left(x^{\prime}-n a\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime}=\sum_{n} \mathcal{B}(x-n a)=\mathcal{C}(x)
\end{aligned}
$$

Scattering amplitude

$$
F^{c r y s t a l}(\vec{Q})=\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}
$$

Scattering amplitude

$$
F^{c r y s t a l}(\vec{Q})=\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}=\sum_{\vec{R}_{n}+\vec{r}_{j}}^{N} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{r}_{j}\right)}
$$

Scattering amplitude

$$
\begin{aligned}
F^{c r y s t a l}(\vec{Q}) & =\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}=\sum_{\vec{R}_{n}+\vec{r}_{j}}^{N} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{r}_{j}\right)} \\
& =\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{j}} \sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}}
\end{aligned}
$$

Scattering amplitude

$$
\begin{aligned}
F^{\text {crystal }}(\vec{Q}) & =\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}=\sum_{\vec{R}_{n}+\vec{r}_{j}}^{N} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{r}_{j}\right)} \\
& =\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{j}} \sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}}=F^{\text {unit cell }} F^{\text {lattice }}
\end{aligned}
$$

Scattering amplitude

$$
\begin{aligned}
F^{c r y s t a l}(\vec{Q}) & =\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}=\sum_{\vec{R}_{n}+\vec{r}_{j}}^{N} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{r}_{j}\right)} \\
& =\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{j}} \sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}}=F^{\text {unit cell }} F^{\text {lattice }}
\end{aligned}
$$

Since $F^{\text {crystal }}(\vec{Q})$ is simply the Fourier Transform of the crystal function, $\mathcal{C}(x)=\mathcal{L}(x) \star \mathcal{B}(x)$, it must be the product of the Fourier Transforms of $\mathcal{L}(x)$ and $\mathcal{B}(x)$.

Scattering amplitude

$$
\begin{aligned}
F^{\text {crystal }}(\vec{Q}) & =\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}=\sum_{\vec{R}_{n}+\vec{r}_{j}}^{N} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{r}_{j}\right)} \\
& =\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{j}} \sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}}=F^{\text {unit cell }} F^{\text {lattice }}
\end{aligned}
$$

Since $F^{\text {crystal }}(\vec{Q})$ is simply the Fourier Transform of the crystal function, $\mathcal{C}(x)=\mathcal{L}(x) \star \mathcal{B}(x)$, it must be the product of the Fourier Transforms of $\mathcal{L}(x)$ and $\mathcal{B}(x)$. $F^{\text {lattice }}$ is a very large sum $\left(\sim 10^{12}\right)$ so the only time it gives values appreciably greater than 1 is when:

Scattering amplitude

$$
\begin{aligned}
F^{\text {crystal }}(\vec{Q}) & =\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}=\sum_{\vec{R}_{n}+\vec{r}_{j}}^{N} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{r}_{j}\right)} \\
& =\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{j}} \sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}}=F^{\text {unit cell }} F^{\text {lattice }}
\end{aligned}
$$

Since $F^{\text {crystal }}(\vec{Q})$ is simply the Fourier Transform of the crystal function, $\mathcal{C}(x)=\mathcal{L}(x) \star \mathcal{B}(x)$, it must be the product of the Fourier Transforms of $\mathcal{L}(x)$ and $\mathcal{B}(x)$. $F^{\text {lattice }}$ is a very large sum $\left(\sim 10^{12}\right)$ so the only time it gives values appreciably greater than 1 is when:

$$
\vec{Q} \cdot \vec{R}_{n}=2 \pi m, \quad m=\text { integer }
$$

Scattering amplitude

$$
\begin{aligned}
F^{\text {crystal }}(\vec{Q}) & =\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}=\sum_{\vec{R}_{n}+\vec{r}_{j}}^{N} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{r}_{j}\right)} \\
& =\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{j}} \sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}}=F^{\text {unit cell }} F^{\text {lattice }}
\end{aligned}
$$

Since $F^{\text {crystal }}(\vec{Q})$ is simply the Fourier Transform of the crystal function, $\mathcal{C}(x)=\mathcal{L}(x) \star \mathcal{B}(x)$, it must be the product of the Fourier Transforms of $\mathcal{L}(x)$ and $\mathcal{B}(x)$. $F^{\text {lattice }}$ is a very large sum $\left(\sim 10^{12}\right)$ so the only time it gives values appreciably greater than 1 is when:

$$
\begin{aligned}
\vec{Q} \cdot \vec{R}_{n} & =2 \pi m, \quad m=\text { integer } \\
\vec{G}_{h k l} & =h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+l \vec{a}_{3}^{*}
\end{aligned}
$$

