
Today’s Outline - September 05, 2016

• Liquid scattering

• SAXS review

• Calculating Rg

• Porod regime

• Nucleation mechanism by SAXS

Homework Assignment #04:
Chapter 4: 2, 4, 6, 7, 10
due Monday, October 24, 2016
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The radial distribution function

Ordered 2D crystal Amorphous solid or liquid
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Total scattered intensity

Consider a mono-atomic (-molecular) system where the total scattered
intensity is given by

I (~Q) = f (~Q)2
∑
n

e i
~Q·~rn

∑
m

e−i
~Q· ~rm = f (~Q)2

∑
n

∑
m

e i
~Q·(~rn− ~rm)

= Nf (~Q)2 + f (~Q)2
∑
n

∑
m 6=n

e i
~Q·(~rn− ~rm)

The sum over m 6= m is now replaced with an integral of the continuous
atomic pair density function, ρn(~rnm) and adding and subtracting the
average atomic density ρat

I (~Q) = Nf (~Q)2 + f (~Q)2
∑
n

∫
V
ρn(~rnm)e i

~Q·(~rn− ~rm) dVm

= Nf (~Q)2 + f (~Q)2
∑
n

∫
V

[ρn(~rnm)− ρat ]e i
~Q·(~rn− ~rm) dVm

+ f (~Q)2ρat
∑
n

∫
V
e i
~Q·(~rn− ~rm) dVm = I SRO(~Q)

+ I SAXS(~Q)

C. Segre (IIT) PHYS 570 - Fall 2016 September 05, 2016 3 / 17



Total scattered intensity

Consider a mono-atomic (-molecular) system where the total scattered
intensity is given by

I (~Q) = f (~Q)2
∑
n

e i
~Q·~rn

∑
m

e−i
~Q· ~rm

= f (~Q)2
∑
n

∑
m

e i
~Q·(~rn− ~rm)

= Nf (~Q)2 + f (~Q)2
∑
n

∑
m 6=n

e i
~Q·(~rn− ~rm)

The sum over m 6= m is now replaced with an integral of the continuous
atomic pair density function, ρn(~rnm) and adding and subtracting the
average atomic density ρat

I (~Q) = Nf (~Q)2 + f (~Q)2
∑
n

∫
V
ρn(~rnm)e i

~Q·(~rn− ~rm) dVm

= Nf (~Q)2 + f (~Q)2
∑
n

∫
V

[ρn(~rnm)− ρat ]e i
~Q·(~rn− ~rm) dVm

+ f (~Q)2ρat
∑
n

∫
V
e i
~Q·(~rn− ~rm) dVm = I SRO(~Q)

+ I SAXS(~Q)

C. Segre (IIT) PHYS 570 - Fall 2016 September 05, 2016 3 / 17



Total scattered intensity

Consider a mono-atomic (-molecular) system where the total scattered
intensity is given by

I (~Q) = f (~Q)2
∑
n

e i
~Q·~rn

∑
m

e−i
~Q· ~rm = f (~Q)2

∑
n

∑
m

e i
~Q·(~rn− ~rm)

= Nf (~Q)2 + f (~Q)2
∑
n

∑
m 6=n

e i
~Q·(~rn− ~rm)

The sum over m 6= m is now replaced with an integral of the continuous
atomic pair density function, ρn(~rnm) and adding and subtracting the
average atomic density ρat

I (~Q) = Nf (~Q)2 + f (~Q)2
∑
n

∫
V
ρn(~rnm)e i

~Q·(~rn− ~rm) dVm

= Nf (~Q)2 + f (~Q)2
∑
n

∫
V

[ρn(~rnm)− ρat ]e i
~Q·(~rn− ~rm) dVm

+ f (~Q)2ρat
∑
n

∫
V
e i
~Q·(~rn− ~rm) dVm = I SRO(~Q)

+ I SAXS(~Q)

C. Segre (IIT) PHYS 570 - Fall 2016 September 05, 2016 3 / 17



Total scattered intensity

Consider a mono-atomic (-molecular) system where the total scattered
intensity is given by

I (~Q) = f (~Q)2
∑
n

e i
~Q·~rn

∑
m

e−i
~Q· ~rm = f (~Q)2

∑
n

∑
m

e i
~Q·(~rn− ~rm)

= Nf (~Q)2 + f (~Q)2
∑
n

∑
m 6=n

e i
~Q·(~rn− ~rm)

