Today's Outline - October 03, 2016

Today's Outline - October 03, 2016

- Scattering from two electrons

Today's Outline - October 03, 2016

- Scattering from two electrons
- Scattering from atoms

Today's Outline - October 03, 2016

- Scattering from two electrons
- Scattering from atoms
- Scattering from molecules

Today's Outline - October 03, 2016

- Scattering from two electrons
- Scattering from atoms
- Scattering from molecules
- Radial distribution function

Today's Outline - October 03, 2016

- Scattering from two electrons
- Scattering from atoms
- Scattering from molecules
- Radial distribution function
- Liquid scattering

Today's Outline - October 03, 2016

- Scattering from two electrons
- Scattering from atoms
- Scattering from molecules
- Radial distribution function
- Liquid scattering

APS Visits:
10-ID: Friday, October 21, 2016
10-BM: Friday, October 28, 2016
Homework Assignment \#03:
Chapter 3: 1, 3, 4, 6, 8
due Wednesday, September 05, 2016

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

$$
\vec{Q}=\left(\vec{k}-\overrightarrow{k^{\prime}}\right)
$$

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

$$
\begin{aligned}
\vec{Q} & =\left(\vec{k}-\overrightarrow{k^{\prime}}\right) \\
|\vec{Q}| & =2 k \sin \theta=\frac{4 \pi}{\lambda} \sin \theta
\end{aligned}
$$

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

$$
\begin{aligned}
\vec{Q} & =\left(\vec{k}-\overrightarrow{k^{\prime}}\right) \\
|\vec{Q}| & =2 k \sin \theta=\frac{4 \pi}{\lambda} \sin \theta
\end{aligned}
$$

The scattering from the second electron will have a phase shift of $\phi=\vec{Q} \cdot \vec{r}$.

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

$$
\begin{aligned}
\vec{Q} & =\left(\vec{k}-\overrightarrow{k^{\prime}}\right) \\
|\vec{Q}| & =2 k \sin \theta=\frac{4 \pi}{\lambda} \sin \theta
\end{aligned}
$$

The scattering from the second electron will have a phase shift of $\phi=\vec{Q} \cdot \vec{r}$.

$$
A(\vec{Q})=-r_{0}\left(1+e^{i \vec{Q} \cdot \vec{r}}\right)
$$

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

$$
\begin{aligned}
\vec{Q} & =\left(\vec{k}-\overrightarrow{k^{\prime}}\right) \\
|\vec{Q}| & =2 k \sin \theta=\frac{4 \pi}{\lambda} \sin \theta
\end{aligned}
$$

The scattering from the second electron will have a phase shift of $\phi=\vec{Q} \cdot \vec{r}$.

$$
\begin{aligned}
A(\vec{Q}) & =-r_{0}\left(1+e^{i \vec{Q} \cdot \vec{r}}\right) \\
I(\vec{Q}) & =A(\vec{Q})^{*} A(\vec{Q})
\end{aligned}
$$

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

$$
\begin{aligned}
\vec{Q} & =\left(\vec{k}-\overrightarrow{k^{\prime}}\right) \\
|\vec{Q}| & =2 k \sin \theta=\frac{4 \pi}{\lambda} \sin \theta
\end{aligned}
$$

The scattering from the second electron will have a phase shift of $\phi=\vec{Q} \cdot \vec{r}$.

$$
\begin{aligned}
A(\vec{Q}) & =-r_{0}\left(1+e^{i \vec{Q} \cdot \vec{r}}\right) \\
I(\vec{Q}) & =A(\vec{Q})^{*} A(\vec{Q}) \\
& =r_{0}^{2}\left(1+e^{i \vec{Q} \cdot \vec{r}}\right)\left(1+e^{-i \vec{Q} \cdot \vec{r}}\right)
\end{aligned}
$$

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

$$
\begin{aligned}
\vec{Q} & =\left(\vec{k}-\overrightarrow{k^{\prime}}\right) \\
|\vec{Q}| & =2 k \sin \theta=\frac{4 \pi}{\lambda} \sin \theta
\end{aligned}
$$

The scattering from the second electron will have a phase shift of $\phi=\vec{Q} \cdot \vec{r}$.

$$
\begin{aligned}
A(\vec{Q}) & =-r_{0}\left(1+e^{i \vec{Q} \cdot \vec{r}}\right) \\
I(\vec{Q}) & =A(\vec{Q})^{*} A(\vec{Q}) \\
& =r_{0}^{2}\left(1+e^{i \vec{Q} \cdot \vec{r}}\right)\left(1+e^{-i \vec{Q} \cdot \vec{r}}\right)
\end{aligned}
$$

$$
I(\vec{Q})=r_{0}^{2}\left(1+e^{i \vec{Q} \cdot \vec{r}}+e^{-i \vec{Q} \cdot \vec{r}}+1\right)
$$

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

$$
\begin{aligned}
\vec{Q} & =\left(\vec{k}-\overrightarrow{k^{\prime}}\right) \\
|\vec{Q}| & =2 k \sin \theta=\frac{4 \pi}{\lambda} \sin \theta
\end{aligned}
$$

The scattering from the second electron will have a phase shift of $\phi=\vec{Q} \cdot \vec{r}$.

$$
\begin{aligned}
A(\vec{Q}) & =-r_{0}\left(1+e^{i \vec{Q} \cdot \vec{r}}\right) \\
I(\vec{Q}) & =A(\vec{Q})^{*} A(\vec{Q}) \\
& =r_{0}^{2}\left(1+e^{i \vec{Q} \cdot \vec{r}}\right)\left(1+e^{-i \vec{Q} \cdot \vec{r}}\right)
\end{aligned}
$$

$$
I(\vec{Q})=r_{0}^{2}\left(1+e^{i \vec{Q} \cdot \vec{r}}+e^{-i \vec{Q} \cdot \vec{r}}+1\right)=2 r_{0}^{2}(1+\cos (\vec{Q} \cdot \vec{r}))
$$

Scattering from many electrons

for many electrons

Scattering from many electrons

for many electrons

$$
A(\vec{Q})=-r_{0} \sum_{j} e^{i \vec{Q} \cdot \vec{r}_{j}}
$$

Scattering from many electrons

for many electrons

$$
A(\vec{Q})=-r_{0} \sum_{j} e^{i \vec{Q} \cdot \vec{r}_{j}}
$$

generalizing to a crystal

Scattering from many electrons

for many electrons
generalizing to a crystal

$$
\begin{aligned}
& A(\vec{Q})=-r_{0} \sum_{j} e^{i \vec{Q} \cdot \vec{r}_{j}} \\
& A(\vec{Q})=-r_{0} \sum_{N} e^{i \vec{Q} \cdot \overrightarrow{R_{N}}} \sum_{j} e^{i \vec{Q} \cdot \vec{r}_{j}}
\end{aligned}
$$

Scattering from many electrons

for many electrons
generalizing to a crystal

$$
\begin{aligned}
& A(\vec{Q})=-r_{0} \sum_{j} e^{i \vec{Q} \cdot \vec{r}_{j}} \\
& A(\vec{Q})=-r_{0} \sum_{N} e^{i \vec{Q} \cdot \overrightarrow{R_{N}}} \sum_{j} e^{i \vec{Q} \cdot \vec{r}_{j}}
\end{aligned}
$$

Since experiments measure $I \propto A^{2}$, the phase information is lost. This is a problem if we don't know the specific orientation of the scattering system relative to the x-ray beam.

Scattering from many electrons

for many electrons
generalizing to a crystal

$$
\begin{aligned}
& A(\vec{Q})=-r_{0} \sum_{j} e^{i \vec{Q} \cdot \vec{r}_{j}} \\
& A(\vec{Q})=-r_{0} \sum_{N} e^{i \vec{Q} \cdot \overrightarrow{R_{N}}} \sum_{j} e^{i \vec{Q} \cdot \vec{r}_{j}}
\end{aligned}
$$

Since experiments measure $I \propto A^{2}$, the phase information is lost. This is a problem if we don't know the specific orientation of the scattering system relative to the x-ray beam.

