Today's Outline - September 05, 2016

Today's Outline - September 05, 2016

- Liquid scattering

Today's Outline - September 05, 2016

- Liquid scattering
- SAXS review

Today's Outline - September 05, 2016

- Liquid scattering
- SAXS review
- Calculating R_{g}

Today's Outline - September 05, 2016

- Liquid scattering
- SAXS review
- Calculating R_{g}
- Porod regime

Today's Outline - September 05, 2016

- Liquid scattering
- SAXS review
- Calculating R_{g}
- Porod regime
- Nucleation mechanism by SAXS

Today's Outline - September 05, 2016

- Liquid scattering
- SAXS review
- Calculating R_{g}
- Porod regime
- Nucleation mechanism by SAXS

Homework Assignment \#04:
Chapter 4: 2, 4, 6, 7, 10
due Monday, October 24, 2016

The radial distribution function

The radial distribution function

Ordered 2D crystal
Amorphous solid or liquid

The radial distribution function

Ordered 2D crystal

Amorphous solid or liquid

The radial distribution function

Ordered 2D crystal

Amorphous solid or liquid

The radial distribution function

Ordered 2D crystal

Amorphous solid or liquid

The radial distribution function

Ordered 2D crystal

Amorphous solid or liquid

The radial distribution function

Ordered 2D crystal

Amorphous solid or liquid

Total scattered intensity

Consider a mono-atomic (-molecular) system where the total scattered intensity is given by

Total scattered intensity

Consider a mono-atomic (-molecular) system where the total scattered intensity is given by

$$
I(\vec{Q})=f(\vec{Q})^{2} \sum_{n} e^{i \vec{Q} \cdot \overrightarrow{r_{n}}} \sum_{m} e^{-i \vec{Q} \cdot \overrightarrow{r_{m}}}
$$

Total scattered intensity

Consider a mono-atomic (-molecular) system where the total scattered intensity is given by

$$
I(\vec{Q})=f(\vec{Q})^{2} \sum_{n} e^{i \vec{Q} \cdot \overrightarrow{r_{n}}} \sum_{m} e^{-i \vec{Q} \cdot \overrightarrow{r_{m}}}=f(\vec{Q})^{2} \sum_{n} \sum_{m} e^{i \vec{Q} \cdot\left(\overrightarrow{r_{n}}-\overrightarrow{r_{m}}\right)}
$$

Total scattered intensity

Consider a mono-atomic (-molecular) system where the total scattered intensity is given by

$$
\begin{aligned}
I(\vec{Q}) & =f(\vec{Q})^{2} \sum_{n} e^{i \vec{Q} \cdot \overrightarrow{r_{n}}} \sum_{m} e^{-i \vec{Q} \cdot \overrightarrow{r_{m}}}=f(\vec{Q})^{2} \sum_{n} \sum_{m} e^{i \vec{Q} \cdot\left(\overrightarrow{r_{n}}-\overrightarrow{r_{m}}\right)} \\
& =N f(\vec{Q})^{2}+f(\vec{Q})^{2} \sum_{n} \sum_{m \neq n} e^{i \vec{Q} \cdot\left(\overrightarrow{r_{n}}-\overrightarrow{r_{m}}\right)}
\end{aligned}
$$

Total scattered intensity

Consider a mono-atomic (-molecular) system where the total scattered intensity is given by

$$
\begin{aligned}
I(\vec{Q}) & =f(\vec{Q})^{2} \sum_{n} e^{i \vec{Q} \cdot \overrightarrow{r_{n}}} \sum_{m} e^{-i \vec{Q} \cdot \overrightarrow{r_{m}}}=f(\vec{Q})^{2} \sum_{n} \sum_{m} e^{i \vec{Q} \cdot\left(\overrightarrow{r_{n}}-\overrightarrow{r_{m}}\right)} \\
& =N f(\vec{Q})^{2}+f(\vec{Q})^{2} \sum_{n} \sum_{m \neq n} e^{i \vec{Q} \cdot\left(\overrightarrow{r_{n}}-\overrightarrow{r_{m}}\right)}
\end{aligned}
$$

The sum over $m \neq m$ is now replaced with an integral of the continuous atomic pair density function, $\rho_{n}\left(\vec{r}_{n m}\right)$
$I(\vec{Q})=N f(\vec{Q})^{2}+f(\vec{Q})^{2} \sum_{n} \int_{V} \rho_{n}\left(\overrightarrow{r_{n m}}\right) e^{i \vec{Q} \cdot\left(\overrightarrow{r_{n}}-\overrightarrow{r_{m}}\right)} d V_{m}$

Total scattered intensity

Consider a mono-atomic (-molecular) system where the total scattered intensity is given by

$$
\begin{aligned}
I(\vec{Q}) & =f(\vec{Q})^{2} \sum_{n} e^{i \vec{Q} \cdot \overrightarrow{r_{n}}} \sum_{m} e^{-i \vec{Q} \cdot \overrightarrow{r_{m}}}=f(\vec{Q})^{2} \sum_{n} \sum_{m} e^{i \vec{Q} \cdot\left(\overrightarrow{r_{n}}-\overrightarrow{r_{m}}\right)} \\
& =N f(\vec{Q})^{2}+f(\vec{Q})^{2} \sum_{n} \sum_{m \neq n} e^{i \vec{Q} \cdot\left(\overrightarrow{r_{n}}-\overrightarrow{r_{m}}\right)}
\end{aligned}
$$

The sum over $m \neq m$ is now replaced with an integral of the continuous atomic pair density function, $\rho_{n}\left(\vec{r}_{n m}\right)$ and adding and subtracting the average atomic density $\rho_{\text {at }}$

$$
\begin{aligned}
& I(\vec{Q})= N f(\vec{Q})^{2}+f(\vec{Q})^{2} \sum_{n} \int_{V} \rho_{n}\left(\vec{r}_{n m}\right) e^{i \vec{Q} \cdot\left(\overrightarrow{r_{n}}-\overrightarrow{r_{m}}\right)} d V_{m} \\
&=N f(\vec{Q})^{2}+f(\vec{Q})^{2} \sum_{n} \int_{V}\left[\rho_{n}\left(\overrightarrow{r_{n m}}\right)-\rho_{a t}\right] e^{i \vec{Q} \cdot\left(\overrightarrow{r_{n}}-\overrightarrow{r_{m}}\right)} d V_{m} \\
&+f(\vec{Q})^{2} \rho_{a t} \sum_{n} \int_{V} e^{i \vec{Q} \cdot\left(\overrightarrow{\left.r_{n}-r_{m}\right)} d V_{m}\right.}
\end{aligned}
$$

Total scattered intensity

Consider a mono-atomic (-molecular) system where the total scattered intensity is given by

$$
\begin{aligned}
I(\vec{Q}) & =f(\vec{Q})^{2} \sum_{n} e^{i \vec{Q} \cdot \overrightarrow{r_{n}}} \sum_{m} e^{-i \vec{Q} \cdot \overrightarrow{r_{m}}}=f(\vec{Q})^{2} \sum_{n} \sum_{m} e^{i \vec{Q} \cdot\left(\overrightarrow{r_{n}}-\overrightarrow{r_{m}}\right)} \\
& =N f(\vec{Q})^{2}+f(\vec{Q})^{2} \sum_{n} \sum_{m \neq n} e^{i \vec{Q} \cdot\left(\overrightarrow{r_{n}}-\overrightarrow{r_{m}}\right)}
\end{aligned}
$$