The sum over m 6= m is now replaced with an integral of the continuous
atomic pair density function, ρn(~rnm) and adding and subtracting the
average atomic density ρat

I (~Q) = Nf (~Q)2 + f (~Q)2
∑
n

∫
V
ρn(~rnm)e i

~Q·(~rn− ~rm) dVm

= Nf (~Q)2 + f (~Q)2
∑
n

∫
V

[ρn(~rnm)− ρat ]e i
~Q·(~rn− ~rm) dVm

+ f (~Q)2ρat
∑
n

∫
V
e i
~Q·(~rn− ~rm) dVm = I SRO(~Q)

+ I SAXS(~Q)

C. Segre (IIT) PHYS 570 - Fall 2016 September 05, 2016 3 / 17



Total scattered intensity

Consider a mono-atomic (-molecular) system where the total scattered
intensity is given by

I (~Q) = f (~Q)2
∑
n

e i
~Q·~rn

∑
m

e−i
~Q· ~rm = f (~Q)2

∑
n

∑
m

e i
~Q·(~rn− ~rm)

= Nf (~Q)2 + f (~Q)2
∑
n

∑
m 6=n

e i
~Q·(~rn− ~rm)

The sum over m 6= m is now replaced with an integral of the continuous
atomic pair density function, ρn(~rnm)

and adding and subtracting the
average atomic density ρat

I (~Q) = Nf (~Q)2 + f (~Q)2
∑
n

∫
V
ρn(~rnm)e i

~Q·(~rn− ~rm) dVm

= Nf (~Q)2 + f (~Q)2
∑
n

∫
V

[ρn(~rnm)− ρat ]e i
~Q·(~rn− ~rm) dVm

+ f (~Q)2ρat
∑
n

∫
V
e i
~Q·(~rn− ~rm) dVm = I SRO(~Q)

+ I SAXS(~Q)

C. Segre (IIT) PHYS 570 - Fall 2016 September 05, 2016 3 / 17



Total scattered intensity

Consider a mono-atomic (-molecular) system where the total scattered
intensity is given by

I (~Q) = f (~Q)2
∑
n

e i
~Q·~rn

∑
m

e−i
~Q· ~rm = f (~Q)2

∑
n

∑
m

e i
~Q·(~rn− ~rm)

= Nf (~Q)2 + f (~Q)2
∑
n

∑
m 6=n

e i
~Q·(~rn− ~rm)

The sum over m 6= m is now replaced with an integral of the continuous
atomic pair density function, ρn(~rnm) and adding and subtracting the
average atomic density ρat

I (~Q) = Nf (~Q)2 + f (~Q)2
∑
n

∫
V
ρn(~rnm)e i

~Q·(~rn− ~rm) dVm

= Nf (~Q)2 + f (~Q)2
∑
n

∫
V

[ρn(~rnm)− ρat ]e i
~Q·(~rn− ~rm) dVm

+ f (~Q)2ρat
∑
n

∫
V
e i
~Q·(~rn− ~rm) dVm

= I SRO(~Q)

+ I SAXS(~Q)

C. Segre (IIT) PHYS 570 - Fall 2016 September 05, 2016 3 / 17



Total scattered intensity

Consider a mono-atomic (-molecular) system where the total scattered
intensity is given by

I (~Q) = f (~Q)2
∑
n

e i
~Q·~rn

∑
m

e−i
~Q· ~rm = f (~Q)2

∑
n

∑
m

e i
~Q·(~rn− ~rm)

= Nf (~Q)2 + f (~Q)2
∑
n

∑
m 6=n

e i
~Q·(~rn− ~rm)

The sum over m 6= m is now replaced with an integral of the continuous
atomic pair density function, ρn(~rnm) and adding and subtracting the
average atomic density ρat

I (~Q) = Nf (~Q)2 + f (~Q)2
∑
n

∫
V
ρn(~rnm)e i

~Q·(~rn− ~rm) dVm

= Nf (~Q)2 + f (~Q)2
∑
n

∫
V

[ρn(~rnm)− ρat ]e i
~Q·(~rn− ~rm) dVm

+ f (~Q)2ρat
∑
n

∫
V
e i
~Q·(~rn− ~rm) dVm = I SRO(~Q)

+ I SAXS(~Q)

C. Segre (IIT) PHYS 570 - Fall 2016 September 05, 2016 3 / 17



Total scattered intensity

Consider a mono-atomic (-molecular) system where the total scattered
intensity is given by

