Today's Outline - September 26, 2016

Today's Outline - September 26, 2016

- Reflectivity research topics

Today's Outline - September 26, 2016

- Reflectivity research topics
- Mirrors

Today's Outline - September 26, 2016

- Reflectivity research topics
- Mirrors
- Refractive optics

Today's Outline - September 26, 2016

- Reflectivity research topics
- Mirrors
- Refractive optics

APS Visits:
10-ID: Friday, October 21, 2016
10-BM: Friday, October 28, 2016

Today's Outline - September 26, 2016

- Reflectivity research topics
- Mirrors
- Refractive optics

APS Visits:
10-ID: Friday, October 21, 2016
10-BM: Friday, October 28, 2016

Homework Assignment \#03:
Chapter 3: 1, 3, 4, 6, 8
due Wednesday, October 05, 2016

Layering in liquid films

THEOS, tetrakis-(2-

ethylhexoxy)-silane,
a non-polar, roughly spherical molecule, was deposited on $\mathrm{Si}(111)$ single crystals

Layering in liquid films

THEOS, tetrakis-(2-ethylhexoxy)-silane, a non-polar, roughly spherical molecule, was deposited on $\mathrm{Si}(111)$ single crystals

Specular reflection measurements were made at MRCAT (Sector 10 at APS) and at X18A (at NSLS).

Layering in liquid films

THEOS, tetrakis-(2-ethylhexoxy)-silane, a non-polar, roughly spherical molecule, was deposited on $\mathrm{Si}(111)$ single crystals

Specular reflection measurements were made at MRCAT (Sector 10 at APS) and at X18A (at NSLS).

Layering in liquid films

THEOS, tetrakis-(2-ethylhexoxy)-silane, a non-polar, roughly spherical molecule, was deposited on $\mathrm{Si}(111)$ single crystals

Specular reflection measurements were made at MRCAT (Sector 10 at APS) and at X18A (at NSLS).

Layering in liquid films

THEOS, tetrakis-(2-ethylhexoxy)-silane, a non-polar, roughly spherical molecule, was deposited on $\mathrm{Si}(111)$ single crystals

Specular reflection measurements were made at MRCAT (Sector 10 at APS) and at X18A (at NSLS).

Layering in liquid films

Layering in liquid films

The peak below $10 \AA$ appears in all but the thickest film and depends on the interactions between film and substrate.

Layering in liquid films

The peak below $10 \AA$ appears in all but the thickest film and depends on the interactions between film and substrate.

There are always peaks between $10-20 \AA$ and $20-30 \AA$

Layering in liquid films

The peak below $10 \AA$ appears in all but the thickest film and depends on the interactions between film and substrate.

There are always peaks between $10-20 \AA$ and $20-30 \AA$

A broad peak appears at free surface indicating that ordering requires a hard smooth surface.

Film growth kinetics

Gaussian roughness profile with a "roughness" exponent $0<h<1$.

Film growth kinetics

Gaussian roughness profile with a "roughness" exponent $0<h<1$.
$g(r) \propto r^{2 h}$

Film growth kinetics

Gaussian roughness profile with a "roughness" exponent $0<h<1$. As the film is grown by vapor deposition, the rms width σ, grows with a "growth exponent" β
$g(r) \propto r^{2 h}$

Film growth kinetics

Gaussian roughness profile with a "roughness" exponent $0<h<1$. As the film is grown by vapor deposition, the rms width σ, grows with a "growth exponent" β

$$
g(r) \propto r^{2 h} \quad \sigma \propto t^{\beta}
$$

Film growth kinetics

Gaussian roughness profile with a "roughness" exponent $0<h<1$. As the film is grown by vapor deposition, the rms width σ, grows with a "growth exponent" β and the correlation length in the plane of the surface, ξ evolves with the "dynamic" scaling exponent, $z_{s}=h / \beta$.
$g(r) \propto r^{2 h} \quad \sigma \propto t^{\beta}$

Film growth kinetics

Gaussian roughness profile with a "roughness" exponent $0<h<1$. As the film is grown by vapor deposition, the rms width σ, grows with a "growth exponent" β and the correlation length in the plane of the surface, ξ evolves with the "dynamic" scaling exponent, $z_{s}=h / \beta$.
$g(r) \propto r^{2 h} \quad \sigma \propto t^{\beta}$
$\quad \xi \propto t^{1 / z_{s}}$
$h \approx 0.33, \beta \approx 0.25$ for no
diffusion.

Film growth kinetics

Gaussian roughness profile with a "roughness" exponent $0<h<1$. As the film is grown by vapor deposition, the rms width σ, grows with a "growth exponent" β and the correlation length in the plane of the surface, ξ evolves with the "dynamic" scaling exponent, $z_{s}=h / \beta$.

$$
\begin{aligned}
& g(r) \propto r^{2 h} \\
& \sigma \propto t^{\beta} \\
& \xi \propto t^{1 / z_{s}} \\
& \langle h\rangle \propto t \\
& h \approx 0.33, \beta \approx 0.25 \text { for no } \\
& \text { diffusion. }
\end{aligned}
$$

Film growth kinetics

Gaussian roughness profile with a "roughness" exponent $0<h<1$. As the film is grown by vapor deposition, the rms width σ, grows with a "growth exponent" β and the correlation length in the plane of the surface, ξ evolves with the "dynamic" scaling exponent, $z_{s}=h / \beta$.

$$
\begin{aligned}
& g(r) \propto r^{2 h} \\
& \sigma \propto t^{\beta} \\
& \xi \propto t^{1 / z_{s}} \\
& \langle h\rangle \propto t \\
& h \approx 0.33, \beta \approx 0.25 \text { for no } \\
& \text { diffusion. }
\end{aligned}
$$

$\mathrm{Ag} /$ Si films: 10 nm (A), 18nm (B), 37 nm (C), 73 nm (D), 150nm (E)

Film growth kinetics

Gaussian roughness profile with a "roughness" exponent $0<h<1$. As the film is grown by vapor deposition, the rms width σ, grows with a "growth exponent" β and the correlation length in the plane of the surface, ξ evolves with the "dynamic" scaling exponent, $z_{s}=h / \beta$.

```
\(g(r) \propto r^{2 h}\) \(\xi \propto t^{1 / z_{s}}\) \(\langle h\rangle \propto t\)
\(h \approx 0.33, \beta \approx 0.25\) for no diffusion.
```

$\mathrm{Ag} /$ Si films: $10 \mathrm{~nm}(\mathrm{~A}), 18 \mathrm{~nm}$ (B), $37 \mathrm{~nm}(\mathrm{C}), 73 \mathrm{~nm}(\mathrm{D}), 150 \mathrm{~nm}(\mathrm{E})$

C. Thompson et al., "X-ray-reflectivity study of the growth kinetics of vapordeposited silver films", Phys. Rev. B 49, 4902-4907 (1994).