The sum over $m \neq m$ is now replaced with an integral of the continuous atomic pair density function, $\rho_{n}\left(\vec{r}_{n m}\right)$ and adding and subtracting the average atomic density $\rho_{\text {at }}$

$$
\begin{aligned}
& I(\vec{Q})= N f(\vec{Q})^{2}+f(\vec{Q})^{2} \sum_{n} \int_{V} \rho_{n}\left(\overrightarrow{r_{n m}}\right) e^{i \vec{Q} \cdot\left(\overrightarrow{r_{n}}-\overrightarrow{r_{m}}\right)} d V_{m} \\
&=N f(\vec{Q})^{2}+f(\vec{Q})^{2} \sum_{n} \int_{V}\left[\rho_{n}\left(\overrightarrow{r_{n m}}\right)-\rho_{a t}\right] e^{i \vec{Q} \cdot\left(\overrightarrow{r_{n}}-\overrightarrow{r_{m}}\right)} d V_{m} \\
&+f(\vec{Q})^{2} \rho_{a t} \sum_{n} \int_{V} e^{i \vec{Q} \cdot\left(\overrightarrow{r_{n}}-\overrightarrow{r_{m}}\right)} d V_{m}=I^{S R O}(\vec{Q})
\end{aligned}
$$

Total scattered intensity

Consider a mono-atomic (-molecular) system where the total scattered intensity is given by

$$
\begin{aligned}
I(\vec{Q}) & =f(\vec{Q})^{2} \sum_{n} e^{i \vec{Q} \cdot \overrightarrow{r_{n}}} \sum_{m} e^{-i \vec{Q} \cdot \overrightarrow{r_{m}}}=f(\vec{Q})^{2} \sum_{n} \sum_{m} e^{i \vec{Q} \cdot\left(\overrightarrow{r_{n}}-\overrightarrow{r_{m}}\right)} \\
& =N f(\vec{Q})^{2}+f(\vec{Q})^{2} \sum_{n} \sum_{m \neq n} e^{i \vec{Q} \cdot\left(\overrightarrow{r_{n}}-\overrightarrow{r_{m}}\right)}
\end{aligned}
$$

The sum over $m \neq m$ is now replaced with an integral of the continuous atomic pair density function, $\rho_{n}\left(\vec{r}_{n m}\right)$ and adding and subtracting the average atomic density $\rho_{\text {at }}$

$$
\begin{aligned}
& I(\vec{Q})= N f(\vec{Q})^{2}+f(\vec{Q})^{2} \sum_{n} \int_{V} \rho_{n}\left(\vec{r}_{n m}\right) e^{i \vec{Q} \cdot\left(\overrightarrow{r_{n}}-\overrightarrow{r_{m}}\right)} d V_{m} \\
&=N f(\vec{Q})^{2}+f(\vec{Q})^{2} \sum_{n} \int_{V}\left[\rho_{n}\left(\vec{r}_{n m}\right)-\rho_{a t}\right] e^{i \vec{Q} \cdot\left(\overrightarrow{r_{n}}-\overrightarrow{r_{m}}\right)} d V_{m} \\
&+f(\vec{Q})^{2} \rho_{a t} \sum_{n} \int_{V} e^{i \vec{Q} \cdot\left(\overrightarrow{r_{n}}-\overrightarrow{r_{m}}\right)} d V_{m}=I^{S R O}(\vec{Q})+I^{S A X S}(\vec{Q})
\end{aligned}
$$

Liquid scattering

For the moment, let us ignore the SAXS term and focus on the short range order term.

Liquid scattering

For the moment, let us ignore the SAXS term and focus on the short range order term.

$$
I^{S R O}(\vec{Q})=N f(\vec{Q})^{2}+f(\vec{Q})^{2} \sum_{n} \int_{V}\left[\rho_{n}\left(\vec{r}_{n m}\right)-\rho_{a t}\right] e^{i \vec{Q} \cdot\left(\vec{r}_{n}-\vec{r}_{m}\right)} d V
$$

Liquid scattering

For the moment, let us ignore the SAXS term and focus on the short range order term.

$$
I^{S R O}(\vec{Q})=N f(\vec{Q})^{2}+f(\vec{Q})^{2} \sum_{n} \int_{V}\left[\rho_{n}\left(\vec{r}_{n m}\right)-\rho_{a t}\right] e^{i \vec{Q} \cdot\left(\vec{r}_{n}-\vec{r}_{m}\right)} d V
$$

When we average over all choices of origin in the liquid, $\left\langle\rho_{n}\left(\vec{r}_{n m}\right)\right\rangle \rightarrow \rho(\vec{r})$ and the sum simplifies to N giving:

Liquid scattering

For the moment, let us ignore the SAXS term and focus on the short range order term.

$$
I^{S R O}(\vec{Q})=N f(\vec{Q})^{2}+f(\vec{Q})^{2} \sum_{n} \int_{V}\left[\rho_{n}\left(\vec{r}_{n m}\right)-\rho_{a t}\right] e^{i \vec{Q} \cdot\left(\vec{r}_{n}-\vec{r}_{m}\right)} d V
$$

When we average over all choices of origin in the liquid, $\left\langle\rho_{n}\left(\vec{r}_{n m}\right)\right\rangle \rightarrow \rho(\vec{r})$ and the sum simplifies to N giving:

$$
I^{S R O}(\vec{Q})=N f(\vec{Q})^{2}+N f(\vec{Q})^{2} \int_{V}\left[\rho(\vec{r})-\rho_{a t}\right] e^{i \vec{Q} \cdot \vec{r}} d V
$$

Liquid scattering

For the moment, let us ignore the SAXS term and focus on the short range order term.

$$
I^{S R O}(\vec{Q})=N f(\vec{Q})^{2}+f(\vec{Q})^{2} \sum_{n} \int_{V}\left[\rho_{n}\left(\vec{r}_{n m}\right)-\rho_{a t}\right] e^{i \vec{Q} \cdot\left(\vec{r}_{n}-\vec{r}_{m}\right)} d V
$$

When we average over all choices of origin in the liquid, $\left\langle\rho_{n}\left(\vec{r}_{n m}\right)\right\rangle \rightarrow \rho(\vec{r})$ and the sum simplifies to N giving:

$$
I^{S R O}(\vec{Q})=N f(\vec{Q})^{2}+N f(\vec{Q})^{2} \int_{V}\left[\rho(\vec{r})-\rho_{a t}\right] e^{i \vec{Q} \cdot \vec{r}} d V
$$

Performing an orientational average results in

Liquid scattering

For the moment, let us ignore the SAXS term and focus on the short range order term.

$$
I^{S R O}(\vec{Q})=N f(\vec{Q})^{2}+f(\vec{Q})^{2} \sum_{n} \int_{V}\left[\rho_{n}\left(\vec{r}_{n m}\right)-\rho_{a t}\right] e^{i \vec{Q} \cdot\left(\vec{r}_{n}-\vec{r}_{m}\right)} d V
$$

When we average over all choices of origin in the liquid, $\left\langle\rho_{n}\left(\vec{r}_{n m}\right)\right\rangle \rightarrow \rho(\vec{r})$ and the sum simplifies to N giving:

$$
I^{S R O}(\vec{Q})=N f(\vec{Q})^{2}+N f(\vec{Q})^{2} \int_{V}\left[\rho(\vec{r})-\rho_{a t}\right] e^{i \vec{Q} \cdot \vec{r}} d V
$$

Performing an orientational average results in

$$
I^{S R O}(\vec{Q})=N f(\vec{Q})^{2}+N f(\vec{Q})^{2} \int_{0}^{\infty} 4 \pi r^{2}\left[\rho(r)-\rho_{a t}\right] \frac{\sin Q r}{Q r} d r
$$

$S(Q)$ - the liquid structure factor

A bit of rearrangment results in the expression for the liquid structure factor, $S(Q)$.