I (~Q) = f (~Q)2
∑
n

e i
~Q·~rn

∑
m

e−i
~Q· ~rm = f (~Q)2

∑
n

∑
m

e i
~Q·(~rn− ~rm)

= Nf (~Q)2 + f (~Q)2
∑
n

∑
m 6=n

e i
~Q·(~rn− ~rm)

The sum over m 6= m is now replaced with an integral of the continuous
atomic pair density function, ρn(~rnm) and adding and subtracting the
average atomic density ρat

I (~Q) = Nf (~Q)2 + f (~Q)2
∑
n

∫
V
ρn(~rnm)e i

~Q·(~rn− ~rm) dVm

= Nf (~Q)2 + f (~Q)2
∑
n

∫
V

[ρn(~rnm)− ρat ]e i
~Q·(~rn− ~rm) dVm

+ f (~Q)2ρat
∑
n

∫
V
e i
~Q·(~rn− ~rm) dVm = I SRO(~Q) + I SAXS(~Q)

C. Segre (IIT) PHYS 570 - Fall 2016 September 05, 2016 3 / 17



Liquid scattering

For the moment, let us ignore the SAXS term and focus on the short
range order term.

I SRO(~Q) = Nf (~Q)2 + f (~Q)2
∑
n

∫
V

[ρn(~rnm)− ρat ] e i
~Q·(~rn−~rm)dV

When we average over all choices of origin in the liquid, 〈ρn(~rnm)〉 → ρ(~r)
and the sum simplifies to N giving:

I SRO(~Q) = Nf (~Q)2 + Nf (~Q)2

∫
V

[ρ(~r)− ρat ] e i
~Q·~rdV

Performing an orientational average results in

I SRO(~Q) = Nf (~Q)2 + Nf (~Q)2

∫ ∞
0

4πr2 [ρ(r)− ρat ]
sinQr

Qr
dr
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S(Q) - the liquid structure factor

A bit of rearrangment results in the expression for the liquid structure
factor, S(Q).

S(Q) =
I SRO(~Q)

Nf (Q)2
= 1 +

4π

Q

∫ ∞
0

r [ρ(r)− ρat ] sin(Qr)dr

When Q → ∞, the short wave-
length limit, 1/Q → 0 eliminates
all dependence on the interparticle
correlations and S(Q)→ 1.

When Q → 0, i.e. the long wave-
length limit, sin(Qr)/Q → r and
S(Q) is dominated by the density
fluctuations in the system

We can rewrite the structure factor equation

Q [S(Q)− 1] =

∫ ∞
0

4πr [ρ(r)− ρat ] sin(Qr)dr =

∫ ∞
0
H(r) sin(Qr)dr

Which is the sine Fourier Transform of the deviation of the atomic density
from its average, H(r) = 4πr [g(r)− 1]
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Radial distribution function

We can invert the Fourier Transform to obtain

H(r) =
2

π

∫ ∞
0

Q [S(Q)− 1] sin(Qr)dQ

and thus the radial distribution fuction can be obtained from the structure
factor (an experimentally measureable quantity).

g(r) = 1 +
1

2π2rρat

∫ ∞
0

Q [S(Q)− 1] sin(Qr)dQ

This formalism holds for both non-crystalline solids and liquids, even
though inelastic scattering dominates in the latter.

The relation between radial distribution function and structure factor can
be extended to multi-component systems where g(r) → gij(r) and
S(Q) → Sij(Q).
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Structure in supercooled liquid metals

Measurement of the liquid structure factor of molten metals have shown
that there is short range order which leads to the phenomenon of
supercooling.

“Difference in Icosahedral Short-Range Order in Early and Late Transition Metal Liquids”,
G.W. Lee et al. Phys. Rev. Lett 93, 037802 (2004).
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Structure in supercooled liquid metals

Measurement of the liquid structure factor of molten metals have shown
that there is short range order which leads to the phenomenon of
supercooling.

This indicates the
presence of icosahedral
clusters which inhibit
crystallization.

“Difference in Icosahedral Short-Range Order in Early and Late Transition Metal Liquids”,
G.W. Lee et al. Phys. Rev. Lett 93, 037802 (2004).
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Small angle x-ray scattering

Recall that there was an additional term in the scattering intensity which
becomes important at small Q.