Film growth kinetics

Gaussian roughness profile with a "roughness" exponent $0<h<1$. As the film is grown by vapor deposition, the rms width σ, grows with a "growth exponent" β and the correlation length in the plane of the surface, ξ evolves with the "dynamic" scaling exponent, $z_{s}=h / \beta$.
$\sigma \propto t^{\beta}$
$\xi \propto t^{1 / z_{s}}$
$\langle h\rangle \propto t$
$h \approx 0.33, \beta \approx 0.25$ for no diffusion.

Ag/Si films: 10 nm (A), 18nm (B), $37 \mathrm{~nm}(\mathrm{C}), 73 \mathrm{~nm}(\mathrm{D}), 150 \mathrm{~nm}$ (E)

C. Thompson et al., "X-ray-reflectivity study of the growth kinetics of vapordeposited silver films", Phys. Rev. B 49, 4902-4907 (1994).

Film growth kinetics

h can be obtained from the diffuse off-specular reflection which should vary as

Film growth kinetics

h can be obtained from the diffuse off-specular reflection which should vary as

$$
I\left(q_{z}\right) \propto \sigma^{-2 / h} q_{z}^{-(3+1 / h)}
$$

Film growth kinetics

h can be obtained from the diffuse off-specular reflection which should vary as

$$
I\left(q_{z}\right) \propto \sigma^{-2 / h} q_{z}^{-(3+1 / h)}
$$

Film growth kinetics

h can be obtained from the diffuse off-specular reflection which should vary as

$$
I\left(q_{z}\right) \propto \sigma^{-2 / h} q_{z}^{-(3+1 / h)}
$$

Film growth kinetics

h can be obtained from the diffuse off-specular reflection which should vary as

$$
I\left(q_{z}\right) \propto \sigma^{-2 / h} q_{z}^{-(3+1 / h)}
$$

This gives $h=0.63$ but is this correct?

Film growth kinetics

h can be obtained from the diffuse off-specular reflection which should vary as

$$
I\left(q_{z}\right) \propto \sigma^{-2 / h} q_{z}^{-(3+1 / h)}
$$

This gives $h=0.63$ but is this correct?

Measure it directly using STM

Film growth kinetics

h can be obtained from the diffuse off-specular reflection which should vary as

$$
I\left(q_{z}\right) \propto \sigma^{-2 / h} q_{z}^{-(3+1 / h)}
$$

This gives $h=0.63$ but is this correct?

Measure it directly using STM

Film growth kinetics

h can be obtained from the diffuse off-specular reflection which should vary as

$$
I\left(q_{z}\right) \propto \sigma^{-2 / h} q_{z}^{-(3+1 / h)}
$$

This gives $h=0.63$ but is this correct?

Measure it directly using STM
$g(r)=2 \sigma^{2}\left[1-e^{(r / \xi)^{2 h}}\right]$

Film growth kinetics

h can be obtained from the diffuse off-specular reflection which should vary as

$$
I\left(q_{z}\right) \propto \sigma^{-2 / h} q_{z}^{-(3+1 / h)}
$$

This gives $h=0.63$ but is this correct?

Measure it directly using STM

$$
\begin{array}{r}
g(r)=2 \sigma^{2}\left[1-e^{(r / \xi)^{2 h}}\right] \\
h=0.78, \quad \xi=23 \mathrm{~nm} \\
\sigma=3.2 \mathrm{~nm}
\end{array}
$$

R (nm)

Thus $z_{s}=h / \beta=2.7$

Film growth kinetics

h can be obtained from the diffuse off-specular reflection which should vary as

$$
I\left(q_{z}\right) \propto \sigma^{-2 / h} q_{z}^{-(3+1 / h)}
$$

This gives $h=0.63$ but is this correct?

Measure it directly using STM

$$
\begin{array}{r}
g(r)=2 \sigma^{2}\left[1-e^{(r / \xi)^{2 h}}\right] \\
h=0.78, \quad \xi=23 \mathrm{~nm}, \\
\sigma=3.2 \mathrm{~nm}
\end{array}
$$

Thus $z_{s}=h / \beta=2.7$

Film growth kinetics

h can be obtained from the diffuse off-specular reflection which should vary as

$$
I\left(q_{z}\right) \propto \sigma^{-2 / h} q_{z}^{-(3+1 / h)}
$$

This gives $h=0.63$ but is this correct?

Measure it directly using STM

$$
\begin{array}{r}
g(r)=2 \sigma^{2}\left[1-e^{(r / \xi)^{2 h}}\right] \\
h=0.78, \quad \xi=23 \mathrm{~nm}, \\
\sigma=3.2 \mathrm{~nm}
\end{array}
$$

Thus $z_{s}=h / \beta=2.7$ and diffraction data confirm $\xi=19.9\langle h\rangle^{1 / 2.7} \AA$

Liquid metal surfaces

X-ray reflectivity using synchrotron radiation has made possible the study of the surface of liquid metals

Liquid metal surfaces

X-ray reflectivity using synchrotron radiation has made possible the study of the surface of liquid metals
a liquid can be described as charged ions in a sea of conduction electrons

Liquid metal surfaces

X-ray reflectivity using synchrotron radiation has made possible the study of the surface of liquid metals
a liquid can be described as charged ions in a sea of conduction electrons
this leads to a well-defined surface structure as can be seen in liquid gallium

Liquid metal surfaces

X-ray reflectivity using synchrotron radiation has made possible the study of the surface of liquid metals
a liquid can be described as charged ions in a sea of con-
 duction electrons
this leads to a well-defined surface structure as can be seen in liquid gallium

