
Today’s Outline - September 21, 2016

• Beam time at MRCAT

• How to write a GU proposal

• Reflection from a graded index

• Reflection from rough interfaces and surfaces

• Models of surfaces

• Reflectivity from the MRCAT mirror

• Mirrors

Homework Assignment #03:
Chapter3: 1, 3, 4, 6, 8
due Wednesday, October 05, 2016
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Beamtime at MRCAT

Two days have been set aside for our class to be at Sector 10 MRCAT at
the Advanced Photon Source

Friday, October 28, 2016 – bending magnet line

Friday, November 11, 2016 – insertion device line

Inform me now if you intend to come to one or both sessions

You will need to have a badge approved in order to do anthing more than
just observe!

We will do flux measurements, reflectivity, x-ray absorption spectroscopy
measurements, use ion chambers and the multielement detector, and more

I will try to get BioCAT time as well for those interested
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Writing a General User Proposal

1 Log into the APS site

2 Start a general user proposal

3 Add an Abstract

4 Choose a beam line

5 Answer the 6 questions
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Parratt’s recursive method

Treat the multilayer as a stratified medium on top of an infinitely thick
substrate.

Take ∆j as the thickness of each layer and nj = 1− δj + iβj as
the index of refraction of each layer.
Because of continuity, kxj = kx and therefore, we can compute the

z-component of ~kj

k2zj = (njk)2 − k2x

= (1− δj + iβj )
2 k2 − k2x

≈ k2z − 2δjk
2 + 2iβjk

2

Qj = 2kj sinαj = 2kzj

=
√

Q2 − 8k2δj + 8ik2βj

nj
kzj

kz

kx

and the wavevector transfer
in the jth layer

C. Segre (IIT) PHYS 570 - Spring 2016 September 21, 2016 4 / 19



Parratt’s recursive method

Treat the multilayer as a stratified medium on top of an infinitely thick
substrate. Take ∆j as the thickness of each layer and nj = 1− δj + iβj as
the index of refraction of each layer.

Because of continuity, kxj = kx and therefore, we can compute the

z-component of ~kj

k2zj = (njk)2 − k2x

= (1− δj + iβj )
2 k2 − k2x

≈ k2z − 2δjk
2 + 2iβjk

2

Qj = 2kj sinαj = 2kzj

=
√

Q2 − 8k2δj + 8ik2βj

nj
kzj

kz

kx

and the wavevector transfer
in the jth layer

C. Segre (IIT) PHYS 570 - Spring 2016 September 21, 2016 4 / 19



Parratt’s recursive method

Treat the multilayer as a stratified medium on top of an infinitely thick
substrate. Take ∆j as the thickness of each layer and nj = 1− δj + iβj as
the index of refraction of each layer.
Because of continuity, kxj = kx and therefore, we can compute the

z-component of ~kj

k2zj = (njk)2 − k2x

= (1− δj + iβj )
2 k2 − k2x

≈ k2z − 2δjk
2 + 2iβjk

2

Qj = 2kj sinαj = 2kzj

=
√

Q2 − 8k2δj + 8ik2βj

nj
kzj

kz

kx

and the wavevector transfer
in the jth layer

C. Segre (IIT) PHYS 570 - Spring 2016 September 21, 2016 4 / 19



Parratt’s recursive method

Treat the multilayer as a stratified medium on top of an infinitely thick
substrate. Take ∆j as the thickness of each layer and nj = 1− δj + iβj as
the index of refraction of each layer.
Because of continuity, kxj = kx and therefore, we can compute the

z-component of ~kj

k2zj = (njk)2 − k2x

= (1− δj + iβj )
2 k2 − k2x

≈ k2z − 2δjk
2 + 2iβjk

2

Qj = 2kj sinαj = 2kzj

=
√

Q2 − 8k2δj + 8ik2βj

nj
kzj

kz

kx

and the wavevector transfer
in the jth layer

C. Segre (IIT) PHYS 570 - Spring 2016 September 21, 2016 4 / 19



Parratt’s recursive method

Treat the multilayer as a stratified medium on top of an infinitely thick
substrate. Take ∆j as the thickness of each layer and nj = 1− δj + iβj as
the index of refraction of each layer.
Because of continuity, kxj = kx and therefore, we can compute the

z-component of ~kj

k2zj = (njk)2 − k2x

= (1− δj + iβj )
2 k2 − k2x

≈ k2z − 2δjk
2 + 2iβjk

2

Qj = 2kj sinαj = 2kzj

=
√

Q2 − 8k2δj + 8ik2βj

nj
kzj

kz

kx

and the wavevector transfer
in the jth layer

C. Segre (IIT) PHYS 570 - Spring 2016 September 21, 2016 4 / 19



Parratt’s recursive method

Treat the multilayer as a stratified medium on top of an infinitely thick
substrate. Take ∆j as the thickness of each layer and nj = 1− δj + iβj as
the index of refraction of each layer.
Because of continuity, kxj = kx and therefore, we can compute the

z-component of ~kj

k2zj = (njk)2 − k2x

= (1− δj + iβj )
2 k2 − k2x

≈ k2z − 2δjk
2 + 2iβjk

2

Qj = 2kj sinαj = 2kzj

=
√

Q2 − 8k2δj + 8ik2βj

nj
kzj

kz

kx

and the wavevector transfer
in the jth layer

C. Segre (IIT) PHYS 570 - Spring 2016 September 21, 2016 4 / 19



Parratt’s recursive method

Treat the multilayer as a stratified medium on top of an infinitely thick
substrate. Take ∆j as the thickness of each layer and nj = 1− δj + iβj as
the index of refraction of each layer.
Because of continuity, kxj = kx and therefore, we can compute the