We will now look at the consequences of this orientation and generalize to more than two electrons

Two electrons - fixed orientation

The expression

$$
I(\vec{Q})=2 r_{0}^{2}(1+\cos (\vec{Q} \cdot \vec{r}))
$$

assumes that the two electrons have a specific, fixed orientation. In this case the intensity as a function of Q is.

Two electrons - fixed orientation

The expression

$$
I(\vec{Q})=2 r_{0}^{2}(1+\cos (\vec{Q} \cdot \vec{r}))
$$

assumes that the two electrons have a specific, fixed orientation. In this case the intensity as a function of Q is.

Two electrons - fixed orientation

The expression

$$
I(\vec{Q})=2 r_{0}^{2}(1+\cos (\vec{Q} \cdot \vec{r}))
$$

assumes that the two electrons have a specific, fixed orientation. In this case the intensity as a function of Q is.

Fixed orientation is not the usual case, particularly for solution and small-angle scattering.

Orientation averaging

Consider scattering from two arbitrary electron distributions, f_{1} and f_{2}. $A(\vec{Q})$, is given by

Orientation averaging

$$
A(\vec{Q})=f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{F}}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and f_{2}. $A(\vec{Q})$, is given by

Orientation averaging

$$
A(\vec{Q})=f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{F}}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and f_{2}. $A(\vec{Q})$, is given by
and the intensity, $I(\vec{Q})$, is

Orientation averaging

$$
\begin{aligned}
A(\vec{Q}) & =f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}} \\
I(\vec{Q}) & =f_{1}^{2}+f_{2}^{2}+f_{1} f_{2} e^{i \vec{Q} \cdot \vec{r}}+f_{1} f_{2} e^{-i \vec{Q} \cdot \vec{r}}
\end{aligned}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and f_{2}. $A(\vec{Q})$, is given by
and the intensity, $I(\vec{Q})$, is

Orientation averaging

$$
\begin{aligned}
A(\vec{Q}) & =f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}} \\
I(\vec{Q}) & =f_{1}^{2}+f_{2}^{2}+f_{1} f_{2} e^{i \vec{Q} \cdot \vec{r}}+f_{1} f_{2} e^{-i \vec{Q} \cdot \vec{r}}
\end{aligned}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and f_{2}. $A(\vec{Q})$, is given by
and the intensity, $I(\vec{Q})$, is
if the distance between the scatterers, \vec{r}, remains constant (no vibrations) but is allowed to orient randomly in space

Orientation averaging

$$
\begin{aligned}
A(\vec{Q}) & =f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}} \\
I(\vec{Q}) & =f_{1}^{2}+f_{2}^{2}+f_{1} f_{2} e^{i \vec{Q} \cdot \vec{r}}+f_{1} f_{2} e^{-i \vec{Q} \cdot \vec{r}} \\
\langle I(\vec{Q})\rangle & =f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2}\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle
\end{aligned}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and f_{2}. $A(\vec{Q})$, is given by
and the intensity, $I(\vec{Q})$, is
if the distance between the scatterers, \vec{r}, remains constant (no vibrations) but is allowed to orient randomly in space

Orientation averaging

$$
\begin{aligned}
A(\vec{Q}) & =f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}} \\
I(\vec{Q}) & =f_{1}^{2}+f_{2}^{2}+f_{1} f_{2} e^{i \vec{Q} \cdot \vec{r}}+f_{1} f_{2} e^{-i \vec{Q} \cdot \vec{r}} \\
\langle I(\vec{Q})\rangle & =f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2}\left\langle e^{i \boldsymbol{Q} \cdot \vec{r}}\right\rangle
\end{aligned}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and f_{2}. $A(\vec{Q})$, is given by
and the intensity, $I(\vec{Q})$, is
if the distance between the scatterers, \vec{r}, remains constant (no vibrations) but is allowed to orient randomly in space and we take \vec{Q} along the z axis

Orientation averaging

$$
\begin{aligned}
A(\vec{Q}) & =f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}} \\
I(\vec{Q}) & =f_{1}^{2}+f_{2}^{2}+f_{1} f_{2} e^{i \vec{Q} \cdot \vec{r}}+f_{1} f_{2} e^{-i \vec{Q} \cdot \vec{r}} \\
\langle I(\vec{Q})\rangle & =f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2}\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle \\
\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle & =\frac{\int e^{i Q r \cos \theta} \sin \theta d \theta d \phi}{\int \sin \theta d \theta d \phi}
\end{aligned}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and f_{2}. $A(\vec{Q})$, is given by
and the intensity, $I(\vec{Q})$, is
if the distance between the scatterers, \vec{r}, remains constant (no vibrations) but is allowed to orient randomly in space and we take \vec{Q} along the z axis

Orientation averaging

$$
\begin{aligned}
A(\vec{Q}) & =f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}} \\
I(\vec{Q}) & =f_{1}^{2}+f_{2}^{2}+f_{1} f_{2} e^{i \vec{Q} \cdot \vec{r}}+f_{1} f_{2} e^{-i \vec{Q} \cdot \vec{r}} \\
\langle I(\vec{Q})\rangle & =f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2}\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle \\
\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle & =\frac{\int e^{i Q r \cos \theta} \sin \theta d \theta d \phi}{\int \sin \theta d \theta d \phi} \\
& =\frac{1}{4 \pi} 2 \pi \int_{0}^{\pi} e^{i Q r \cos \theta} \sin \theta d \theta
\end{aligned}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and f_{2}. $A(\vec{Q})$, is given by
and the intensity, $I(\vec{Q})$, is
if the distance between the scatterers, \vec{r}, remains constant (no vibrations) but is allowed to orient randomly in space and we take \vec{Q} along the z axis

Orientation averaging

$$
\begin{aligned}
A(\vec{Q}) & =f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}} \\
I(\vec{Q}) & =f_{1}^{2}+f_{2}^{2}+f_{1} f_{2} e^{i \vec{Q} \cdot \vec{r}}+f_{1} f_{2} e^{-i \vec{Q} \cdot \vec{r}} \\
\langle I(\vec{Q})\rangle & =f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2}\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle \\
\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle & =\frac{\int e^{i Q r \cos \theta} \sin \theta d \theta d \phi}{\int \sin \theta d \theta d \phi} \\
& =\frac{1}{4 \pi} 2 \pi \int_{0}^{\pi} e^{i Q r \cos \theta} \sin \theta d \theta
\end{aligned}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and f_{2}. $A(\vec{Q})$, is given by
and the intensity, $I(\vec{Q})$, is
if the distance between the scatterers, \vec{r}, remains constant (no vibrations) but is allowed to orient randomly in space and we take \vec{Q} along the z axis
substituting $x=i Q r \cos \theta$ and $d x=-i Q r \sin \theta d \theta$

Orientation averaging

$$
\begin{aligned}
A(\vec{Q}) & =f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}} \\
I(\vec{Q}) & =f_{1}^{2}+f_{2}^{2}+f_{1} f_{2} e^{i \vec{Q} \cdot \vec{r}}+f_{1} f_{2} e^{-i \vec{Q} \cdot \vec{r}} \\
\langle I(\vec{Q})\rangle & =f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2}\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle \\
\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle & =\frac{\int e^{i Q r \cos \theta} \sin \theta d \theta d \phi}{\int \sin \theta d \theta d \phi} \\
& =\frac{1}{4 \pi} 2 \pi \int_{0}^{\pi} e^{i Q r \cos \theta} \sin \theta d \theta \\
& =\frac{2 \pi}{4 \pi}\left(-\frac{1}{i Q r}\right) \int_{i Q r}^{-i Q r} e^{x} d x
\end{aligned}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and $f_{2} . \quad A(\vec{Q})$, is given by
and the intensity, $I(\vec{Q})$, is
if the distance between the scatterers, \vec{r}, remains constant (no vibrations) but is allowed to orient randomly in space and we take \vec{Q} along the z axis
substituting $x=i Q r \cos \theta$ and $d x=-i Q r \sin \theta d \theta$