[^0]
Liquid metal surfaces

X-ray reflectivity using synchrotron radiation has made possible the study of the surface of liquid metals
a liquid can be described as charged ions in a sea of con-
 duction electrons
this leads to a well-defined surface structure as can be seen in liquid gallium contrast this with the scattering from liquid mercury

[^1]
Liquid metal surfaces

X-ray reflectivity using synchrotron radiation has made possible the study of the surface of liquid metals
a liquid can be described as charged ions in a sea of conduction electrons
this leads to a well-defined surface structure as can be seen in liquid gallium
contrast this with the scattering from liquid mercury

P. Pershan, "Review of the highlights of x-ray studies of liquid metal surfaces", J. Appl. Phys. 116, 222201 (2014).

Liquid metal eutectics

High vapor pressure and thermal excitations limit the number of pure metals which can be studied but alloy eutectics provide many possibilities

O. Shpyrko et al., "Atomic-scale surface demixing in a eutectic liquid BiSn alloy", Phys. Rev. Lett. 95, 106103 (2005).

Liquid metal eutectics

High vapor pressure and thermal excitations limit the number of pure metals which can be studied but alloy eutectics provide many possibilities
tune x-rays around the Bi absorption edge at 13.42 keV and measure a $\mathrm{Bi}_{43} \mathrm{Sn}_{57}$ eutectic

O. Shpyrko et al., "Atomic-scale surface demixing in a eutectic liquid BiSn alloy", Phys. Rev. Lett. 95, 106103 (2005).

Liquid metal eutectics

High vapor pressure and thermal excitations limit the number of pure metals which can be studied but alloy eutectics provide many possibilities
tune x-rays around the Bi absorption edge at 13.42 keV and measure a $\mathrm{Bi}_{43} \mathrm{Sn}_{57}$ eutectic

O. Shpyrko et al., "Atomic-scale surface demixing in a eutectic liquid BiSn alloy", Phys. Rev. Lett. 95, 106103 (2005).

Liquid metal eutectics

High vapor pressure and thermal excitations limit the number of pure metals which can be studied but alloy eutectics provide many possibilities
tune x-rays around the Bi absorption edge at 13.42 keV and measure a $\mathrm{Bi}_{43} \mathrm{Sn}_{57}$ eutectic

O. Shpyrko et al., "Atomic-scale surface demixing in a eutectic liquid BiSn alloy", Phys. Rev. Lett. 95, 106103 (2005).

Liquid metal eutectics

High vapor pressure and thermal excitations limit the number of pure metals which can be studied but alloy eutectics provide many possibilities
tune x-rays around the Bi ab sorption edge at 13.42 keV and measure a $\mathrm{Bi}_{43} \mathrm{Sn}_{57}$ eutectic
surface layer is rich in Bi (95\%), second layer is deficient (25%), and third layer is rich in $\mathrm{Bi}(53 \%)$ once again

O. Shpyrko et al., "Atomic-scale surface demixing in a eutectic liquid BiSn alloy", Phys. Rev. Lett. 95, 106103 (2005).

The MRCAT mirror

The MRCAT mirror

Ultra low expansion glass polished to a few Å roughness

The MRCAT mirror

Ultra low expansion glass polished to a few Å roughness

One platinum stripe and one rhodium stripe deposited along the length of the mirror on top of a chromium buffer layer

The MRCAT mirror

Ultra low expansion glass polished to a few Å roughness

One platinum stripe and one rhodium stripe deposited along the length of the mirror on top of a chromium buffer layer

A mounting system which permits angular positioning to less than $1 / 100$ of a degree as well as horizontal and vertical motions

The MRCAT mirror

Ultra low expansion glass polished to a few Å roughness

One platinum stripe and one rhodium stripe deposited along the length of the mirror on top of a chromium buffer layer

A mounting system which permits angular positioning to less than $1 / 100$ of a degree as well as horizontal and vertical motions

A bending mechanism to permit vertical focusing of the beam to $\sim 60 \mu \mathrm{~m}$

Mirror performance

When illuminated with 12 keV x-rays on the glass "stripe", the reflectivity is measured as:

Mirror performance

When illuminated with 12 keV x-rays on the glass "stripe", the reflectivity is measured as:

With the Rh stripe, the thin slab reflection is evident and the critical angle is significantly higher.

Mirror performance

When illuminated with 12 keV x-rays on the glass "stripe", the reflectivity is measured as:

With the Rh stripe, the thin slab reflection is evident and the critical angle is significantly higher.

Mirror performance

When illuminated with 12 keV x-rays on the glass "stripe", the reflectivity is measured as:

With the Rh stripe, the thin slab reflection is evident and the critical angle is significantly higher.

The Pt stripe gives a higher critical angle still but a lower reflectivity and it looks like an infinite slab.

Mirror performance

When illuminated with 12 keV x-rays on the glass "stripe", the reflectivity is measured as:

With the Rh stripe, the thin slab reflection is evident and the critical angle is significantly higher.

The Pt stripe gives a higher critical angle still but a lower reflectivity and it looks like an infinite slab.

Mirror performance

When illuminated with 12 keV x-rays on the glass "stripe", the reflectivity is measured as:

With the Rh stripe, the thin slab reflection is evident and the critical angle is significantly higher.

The Pt stripe gives a higher critical angle still but a lower reflectivity and it looks like an infinite slab. Why?

Mirror performance (cont.)

Mirror performance (cont.)

As we move up in energy the critical angle for the Pt stripe drops.

Mirror performance (cont.)

As we move up in energy the critical angle for the Pt stripe drops.

The reflectivity at low angles improves as we are well away from the Pt absorption edges at $11,565 \mathrm{eV}, 13,273 \mathrm{eV}$, and $13,880 \mathrm{eV}$.

Mirror performance (cont.)

As we move up in energy the critical angle for the Pt stripe drops.

The reflectivity at low angles improves as we are well away from the Pt absorption edges at $11,565 \mathrm{eV}, 13,273 \mathrm{eV}$, and $13,880 \mathrm{eV}$.

As energy rises, the Pt layer begins to show the reflectivity of a thin slab.

Tangential focusing mirror

The shape of an ideal mirror is an ellipse, where any ray coming from one focus will be projected to the second focus.