Scattering amplitude

$$
\begin{aligned}
F^{\text {crystal }}(\vec{Q}) & =\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}=\sum_{\vec{R}_{n}+\vec{r}_{j}}^{N} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{r}_{j}\right)} \\
& =\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{j}} \sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}}=F^{\text {unit cell }} F^{\text {lattice }}
\end{aligned}
$$

Since $F^{\text {crystal }}(\vec{Q})$ is simply the Fourier Transform of the crystal function, $\mathcal{C}(x)=\mathcal{L}(x) \star \mathcal{B}(x)$, it must be the product of the Fourier Transforms of $\mathcal{L}(x)$ and $\mathcal{B}(x)$. $F^{\text {lattice }}$ is a very large sum $\left(\sim 10^{12}\right)$ so the only time it gives values appreciably greater than 1 is when:

$$
\begin{aligned}
\vec{Q} \cdot \vec{R}_{n} & =2 \pi m, \quad m=\text { integer } \\
\vec{G}_{h k l} & =h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+l \vec{a}_{3}^{*} \\
\vec{G}_{h k l} \cdot \vec{R}_{n} & =\left(n_{1} \vec{a}_{1}+n_{2} \vec{a}_{2}+n_{3} \vec{a}_{3}\right) \cdot\left(h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+l \vec{a}_{3}^{*}\right)
\end{aligned}
$$

Scattering amplitude

$$
\begin{aligned}
F^{\text {crystal }}(\vec{Q}) & =\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}=\sum_{\vec{R}_{n}+\vec{r}_{j}}^{N} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{r}_{j}\right)} \\
& =\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{j}} \sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}}=F^{\text {unit cell }} F^{\text {lattice }}
\end{aligned}
$$

Since $F^{\text {crystal }}(\vec{Q})$ is simply the Fourier Transform of the crystal function, $\mathcal{C}(x)=\mathcal{L}(x) \star \mathcal{B}(x)$, it must be the product of the Fourier Transforms of $\mathcal{L}(x)$ and $\mathcal{B}(x)$. $F^{\text {lattice }}$ is a very large sum $\left(\sim 10^{12}\right)$ so the only time it gives values appreciably greater than 1 is when:

$$
\begin{aligned}
\vec{Q} \cdot \vec{R}_{n} & =2 \pi m, \quad m=\text { integer } \\
\vec{G}_{h k l} & =h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+l \vec{a}_{3}^{*} \\
\vec{G}_{h k l} \cdot \vec{R}_{n} & =\left(n_{1} \vec{a}_{1}+n_{2} \vec{a}_{2}+n_{3} \vec{a}_{3}\right) \cdot\left(h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+l \vec{a}_{3}^{*}\right) \\
& =2 \pi\left(h n_{1}+k n_{2}+I n_{3}\right)=2 \pi m
\end{aligned}
$$

Scattering amplitude

$$
\begin{aligned}
F^{\text {crystal }}(\vec{Q}) & =\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}=\sum_{\vec{R}_{n}+\vec{r}_{j}}^{N} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{r}_{j}\right)} \\
& =\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{j}} \sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}}=F^{\text {unit cell }} F^{\text {lattice }}
\end{aligned}
$$

Since $F^{\text {crystal }}(\vec{Q})$ is simply the Fourier Transform of the crystal function, $\mathcal{C}(x)=\mathcal{L}(x) \star \mathcal{B}(x)$, it must be the product of the Fourier Transforms of $\mathcal{L}(x)$ and $\mathcal{B}(x)$. $F^{\text {lattice }}$ is a very large sum $\left(\sim 10^{12}\right)$ so the only time it gives values appreciably greater than 1 is when:

$$
\begin{aligned}
\vec{Q} \cdot \vec{R}_{n} & =2 \pi m, \quad m=\text { integer } \\
\vec{G}_{h k l} & =h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+l \vec{a}_{3}^{*} \\
\vec{G}_{h k l} \cdot \vec{R}_{n} & =\left(n_{1} \vec{a}_{1}+n_{2} \vec{a}_{2}+n_{3} \vec{a}_{3}\right) \cdot\left(h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+l \vec{a}_{3}^{*}\right) \\
& =2 \pi\left(h n_{1}+k n_{2}+l n_{3}\right)=2 \pi m \\
& \therefore \vec{Q}=\vec{G}_{h k l}
\end{aligned}
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}),
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}),
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}), \quad \vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y})
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}), \quad \vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y})
$$