Orientation averaging

$$
\begin{aligned}
A(\vec{Q}) & =f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}} \\
I(\vec{Q}) & =f_{1}^{2}+f_{2}^{2}+f_{1} f_{2} e^{i \vec{Q} \cdot \vec{r}}+f_{1} f_{2} e^{-i \vec{Q} \cdot \vec{r}} \\
\langle I(\vec{Q})\rangle & =f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2}\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle \\
\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle & =\frac{\int e^{i Q r \cos \theta} \sin \theta d \theta d \phi}{\int \sin \theta d \theta d \phi} \\
& =\frac{1}{4 \pi} 2 \pi \int_{0}^{\pi} e^{i Q r \cos \theta} \sin \theta d \theta \\
& =\frac{2 \pi}{4 \pi}\left(-\frac{1}{i Q r}\right) \int_{i Q r}^{-i Q r} e^{x} d x \\
& =\frac{1}{2} 2 \frac{\sin (Q r)}{Q r}
\end{aligned}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and $f_{2} . \quad A(\vec{Q})$, is given by
and the intensity, $I(\vec{Q})$, is
if the distance between the scatterers, \vec{r}, remains constant (no vibrations) but is allowed to orient randomly in space and we take \vec{Q} along the z axis
substituting $x=i Q r \cos \theta$ and $d x=-i Q r \sin \theta d \theta$

Orientation averaging

$$
\begin{aligned}
A(\vec{Q}) & =f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}} \\
I(\vec{Q}) & =f_{1}^{2}+f_{2}^{2}+f_{1} f_{2} e^{i \vec{Q} \cdot \vec{r}}+f_{1} f_{2} e^{-i \vec{Q} \cdot \vec{r}} \\
\langle I(\vec{Q})\rangle & =f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2}\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle \\
\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle & =\frac{\int e^{i Q r \cos \theta} \sin \theta d \theta d \phi}{\int \sin \theta d \theta d \phi} \\
& =\frac{1}{4 \pi} 2 \pi \int_{0}^{\pi} e^{i Q r \cos \theta} \sin \theta d \theta \\
& =\frac{2 \pi}{4 \pi}\left(-\frac{1}{i Q r}\right) \int_{i Q r}^{-i Q r} e^{x} d x \\
& =\frac{1}{2} 2 \frac{\sin (Q r)}{Q r}=\frac{\sin (Q r)}{Q r}
\end{aligned}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and $f_{2} . \quad A(\vec{Q})$, is given by
and the intensity, $I(\vec{Q})$, is
if the distance between the scatterers, \vec{r}, remains constant (no vibrations) but is allowed to orient randomly in space and we take \vec{Q} along the z axis
substituting $x=i Q r \cos \theta$ and $d x=-i Q r \sin \theta d \theta$

Orientation averaging

$$
\begin{aligned}
A(\vec{Q}) & =f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}} \\
I(\vec{Q}) & =f_{1}^{2}+f_{2}^{2}+f_{1} f_{2} e^{i \vec{Q} \cdot \vec{r}}+f_{1} f_{2} e^{-i \vec{Q} \cdot \vec{r}} \\
\langle I(\vec{Q})\rangle & =f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2}\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle \\
\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle & =\frac{\int e^{i Q r \cos \theta} \sin \theta d \theta d \phi}{\int \sin \theta d \theta d \phi} \\
& =\frac{1}{4 \pi} 2 \pi \int_{0}^{\pi} e^{i Q r \cos \theta} \sin \theta d \theta \\
& =\frac{2 \pi}{4 \pi}\left(-\frac{1}{i Q r}\right) \int_{i Q r}^{-i Q r} e^{x} d x \\
& =\frac{1}{2} 2 \frac{\sin (Q r)}{Q r}=\frac{\sin (Q r)}{Q r}
\end{aligned}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and f_{2}. $A(\vec{Q})$, is given by
and the intensity, $I(\vec{Q})$, is
if the distance between the scatterers, \vec{r}, remains constant (no vibrations) but is allowed to orient randomly in space and we take \vec{Q} along the z axis
substituting $x=i Q r \cos \theta$ and $d x=-i Q r \sin \theta d \theta$

$$
\langle I(\vec{Q})\rangle=f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2} \frac{\sin (Q r)}{Q r}
$$

Randomly oriented electrons

$$
\langle\prime(\vec{Q})\rangle=f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2} \frac{\sin (Q r)}{Q r}
$$

Randomly oriented electrons

$\langle\prime(\vec{Q})\rangle=f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2} \frac{\sin (Q r)}{Q r}$
Recall that when we had a fixed orientation of the two electrons, we had and intensity variation $I(\vec{Q})=2 r_{0}^{2}(1+\cos (Q r))$.

Randomly oriented electrons

$\langle\prime(\vec{Q})\rangle=f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2} \frac{\sin (Q r)}{Q r}$
Recall that when we had a fixed orientation of the two electrons, we had and intensity variation $I(\vec{Q})=2 r_{0}^{2}(1+\cos (Q r))$.

Randomly oriented electrons

$\langle I(\vec{Q})\rangle=f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2} \frac{\sin (Q r)}{Q r}$
Recall that when we had a fixed orientation of the two electrons, we had and intensity variation $I(\vec{Q})=2 r_{0}^{2}(1+\cos (Q r))$.

When we now replace the two arbitrary scattering distributions with electrons $\left(f_{1}, f_{2} \rightarrow-r_{0}\right)$, we change the intensity profile significantly.

Randomly oriented electrons

$\langle I(\vec{Q})\rangle=f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2} \frac{\sin (Q r)}{Q r}$
Recall that when we had a fixed orientation of the two electrons, we had and intensity variation $I(\vec{Q})=2 r_{0}^{2}(1+\cos (Q r))$.
When we now replace the two arbitrary scattering distributions with electrons ($f_{1}, f_{2} \rightarrow-r_{0}$), we change the intensity profile significantly.

$$
\langle I(\vec{Q})\rangle=2 r_{0}^{2}\left(1+\frac{\sin (Q r)}{Q r}\right)
$$

Randomly oriented electrons

$\langle I(\vec{Q})\rangle=f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2} \frac{\sin (Q r)}{Q r}$
Recall that when we had a fixed orientation of the two electrons, we had and intensity variation $I(\vec{Q})=2 r_{0}^{2}(1+\cos (Q r))$.
When we now replace the two arbitrary scattering distributions with electrons ($f_{1}, f_{2} \rightarrow-r_{0}$), we change the intensity profile significantly.

$$
\langle I(\vec{Q})\rangle=2 r_{0}^{2}\left(1+\frac{\sin (Q r)}{Q r}\right)
$$

Scattering from atoms

Single electrons are a good first example but a real system involves scattering from atoms. We can use what we have already used to write an expression for the scattering from an atom, ignoring the anomalous terms.

Scattering from atoms

Single electrons are a good first example but a real system involves scattering from atoms. We can use what we have already used to write an expression for the scattering from an atom, ignoring the anomalous terms.

$$
f^{0}(\vec{Q})=\int \rho(\vec{r}) e^{i \vec{Q} \cdot \vec{r}} d \vec{r}
$$

Scattering from atoms

Single electrons are a good first example but a real system involves scattering from atoms. We can use what we have already used to write an expression for the scattering from an atom, ignoring the anomalous terms.
with limits in units of r_{0} of

$$
f^{0}(\vec{Q})=\int \rho(\vec{r}) e^{i \vec{Q} \cdot \vec{r}} d \vec{r}
$$

Scattering from atoms

Single electrons are a good first example but a real system involves scattering from atoms. We can use what we have already used to write an expression for the scattering from an atom, ignoring the anomalous terms.
with limits in units of r_{0} of

$$
\begin{aligned}
f^{0}(\vec{Q}) & =\int \rho(\vec{r}) e^{i \vec{Q} \cdot \vec{r}} d \vec{r} \\
& = \begin{cases}Z & \text { for } Q \rightarrow 0 \\
0 & \text { for } Q \rightarrow \infty\end{cases}
\end{aligned}
$$

Scattering from atoms

Single electrons are a good first example but a real system involves scattering from atoms. We can use what we have already used to write an expression for the scattering from an atom, ignoring the anomalous terms.
with limits in units of r_{0} of
The second limit can be understood classically as loss of phase coherence when Q is very large and a small difference in position results in an arbitrary change in phase.