$S(Q)$ - the liquid structure factor

A bit of rearrangment results in the expression for the liquid structure factor, $\mathrm{S}(\mathrm{Q})$.

$$
S(Q)=\frac{\rho^{S R O}(\vec{Q})}{N f(Q)^{2}}=1+\frac{4 \pi}{Q} \int_{0}^{\infty} r\left[\rho(r)-\rho_{a t}\right] \sin (Q r) d r
$$

$S(Q)$ - the liquid structure factor

A bit of rearrangment results in the expression for the liquid structure factor, $S(Q)$.

$$
S(Q)=\frac{\rho^{S R O}(\vec{Q})}{N f(Q)^{2}}=1+\frac{4 \pi}{Q} \int_{0}^{\infty} r\left[\rho(r)-\rho_{a t}\right] \sin (Q r) d r
$$

When $Q \rightarrow \infty$, the short wavelength limit, $1 / Q \rightarrow 0$ eliminates all dependence on the interparticle correlations and $S(Q) \rightarrow 1$.

$S(Q)$ - the liquid structure factor

A bit of rearrangment results in the expression for the liquid structure factor, $S(Q)$.

$$
S(Q)=\frac{\rho^{S R O}(\vec{Q})}{N f(Q)^{2}}=1+\frac{4 \pi}{Q} \int_{0}^{\infty} r\left[\rho(r)-\rho_{a t}\right] \sin (Q r) d r
$$

When $Q \rightarrow \infty$, the short wavelength limit, $1 / Q \rightarrow 0$ eliminates all dependence on the interparticle correlations and $S(Q) \rightarrow 1$.

When $Q \rightarrow 0$, i.e. the long wavelength limit, $\sin (Q r) / Q \rightarrow r$ and $S(Q)$ is dominated by the density fluctuations in the system

$S(Q)$ - the liquid structure factor

A bit of rearrangment results in the expression for the liquid structure factor, $S(Q)$.

$$
S(Q)=\frac{\rho^{S R O}(\vec{Q})}{N f(Q)^{2}}=1+\frac{4 \pi}{Q} \int_{0}^{\infty} r\left[\rho(r)-\rho_{a t}\right] \sin (Q r) d r
$$

When $Q \rightarrow \infty$, the short wavelength limit, $1 / Q \rightarrow 0$ eliminates all dependence on the interparticle correlations and $S(Q) \rightarrow 1$.

When $Q \rightarrow 0$, i.e. the long wavelength limit, $\sin (Q r) / Q \rightarrow r$ and $S(Q)$ is dominated by the density fluctuations in the system

We can rewrite the structure factor equation

$S(Q)$ - the liquid structure factor

A bit of rearrangment results in the expression for the liquid structure factor, $S(Q)$.

$$
S(Q)=\frac{\rho^{S R O}(\vec{Q})}{N f(Q)^{2}}=1+\frac{4 \pi}{Q} \int_{0}^{\infty} r\left[\rho(r)-\rho_{a t}\right] \sin (Q r) d r
$$

When $Q \rightarrow \infty$, the short wavelength limit, $1 / Q \rightarrow 0$ eliminates all dependence on the interparticle correlations and $S(Q) \rightarrow 1$.

When $Q \rightarrow 0$, i.e. the long wavelength limit, $\sin (Q r) / Q \rightarrow r$ and $S(Q)$ is dominated by the density fluctuations in the system

We can rewrite the structure factor equation

$$
Q[S(Q)-1]=\int_{0}^{\infty} 4 \pi r\left[\rho(r)-\rho_{a t}\right] \sin (Q r) d r
$$

$S(Q)$ - the liquid structure factor

A bit of rearrangment results in the expression for the liquid structure factor, $S(Q)$.

$$
S(Q)=\frac{\rho^{S R O}(\vec{Q})}{N f(Q)^{2}}=1+\frac{4 \pi}{Q} \int_{0}^{\infty} r\left[\rho(r)-\rho_{a t}\right] \sin (Q r) d r
$$

When $Q \rightarrow \infty$, the short wavelength limit, $1 / Q \rightarrow 0$ eliminates all dependence on the interparticle correlations and $S(Q) \rightarrow 1$.

When $Q \rightarrow 0$, i.e. the long wavelength limit, $\sin (Q r) / Q \rightarrow r$ and $S(Q)$ is dominated by the density fluctuations in the system

We can rewrite the structure factor equation

$$
Q[S(Q)-1]=\int_{0}^{\infty} 4 \pi r\left[\rho(r)-\rho_{a t}\right] \sin (Q r) d r=\int_{0}^{\infty} \mathcal{H}(r) \sin (Q r) d r
$$

$S(Q)$ - the liquid structure factor

A bit of rearrangment results in the expression for the liquid structure factor, $S(Q)$.

$$
S(Q)=\frac{\rho^{S R O}(\vec{Q})}{N f(Q)^{2}}=1+\frac{4 \pi}{Q} \int_{0}^{\infty} r\left[\rho(r)-\rho_{a t}\right] \sin (Q r) d r
$$

When $Q \rightarrow \infty$, the short wavelength limit, $1 / Q \rightarrow 0$ eliminates all dependence on the interparticle correlations and $S(Q) \rightarrow 1$.

When $Q \rightarrow 0$, i.e. the long wavelength limit, $\sin (Q r) / Q \rightarrow r$ and $S(Q)$ is dominated by the density fluctuations in the system

We can rewrite the structure factor equation

$$
Q[S(Q)-1]=\int_{0}^{\infty} 4 \pi r\left[\rho(r)-\rho_{a t}\right] \sin (Q r) d r=\int_{0}^{\infty} \mathcal{H}(r) \sin (Q r) d r
$$

$S(Q)$ - the liquid structure factor

A bit of rearrangment results in the expression for the liquid structure factor, $\mathrm{S}(\mathrm{Q})$.

$$
S(Q)=\frac{\rho^{S R O}(\vec{Q})}{N f(Q)^{2}}=1+\frac{4 \pi}{Q} \int_{0}^{\infty} r\left[\rho(r)-\rho_{a t}\right] \sin (Q r) d r
$$

When $Q \rightarrow \infty$, the short wavelength limit, $1 / Q \rightarrow 0$ eliminates all dependence on the interparticle correlations and $S(Q) \rightarrow 1$.

When $Q \rightarrow 0$, i.e. the long wavelength limit, $\sin (Q r) / Q \rightarrow r$ and $S(Q)$ is dominated by the density fluctuations in the system

We can rewrite the structure factor equation

$$
Q[S(Q)-1]=\int_{0}^{\infty} 4 \pi r\left[\rho(r)-\rho_{a t}\right] \sin (Q r) d r=\int_{0}^{\infty} \mathcal{H}(r) \sin (Q r) d r
$$

Which is the sine Fourier Transform of the deviation of the atomic density from its average, $\mathcal{H}(r)=4 \pi r[g(r)-1]$

Radial distribution function

We can invert the Fourier Transform to obtain

Radial distribution function

We can invert the Fourier Transform to obtain

$$
\mathcal{H}(r)=\frac{2}{\pi} \int_{0}^{\infty} Q[S(Q)-1] \sin (Q r) d Q
$$

Radial distribution function

We can invert the Fourier Transform to obtain

$$
\mathcal{H}(r)=\frac{2}{\pi} \int_{0}^{\infty} Q[S(Q)-1] \sin (Q r) d Q
$$

and thus the radial distribution fuction can be obtained from the structure factor (an experimentally measureable quantity).