The volume of the unit cell is

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}), \quad \vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y})
$$

The volume of the unit cell is

$$
v_{c}=\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}), \quad \vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y})
$$

The volume of the unit cell is

$$
v_{c}=\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}=\vec{a}_{1} \cdot \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x})
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}), \quad \vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y})
$$

The volume of the unit cell is

$$
v_{c}=\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}=\vec{a}_{1} \cdot \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x})=\frac{a^{3}}{4}
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}), \quad \vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y})
$$

The volume of the unit cell is

$$
\begin{aligned}
& v_{c}=\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}=\vec{a}_{1} \cdot \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x})=\frac{a^{3}}{4} \\
& \vec{a}_{1}^{*}=\frac{2 \pi}{v_{c}} \vec{a}_{2} \times \vec{a}_{3}
\end{aligned}
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}), \quad \vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y})
$$

The volume of the unit cell is

$$
\begin{aligned}
& v_{c}=\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}=\vec{a}_{1} \cdot \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x})=\frac{a^{3}}{4} \\
& \vec{a}_{1}^{*}=\frac{2 \pi}{v_{c}} \vec{a}_{2} \times \vec{a}_{3}=\frac{2 \pi}{v_{c}} \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x})
\end{aligned}
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}), \quad \vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y})
$$

The volume of the unit cell is

$$
\begin{aligned}
v_{c} & =\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}=\vec{a}_{1} \cdot \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x})=\frac{a^{3}}{4} \\
\vec{a}_{1}^{*} & =\frac{2 \pi}{v_{c}} \vec{a}_{2} \times \vec{a}_{3}=\frac{2 \pi}{v_{c}} \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x}) \\
& =\frac{4 \pi}{a}\left(\frac{\hat{y}}{2}+\frac{\hat{z}}{2}-\frac{\hat{x}}{2}\right)
\end{aligned}
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}), \quad \vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y})
$$

The volume of the unit cell is

$$
\begin{aligned}
v_{c} & =\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}=\vec{a}_{1} \cdot \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x})=\frac{a^{3}}{4} \\
\vec{a}_{1}^{*} & =\frac{2 \pi}{v_{c}} \vec{a}_{2} \times \vec{a}_{3}=\frac{2 \pi}{v_{c}} \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x}) \\
& =\frac{4 \pi}{a}\left(\frac{\hat{y}}{2}+\frac{\hat{z}}{2}-\frac{\hat{x}}{2}\right) \\
\vec{a}_{2}^{*} & =\frac{4 \pi}{a}\left(\frac{\hat{z}}{2}+\frac{\hat{x}}{2}-\frac{\hat{y}}{2}\right) \\
\vec{a}_{3}^{*} & =\frac{4 \pi}{a}\left(\frac{\hat{x}}{2}+\frac{\hat{y}}{2}-\frac{\hat{z}}{2}\right)
\end{aligned}
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}), \quad \vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y})
$$

which is a body-centered cubic lattice

The volume of the unit cell is
$v_{c}=\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}=\vec{a}_{1} \cdot \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x})=\frac{a^{3}}{4}$
$\vec{a}_{1}^{*}=\frac{2 \pi}{v_{c}} \vec{a}_{2} \times \vec{a}_{3}=\frac{2 \pi}{v_{c}} \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x})$
$=\frac{4 \pi}{a}\left(\frac{\hat{y}}{2}+\frac{\hat{z}}{2}-\frac{\hat{x}}{2}\right)$
$\vec{a}_{2}^{*}=\frac{4 \pi}{a}\left(\frac{\hat{z}}{2}+\frac{\hat{x}}{2}-\frac{\hat{y}}{2}\right)$
$\vec{a}_{3}^{*}=\frac{4 \pi}{a}\left(\frac{\hat{x}}{2}+\frac{\hat{y}}{2}-\frac{\hat{z}}{2}\right)$

[^0]: "Relationship between Self-Association of Glycine Molecules in Supersaturated Solution and Solid State Outcome",