$$
\begin{aligned}
f^{0}(\vec{Q}) & =\int \rho(\vec{r}) e^{i \vec{Q} \cdot \vec{r}} d \vec{r} \\
& = \begin{cases}Z & \text { for } Q \rightarrow 0 \\
0 & \text { for } Q \rightarrow \infty\end{cases}
\end{aligned}
$$

Scattering from atoms

Single electrons are a good first example but a real system involves scattering from atoms. We can use what we have already used to write an expression for the scattering from an atom, ignoring the anomalous terms.
with limits in units of r_{0} of
The second limit can be understood classically as loss of phase coherence when Q is very large and a small difference in position results in an arbitrary change in phase.

$$
\begin{aligned}
f^{0}(\vec{Q}) & =\int \rho(\vec{r}) e^{i \vec{Q} \cdot \vec{r}} d \vec{r} \\
& = \begin{cases}Z & \text { for } Q \rightarrow 0 \\
0 & \text { for } Q \rightarrow \infty\end{cases}
\end{aligned}
$$

However, it is better to use quantum mechanics to calculate the form factor, starting with a hydrogen-like atom as an example. The wave function of the 1 s electrons is just

Scattering from atoms

Single electrons are a good first example but a real system involves scattering from atoms. We can use what we have already used to write an expression for the scattering from an atom, ignoring the anomalous terms.
with limits in units of r_{0} of
The second limit can be understood classically as loss of phase coherence when Q is very large and a small difference in position results in an arbitrary change in phase.

$$
\psi_{1 s}(r)=\frac{1}{\sqrt{\pi a^{3}}} e^{-r / a}, \quad a=\frac{a_{0}}{Z-z_{s}}
$$

$$
\begin{aligned}
f^{0}(\vec{Q}) & =\int \rho(\vec{r}) e^{i \vec{Q} \cdot \vec{r}} d \vec{r} \\
& = \begin{cases}Z & \text { for } Q \rightarrow 0 \\
0 & \text { for } Q \rightarrow \infty\end{cases}
\end{aligned}
$$

However, it is better to use quantum mechanics to calculate the form factor, starting with a hydrogen-like atom as an example. The wave function of the 1 s electrons is just

Scattering from atoms

Single electrons are a good first example but a real system involves scattering from atoms. We can use what we have already used to write an expression for the scattering from an atom, ignoring the anomalous terms.
with limits in units of r_{0} of
The second limit can be understood classically as loss of phase coherence when Q is very large and a small difference in position results in an arbitrary change in phase.
$\psi_{1 s}(r)=\frac{1}{\sqrt{\pi a^{3}}} e^{-r / a}, \quad a=\frac{a_{0}}{Z-z_{s}}$
where z_{s} is a screening correction

$$
\begin{aligned}
f^{0}(\vec{Q}) & =\int \rho(\vec{r}) e^{i \vec{Q} \cdot \vec{r}} d \vec{r} \\
& = \begin{cases}Z & \text { for } Q \rightarrow 0 \\
0 & \text { for } Q \rightarrow \infty\end{cases}
\end{aligned}
$$

However, it is better to use quantum mechanics to calculate the form factor, starting with a hydrogen-like atom as an example. The wave function of the 1 s electrons is just

Hydrogen form factor calculation

Since $\rho(r)=\left|\psi_{1 s}(r)\right|^{2}$, the form factor integral becomes

Hydrogen form factor calculation

Since $\rho(r)=\left|\psi_{1 s}(r)\right|^{2}$, the form factor integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int e^{-2 r / a} e^{i \vec{Q} \cdot \vec{r}} r^{2} \sin \theta d r d \theta d \phi
$$

Hydrogen form factor calculation

Since $\rho(r)=\left|\psi_{1 s}(r)\right|^{2}$, the form factor integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int e^{-2 r / a} e^{i \vec{Q} \cdot \vec{r}} r^{2} \sin \theta d r d \theta d \phi
$$

the integral in ϕ gives 2π and if we choose \vec{Q} to be along the z direction, $\vec{Q} \cdot \vec{r} \rightarrow Q r \cos \theta$, so

Hydrogen form factor calculation

Since $\rho(r)=\left|\psi_{1 s}(r)\right|^{2}$, the form factor integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int e^{-2 r / a} e^{i \vec{Q} \cdot \vec{r}} r^{2} \sin \theta d r d \theta d \phi
$$

the integral in ϕ gives 2π and if we choose \vec{Q} to be along the z direction, $\vec{Q} \cdot \vec{r} \rightarrow Q r \cos \theta$, so

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \int_{0}^{\pi} e^{i Q r \cos \theta} \sin \theta d \theta d r
$$

Hydrogen form factor calculation

Since $\rho(r)=\left|\psi_{1 s}(r)\right|^{2}$, the form factor integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int e^{-2 r / a} e^{i \vec{Q} \cdot \vec{r}} r^{2} \sin \theta d r d \theta d \phi
$$

the integral in ϕ gives 2π and if we choose \vec{Q} to be along the z direction, $\vec{Q} \cdot \vec{r} \rightarrow \operatorname{Qr} \cos \theta$, so

$$
\begin{aligned}
f_{1 s}^{0}(\vec{Q}) & =\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \int_{0}^{\pi} e^{i Q r \cos \theta} \sin \theta d \theta d r \\
& =\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{1}{i Q r}\left[-\left.e^{i Q r \cos \theta}\right|_{0} ^{\pi} d r\right.
\end{aligned}
$$

Hydrogen form factor calculation

Since $\rho(r)=\left|\psi_{1 s}(r)\right|^{2}$, the form factor integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int e^{-2 r / a} e^{i \vec{Q} \cdot \vec{r}} r^{2} \sin \theta d r d \theta d \phi
$$

the integral in ϕ gives 2π and if we choose \vec{Q} to be along the z direction, $\vec{Q} \cdot \vec{r} \rightarrow \operatorname{Qr} \cos \theta$, so

$$
\begin{aligned}
f_{1 s}^{0}(\vec{Q}) & =\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \int_{0}^{\pi} e^{i Q r \cos \theta} \sin \theta d \theta d r \\
& =\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{1}{i Q r}\left[-\left.e^{i Q r \cos \theta}\right|_{0} ^{\pi} d r\right. \\
& =\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{1}{i Q r}\left[e^{i Q r}-e^{-i Q r}\right] d r
\end{aligned}
$$

Hydrogen form factor calculation

Since $\rho(r)=\left|\psi_{1 s}(r)\right|^{2}$, the form factor integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int e^{-2 r / a} e^{i \vec{Q} \cdot \vec{r}} r^{2} \sin \theta d r d \theta d \phi
$$

the integral in ϕ gives 2π and if we choose \vec{Q} to be along the z direction, $\vec{Q} \cdot \vec{r} \rightarrow \operatorname{Qr} \cos \theta$, so

$$
\begin{aligned}
f_{1 s}^{0}(\vec{Q}) & =\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \int_{0}^{\pi} e^{i Q r \cos \theta} \sin \theta d \theta d r \\
& =\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{1}{i Q r}\left[-\left.e^{i Q r \cos \theta}\right|_{0} ^{\pi} d r\right. \\
& =\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{1}{i Q r}\left[e^{i Q r}-e^{-i Q r}\right] d r \\
& =\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{2 \sin (Q r)}{Q r} d r
\end{aligned}
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{2 \sin (Q r)}{Q r} d r
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{2 \sin (Q r)}{Q r} d r
$$

If we write $\sin (Q r)=\operatorname{Im}\left[e^{i Q r}\right]$ then the integral becomes

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{2 \sin (Q r)}{Q r} d r
$$

If we write $\sin (Q r)=\operatorname{Im}\left[e^{i Q r}\right]$ then the integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \int_{0}^{\infty} r e^{-2 r / a} \operatorname{lm}\left[e^{i Q r}\right] d r
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{2 \sin (Q r)}{Q r} d r
$$