Radial distribution function

We can invert the Fourier Transform to obtain

$$
\mathcal{H}(r)=\frac{2}{\pi} \int_{0}^{\infty} Q[S(Q)-1] \sin (Q r) d Q
$$

and thus the radial distribution fuction can be obtained from the structure factor (an experimentally measureable quantity).

$$
g(r)=1+\frac{1}{2 \pi^{2} r \rho_{a t}} \int_{0}^{\infty} Q[S(Q)-1] \sin (Q r) d Q
$$

Radial distribution function

We can invert the Fourier Transform to obtain

$$
\mathcal{H}(r)=\frac{2}{\pi} \int_{0}^{\infty} Q[S(Q)-1] \sin (Q r) d Q
$$

and thus the radial distribution fuction can be obtained from the structure factor (an experimentally measureable quantity).

$$
g(r)=1+\frac{1}{2 \pi^{2} r \rho_{a t}} \int_{0}^{\infty} Q[S(Q)-1] \sin (Q r) d Q
$$

This formalism holds for both non-crystalline solids and liquids, even though inelastic scattering dominates in the latter.

Radial distribution function

We can invert the Fourier Transform to obtain

$$
\mathcal{H}(r)=\frac{2}{\pi} \int_{0}^{\infty} Q[S(Q)-1] \sin (Q r) d Q
$$

and thus the radial distribution fuction can be obtained from the structure factor (an experimentally measureable quantity).

$$
g(r)=1+\frac{1}{2 \pi^{2} r \rho_{a t}} \int_{0}^{\infty} Q[S(Q)-1] \sin (Q r) d Q
$$

This formalism holds for both non-crystalline solids and liquids, even though inelastic scattering dominates in the latter.

The relation between radial distribution function and structure factor can be extended to multi-component systems where $g(r) \rightarrow g_{i j}(r)$ and $S(Q) \rightarrow S_{i j}(Q)$.

Structure in supercooled liquid metals

Measurement of the liquid structure factor of molten metals have shown that there is short range order which leads to the phenomenon of supercooling.

Structure in supercooled liquid metals

Measurement of the liquid structure factor of molten metals have shown that there is short range order which leads to the phenomenon of supercooling.

Structure in supercooled liquid metals

Measurement of the liquid structure factor of molten metals have shown that there is short range order which leads to the phenomenon of supercooling.

Structure in supercooled liquid metals

Measurement of the liquid structure factor of molten metals have shown that there is short range order which leads to the phenomenon of supercooling.

This indicates the presence of icosahedral clusters which inhibit crystallization.

"Difference in Icosahedral Short-Range Order in Early and Late Transition Metal Liquids",
G.W. Lee et al. Phys. Rev. Lett 93, 037802 (2004).

Small angle x-ray scattering

Recall that there was an additional term in the scattering intensity which becomes important at small Q.

Small angle x-ray scattering

Recall that there was an additional term in the scattering intensity which becomes important at small Q.

$$
I^{S A X S}(\vec{Q})=f^{2} \sum_{n} \int_{V} \rho_{a t} e^{i \vec{Q} \cdot\left(\vec{r}_{n}-\vec{r}_{m}\right)} d V_{m}
$$

Small angle x-ray scattering

Recall that there was an additional term in the scattering intensity which becomes important at small Q.

$$
\begin{aligned}
I^{S A X S}(\vec{Q}) & =f^{2} \sum_{n} \int_{V} \rho_{a t} e^{i \vec{Q} \cdot\left(\vec{r}_{n}-\vec{r}_{m}\right)} d V_{m} \\
& =f^{2} \sum_{n} e^{i \vec{Q} \cdot \vec{r}_{n}} \int_{V} \rho_{a t} e^{-i \vec{Q} \cdot \vec{r}_{m}} d V_{m}
\end{aligned}
$$

Small angle x-ray scattering

Recall that there was an additional term in the scattering intensity which becomes important at small Q.

$$
\begin{aligned}
I^{S A X S}(\vec{Q}) & =f^{2} \sum_{n} \int_{V} \rho_{a t} e^{i \vec{Q} \cdot\left(\vec{r}_{n}-\vec{r}_{m}\right)} d V_{m} \\
& =f^{2} \sum_{n} e^{i \vec{Q} \cdot \vec{r}_{n}} \int_{V} \rho_{a t} e^{-i \vec{Q} \cdot \vec{r}_{m}} d V_{m} \\
& =f^{2} \int_{V} \rho_{a t} e^{i \vec{Q} \cdot \vec{r}_{n}} d V_{n} \int_{V} \rho_{a t} e^{-i \vec{Q} \cdot \vec{r}_{m}} d V_{m}
\end{aligned}
$$

Small angle x-ray scattering

Recall that there was an additional term in the scattering intensity which becomes important at small Q.

$$
\begin{aligned}
I^{S A X S}(\vec{Q}) & =f^{2} \sum_{n} \int_{V} \rho_{a t} e^{i \vec{Q} \cdot\left(\vec{r}_{n}-\vec{r}_{m}\right)} d V_{m} \\
& =f^{2} \sum_{n} e^{i \vec{Q} \cdot \vec{r}_{n}} \int_{V} \rho_{a t} e^{-i \vec{Q} \cdot \vec{r}_{m}} d V_{m} \\
& =f^{2} \int_{V} \rho_{a t} e^{i \vec{Q} \cdot \vec{r}_{n}} d V_{n} \int_{V} \rho_{a t} e^{-i \vec{Q} \cdot \vec{r}_{m}} d V_{m} \\
& =\left|\int_{V} \rho_{s l} e^{i \vec{Q} \cdot \vec{r}} d V\right|^{2}
\end{aligned}
$$

Small angle x-ray scattering

Recall that there was an additional term in the scattering intensity which becomes important at small Q.

$$
\begin{aligned}
I^{S A X S}(\vec{Q}) & =f^{2} \sum_{n} \int_{V} \rho_{a t} e^{i \vec{Q} \cdot\left(\vec{r}_{n}-\vec{r}_{m}\right)} d V_{m} \\
& =f^{2} \sum_{n} e^{i \vec{Q} \cdot \vec{r}_{n}} \int_{V} \rho_{a t} e^{-i \vec{Q} \cdot \vec{r}_{m}} d V_{m} \\
& =f^{2} \int_{V} \rho_{a t} e^{i \vec{Q} \cdot \vec{r}_{n}} d V_{n} \int_{V} \rho_{a t} e^{-i \vec{Q} \cdot \vec{r}_{m}} d V_{m} \\
& =\left|\int_{V} \rho_{s l} e^{i \vec{Q} \cdot \vec{r}} d V\right|^{2}
\end{aligned}
$$

Where we have assumed sufficient averaging and introduced $\rho_{s l}=f \rho_{a t}$.

Small angle x-ray scattering

Recall that there was an additional term in the scattering intensity which becomes important at small Q.

$$
\begin{aligned}
I^{S A X S}(\vec{Q}) & =f^{2} \sum_{n} \int_{V} \rho_{a t} e^{i \vec{Q} \cdot\left(\vec{r}_{n}-\vec{r}_{m}\right)} d V_{m} \\
& =f^{2} \sum_{n} e^{i \vec{Q} \cdot \vec{r}_{n}} \int_{V} \rho_{a t} e^{-i \vec{Q} \cdot \vec{r}_{m}} d V_{m} \\
& =f^{2} \int_{V} \rho_{a t} e^{i \vec{Q} \cdot \vec{r}_{n}} d V_{n} \int_{V} \rho_{a t} e^{-i \vec{Q} \cdot \vec{r}_{m}} d V_{m} \\
& =\left|\int_{V} \rho_{s l} e^{i \vec{Q} \cdot \vec{r}} d V\right|^{2}
\end{aligned}
$$

Where we have assumed sufficient averaging and introduced $\rho_{s l}=f \rho_{a t}$. This final expression looks just like an atomic form factor but the charge density that we consider here is on a much longer length scale than an atom.