Tangential focusing mirror

The shape of an ideal mirror is an ellipse, where any ray coming from one focus will be projected to the second focus. Consider a $1: 1$ focusing mirror. For an ellipse the sum of the distances from any point on the ellipse to the foci is a constant.

$$
F_{1} P+F_{2} P=2 a
$$

Tangential focusing mirror

The shape of an ideal mirror is an ellipse, where any ray coming from one focus will be projected to the second focus. Consider a $1: 1$ focusing mirror. For an ellipse the sum of the distances from any point on the ellipse to the foci is a constant.

$$
F_{1} P+F_{2} P=2 a
$$

$$
F_{1} B=F_{2} B=a
$$

Tangential focusing mirror

The shape of an ideal mirror is an ellipse, where any ray coming from one focus will be projected to the second focus. Consider a $1: 1$ focusing mirror. For an ellipse the sum of the distances from any point on the ellipse to the foci is a constant.

$$
F_{1} P+F_{2} P=2 a
$$

$$
F_{1} B=F_{2} B=a
$$

$$
\sin \theta=\frac{b}{a}
$$

Tangential focusing mirror

The shape of an ideal mirror is an ellipse, where any ray coming from one focus will be projected to the second focus. Consider a $1: 1$ focusing mirror. For an ellipse the sum of the distances from any point on the ellipse to the foci is a constant.

$$
F_{1} P+F_{2} P=2 a
$$

$$
F_{1} B=F_{2} B=a
$$

$$
\frac{1}{f}=\frac{1}{o}+\frac{1}{i}
$$

$$
\sin \theta=\frac{b}{a}
$$

Tangential focusing mirror

The shape of an ideal mirror is an ellipse, where any ray coming from one focus will be projected to the second focus. Consider a $1: 1$ focusing mirror. For an ellipse the sum of the distances from any point on the ellipse to the foci is a constant.

$$
F_{1} P+F_{2} P=2 a
$$

$$
F_{1} B=F_{2} B=a
$$

$$
\frac{1}{f}=\frac{1}{o}+\frac{1}{i}=\frac{2}{a}
$$

$$
\sin \theta=\frac{b}{a}
$$

$$
f=\frac{a}{2}
$$

Tangential focusing mirror

The shape of an ideal mirror is an ellipse, where any ray coming from one focus will be projected to the second focus. Consider a $1: 1$ focusing mirror. For an ellipse the sum of the distances from any point on the ellipse to the foci is a constant.

$$
\begin{aligned}
& F_{1} P+F_{2} P=2 a \\
& F_{1} B=F_{2} B=a \\
& \sin \theta=\frac{b}{a}=\frac{b}{2 f}
\end{aligned}
$$

$$
\frac{1}{f}=\frac{1}{o}+\frac{1}{i}=\frac{2}{a}
$$

$$
f=\frac{a}{2}
$$

Saggital focusing mirror

Ellipses are hard figures to make, so usually, they are approximated by circles. In the case of saggital focusing, an ellipsoid of revolution with diameter $2 b$, is used for focusing.

Saggital focusing mirror

Ellipses are hard figures to make, so usually, they are approximated by circles. In the case of saggital focusing, an ellipsoid of revolution with diameter $2 b$, is used for focusing.

$$
\rho_{\text {saggital }}=b=2 f \sin \theta
$$

Saggital focusing mirror

Ellipses are hard figures to make, so usually, they are approximated by circles. In the case of saggital focusing, an ellipsoid of revolution with diameter $2 b$, is used for focusing.

$$
\rho_{\text {saggital }}=b=2 f \sin \theta
$$

The tangential focus is also usually approximated by a circular crosssection with radius

Saggital focusing mirror

Ellipses are hard figures to make, so usually, they are approximated by circles. In the case of saggital focusing, an ellipsoid of revolution with diameter $2 b$, is used for focusing.

$$
\rho_{\text {saggital }}=b=2 f \sin \theta
$$

The tangential focus is also usually approximated by a circular cross-
 section with radius

$$
\rho_{\text {tangential }}=a=\frac{2 f}{\sin \theta}
$$

Types of focusing mirrors

A simple mirror such as the one at MRCAT consists of a polished glass slab with two "legs".

Types of focusing mirrors

A simple mirror such as the one at MRCAT consists of a polished glass slab with two "legs". A force is applied mechanically to push the legs apart and bend the mirror to a radius as small as $R=500 \mathrm{~m}$.

Types of focusing mirrors

A simple mirror such as the one at MRCAT consists of a polished glass slab with two "legs". A force is applied mechanically to push the legs apart and bend the mirror to a radius as small as $R=500 \mathrm{~m}$.

The bimorph mirror is designed to obtain a smaller form error than a simple bender through the use of multiple actuators tuned experimentally.

Types of focusing mirrors

A simple mirror such as the one at MRCAT consists of a polished glass slab with two "legs". A force is applied mechanically to push the legs apart and bend the mirror to a radius as small as $R=500 \mathrm{~m}$.

The bimorph mirror is designed to obtain a smaller form error than a simple bender through the use of multiple actuators tuned experimentally.

A cost effective way to focus in both directions is a toroidal mirror which has a fixed bend in the transverse direction
 but which can be bent longitudinally to change the vertical focus.

Dual focusing options

Dual focusing options

- Toroidal mirror - simple, moderate focus, good for initial focusing element, easy to distort beam

Dual focusing options

- Toroidal mirror - simple, moderate focus, good for initial focusing element, easy to distort beam
- Saggittal focusing crystal \& vertical focusing mirror adjustable in both directions, good for initial focusing element

Dual focusing options

- Toroidal mirror - simple, moderate focus, good for initial focusing element, easy to distort beam
- Saggittal focusing crystal \& vertical focusing mirror adjustable in both directions, good for initial focusing element
- Kirkpatrick-Baez mirror pair - in combination with an initial focusing element, good for final small focal spot and variable energy

Dual focusing options

- Toroidal mirror - simple, moderate focus, good for initial focusing element, easy to distort beam
- Saggittal focusing crystal \& vertical focusing mirror adjustable in both directions, good for initial focusing element
- Kirkpatrick-Baez mirror pair - in combination with an initial focusing element, good for final small focal spot and variable energy
- K-B mirrors \& zone plates - in combination with an initial focusing element, gives smallest focal spot, but hard to vary energy