If we write $\sin (Q r)=\operatorname{Im}\left[e^{i Q r}\right]$ then the integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \int_{0}^{\infty} r e^{-2 r / a} \operatorname{lm}\left[e^{i Q r}\right] d r=\frac{4}{a^{3} Q} \operatorname{lm}\left[\int_{0}^{\infty} r e^{-2 r / a} e^{i Q r} d r\right]
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{2 \sin (Q r)}{Q r} d r
$$

If we write $\sin (Q r)=\operatorname{Im}\left[e^{i Q r}\right]$ then the integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \int_{0}^{\infty} r e^{-2 r / a} \operatorname{lm}\left[e^{i Q r}\right] d r=\frac{4}{a^{3} Q} \operatorname{Im}\left[\int_{0}^{\infty} r e^{-2 r / a} e^{i Q r} d r\right]
$$

this can be integrated by parts with

$$
u=r
$$

$$
d v=e^{-r(2 / a-i Q)} d r
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{2 \sin (Q r)}{Q r} d r
$$

If we write $\sin (Q r)=\operatorname{lm}\left[e^{i Q r}\right]$ then the integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \int_{0}^{\infty} r e^{-2 r / a} \operatorname{lm}\left[e^{i Q r}\right] d r=\frac{4}{a^{3} Q} \operatorname{Im}\left[\int_{0}^{\infty} r e^{-2 r / a} e^{i Q r} d r\right]
$$

this can be integrated by parts with

$$
\begin{array}{rlrl}
u & =r & d v & =e^{-r(2 / a-i Q)} d r \\
d u & =d r & v & =-\frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)}
\end{array}
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{2 \sin (Q r)}{Q r} d r
$$

If we write $\sin (Q r)=\operatorname{lm}\left[e^{i Q r}\right]$ then the integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \int_{0}^{\infty} r e^{-2 r / a} \operatorname{lm}\left[e^{i Q r}\right] d r=\frac{4}{a^{3} Q} \operatorname{lm}\left[\int_{0}^{\infty} r e^{-2 r / a} e^{i Q r} d r\right]
$$

this can be integrated by parts with

$$
\begin{array}{rlrl}
u & =r & d v & =e^{-r(2 / a-i Q)} d r \\
d u & =d r & v & =-\frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)} \\
f_{1 s}^{0}(\vec{Q})= & \frac{4}{a^{3} Q} \operatorname{lm}\left[\left.r \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)} d r\right]
\end{array}
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \operatorname{lm}\left[\left.r \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)} d r\right]
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \operatorname{lm}\left[\left.r \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)} d r\right]
$$

the first term becomes zero because $r e^{-r(2 / a-i Q)} \rightarrow 0$ as $r \rightarrow 0$, the second is easily integrated

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \operatorname{lm}\left[\left.r \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)} d r\right]
$$

the first term becomes zero because $r e^{-r(2 / a-i Q)} \rightarrow 0$ as $r \rightarrow 0$, the second is easily integrated

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \operatorname{lm}\left[-\left.\frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)^{2}}\right|_{0} ^{\infty}\right]
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \operatorname{lm}\left[\left.r \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)} d r\right]
$$

the first term becomes zero because $r e^{-r(2 / a-i Q)} \rightarrow 0$ as $r \rightarrow 0$, the second is easily integrated

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \operatorname{lm}\left[-\left.\frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)^{2}}\right|_{0} ^{\infty}\right]=\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{1}{(2 / a-i Q)^{2}}\right]
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \operatorname{lm}\left[\left.r \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)} d r\right]
$$

the first term becomes zero because $r e^{-r(2 / a-i Q)} \rightarrow 0$ as $r \rightarrow 0$, the second is easily integrated

$$
\begin{aligned}
f_{1 s}^{0}(\vec{Q}) & =\frac{4}{a^{3} Q} \operatorname{lm}\left[-\left.\frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)^{2}}\right|_{0} ^{\infty}\right]=\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{1}{(2 / a-i Q)^{2}}\right] \\
& =\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{(2 / a+i Q)^{2}}{(2 / a-i Q)^{2}(2 / a+i Q)^{2}}\right]
\end{aligned}
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \operatorname{lm}\left[\left.r \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)} d r\right]
$$

the first term becomes zero because $r e^{-r(2 / a-i Q)} \rightarrow 0$ as $r \rightarrow 0$, the second is easily integrated

$$
\begin{aligned}
f_{1 s}^{0}(\vec{Q}) & =\frac{4}{a^{3} Q} \operatorname{lm}\left[-\left.\frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)^{2}}\right|_{0} ^{\infty}\right]=\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{1}{(2 / a-i Q)^{2}}\right] \\
& =\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{(2 / a+i Q)^{2}}{(2 / a-i Q)^{2}(2 / a+i Q)^{2}}\right] \\
& =\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{(2 / a)^{2}+i(4 Q / a)-Q^{2}}{\left[(2 / a)^{2}+Q^{2}\right]^{2}}\right]
\end{aligned}
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \operatorname{lm}\left[\left.r \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)} d r\right]
$$

the first term becomes zero because $r e^{-r(2 / a-i Q)} \rightarrow 0$ as $r \rightarrow 0$, the second is easily integrated

$$
\begin{aligned}
f_{1 s}^{0}(\vec{Q}) & =\frac{4}{a^{3} Q} \operatorname{lm}\left[-\left.\frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)^{2}}\right|_{0} ^{\infty}\right]=\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{1}{(2 / a-i Q)^{2}}\right] \\
& =\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{(2 / a+i Q)^{2}}{(2 / a-i Q)^{2}(2 / a+i Q)^{2}}\right] \\
& =\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{(2 / a)^{2}+i(4 Q / a)-Q^{2}}{\left[(2 / a)^{2}+Q^{2}\right]^{2}}\right] \\
& =\frac{4}{a^{3} Q} \frac{(a / 2)^{4}(4 Q / a)}{\left[1+(Q a / 2)^{2}\right]^{2}}
\end{aligned}
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \operatorname{lm}\left[\left.r \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)} d r\right]
$$

the first term becomes zero because $r e^{-r(2 / a-i Q)} \rightarrow 0$ as $r \rightarrow 0$, the second is easily integrated

$$
\begin{aligned}
f_{1 s}^{0}(\vec{Q}) & =\frac{4}{a^{3} Q} \operatorname{lm}\left[-\left.\frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)^{2}}\right|_{0} ^{\infty}\right]=\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{1}{(2 / a-i Q)^{2}}\right] \\
& =\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{(2 / a+i Q)^{2}}{(2 / a-i Q)^{2}(2 / a+i Q)^{2}}\right] \\
& =\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{(2 / a)^{2}+i(4 Q / a)-Q^{2}}{\left[(2 / a)^{2}+Q^{2}\right]^{2}}\right] \\
f_{1 s}^{0}(\vec{Q}) & =\frac{4}{a^{3} Q} \frac{(a / 2)^{4}(4 Q / a)}{\left[1+(Q a / 2)^{2}\right]^{2}}=\frac{1}{\left[1+(Q a / 2)^{2}\right]^{2}}
\end{aligned}
$$

1s and atomic form factors

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\left[1+(Q a / 2)^{2}\right]^{2}}
$$

1s and atomic form factors

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\left[1+(Q a / 2)^{2}\right]^{2}}
$$

This partial form factor will vary with Z due to the Coulomb interaction

1s and atomic form factors

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\left[1+(Q a / 2)^{2}\right]^{2}}
$$

This partial form factor will vary with Z due to the Coulomb interaction

1s and atomic form factors

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\left[1+(Q a / 2)^{2}\right]^{2}}
$$

This partial form factor will vary with Z due to the Coulomb interaction

In principle, one can compute the full atomic form factors, however, it is more useful to tabulate the experimentally measured form factors

1s and atomic form factors

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\left[1+(Q a / 2)^{2}\right]^{2}}
$$

This partial form factor will vary with Z due to the Coulomb interaction

In principle, one can compute the full atomic form factors, however, it is more useful to tabulate the experimentally measured form factors

$$
f^{0}(Q)=\sum_{j=1}^{4} a_{j} e^{-b_{j} \sin ^{2} \theta / \lambda^{2}}+c
$$

1s and atomic form factors

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\left[1+(Q a / 2)^{2}\right]^{2}}
$$