The SAXS experiment

Scattering from a dilute solution

The simplest case is for a dilute solution of non-interacting molecules.

$$
I^{S A X S}(\vec{Q})=\left|\int_{V_{p}} \rho_{s l} e^{i \vec{Q} \cdot \vec{r}} d V_{p}\right|^{2}
$$

Scattering from a dilute solution

The simplest case is for a dilute solution of non-interacting molecules.
Assume that the scattering length density of each identical particle (molecule) is given by $\rho_{s l, p}$ and the scattering length density of the solvent is $\rho_{s l, 0}$.

$$
I^{S A X S}(\vec{Q})=\left|\int_{V_{p}} \rho_{s l} e^{i \vec{Q} \cdot \vec{r}} d V_{p}\right|^{2}
$$

Scattering from a dilute solution

The simplest case is for a dilute solution of non-interacting molecules.
Assume that the scattering length density of each identical particle (molecule) is given by $\rho_{s l, p}$ and the scattering length density of the solvent is $\rho_{s l, 0}$.

$$
I^{S A X S}(\vec{Q})=\left|\int_{V_{p}} \rho_{s l} e^{i \vec{Q} \cdot \vec{r}} d V_{p}\right|^{2}=\left(\rho_{s l, p}-\rho_{s l, 0}\right)^{2}\left|\int_{V_{p}} e^{i \vec{Q} \cdot \vec{r}} d V_{p}\right|^{2}
$$

Scattering from a dilute solution

The simplest case is for a dilute solution of non-interacting molecules.
Assume that the scattering length density of each identical particle (molecule) is given by $\rho_{s l, p}$ and the scattering length density of the solvent is $\rho_{s l, 0}$.

$$
I^{S A X S}(\vec{Q})=\left|\int_{V_{p}} \rho_{s l} e^{i \vec{Q} \cdot \vec{r}} d V_{p}\right|^{2}=\left(\rho_{s l, p}-\rho_{s l, 0}\right)^{2}\left|\int_{V_{p}} e^{i \vec{Q} \cdot \vec{r}} d V_{p}\right|^{2}
$$

If we introduce the single-particle form factor $\mathcal{F}(\vec{Q})$:

Scattering from a dilute solution

The simplest case is for a dilute solution of non-interacting molecules.
Assume that the scattering length density of each identical particle (molecule) is given by $\rho_{s l, p}$ and the scattering length density of the solvent is $\rho_{s l, 0}$.

$$
I^{S A X S}(\vec{Q})=\left|\int_{V_{p}} \rho_{s l} e^{i \vec{Q} \cdot \vec{r}} d V_{p}\right|^{2}=\left(\rho_{s l, p}-\rho_{s l, 0}\right)^{2}\left|\int_{V_{p}} e^{i \vec{Q} \cdot \vec{r}} d V_{p}\right|^{2}
$$

If we introduce the single-particle form factor $\mathcal{F}(\vec{Q})$:

$$
\mathcal{F}(\vec{Q})=\frac{1}{V_{p}} \int_{V_{p}} e^{i \vec{Q} \cdot \vec{r}} d V_{p}
$$

Scattering from a dilute solution

The simplest case is for a dilute solution of non-interacting molecules.
Assume that the scattering length density of each identical particle (molecule) is given by $\rho_{s l, p}$ and the scattering length density of the solvent is $\rho_{s l, 0}$.

$$
I^{S A X S}(\vec{Q})=\left|\int_{V_{p}} \rho_{s l} e^{i \vec{Q} \cdot \vec{r}} d V_{p}\right|^{2}=\left(\rho_{s l, p}-\rho_{s l, 0}\right)^{2}\left|\int_{V_{p}} e^{i \vec{Q} \cdot \vec{r}} d V_{p}\right|^{2}
$$

If we introduce the single-particle form factor $\mathcal{F}(\vec{Q})$:

$$
\begin{aligned}
\mathcal{F}(\vec{Q}) & =\frac{1}{V_{p}} \int_{V_{p}} e^{i \vec{Q} \cdot \vec{r}} d V_{p} \\
I^{S A X S}(\vec{Q}) & =\Delta \rho^{2} V_{p}^{2}|\mathcal{F}(\vec{Q})|^{2}
\end{aligned}
$$

Where $\Delta \rho=\left(\rho_{s l, p}-\rho_{s l, 0}\right)$, and the form factor depends on the morphology of the particle (size and shape).

Scattering from a sphere

There are only a few morphologies which can be computed exactly and the simplest is a constant density sphere of radius R.

Scattering from a sphere

There are only a few morphologies which can be computed exactly and the simplest is a constant density sphere of radius R.

$$
\mathcal{F}(Q)=\frac{1}{V_{p}} \int_{0}^{R} \int_{0}^{2 \pi} \int_{0}^{\pi} e^{i Q r \cos \theta} r^{2} \sin \theta d \theta d \phi d r
$$

Scattering from a sphere

There are only a few morphologies which can be computed exactly and the simplest is a constant density sphere of radius R.

$$
\mathcal{F}(Q)=\frac{1}{V_{p}} \int_{0}^{R} \int_{0}^{2 \pi} \int_{0}^{\pi} e^{i Q r \cos \theta} r^{2} \sin \theta d \theta d \phi d r
$$

$\mathcal{F}(Q)=\frac{1}{V_{p}} \int_{0}^{R} 4 \pi \frac{\sin (Q r)}{Q r} r^{2} d r$

Scattering from a sphere

There are only a few morphologies which can be computed exactly and the simplest is a constant density sphere of radius R.

$$
\mathcal{F}(Q)=\frac{1}{V_{p}} \int_{0}^{R} \int_{0}^{2 \pi} \int_{0}^{\pi} e^{i Q r \cos \theta} r^{2} \sin \theta d \theta d \phi d r
$$

$$
\begin{aligned}
\mathcal{F}(Q) & =\frac{1}{V_{p}} \int_{0}^{R} 4 \pi \frac{\sin (Q r)}{Q r} r^{2} d r \\
& =3\left[\frac{\sin (Q R)-Q R \cos (Q R)}{Q^{3} R^{3}}\right]
\end{aligned}
$$

Scattering from a sphere

There are only a few morphologies which can be computed exactly and the simplest is a constant density sphere of radius R.

$$
\mathcal{F}(Q)=\frac{1}{V_{p}} \int_{0}^{R} \int_{0}^{2 \pi} \int_{0}^{\pi} e^{i Q r \cos \theta} r^{2} \sin \theta d \theta d \phi d r
$$

$$
\begin{aligned}
\mathcal{F}(Q) & =\frac{1}{V_{p}} \int_{0}^{R} 4 \pi \frac{\sin (Q r)}{Q r} r^{2} d r \\
& =3\left[\frac{\sin (Q R)-Q R \cos (Q R)}{Q^{3} R^{3}}\right] \\
& \equiv \frac{3 J_{1}(Q R)}{Q R}
\end{aligned}
$$

Scattering from a sphere

There are only a few morphologies which can be computed exactly and the simplest is a constant density sphere of radius R.