Refractive optics

Just as with visible, light, it is possible to make refractive optics for x -rays

Refractive optics

Just as with visible, light, it is possible to make refractive optics for x -rays visible light:

$$
\begin{aligned}
n & \sim 1.2-1.5 \\
f & \sim 0.1 \mathrm{~m}
\end{aligned}
$$

Refractive optics

Just as with visible, light, it is possible to make refractive optics for x -rays visible light:

$$
\begin{gathered}
n \sim 1.2-1.5 \\
f \sim 0.1 \mathrm{~m}
\end{gathered}
$$

x-rays:

$$
\begin{gathered}
n \approx 1-\delta, \delta \sim 10^{-5} \\
\quad f \sim 100 \mathrm{~m}!
\end{gathered}
$$

Refractive optics

Just as with visible, light, it is possible to make refractive optics for x -rays visible light:

$$
\begin{aligned}
n & \sim 1.2-1.5 \\
f & \sim 0.1 \mathrm{~m}
\end{aligned}
$$

x-rays:

$$
\begin{gathered}
n \approx 1-\delta, \delta \sim 10^{-5} \\
\quad f \sim 100 \mathrm{~m}!
\end{gathered}
$$

x-ray lenses are complementary to those for visible light

Refractive optics

Just as with visible, light, it is possible to make refractive optics for x-rays visible light:

$$
\begin{aligned}
n & \sim 1.2-1.5 \\
f & \sim 0.1 \mathrm{~m}
\end{aligned}
$$

x-rays:

$$
\begin{gathered}
n \approx 1-\delta, \delta \sim 10^{-5} \\
\quad f \sim 100 \mathrm{~m}!
\end{gathered}
$$

x-ray lenses are complementary to those for visible light getting manageable focal distances requires making compound lenses

Focal length of a compound lens

Start with a 3-element compound lens, calculate effective focal length

Focal length of a compound lens

> Start with a 3-element compound lens, calculate effective focal length assuming each lens has the same focal length, f

Focal length of a compound lens

> Start with a 3-element compound lens, calculate effective focal length assuming each lens has the same focal length, f

Focal length of a compound lens

Start with a 3-element compound lens, calculate effective focal length assuming each lens has the same focal length, f

Focal length of a compound lens

$$
\frac{1}{i_{1}}=\frac{1}{f_{1}}-\frac{1}{o_{1}} \rightarrow \frac{1}{i_{1}}=\frac{1}{f}
$$

Start with a 3-element compound lens, calculate effective focal length assuming each lens has the same focal length, f

$$
f_{1}=f, o_{1}=\infty
$$

Focal length of a compound lens

Focal length of a compound lens

$$
\begin{gathered}
\longrightarrow \\
\frac{1}{i}+\frac{1}{o}=\frac{1}{f} \rightarrow \frac{1}{i}=\frac{1}{f}-\frac{1}{o} \\
\frac{1}{i_{1}}=\frac{1}{f_{1}}-\frac{1}{o_{1}} \rightarrow \frac{1}{i_{1}}=\frac{1}{f} \rightarrow i_{1}=f \\
\frac{1}{i_{2}}=\frac{1}{f_{2}}-\frac{1}{o_{2}}
\end{gathered}
$$

Start with a 3 -element compound lens, calculate effective focal length assuming each lens has the same focal length, f

$$
f_{1}=f, o_{1}=\infty
$$

for the second lens, the image i_{1} is a virtual object, $o_{2}=-i_{1}$

Focal length of a compound lens

$$
\begin{gathered}
\longrightarrow \\
\frac{1}{i}+\frac{1}{o}=\frac{1}{f} \rightarrow \frac{1}{i}=\frac{1}{f}-\frac{1}{o} \\
\frac{1}{i_{1}}=\frac{1}{f_{1}}-\frac{1}{o_{1}} \rightarrow \frac{1}{i_{1}}=\frac{1}{f} \rightarrow i_{1}=f \\
\frac{1}{i_{2}}=\frac{1}{f_{2}}-\frac{1}{o_{2}} \rightarrow \frac{1}{i_{2}}=\frac{1}{f}+\frac{1}{f}
\end{gathered}
$$

Start with a 3-element compound lens, calculate effective focal length assuming each lens has the same focal length, f

$$
f_{1}=f, o_{1}=\infty
$$

for the second lens, the image i_{1} is a virtual object, $o_{2}=-i_{1}$

Focal length of a compound lens

$$
\begin{gathered}
\longrightarrow \\
\frac{1}{i}+\frac{1}{o}=\frac{1}{f} \rightarrow \frac{1}{i}=\frac{1}{f}-\frac{1}{o} \\
\frac{1}{i_{1}}=\frac{1}{f_{1}}-\frac{1}{o_{1}} \rightarrow \frac{1}{i_{1}}=\frac{1}{f} \rightarrow i_{1}=f \\
\frac{1}{i_{2}}=\frac{1}{f_{2}}-\frac{1}{o_{2}} \rightarrow \frac{1}{i_{2}}=\frac{1}{f}+\frac{1}{f} \rightarrow i_{2}=\frac{f}{2}
\end{gathered}
$$

Start with a 3-element compound lens, calculate effective focal length assuming each lens has the same focal length, f
$f_{1}=f, o_{1}=\infty$
for the second lens, the image i_{1} is a virtual object, $o_{2}=-i_{1}$

Focal length of a compound lens

$$
\begin{gathered}
\longrightarrow \\
\frac{1}{i}+\frac{1}{o}=\frac{1}{f} \rightarrow \frac{1}{i}=\frac{1}{f}-\frac{1}{o} \\
\frac{1}{i_{1}}=\frac{1}{f_{1}}-\frac{1}{o_{1}} \rightarrow \frac{1}{i_{1}}=\frac{1}{f} \rightarrow i_{1}=f \\
\frac{1}{i_{2}}=\frac{1}{f_{2}}-\frac{1}{o_{2}} \rightarrow \frac{1}{i_{2}}=\frac{1}{f}+\frac{1}{f} \rightarrow i_{2}=\frac{f}{2} \\
\frac{1}{i_{2}}=\frac{1}{f_{2}}-\frac{1}{o_{2}}
\end{gathered}
$$