This partial form factor will vary with Z due to the Coulomb interaction

In principle, one can compute the full atomic form factors, however, it is more useful to tabulate the experimentally measured form factors

$$
f^{0}(Q)=\sum_{j=1}^{4} a_{j} e^{-b_{j} \sin ^{2} \theta / \lambda^{2}}+c=\sum_{j=1}^{4} a_{j} e^{-b_{j}(Q / 4 \pi)^{2}}+c
$$

1s and atomic form factors

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\left[1+(Q a / 2)^{2}\right]^{2}}
$$

This partial form factor will vary with Z due to the Coulomb interaction

In principle, one can compute the full atomic form factors, however, it is more useful to tabulate the experimentally measured form factors

$$
f^{0}(Q)=\sum_{j=1}^{4} a_{j} e^{-b_{j} \sin ^{2} \theta / \lambda^{2}}+c=\sum_{j=1}^{4} a_{j} e^{-b_{j}(Q / 4 \pi)^{2}}+c
$$

Two hydrogen atoms

Previously we derived the scattering intensity from two localized electrons both fixed and randomly oriented to the x-rays

Two hydrogen atoms

Previously we derived the scattering intensity from two localized electrons both fixed and randomly oriented to the x-rays when we now replace the two localized electrons with hydrogen atoms, we have, for fixed atoms

Two hydrogen atoms

Previously we derived the scattering intensity from two localized electrons both fixed and randomly oriented to the x-rays when we now replace the two localized electrons with hydrogen atoms, we have, for fixed atoms

Two hydrogen atoms

Previously we derived the scattering intensity from two localized electrons both fixed and randomly oriented to the x-rays when we now replace the two localized electrons with hydrogen atoms, we have, for fixed atoms and if we allow the hydrogen atoms to be randomly oriented we have

Two hydrogen atoms

Previously we derived the scattering intensity from two localized electrons both fixed and randomly oriented to the x-rays when we now replace the two localized electrons with hydrogen atoms, we have, for fixed atoms and if we allow the hydrogen atoms to be randomly oriented we have

Two hydrogen atoms

Previously we derived the scattering intensity from two localized electrons both fixed and randomly oriented to the x-rays when we now replace the two localized electrons with hydrogen atoms, we have, for fixed atoms and if we allow the hydrogen atoms to be randomly oriented we have
with no oscillating structure in the form factor

Inelastic scattering

The form factors for all atoms drop to zero as $Q \rightarrow \infty$, however, other processes continue to scatter photons.

Inelastic scattering

The form factors for all atoms drop to zero as $Q \rightarrow \infty$, however, other processes continue to scatter photons.

In particular, Compton scattering becomes dominant.

Inelastic scattering

The form factors for all atoms drop to zero as $Q \rightarrow \infty$, however, other processes continue to scatter photons.

In particular, Compton scattering becomes dominant.

Compton scattering is an inelastic process: $|\vec{k}| \neq\left|\overrightarrow{k^{\prime}}\right|$

Inelastic scattering

The form factors for all atoms drop to zero as $Q \rightarrow \infty$, however, other processes continue to scatter photons.

In particular, Compton scattering becomes dominant.

Compton scattering is an inelastic process: $|\vec{k}| \neq\left|\overrightarrow{k^{\prime}}\right|$ and it is also incoherent.

Inelastic scattering

The form factors for all atoms drop to zero as $Q \rightarrow \infty$, however, other processes continue to scatter photons.

In particular, Compton scattering becomes dominant.

Compton scattering is an inelastic process: $|\vec{k}| \neq\left|\overrightarrow{k^{\prime}}\right|$ and it is also incoherent.

The Compton scattering contains information about the momentum distribution of the electrons in the ground state of the atom.

Inelastic scattering

The form factors for all atoms drop to zero as $Q \rightarrow \infty$, however, other processes continue to scatter photons.

In particular, Compton scattering becomes dominant.

Compton scattering is an inelastic process: $|\vec{k}| \neq\left|\overrightarrow{k^{\prime}}\right|$ and it is also incoherent.

The Compton scattering contains information about the momentum distribution of the electrons in the ground state of the atom.

Total atomic scattering

We can now write the total scattering from an atom as the sum of two components:

Total atomic scattering

We can now write the total scattering from an atom as the sum of two components:

$$
\left(\frac{d \sigma}{d \Omega}\right)_{e l} \sim r_{0}^{2}|f(Q)|^{2}
$$

Total atomic scattering

We can now write the total scattering from an atom as the sum of two components:

$$
\begin{aligned}
& \left(\frac{d \sigma}{d \Omega}\right)_{e l} \sim r_{0}^{2}|f(Q)|^{2} \\
& \left(\frac{d \sigma}{d \Omega}\right)_{i n} \sim r_{0}^{2} S(Z, Q)
\end{aligned}
$$

Total atomic scattering

We can now write the total scattering from an atom as the sum of two components:

$$
\begin{aligned}
& \left(\frac{d \sigma}{d \Omega}\right)_{e l} \sim r_{0}^{2}|f(Q)|^{2} \\
& \left(\frac{d \sigma}{d \Omega}\right)_{i n} \sim r_{0}^{2} S(Z, Q)
\end{aligned}
$$

recall that $f(Q) \rightarrow Z$ as $Q \rightarrow 0$

Total atomic scattering

We can now write the total scattering from an atom as the sum of two components:

$$
\begin{aligned}
& \left(\frac{d \sigma}{d \Omega}\right)_{e l} \sim r_{0}^{2}|f(Q)|^{2} \\
& \left(\frac{d \sigma}{d \Omega}\right)_{i n} \sim r_{0}^{2} S(Z, Q)
\end{aligned}
$$

recall that $f(Q) \rightarrow Z$ as $Q \rightarrow 0$
so $|f(Q)|^{2} \rightarrow Z^{2}$ as $Q \rightarrow 0$

Total atomic scattering

We can now write the total scattering from an atom as the sum of two components:

$$
\begin{aligned}
& \left(\frac{d \sigma}{d \Omega}\right)_{e l} \sim r_{0}^{2}|f(Q)|^{2} \\
& \left(\frac{d \sigma}{d \Omega}\right)_{i n} \sim r_{0}^{2} S(Z, Q)
\end{aligned}
$$

recall that $f(Q) \rightarrow Z$ as $Q \rightarrow 0$
so $|f(Q)|^{2} \rightarrow Z^{2}$ as $Q \rightarrow 0$
and for incoherent scattering we expect $S(Z, Q) \rightarrow Z$ as $Q \rightarrow \infty$

Total atomic scattering

We can now write the total scattering from an atom as the sum of two components:

$$
\begin{aligned}
& \left(\frac{d \sigma}{d \Omega}\right)_{e l} \sim r_{0}^{2}|f(Q)|^{2} \\
& \left(\frac{d \sigma}{d \Omega}\right)_{\text {in }} \sim r_{0}^{2} S(Z, Q)
\end{aligned}
$$

recall that $f(Q) \rightarrow Z$ as $Q \rightarrow 0$ so $|f(Q)|^{2} \rightarrow Z^{2}$ as $Q \rightarrow 0$ and for incoherent scattering we expect $S(Z, Q) \rightarrow Z$ as $Q \rightarrow \infty$

Total atomic scattering

We can now write the total scattering from an atom as the sum of two components:

$$
\begin{aligned}
& \left(\frac{d \sigma}{d \Omega}\right)_{e l} \sim r_{0}^{2}|f(Q)|^{2} \\
& \left(\frac{d \sigma}{d \Omega}\right)_{\text {in }} \sim r_{0}^{2} S(Z, Q)
\end{aligned}
$$

recall that $f(Q) \rightarrow Z$ as $Q \rightarrow 0$ so $|f(Q)|^{2} \rightarrow Z^{2}$ as $Q \rightarrow 0$ and for incoherent scattering we expect $S(Z, Q) \rightarrow Z$ as $Q \rightarrow \infty$

$$
Z_{H e}=2 \quad Z_{A r}=18
$$

Scattering from molecules

From the atomic form factor, we would like to abstract to the next level of complexity, a molecule (we will leave crystals for Chapter 5).