$$
\mathcal{F}(Q)=\frac{1}{V_{p}} \int_{0}^{R} \int_{0}^{2 \pi} \int_{0}^{\pi} e^{i Q r \cos \theta} r^{2} \sin \theta d \theta d \phi d r
$$

$$
\begin{aligned}
\mathcal{F}(Q) & =\frac{1}{V_{p}} \int_{0}^{R} 4 \pi \frac{\sin (Q r)}{Q r} r^{2} d r \\
& =3\left[\frac{\sin (Q R)-Q R \cos (Q R)}{Q^{3} R^{3}}\right] \\
& \equiv \frac{3 J_{1}(Q R)}{Q R}
\end{aligned}
$$

Where $J_{1}(x)$ is the Bessel function of the first kind

Scattering from a sphere

There are only a few morphologies which can be computed exactly and the simplest is a constant density sphere of radius R.

$$
\mathcal{F}(Q)=\frac{1}{V_{p}} \int_{0}^{R} \int_{0}^{2 \pi} \int_{0}^{\pi} e^{i Q r \cos \theta} r^{2} \sin \theta d \theta d \phi d r
$$

$$
\begin{aligned}
\mathcal{F}(Q) & =\frac{1}{V_{p}} \int_{0}^{R} 4 \pi \frac{\sin (Q r)}{Q r} r^{2} d r \\
& =3\left[\frac{\sin (Q R)-Q R \cos (Q R)}{Q^{3} R^{3}}\right] \\
& \equiv \frac{3 J_{1}(Q R)}{Q R}
\end{aligned}
$$

Where $J_{1}(x)$ is the Bessel function of the first kind

Scattering from a sphere

$$
I(Q)=\Delta \rho^{2} V_{p}^{2}\left|\frac{3 J_{1}(Q R)}{Q R}\right|^{2}
$$

Scattering from a sphere

$$
I(Q)=\Delta \rho^{2} V_{p}^{2}\left|\frac{3 J_{1}(Q R)}{Q R}\right|^{2}=\Delta \rho^{2} V_{p}^{2}\left|3 \frac{\sin (Q R)-Q R \cos (Q R)}{Q^{3} R^{3}}\right|^{2}
$$

Scattering from a sphere

Scattering from a sphere

Guinier analysis

In the long wavelength limit $Q R \rightarrow 0$ we can approximate the scattering factor with the first terms of the sum

Guinier analysis

In the long wavelength limit $Q R \rightarrow 0$ we can approximate the scattering factor with the first terms of the sum

$$
\begin{aligned}
\mathcal{F}(Q) \approx \frac{3}{Q^{3} R^{3}} & {\left[Q R-\frac{Q^{3} R^{3}}{6}+\frac{Q^{5} R^{5}}{120}-\cdots\right.} \\
& \left.-Q R\left(1-\frac{Q^{2} R^{2}}{2}+\frac{Q^{4} R^{4}}{24}-\cdots\right)\right]
\end{aligned}
$$

Guinier analysis

In the long wavelength limit $Q R \rightarrow 0$ we can approximate the scattering factor with the first terms of the sum

$$
\begin{aligned}
& \mathcal{F}(Q) \approx \frac{3}{Q^{3} R^{3}}\left[Q R-\frac{Q^{3} R^{3}}{6}+\frac{Q^{5} R^{5}}{120}-\cdots\right. \\
& \left.-Q R\left(1-\frac{Q^{2} R^{2}}{2}+\frac{Q^{4} R^{4}}{24}-\cdots\right)\right] \\
& \text { this simplifies to } \mathcal{F}(Q) \approx 1-\frac{Q^{2} R^{2}}{10} \text { and }
\end{aligned}
$$

Guinier analysis

In the long wavelength limit $Q R \rightarrow 0$ we can approximate the scattering factor with the first terms of the sum

$$
I^{S A X S}(Q) \approx \Delta \rho^{2} V_{p}^{2}\left[1-\frac{Q^{2} R^{2}}{10}\right]^{2}
$$

$$
\begin{aligned}
& \mathcal{F}(Q) \approx \frac{3}{Q^{3} R^{3}}\left[Q R-\frac{Q^{3} R^{3}}{6}+\frac{Q^{5} R^{5}}{120}-\cdots\right. \\
& \left.-Q R\left(1-\frac{Q^{2} R^{2}}{2}+\frac{Q^{4} R^{4}}{24}-\cdots\right)\right] \\
& \text { this simplifies to } \mathcal{F}(Q) \approx 1-\frac{Q^{2} R^{2}}{10} \text { and }
\end{aligned}
$$

Guinier analysis

In the long wavelength limit $Q R \rightarrow 0$ we can approximate the scattering factor with the first terms of the sum

$$
I^{S A X S}(Q) \approx \Delta \rho^{2} V_{p}^{2}\left[1-\frac{Q^{2} R^{2}}{10}\right]^{2} \approx \Delta \rho^{2} V_{p}^{2}\left[1-\frac{Q^{2} R^{2}}{5}\right]
$$

$$
\begin{aligned}
& \mathcal{F}(Q) \approx \frac{3}{Q^{3} R^{3}}\left[Q R-\frac{Q^{3} R^{3}}{6}+\frac{Q^{5} R^{5}}{120}-\cdots\right. \\
& \left.-Q R\left(1-\frac{Q^{2} R^{2}}{2}+\frac{Q^{4} R^{4}}{24}-\cdots\right)\right] \\
& \text { this simplifies to } \mathcal{F}(Q) \approx 1-\frac{Q^{2} R^{2}}{10} \text { and }
\end{aligned}
$$

Guinier analysis

In the long wavelength limit $Q R \rightarrow 0$ we can approximate the scattering factor with the first terms of the sum

$$
\begin{aligned}
& \mathcal{F}(Q) \approx \frac{3}{Q^{3} R^{3}}\left[Q R-\frac{Q^{3} R^{3}}{6}+\frac{Q^{5} R^{5}}{120}-\cdots\right. \\
& \left.-Q R\left(1-\frac{Q^{2} R^{2}}{2}+\frac{Q^{4} R^{4}}{24}-\cdots\right)\right] \\
& \text { this simplifies to } \quad \mathcal{F}(Q) \approx 1-\frac{Q^{2} R^{2}}{10} \text { and }
\end{aligned}
$$

$$
\begin{aligned}
I^{S A X S}(Q) & \approx \Delta \rho^{2} V_{p}^{2}\left[1-\frac{Q^{2} R^{2}}{10}\right]^{2} \\
& \approx \Delta \rho^{2} V_{p}^{2}\left[1-\frac{Q^{2} R^{2}}{5}\right] \\
& \approx \Delta \rho^{2} V_{p}^{2} \mathrm{e}^{-Q^{2} R^{2} / 5}, \quad Q R \ll 1
\end{aligned}
$$

Guinier analysis

In the long wavelength limit $(Q R \rightarrow 0)$, the form factor becomes

Guinier analysis

In the long wavelength limit $(Q R \rightarrow 0)$, the form factor becomes

$$
\mathcal{F}(Q) \approx 1-\frac{Q^{2} R^{2}}{10}
$$

Guinier analysis

In the long wavelength limit $(Q R \rightarrow 0)$, the form factor becomes

$$
\begin{aligned}
\mathcal{F}(Q) & \approx 1-\frac{Q^{2} R^{2}}{10} \\
I(Q) & \approx \Delta \rho^{2} V_{p}^{2} e^{-Q^{2} R^{2} / 5}
\end{aligned}
$$