Start with a 3 -element compound lens, calculate effective focal length assuming each lens has the same focal length, f

$$
f_{1}=f, o_{1}=\infty
$$

for the second lens, the image i_{1} is a virtual object, $o_{2}=-i_{1}$
similarly for the third lens, $O_{3}=-i_{2}$

Focal length of a compound lens

$$
\begin{gathered}
\longrightarrow \\
\frac{1}{i}+\frac{1}{o}=\frac{1}{f} \rightarrow \frac{1}{i}=\frac{1}{f}-\frac{1}{o} \\
\frac{1}{i_{1}}=\frac{1}{f_{1}}-\frac{1}{o_{1}} \rightarrow \frac{1}{i_{1}}=\frac{1}{f} \rightarrow i_{1}=f \\
\frac{1}{i_{2}}=\frac{1}{f_{2}}-\frac{1}{o_{2}} \rightarrow \frac{1}{i_{2}}=\frac{1}{f}+\frac{1}{f} \rightarrow i_{2}=\frac{f}{2} \\
\frac{1}{i_{2}}=\frac{1}{f_{2}}-\frac{1}{o_{2}} \rightarrow \frac{1}{i_{2}}=\frac{1}{f}+\frac{2}{f}
\end{gathered}
$$

Start with a 3-element compound lens, calculate effective focal length assuming each lens has the same focal length, f

$$
f_{1}=f, o_{1}=\infty
$$

for the second lens, the image i_{1} is a virtual object, $o_{2}=-i_{1}$
similarly for the third lens, $O_{3}=-i_{2}$

Focal length of a compound lens

$$
\begin{gathered}
\longrightarrow \\
\frac{1}{i}+\frac{1}{o}=\frac{1}{f} \rightarrow \frac{1}{i}=\frac{1}{f}-\frac{1}{o} \\
\frac{1}{i_{1}}=\frac{1}{f_{1}}-\frac{1}{o_{1}} \rightarrow \frac{1}{i_{1}}=\frac{1}{f} \rightarrow i_{1}=f \\
\frac{1}{i_{2}}=\frac{1}{f_{2}}-\frac{1}{o_{2}} \rightarrow \frac{1}{i_{2}}=\frac{1}{f}+\frac{1}{f} \rightarrow i_{2}=\frac{f}{2} \\
\frac{1}{i_{2}}=\frac{1}{f_{2}}-\frac{1}{o_{2}} \rightarrow \frac{1}{i_{2}}=\frac{1}{f}+\frac{2}{f} \rightarrow i_{2}=\frac{f}{3}
\end{gathered}
$$

Start with a 3-element compound lens, calculate effective focal length assuming each lens has the same focal length, f

$$
f_{1}=f, o_{1}=\infty
$$

for the second lens, the image i_{1} is a virtual object, $o_{2}=-i_{1}$
similarly for the third lens, $o_{3}=-i_{2}$

Focal length of a compound lens

$\longrightarrow \begin{aligned} & \text { Start with a 3-element } \\ & \text { compound lens, calculate } \\ & \text { effective focal length } \\ & \text { assuming each lens has } \\ & \text { the same focal length, } f\end{aligned}$
$\frac{1}{i}+\frac{1}{o}=\frac{1}{f} \rightarrow \frac{1}{i}=\frac{1}{f}-\frac{1}{o}=\frac{1}{f_{1}}-\frac{1}{o_{1}} \rightarrow \frac{1}{i_{1}}=\frac{1}{f} \rightarrow i_{1}=f, o_{1}=\infty$
$\frac{1}{i_{1}}=\frac{1}{f_{2}}-\frac{1}{o_{2}} \rightarrow \frac{1}{i_{2}}=\frac{1}{f}+\frac{1}{f} \rightarrow i_{2}=\frac{f}{2}$
$\frac{1}{i_{1}}=\frac{1}{f_{2}}-\frac{1}{o_{2}} \rightarrow \frac{1}{i_{2}}=\frac{1}{f}+\frac{2}{f} \rightarrow i_{2}=\frac{f}{3}$
object, the second lens, the is $o_{1}=-i_{1}$ $\begin{aligned} & \text { similarly for the third lens, } \\ & o_{3}=-i_{2}\end{aligned}$

Rephasing distance

A spherical surface is not the ideal lens as it introduces aberrations. Derive the ideal shape for perfect focusing of x-rays.

Rephasing distance

A spherical surface is not the ideal lens as it introduces aberrations. Derive the ideal shape for perfect focusing of x-rays.

$$
\begin{aligned}
& \text { consider two waves, one traveling in- } \\
& \text { side the solid and the other in vacuum, } \\
& \lambda=\lambda_{0} /(1-\delta) \approx \lambda_{0}(1+\delta)
\end{aligned}
$$

Rephasing distance

A spherical surface is not the ideal lens as it introduces aberrations. Derive the ideal shape for perfect focusing of x-rays.

Rephasing distance

A spherical surface is not the ideal lens as it introduces aberrations. Derive the ideal shape for perfect focusing of x-rays.

> consider two waves, one traveling inside the solid and the other in vacuum, $\lambda=\lambda_{0} /(1-\delta) \approx \lambda_{0}(1+\delta)$
if the two waves start in phase, they will be in phase once again after a distance

$$
\Lambda=(N+1) \lambda_{0}=N \lambda_{0}(1+\delta)
$$

Rephasing distance

A spherical surface is not the ideal lens as it introduces aberrations. Derive the ideal shape for perfect focusing of x-rays.

\uparrow	\uparrow	consider two waves, one traveling inside the solid and the other in vacuum, $\lambda=\lambda_{0} /(1-\delta) \approx \lambda_{0}(1+\delta)$
	Λ	if the two waves start in phase, they will be in phase once again after a distance
$\lambda_{\text {o }}$	$\lambda_{0}(1+\delta)$	$\Lambda=(N+1) \lambda_{0}=N \lambda_{0}(1+\delta)$
	$N \lambda_{0}+\lambda_{0}$	$+N \delta \lambda_{0}$

Rephasing distance

A spherical surface is not the ideal lens as it introduces aberrations. Derive the ideal shape for perfect focusing of x-rays.