Scattering from molecules

From the atomic form factor, we would like to abstract to the next level of complexity, a molecule (we will leave crystals for Chapter 5).

$$
F^{m o l}(\vec{Q})=\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}}
$$

Scattering from molecules

From the atomic form factor, we would like to abstract to the next level of complexity, a molecule (we will leave crystals for Chapter 5).

$$
F^{m o l}(\vec{Q})=\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}}
$$

As an example take the CF_{4} molecule

Scattering from molecules

From the atomic form factor, we would like to abstract to the next level of complexity, a molecule (we will leave crystals for Chapter 5).

$$
F^{\text {mol }}(\vec{Q})=\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}}
$$

As an example take the CF_{4} molecule

We have the following relationships:

Scattering from molecules

From the atomic form factor, we would like to abstract to the next level of complexity, a molecule (we will leave crystals for Chapter 5).

$$
F^{\text {mol }}(\vec{Q})=\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}}
$$

As an example take the CF_{4} molecule

We have the following relationships:

$\overline{O A}$

Scattering from molecules

From the atomic form factor, we would like to abstract to the next level of complexity, a molecule (we will leave crystals for Chapter 5).

$$
F^{\text {mol }}(\vec{Q})=\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}}
$$

As an example take the CF_{4} molecule

We have the following relationships:

$$
\overline{O A}=\overline{O B}
$$

Scattering from molecules

From the atomic form factor, we would like to abstract to the next level of complexity, a molecule (we will leave crystals for Chapter 5).

$$
F^{\text {mol }}(\vec{Q})=\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}}
$$

As an example take the CF_{4} molecule

We have the following relationships:

$$
\overline{O A}=\overline{O B}=\overline{O C}
$$

Scattering from molecules

From the atomic form factor, we would like to abstract to the next level of complexity, a molecule (we will leave crystals for Chapter 5).

$$
F^{\text {mol }}(\vec{Q})=\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}}
$$

As an example take the CF_{4} molecule

We have the following relationships:

$$
\overline{O A}=\overline{O B}=\overline{O C}=\overline{O D}
$$

Scattering from molecules

From the atomic form factor, we would like to abstract to the next level of complexity, a molecule (we will leave crystals for Chapter 5).

$$
F^{\text {mol }}(\vec{Q})=\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}}
$$

As an example take the CF_{4} molecule

We have the following relationships:

$$
\overline{O A}=\overline{O B}=\overline{O C}=\overline{O D}=1
$$

Scattering from molecules

From the atomic form factor, we would like to abstract to the next level of complexity, a molecule (we will leave crystals for Chapter 5).

$$
F^{\text {mol }}(\vec{Q})=\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}}
$$

As an example take the CF_{4} molecule

We have the following relationships:

$$
\overline{O A}=\overline{O B}=\overline{O C}=\overline{O D}=1
$$

$$
\overline{O A} \cdot \overline{O D}=1 \cdot 1 \cdot \cos u
$$

Scattering from molecules

From the atomic form factor, we would like to abstract to the next level of complexity, a molecule (we will leave crystals for Chapter 5).

$$
F^{\text {mol }}(\vec{Q})=\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}}
$$

As an example take the CF_{4} molecule

We have the following relationships:

$$
\overline{O A}=\overline{O B}=\overline{O C}=\overline{O D}=1
$$

$$
\overline{O A} \cdot \overline{O D}=1 \cdot 1 \cdot \cos u=-z
$$

Scattering from molecules

From the atomic form factor, we would like to abstract to the next level of complexity, a molecule (we will leave crystals for Chapter 5).

$$
F^{\text {mol }}(\vec{Q})=\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}}
$$

As an example take the CF_{4} molecule

We have the following relationships:

$$
\overline{O A}=\overline{O B}=\overline{O C}=\overline{O D}=1
$$

$$
\overline{O A} \cdot \overline{O D}=1 \cdot 1 \cdot \cos u=-z
$$

$$
=\overline{O A} \cdot \overline{O B}
$$

Scattering from molecules

From the atomic form factor, we would like to abstract to the next level of complexity, a molecule (we will leave crystals for Chapter 5).

$$
F^{\text {mol }}(\vec{Q})=\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}}
$$

As an example take the CF_{4} molecule

We have the following relationships:

$$
\begin{aligned}
& \overline{O A}=\overline{O B}=\overline{O C}=\overline{O D}=1 \\
& \overline{O A}=\overline{O O^{\prime}}+\overline{O^{\prime} A}
\end{aligned}
$$

Scattering from molecules

From the atomic form factor, we would like to abstract to the next level of complexity, a molecule (we will leave crystals for Chapter 5).

$$
F^{\text {mol }}(\vec{Q})=\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}}
$$

As an example take the CF_{4} molecule

We have the following relationships:

$$
\begin{aligned}
& \overline{O A}=\overline{O B}=\overline{O C}=\overline{O D}=1 \\
& \overline{O A}=\overline{O O^{\prime}}+\overline{O^{\prime} A} \\
& \overline{O B}=\overline{O O^{\prime}}+\overline{O^{\prime} B}
\end{aligned}
$$

$\overline{O A} \cdot \overline{O D}=1 \cdot 1 \cdot \cos u=-z$
$=\overline{O A} \cdot \overline{O B}$

Scattering from molecules

$$
-z=\left(\overline{O O^{\prime}}+\overline{O^{\prime} A}\right) \cdot\left(\overline{O O^{\prime}}+\overline{O^{\prime} B}\right)
$$

Scattering from molecules

$$
\begin{aligned}
-z & =\left(\overline{O O^{\prime}}+\overline{O^{\prime} A}\right) \cdot\left(\overline{O O^{\prime}}+\overline{O^{\prime} B}\right) \\
& =z^{2}+0+0+\overline{O^{\prime} A} \cdot \overline{O^{\prime} B}
\end{aligned}
$$

Scattering from molecules

$$
\begin{aligned}
-z & =\left(\overline{O O^{\prime}}+\overline{O^{\prime} A}\right) \cdot\left(\overline{O O^{\prime}}+\overline{O^{\prime} B}\right) \\
& =z^{2}+0+0+\overline{O^{\prime} A} \cdot \overline{O^{\prime} B} \\
& =z^{2}+\left(O^{\prime} A\right)^{2} \cos \left(120^{\circ}\right)
\end{aligned}
$$

Scattering from molecules

$$
\begin{aligned}
-z & =\left(\overline{O O^{\prime}}+\overline{O^{\prime} A}\right) \cdot\left(\overline{O O^{\prime}}+\overline{O^{\prime} B}\right) \\
& =z^{2}+0+0+\overline{O^{\prime} A} \cdot \overline{O^{\prime} B} \\
& =z^{2}+\left(O^{\prime} A\right)^{2} \cos \left(120^{\circ}\right)
\end{aligned}
$$

but from the triangle $O O^{\prime} A$

Scattering from molecules

$$
\begin{aligned}
-z & =\left(\overline{O O^{\prime}}+\overline{O^{\prime} A}\right) \cdot\left(\overline{O O^{\prime}}+\overline{O^{\prime} B}\right) \\
& =z^{2}+0+0+\overline{O^{\prime} A} \cdot \overline{O^{\prime} B} \\
& =z^{2}+\left(O^{\prime} A\right)^{2} \cos \left(120^{\circ}\right)
\end{aligned}
$$

but from the triangle $O O^{\prime} A$

$$
\left(O^{\prime} A\right)^{2}=1-z^{2}
$$

Scattering from molecules

$$
\begin{aligned}
-z & =\left(\overline{O O^{\prime}}+\overline{O^{\prime} A}\right) \cdot\left(\overline{O O^{\prime}}+\overline{O^{\prime} B}\right) \\
& =z^{2}+0+0+\overline{O^{\prime} A} \cdot \overline{O^{\prime} B} \\
& =z^{2}+\left(O^{\prime} A\right)^{2} \cos \left(120^{\circ}\right) \\
& =z^{2}+\left(1-z^{2}\right) \cos \left(120^{\circ}\right)
\end{aligned}
$$