Guinier analysis

In the long wavelength limit $(Q R \rightarrow 0)$, the form factor becomes

$$
\begin{aligned}
\mathcal{F}(Q) & \approx 1-\frac{Q^{2} R^{2}}{10} \\
I(Q) & \approx \Delta \rho^{2} V_{p}^{2} e^{-Q^{2} R^{2} / 5}
\end{aligned}
$$

and the initial slope of the $\log (I)$ vs Q^{2} plot is $-R^{2} / 5$

Guinier analysis

In the long wavelength limit $(Q R \rightarrow 0)$, the form factor becomes

$$
\begin{aligned}
\mathcal{F}(Q) & \approx 1-\frac{Q^{2} R^{2}}{10} \\
I(Q) & \approx \Delta \rho^{2} V_{p}^{2} e^{-Q^{2} R^{2} / 5}
\end{aligned}
$$

and the initial slope of the $\log (I)$ vs Q^{2} plot is $-R^{2} / 5$

Guinier analysis

In the long wavelength limit $(Q R \rightarrow 0)$, the form factor becomes

$$
\begin{aligned}
\mathcal{F}(Q) & \approx 1-\frac{Q^{2} R^{2}}{10} \\
I(Q) & \approx \Delta \rho^{2} V_{p}^{2} e^{-Q^{2} R^{2} / 5}
\end{aligned}
$$

and the initial slope of the $\log (I)$ vs Q^{2} plot is $-R^{2} / 5$

Guinier analysis

In the long wavelength limit $(Q R \rightarrow 0)$, the form factor becomes

$$
\begin{aligned}
\mathcal{F}(Q) & \approx 1-\frac{Q^{2} R^{2}}{10} \\
I(Q) & \approx \Delta \rho^{2} V_{p}^{2} e^{-Q^{2} R^{2} / 5}
\end{aligned}
$$

and the initial slope of the $\log (I)$ vs Q^{2} plot is $-R^{2} / 5$

In terms of the radius of gyration, R_{g}, which for a sphere is given by $\sqrt{\frac{3}{5}} R$

Guinier analysis

In the long wavelength limit $(Q R \rightarrow 0)$, the form factor becomes

$$
\begin{aligned}
\mathcal{F}(Q) & \approx 1-\frac{Q^{2} R^{2}}{10} \\
I(Q) & \approx \Delta \rho^{2} V_{p}^{2} e^{-Q^{2} R^{2} / 5}
\end{aligned}
$$

and the initial slope of the $\log (I)$ vs Q^{2} plot is $-R^{2} / 5$

In terms of the radius of gyration, R_{g}, which for a sphere is given by $\sqrt{\frac{3}{5}} R$

$$
I(Q) \approx \Delta \rho^{2} V_{p}^{2} e^{-Q^{2} R_{g}^{2} / 3}
$$

Calculation of R_{g}

$$
R_{g}^{2}=\frac{1}{V_{p}} \int_{V_{p}} r^{2} d V_{p}
$$

Calculation of R_{g}

$$
R_{g}^{2}=\frac{1}{V_{p}} \int_{V_{p}} r^{2} d V_{p}
$$

In terms of the scattering length density, we have

Calculation of R_{g}

$$
\begin{aligned}
R_{g}^{2} & =\frac{1}{V_{p}} \int_{V_{p}} r^{2} d V_{p} \\
& =\frac{\int_{V_{p}} \rho_{s l, p}(\vec{r}) r^{2} d V_{p}}{\int_{V_{p}} \rho_{s l, p}(\vec{r}) d V_{p}}
\end{aligned}
$$

In terms of the scattering length density, we have

Calculation of R_{g}

$$
\begin{aligned}
R_{g}^{2} & =\frac{1}{V_{p}} \int_{V_{p}} r^{2} d V_{p} \\
& =\frac{\int_{V_{p}} \rho_{s l, p}(\vec{r}) r^{2} d V_{p}}{\int_{V_{p}} \rho_{s l, p}(\vec{r}) d V_{p}}
\end{aligned}
$$

In terms of the scattering length density, we have
after orientational averaging this expression can be used to extract R_{g} from experimental data using

Calculation of R_{g}

$$
\begin{aligned}
R_{g}^{2} & =\frac{1}{V_{p}} \int_{V_{p}} r^{2} d V_{p} \\
& =\frac{\int_{V_{p}} \rho_{s l, p}(\vec{r}) r^{2} d V_{p}}{\int_{V_{p}} \rho_{s l, p}(\vec{r}) d V_{p}}
\end{aligned}
$$

In terms of the scattering length density, we have
after orientational averaging this expression can be used to extract R_{g} from experimental data using

$$
I_{1}^{S A X S}(Q) \approx \Delta \rho^{2} V_{p}^{2} e^{-Q^{2} R_{g}^{2} / 3}
$$

Calculation of R_{g}

$$
\begin{aligned}
R_{g}^{2} & =\frac{1}{V_{p}} \int_{V_{p}} r^{2} d V_{p} \\
& =\frac{\int_{V_{p}} \rho_{s l, p}(\vec{r}) r^{2} d V_{p}}{\int_{V_{p}} \rho_{s l, p}(\vec{r}) d V_{p}}
\end{aligned}
$$

In terms of the scattering length density, we have
after orientational averaging this expression can be used to extract R_{g} from experimental data using

$$
I_{1}^{S A X S}(Q) \approx \Delta \rho^{2} V_{p}^{2} e^{-Q^{2} R_{g}^{2} / 3}
$$

this expression holds for uniform and non-uniform densities

Porod analysis

In the short wavelength limit ($Q R \gg 1$), the form factor for a sphere can be approximated

Porod analysis

In the short wavelength limit ($Q R \gg 1$), the form factor for a sphere can be approximated
$\mathcal{F}(Q)=3\left[\frac{\sin (Q R)}{Q^{3} R^{3}}-\frac{\cos (Q R)}{Q^{2} R^{2}}\right]$

Porod analysis

In the short wavelength limit ($Q R \gg 1$), the form factor for a sphere can be approximated

$$
\begin{aligned}
\mathcal{F}(Q) & =3\left[\frac{\sin (Q R)}{Q^{3} R^{3}}-\frac{\cos (Q R)}{Q^{2} R^{2}}\right] \\
& \approx 3\left[-\frac{\cos (Q R)}{Q^{2} R^{2}}\right]
\end{aligned}
$$

Porod analysis

In the short wavelength limit ($Q R \gg 1$), the form factor for a sphere can be approximated

$$
\begin{aligned}
\mathcal{F}(Q) & =3\left[\frac{\sin (Q R)}{Q^{3} R^{3}}-\frac{\cos (Q R)}{Q^{2} R^{2}}\right] \\
& \approx 3\left[-\frac{\cos (Q R)}{Q^{2} R^{2}}\right] \\
I(Q) & =9 \Delta \rho^{2} V_{p}^{2}\left[-\frac{\cos (Q R)}{Q^{2} R^{2}}\right]^{2}
\end{aligned}
$$

Porod analysis

In the short wavelength limit ($Q R \gg 1$), the form factor for a sphere can be approximated

$$
\begin{aligned}
\mathcal{F}(Q) & =3\left[\frac{\sin (Q R)}{Q^{3} R^{3}}-\frac{\cos (Q R)}{Q^{2} R^{2}}\right] \\
& \approx 3\left[-\frac{\cos (Q R)}{Q^{2} R^{2}}\right] \\
I(Q) & =9 \Delta \rho^{2} V_{p}^{2}\left[-\frac{\cos (Q R)}{Q^{2} R^{2}}\right]^{2} \\
& =9 \Delta \rho^{2} V_{p}^{2} \frac{\left\langle\cos ^{2}(Q R)\right\rangle}{Q^{4} R^{4}}
\end{aligned}
$$