(| consider two waves, one traveling in- |
| :--- |
| side the solid and the other in vacuum, |
| $\lambda=\lambda_{0} /(1-\delta) \approx \lambda_{0}(1+\delta)$ |

if the two waves start in phase, they will be in phase
once again after a distance

$N=(N+1) \lambda_{0}=N \lambda_{0}(1+\delta)$
$N \lambda_{0}+\lambda_{0}=N \lambda_{0}+N \delta \lambda_{0} \longrightarrow \lambda_{0}=N \delta \lambda_{0}$

Rephasing distance

A spherical surface is not the ideal lens as it introduces aberrations. Derive the ideal shape for perfect focusing of x-rays.

Consider two waves, one traveling in-
side the solid and the other in vacuum,
$\lambda=\lambda_{0} /(1-\delta) \approx \lambda_{0}(1+\delta)$

λ_{0}
if the two waves start in phase, they will be in phase
once again after a distance

$N=(N+1) \lambda_{0}=N \lambda_{0}(1+\delta)$
$N \lambda_{0}+\lambda_{0}=N \lambda_{0}+N \delta \lambda_{0} \longrightarrow \lambda_{0}=N \delta \lambda_{0} \longrightarrow N=\frac{1}{\delta}$

Rephasing distance

A spherical surface is not the ideal lens as it introduces aberrations. Derive the ideal shape for perfect focusing of x-rays.

consider two waves, one traveling in-
side the solid and the other in vacuum,
$\lambda=\lambda_{0} /(1-\delta) \approx \lambda_{0}(1+\delta)$

if the two waves start in phase, they will be in phase
once again after a distance

$\Lambda=(N+1) \lambda_{0}=N \lambda_{0}(1+\delta)$
$N \lambda_{0}+\lambda_{0}=N \lambda_{0}+N \delta \lambda_{0} \longrightarrow \lambda_{0}=N \delta \lambda_{0} \longrightarrow N=\frac{1}{\delta}$
$\Lambda=N \lambda_{0}=\frac{\lambda_{0}}{\delta}$

Rephasing distance

A spherical surface is not the ideal lens as it introduces aberrations. Derive the ideal shape for perfect focusing of x-rays.
Consider two waves, one traveling in-

side the solid and the other in vacuum,
$\lambda=\lambda_{0} /(1-\delta) \approx \lambda_{0}(1+\delta)$

$\Lambda=(N+1) \lambda_{0}=N \lambda_{0}(1+\delta)$
if the two waves start in phase, they will be in phase
once again after a distance

$N \lambda_{0}+\lambda_{0}=N \lambda_{0}+N \delta \lambda_{0} \longrightarrow \lambda_{0}=N \delta \lambda_{0} \longrightarrow N=\frac{1}{\delta}$
$\Lambda=N \lambda_{0}=\frac{\lambda_{0}}{\delta}=\frac{2 \pi}{\lambda_{0} r_{0} \rho}$

Rephasing distance

A spherical surface is not the ideal lens as it introduces aberrations. Derive the ideal shape for perfect focusing of x-rays.
Consider two waves, one traveling in-
side the solid and the other in vacuum,

$\lambda=\lambda_{0} /(1-\delta) \approx \lambda_{0}(1+\delta)$ | λ_{0}if the two waves start in phase, they will be in phase
 once again after a distance |
| :--- |
| $\Lambda=(N+1) \lambda_{0}=N \lambda_{0}(1+\delta)$ |
| $N \lambda_{0}+\lambda_{0}=N \lambda_{0}+N \delta \lambda_{0} \longrightarrow \lambda_{0}=N \delta \lambda_{0} \longrightarrow N=\frac{1}{\delta}$ |
| $\Lambda=N \lambda_{0}=\frac{\lambda_{0}}{\delta}=\frac{2 \pi}{\lambda_{0} r_{0} \rho} \approx 10 \mu \mathrm{~m}$ |

Ideal interface profile

Ideal interface profile

The wave exits the material into vacuum through a surface of profile $h(x)$, and is twisted by an angle α.

Ideal interface profile

The wave exits the material into vacuum through a surface of profile $h(x)$, and is twisted by an angle α. Follow the path of two points on the wavefront, A and A^{\prime} as they propagate to B and B^{\prime}.

Ideal interface profile

from the $A A^{\prime} B^{\prime}$ triangle

The wave exits the material into vacuum through a surface of profile $h(x)$, and is twisted by an angle α. Follow the path of two points on the wavefront, A and A^{\prime} as they propagate to B and B^{\prime}.

Ideal interface profile

The wave exits the material into vacuum through a surface of profile $h(x)$, and is twisted by an angle α. Follow the path of two points on the wavefront, A and A^{\prime} as they propagate to B and B^{\prime}.
from the $A A^{\prime} B^{\prime}$ triangle

$$
\lambda_{0}(1+\delta)=h^{\prime}(x) \Delta x
$$

Ideal interface profile

The wave exits the material into vacuum through a surface of profile $h(x)$, and is twisted by an angle α. Follow the path of two points on the wavefront, A and A^{\prime} as they propagate to B and B^{\prime}.
from the $A A^{\prime} B^{\prime}$ triangle

$$
\lambda_{0}(1+\delta)=h^{\prime}(x) \Delta x \longrightarrow \Delta x \approx \frac{\lambda_{0}}{h^{\prime}(x)}
$$

Ideal interface profile

The wave exits the material into vacuum through a surface of profile $h(x)$, and is twisted by an angle α. Follow the path of two points on the wavefront, A and A^{\prime} as they propagate to B and B^{\prime}.
from the $A A^{\prime} B^{\prime}$ triangle
and from the $B C B^{\prime}$ tri-

$$
\lambda_{0}(1+\delta)=h^{\prime}(x) \Delta x \longrightarrow \Delta x \approx \frac{\lambda_{0}}{h^{\prime}(x)}
$$ angle

Ideal interface profile

The wave exits the material into vacuum through a surface of profile $h(x)$, and is twisted by an angle α. Follow the path of two points on the wavefront, A and A^{\prime} as they propagate to B and B^{\prime}.
from the $A A^{\prime} B^{\prime}$ triangle
and from the $B C B^{\prime}$ tri-

$$
\begin{gathered}
\lambda_{0}(1+\delta)=h^{\prime}(x) \Delta x \longrightarrow \Delta x \approx \frac{\lambda_{0}}{h^{\prime}(x)} \\
\alpha(x) \approx \frac{\lambda_{0} \delta}{\Delta x}
\end{gathered}
$$