but from the triangle $O O^{\prime} A$

$$
\left(O^{\prime} A\right)^{2}=1-z^{2}
$$

Scattering from molecules

$$
\begin{aligned}
-z & =\left(\overline{O O^{\prime}}+\overline{O^{\prime} A}\right) \cdot\left(\overline{O O^{\prime}}+\overline{O^{\prime} B}\right) \\
& =z^{2}+0+0+\overline{O^{\prime} A} \cdot \overline{O^{\prime} B} \\
& =z^{2}+\left(O^{\prime} A\right)^{2} \cos \left(120^{\circ}\right) \\
& =z^{2}+\left(1-z^{2}\right) \cos \left(120^{\circ}\right) \\
& =z^{2}-\frac{1}{2}\left(1-z^{2}\right)
\end{aligned}
$$

but from the triangle $O O^{\prime} A$

$$
\left(O^{\prime} A\right)^{2}=1-z^{2}
$$

Scattering from molecules

$$
\begin{aligned}
-z & =\left(\overline{O O^{\prime}}+\overline{O^{\prime} A}\right) \cdot\left(\overline{O O^{\prime}}+\overline{O^{\prime} B}\right) \\
& =z^{2}+0+0+\overline{O^{\prime} A} \cdot \overline{O^{\prime} B} \\
& =z^{2}+\left(O^{\prime} A\right)^{2} \cos \left(120^{\circ}\right) \\
& =z^{2}+\left(1-z^{2}\right) \cos \left(120^{\circ}\right) \\
& =z^{2}-\frac{1}{2}\left(1-z^{2}\right) \\
0 & =3 z^{2}+2 z-1
\end{aligned}
$$

but from the triangle $O O^{\prime} A$

$$
\left(O^{\prime} A\right)^{2}=1-z^{2}
$$

Scattering from molecules

$$
\begin{aligned}
-z & =\left(\overline{O O^{\prime}}+\overline{O^{\prime} A}\right) \cdot\left(\overline{O O^{\prime}}+\overline{O^{\prime} B}\right) \\
& =z^{2}+0+0+\overline{O^{\prime} A} \cdot \overline{O^{\prime} B} \\
& =z^{2}+\left(O^{\prime} A\right)^{2} \cos \left(120^{\circ}\right) \\
& =z^{2}+\left(1-z^{2}\right) \cos \left(120^{\circ}\right) \\
& =z^{2}-\frac{1}{2}\left(1-z^{2}\right) \\
0 & =3 z^{2}+2 z-1 \\
z & =\frac{1}{3}
\end{aligned}
$$

but from the triangle $O O^{\prime} A$

$$
\left(O^{\prime} A\right)^{2}=1-z^{2}
$$

Scattering from molecules

$$
\begin{aligned}
-z & =\left(\overline{O O^{\prime}}+\overline{O^{\prime} A}\right) \cdot\left(\overline{O O^{\prime}}+\overline{O^{\prime} B}\right) \\
& =z^{2}+0+0+\overline{O^{\prime} A} \cdot \overline{O^{\prime} B} \\
& =z^{2}+\left(O^{\prime} A\right)^{2} \cos \left(120^{\circ}\right) \\
& =z^{2}+\left(1-z^{2}\right) \cos \left(120^{\circ}\right) \\
& =z^{2}-\frac{1}{2}\left(1-z^{2}\right) \\
0 & =3 z^{2}+2 z-1 \\
z & =\frac{1}{3} \\
u & =\cos ^{-1}(-z)=109.5^{\circ}
\end{aligned}
$$

but from the triangle $O O^{\prime} A$

$$
\left(O^{\prime} A\right)^{2}=1-z^{2}
$$

Scattering from molecules

$$
\begin{aligned}
-z & =\left(\overline{O O^{\prime}}+\overline{O^{\prime} A}\right) \cdot\left(\overline{O O^{\prime}}+\overline{O^{\prime} B}\right) \\
& =z^{2}+0+0+\overline{O^{\prime} A} \cdot \overline{O^{\prime} B} \\
& =z^{2}+\left(O^{\prime} A\right)^{2} \cos \left(120^{\circ}\right) \\
& =z^{2}+\left(1-z^{2}\right) \cos \left(120^{\circ}\right) \\
& =z^{2}-\frac{1}{2}\left(1-z^{2}\right) \\
0 & =3 z^{2}+2 z-1 \\
z & =\frac{1}{3} \\
u & =\cos ^{-1}(-z)=109.5^{\circ}
\end{aligned}
$$

but from the triangle $O O^{\prime} A$ $\left(O^{\prime} A\right)^{2}=1-z^{2}$

$$
F_{ \pm}^{m o l}=f^{C}(Q)+f^{F}(Q)\left[3 e^{\mp i Q R / 3}+e^{ \pm i Q R}\right]
$$

Scattering from molecules

$$
\begin{aligned}
-z & =\left(\overline{O O^{\prime}}+\overline{O^{\prime} A}\right) \cdot\left(\overline{O O^{\prime}}+\overline{O^{\prime} B}\right) \\
& =z^{2}+0+0+\overline{O^{\prime} A} \cdot \overline{O^{\prime} B} \\
& =z^{2}+\left(O^{\prime} A\right)^{2} \cos \left(120^{\circ}\right) \\
& =z^{2}+\left(1-z^{2}\right) \cos \left(120^{\circ}\right) \\
& =z^{2}-\frac{1}{2}\left(1-z^{2}\right) \\
0 & =3 z^{2}+2 z-1 \\
z & =\frac{1}{3} \\
u & =\cos ^{-1}(-z)=109.5^{\circ}
\end{aligned}
$$

but from the triangle $O O^{\prime} A$

$$
\left(O^{\prime} A\right)^{2}=1-z^{2}
$$

$$
F_{ \pm}^{m o l}=f^{C}(Q)+f^{F}(Q)\left[3 e^{\mp i Q R / 3}+e^{ \pm i Q R}\right]
$$

Scattering from molecules

$$
\begin{aligned}
-z & =\left(\overline{O O^{\prime}}+\overline{O^{\prime} A}\right) \cdot\left(\overline{O O^{\prime}}+\overline{O^{\prime} B}\right) \\
& =z^{2}+0+0+\overline{O^{\prime} A} \cdot \overline{O^{\prime} B} \\
& =z^{2}+\left(O^{\prime} A\right)^{2} \cos \left(120^{\circ}\right) \\
& =z^{2}+\left(1-z^{2}\right) \cos \left(120^{\circ}\right) \\
& =z^{2}-\frac{1}{2}\left(1-z^{2}\right) \\
0 & =3 z^{2}+2 z-1 \\
z & =\frac{1}{3} \\
u & =\cos ^{-1}(-z)=109.5^{\circ}
\end{aligned}
$$

but from the triangle $O O^{\prime} A$

$$
\left(O^{\prime} A\right)^{2}=1-z^{2}
$$

$$
F_{ \pm}^{m o l}=f^{C}(Q)+f^{F}(Q)\left[3 e^{\mp i Q R / 3}+e^{ \pm i Q R}\right]
$$

$$
\left|F^{\text {mol }}\right|^{2}=\left|f^{C}\right|^{2}+4\left|f^{F}\right|^{2}+8 f^{C} f^{F} \frac{\sin (Q R)}{Q R}+12\left|f^{F}\right|^{2} \frac{\sin (Q \sqrt{8 / 3} R)}{Q \sqrt{8 / 3} R}
$$

The Radial Distribution Function

The Radial Distribution Function

Ordered 2D crystal
Amorphous solid or liquid

The Radial Distribution Function

Ordered 2D crystal

Amorphous solid or liquid

The Radial Distribution Function

Ordered 2D crystal

Amorphous solid or liquid

The Radial Distribution Function

Ordered 2D crystal

Amorphous solid or liquid

The Radial Distribution Function

Ordered 2D crystal

Amorphous solid or liquid

The Radial Distribution Function

Ordered 2D crystal

Amorphous solid or liquid