Porod analysis

In the short wavelength limit ($Q R \gg 1$), the form factor for a sphere can be approximated

$$
\begin{aligned}
\mathcal{F}(Q) & =3\left[\frac{\sin (Q R)}{Q^{3} R^{3}}-\frac{\cos (Q R)}{Q^{2} R^{2}}\right] \\
& \approx 3\left[-\frac{\cos (Q R)}{Q^{2} R^{2}}\right] \\
I(Q) & =9 \Delta \rho^{2} V_{p}^{2}\left[-\frac{\cos (Q R)}{Q^{2} R^{2}}\right]^{2} \\
& =9 \Delta \rho^{2} V_{p}^{2} \frac{\left\langle\cos ^{2}(Q R)\right\rangle}{Q^{4} R^{4}} \\
& =\frac{9 \Delta \rho^{2} V_{p}^{2}}{Q^{4} R^{4}}\left(\frac{1}{2}\right)
\end{aligned}
$$

Porod analysis

In the short wavelength limit ($Q R \gg 1$), the form factor for a sphere can be approximated

$$
\begin{aligned}
\mathcal{F}(Q) & =3\left[\frac{\sin (Q R)}{Q^{3} R^{3}}-\frac{\cos (Q R)}{Q^{2} R^{2}}\right] \\
& \approx 3\left[-\frac{\cos (Q R)}{Q^{2} R^{2}}\right] \\
I(Q) & =9 \Delta \rho^{2} V_{p}^{2}\left[-\frac{\cos (Q R)}{Q^{2} R^{2}}\right]^{2} \\
& =9 \Delta \rho^{2} V_{p}^{2} \frac{\left\langle\cos ^{2}(Q R)\right\rangle}{Q^{4} R^{4}} \\
& =\frac{9 \Delta \rho^{2} V_{p}^{2}}{Q^{4} R^{4}}\left(\frac{1}{2}\right) \\
I(Q) & =\frac{2 \pi \Delta \rho^{2}}{Q^{4}} S_{p}
\end{aligned}
$$

Porod analysis

In the short wavelength limit ($Q R \gg 1$), the form factor for a sphere can be approximated

$$
\begin{aligned}
\mathcal{F}(Q) & =3\left[\frac{\sin (Q R)}{Q^{3} R^{3}}-\frac{\cos (Q R)}{Q^{2} R^{2}}\right] \\
& \approx 3\left[-\frac{\cos (Q R)}{Q^{2} R^{2}}\right] \\
I(Q) & =9 \Delta \rho^{2} V_{p}^{2}\left[-\frac{\cos (Q R)}{Q^{2} R^{2}}\right]^{2} \\
& =9 \Delta \rho^{2} V_{p}^{2} \frac{\left\langle\cos ^{2}(Q R)\right\rangle}{Q^{4} R^{4}} \\
& =\frac{9 \Delta \rho^{2} V_{p}^{2}}{Q^{4} R^{4}}\left(\frac{1}{2}\right) \\
I(Q) & =\frac{2 \pi \Delta \rho^{2}}{Q^{4}} S_{p}
\end{aligned}
$$

Porod analysis

In the short wavelength limit ($Q R \gg 1$), the form factor for a sphere can be approximated

$$
\begin{aligned}
\mathcal{F}(Q) & =3\left[\frac{\sin (Q R)}{Q^{3} R^{3}}-\frac{\cos (Q R)}{Q^{2} R^{2}}\right] \\
& \approx 3\left[-\frac{\cos (Q R)}{Q^{2} R^{2}}\right] \\
I(Q) & =9 \Delta \rho^{2} V_{p}^{2}\left[-\frac{\cos (Q R)}{Q^{2} R^{2}}\right]^{2} \\
& =9 \Delta \rho^{2} V_{p}^{2} \frac{\left\langle\cos ^{2}(Q R)\right\rangle}{Q^{4} R^{4}} \\
& =\frac{9 \Delta \rho^{2} V_{p}^{2}}{Q^{4} R^{4}}\left(\frac{1}{2}\right) \\
I(Q) & =\frac{2 \pi \Delta \rho^{2}}{Q^{4}} S_{p}
\end{aligned}
$$

Shape effect on scattering

The shape of the particle will have a significant effect on the SAXS since the form factor is derived from an integral over the particle volume, V_{p}.

Shape effect on scattering

The shape of the particle will have a significant effect on the SAXS since the form factor is derived from an integral over the particle volume, V_{p}. If the particle is not spherical, then its "dimensionality" is not 3 and this will affect the form factor and introduce a different power law in the Porod regime.

Shape effect on scattering

The shape of the particle will have a significant effect on the SAXS since the form factor is derived from an integral over the particle volume, V_{p}.

If the particle is not spherical, then its "dimensionality" is not 3 and this will affect the form factor and introduce a different power law in the Porod regime.

| | shape order |
| :--- | :--- | :--- |
| $d V_{p}=4 \pi r^{2} d r$ | sphere |

Shape effect on scattering

The shape of the particle will have a significant effect on the SAXS since the form factor is derived from an integral over the particle volume, V_{p}.

If the particle is not spherical, then its "dimensionality" is not 3 and this will affect the form factor and introduce a different power law in the Porod regime.

	shape	order
$d V_{p}=4 \pi r^{2} d r$	sphere	
$d A_{p}=2 \pi r d r$	disk	

Shape effect on scattering

The shape of the particle will have a significant effect on the SAXS since the form factor is derived from an integral over the particle volume, V_{p}.

If the particle is not spherical, then its "dimensionality" is not 3 and this will affect the form factor and introduce a different power law in the Porod regime.

	shape	order
$d V_{p}=4 \pi r^{2} d r$	sphere	
$d A_{p}=2 \pi r d r$	disk	
$d L_{p}=d r$	rod	

Shape effect on scattering

The shape of the particle will have a significant effect on the SAXS since the form factor is derived from an integral over the particle volume, V_{p}. If the particle is not spherical, then its "dimensionality" is not 3 and this will affect the form factor and introduce a different power law in the Porod regime.

shape order
$\begin{array}{lc}d V_{p}=4 \pi r^{2} d r & \text { sphere } \\ d A_{p}=2 \pi r d r & \text { disk } \\ d L_{p}=d r & \text { rod }\end{array}$

Shape effect on scattering

The shape of the particle will have a significant effect on the SAXS since the form factor is derived from an integral over the particle volume, V_{p}. If the particle is not spherical, then its "dimensionality" is not 3 and this will affect the form factor and introduce a different power law in the Porod regime.

Shape effect on scattering

The shape of the particle will have a significant effect on the SAXS since the form factor is derived from an integral over the particle volume, V_{p}. If the particle is not spherical, then its "dimensionality" is not 3 and this will affect the form factor and introduce a different power law in the Porod regime.
shape order

	shape	order
$d V_{p}=4 \pi r^{2} d r$	sphere	-4
$d A_{p}=2 \pi r d r$	disk	-2
$d L_{p}=d r$	rod	

Shape effect on scattering

The shape of the particle will have a significant effect on the SAXS since the form factor is derived from an integral over the particle volume, V_{p}. If the particle is not spherical, then its "dimensionality" is not 3 and this will affect the form factor and introduce a different power law in the Porod regime.

	shape	order
$d V_{p}=4 \pi r^{2} d r$	sphere	-4
$d A_{p}=2 \pi r d r$	disk	-2
$d L_{p}=d r$	rod	-1

Shape effect on scattering

The shape of the particle will have a significant effect on the SAXS since the form factor is derived from an integral over the particle volume, V_{p}.
If the particle is not spherical, then its "dimensionality" is not 3 and this will affect the form factor and introduce a different power law in the Porod regime.

	shape	order
$d V_{p}=4 \pi r^{2} d r$	sphere	-4
$d A_{p}=2 \pi r d r$	disk	-2
$d L_{p}=d r$	rod	-1