I SAXS(~Q) = f 2
∑
n

∫
V
ρate

i ~Q·(~rn−~rm)dVm

= f 2
∑
n

e i
~Q·~rn

∫
V
ρate

−i ~Q·~rmdVm

= f 2

∫
V
ρate

i ~Q·~rndVn

∫
V
ρate

−i ~Q·~rmdVm

=

∣∣∣∣∫
V
ρsle

i ~Q·~rdV

∣∣∣∣2
Where we have assumed sufficient averaging and introduced ρsl = f ρat .
This final expression looks just like an atomic form factor but the charge
density that we consider here is on a much longer length scale than an
atom.
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The SAXS experiment
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Scattering from a dilute solution

The simplest case is for a dilute solution of non-interacting molecules.

Assume that the scattering length density of each identical particle
(molecule) is given by ρsl ,p and the scattering length density of the solvent
is ρsl ,0.

I SAXS(~Q) =

∣∣∣∣∣
∫
Vp

ρsle
i ~Q·~rdVp

∣∣∣∣∣
2

= (ρsl ,p − ρsl ,0)2

∣∣∣∣∣
∫
Vp

e i
~Q·~rdVp

∣∣∣∣∣
2

If we introduce the single-particle
form factor F(~Q):

F(~Q) =
1

Vp

∫
Vp

e i
~Q·~rdVp

I SAXS(~Q) = ∆ρ2V 2
p |F(~Q)|2

Where ∆ρ = (ρsl ,p − ρsl ,0), and the form factor depends on the
morphology of the particle (size and shape).
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Scattering from a sphere

There are only a few morphologies which can be computed exactly and the
simplest is a constant density sphere of radius R.

F(Q) =
1

Vp

∫ R

0

∫ 2π

0

∫ π

0
e iQr cos θr2 sin θ dθ dφ dr

F(Q) =
1

Vp

∫ R

0
4π

sin(Qr)

Qr
r2 dr

= 3

[
sin(QR)− QR cos(QR)

Q3R3

]
≡ 3J1(QR)

QR

Where J1(x) is the Bessel function
of the first kind

0

0 5 10

j 1
(x

)

x
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Scattering from a sphere

I (Q) = ∆ρ2V 2
p
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Guinier analysis

In the long wavelength limit QR → 0 we can approximate the scattering
factor with the first terms of the sum

F(Q) ≈ 3

Q3R3

[
QR − Q3R3

6
+

Q5R5

120
− · · ·

− QR

(
1− Q2R2

2
+

Q4R4

24
− · · ·

)]
this simplifies to F(Q) ≈ 1− Q2R2

10
and

I SAXS(Q) ≈ ∆ρ2V 2
p

[
1− Q2R2

10

]2

≈ ∆ρ2V 2
p

[
1− Q2R2

5

]
≈ ∆ρ2V 2

p e
−Q2R2/5, QR � 1
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Guinier analysis

In the long wavelength limit
(QR → 0), the form factor be-
comes

F(Q) ≈ 1− Q2R2

10

I (Q) ≈ ∆ρ2V 2
p e
−Q2R2/5

and the initial slope of the log(I ) vs
Q2 plot is −R2/5

In terms of the radius of gyration,
Rg , which for a sphere is given by√

3
5R

I (Q) ≈ ∆ρ2V 2
p e
−Q2R2

g/3

0 0.001 0.002

Q
2
 (Å

-2
)
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Calculation of Rg

R2
g =

1

Vp

∫
Vp

r2dVp

=

∫
Vp
ρsl ,p(~r)r2dVp∫

Vp
ρsl ,p(~r)dVp

In terms of the scattering length den-
sity, we have

after orientational averaging this ex-
pression can be used to extract Rg from
experimental data using

I SAXS1 (Q) ≈ ∆ρ2V 2
p e
−Q2R2

g/3

this expression holds for uniform and non-uniform densities
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Porod analysis

In the short wavelength limit
(QR � 1), the form factor for a
sphere can be approximated

F(Q) = 3

[
sin(QR)

Q3R3
− cos(QR)

Q2R2

]
≈ 3

[
−cos(QR)

Q2R2

]
I (Q) = 9∆ρ2V 2

p

[
−cos(QR)

Q2R2

]2

= 9∆ρ2V 2
p

〈
cos2(QR)

〉
Q4R4

=
9∆ρ2V 2

p

Q4R4

(
1

2

)
I (Q) =

2π∆ρ2

Q4
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Shape effect on scattering

The shape of the particle will
have a significant effect on
the SAXS since the form fac-
tor is derived from an integral
over the particle volume, Vp.

If the particle is not spher-
ical, then its “dimensional-
ity” is not 3 and this will af-
fect the form factor and in-
troduce a different power law
in the Porod regime.
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