Ideal interface profile

The wave exits the material into vacuum through a surface of profile $h(x)$, and is twisted by an angle α. Follow the path of two points on the wavefront, A and A^{\prime} as they propagate to B and B^{\prime}.
from the $A A^{\prime} B^{\prime}$ triangle
and from the $B C B^{\prime}$ triangle

$$
\begin{gathered}
\lambda_{0}(1+\delta)=h^{\prime}(x) \Delta x \longrightarrow \Delta x \approx \frac{\lambda_{0}}{h^{\prime}(x)} \\
\alpha(x) \approx \frac{\lambda_{0} \delta}{\Delta x}=h^{\prime}(x) \delta
\end{gathered}
$$

Ideal interface profile

The wave exits the material into vacuum through a surface of profile $h(x)$, and is twisted by an angle α. Follow the path of two points on the wavefront, A and A^{\prime} as they propagate to B and B^{\prime}.
from the $A A^{\prime} B^{\prime}$ triangle
and from the $B C B^{\prime}$ triangle using $\Lambda=\lambda_{0} / \delta$

$$
\begin{gathered}
\lambda_{0}(1+\delta)=h^{\prime}(x) \Delta x \longrightarrow \Delta x \approx \frac{\lambda_{0}}{h^{\prime}(x)} \\
\alpha(x) \approx \frac{\lambda_{0} \delta}{\Delta x}=h^{\prime}(x) \delta
\end{gathered}
$$

Ideal interface profile

The wave exits the material into vacuum through a surface of profile $h(x)$, and is twisted by an angle α. Follow the path of two points on the wavefront, A and A^{\prime} as they propagate to B and B^{\prime}.
from the $A A^{\prime} B^{\prime}$ triangle and from the $B C B^{\prime}$ triangle using $\Lambda=\lambda_{0} / \delta$

$$
\begin{array}{r}
\lambda_{0}(1+\delta)=h^{\prime}(x) \Delta x \longrightarrow \Delta x \approx \frac{\lambda_{0}}{h^{\prime}(x)} \\
\alpha(x) \approx \frac{\lambda_{0} \delta}{\Delta x}=h^{\prime}(x) \delta=h^{\prime}(x) \frac{\lambda_{0}}{\Lambda}
\end{array}
$$

Ideal interface profile

If the desired focal length of this lens is f, the wave must be redirected at an angle which depends on the distance from the optical axis

Ideal interface profile

If the desired focal length of this lens is f, the wave must be redirected at an angle which depends on the distance from the optical axis

$$
\alpha(x)=\frac{x}{f}
$$

Ideal interface profile

If the desired focal length of this lens is f, the wave must be redirected at an angle which depends on the distance from the optical axis

$$
\alpha(x)=\frac{x}{f}
$$

combining, we have

$$
\frac{\lambda_{0} h^{\prime}(x)}{\Lambda}=\frac{x}{f}
$$

Ideal interface profile

If the desired focal length of this lens is f, the wave must be redirected at an angle which depends on the distance from the optical axis

$$
\alpha(x)=\frac{x}{f}
$$

combining, we have

$$
\frac{\lambda_{0} h^{\prime}(x)}{\Lambda}=\frac{x}{f} \quad \longrightarrow \frac{h^{\prime}(x)}{\Lambda}=\frac{x}{f \lambda_{0}}
$$

Ideal interface profile

If the desired focal length of this lens is f, the wave must be redirected at an angle which depends on the distance from the optical axis

$$
\alpha(x)=\frac{x}{f}
$$

combining, we have

$$
\frac{\lambda_{0} h^{\prime}(x)}{\Lambda}=\frac{x}{f} \longrightarrow \frac{h^{\prime}(x)}{\Lambda}=\frac{x}{f \lambda_{0}}
$$

this can be directly integrated

Ideal interface profile

If the desired focal length of this lens is f, the wave must be redirected at an angle which depends on the distance from the optical axis

$$
\alpha(x)=\frac{x}{f}
$$

combining, we have

$$
\frac{\lambda_{0} h^{\prime}(x)}{\Lambda}=\frac{x}{f} \longrightarrow \frac{h^{\prime}(x)}{\Lambda}=\frac{x}{f \lambda_{0}}
$$

this can be directly integrated

$$
\frac{h(x)}{\Lambda}=\frac{x^{2}}{2 f \lambda_{0}}
$$

Ideal interface profile

If the desired focal length of this lens is f, the wave must be redirected at an angle which depends on the distance from the optical axis

$$
\alpha(x)=\frac{x}{f}
$$

combining, we have

$$
\frac{\lambda_{0} h^{\prime}(x)}{\Lambda}=\frac{x}{f} \longrightarrow \frac{h^{\prime}(x)}{\Lambda}=\frac{x}{f \lambda_{0}}
$$

this can be directly integrated

$$
\frac{h(x)}{\Lambda}=\frac{x^{2}}{2 f \lambda_{0}}=\left[\frac{x}{\sqrt{2 f \lambda_{0}}}\right]^{2}
$$

Ideal interface profile

If the desired focal length of this lens is f, the wave must be redirected at an angle which depends on the distance from the optical axis

$$
\alpha(x)=\frac{x}{f}
$$

combining, we have

$$
\frac{\lambda_{0} h^{\prime}(x)}{\Lambda}=\frac{x}{f} \longrightarrow \frac{h^{\prime}(x)}{\Lambda}=\frac{x}{f \lambda_{0}}
$$

this can be directly integrated

$$
\frac{h(x)}{\Lambda}=\frac{x^{2}}{2 f \lambda_{0}}=\left[\frac{x}{\sqrt{2 f \lambda_{0}}}\right]^{2}
$$

a parabola is the ideal surface for focusing be refraction

[^0]: P. Pershan, "Review of the highlights of x-ray studies of liquid metal surfaces", J. Appl. Phys. 116, 222201 (2014).

[^1]: P. Pershan, "Review of the highlights of x-ray studies of liquid metal surfaces", J. Appl. Phys. 116, 222201 (2014).