z-component of ~kj

k2zj = (njk)2 − k2x

= (1− δj + iβj )
2 k2 − k2x

≈ k2z − 2δjk
2 + 2iβjk

2

Qj = 2kj sinαj = 2kzj

=
√

Q2 − 8k2δj + 8ik2βj

nj
kzj

kz

kx

and the wavevector transfer
in the jth layer

C. Segre (IIT) PHYS 570 - Spring 2016 September 21, 2016 4 / 19



Parratt’s recursive method

Treat the multilayer as a stratified medium on top of an infinitely thick
substrate. Take ∆j as the thickness of each layer and nj = 1− δj + iβj as
the index of refraction of each layer.
Because of continuity, kxj = kx and therefore, we can compute the

z-component of ~kj

k2zj = (njk)2 − k2x

= (1− δj + iβj )
2 k2 − k2x

≈ k2z − 2δjk
2 + 2iβjk

2

Qj = 2kj sinαj = 2kzj

=
√

Q2 − 8k2δj + 8ik2βj

nj
kzj

kz

kx

and the wavevector transfer
in the jth layer

C. Segre (IIT) PHYS 570 - Spring 2016 September 21, 2016 4 / 19



Parratt’s recursive method

Treat the multilayer as a stratified medium on top of an infinitely thick
substrate. Take ∆j as the thickness of each layer and nj = 1− δj + iβj as
the index of refraction of each layer.
Because of continuity, kxj = kx and therefore, we can compute the

z-component of ~kj

k2zj = (njk)2 − k2x

= (1− δj + iβj )
2 k2 − k2x

≈ k2z − 2δjk
2 + 2iβjk

2

Qj = 2kj sinαj = 2kzj

=
√
Q2 − 8k2δj + 8ik2βj

nj
kzj

kz

kx

and the wavevector transfer
in the jth layer

C. Segre (IIT) PHYS 570 - Spring 2016 September 21, 2016 4 / 19



Parratt reflectivity calculation

The reflectivity from the interface between
layer j and j + 1, not including multiple
reflections is

Now start calculating the reflectivity
from the bottom of the Nth layer, closest
to the substrate, where multiple reflections
are not present

The reflectivity from the top of the
Nth layer, including multiple reflections is
now calculated (note no prime!)

r ′j ,j+1 =
Qj − Qj+1

Qj + Qj+1

r ′N,∞ =
QN − Q∞
QN + Q∞

rN−1,N =
r ′N−1,N + r ′N,∞p2N

1 + r ′N−1,N r
′
N,∞p2N

The recursive relation can be seen from the calculation of reflectivity of
the next layer up

rN−2,N−1 =
r ′N−2,N−1 + rN−1,Np

2
N−1

1 + r ′N−2,N−1rN−1,Np
2
N−1
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Kinematical - Parratt comparison

0 0.2

Q (Å
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Kinematical approximation
gives a reasonably good ap-
proximation to the correct
calculation, with a few excep-
tions.

Parratt calculation gives
RPar = 1 as Q → 0 while kine-
matical diverges (RKin →∞).

Parratt peaks shifted to slightly
higher values of Q

Peaks in kinematical calcula-
tion are somewhat higher re-
flectivity than true value.
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Graded interfaces

f(z)

z

1

0

Since most interfaces are not sharp, it is im-
portant to be able to model a graded interface,
where the density, and therefore the index of
refraction varies near the interface itself.

The reflectivity of this kind of interface can
be calculated best in the kinematical limit
(Q > Qc).

The density profile of the interface can be de-
scribed by the function f (z) which approaches
1 as z →∞.

The reflectivity can be computed as the super-
position of the reflectivity of a series of infinites-
mal slabs of thickness dz at a depth z .
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mal slabs of thickness dz at a depth z .

C. Segre (IIT) PHYS 570 - Spring 2016 September 21, 2016 7 / 19



Reflectivity of a graded interface

δr(Q) = −i Q
2
c

4Q
f (z)dz

r(Q) = −i Q
2
c

4Q

∫ ∞
−∞

f (z)e iQzdz

= i
1

iQ

Q2
c

4Q

∫ ∞
−∞

f ′(z)e iQzdz

=
Q2

c

4Q2

∫ ∞
−∞

f ′(z)e iQzdz

The differential reflectivity
from a slab of thickness dz at
depth z is:

integrating, to get the entire
reflectivity

integrating by parts simplifies

the term in front is simply the
Fresnel reflectivity for an inter-
face, rF (Q) when q � 1, the
integral is the Fourier transform
of the density gradient, φ(Q)

Calculating the full reflection coefficient relative to the Fresnel reflection
coefficient

R(Q)

RF (Q)
=

∣∣∣∣∫ ∞
−∞

(
df

dz

)
e iQzdz

∣∣∣∣2

C. Segre (IIT) PHYS 570 - Spring 2016 September 21, 2016 8 / 19



Reflectivity of a graded interface

δr(Q) = −i Q
2
c

4Q
f (z)dz

r(Q) = −i Q
2
c

4Q

∫ ∞
−∞

f (z)e iQzdz

= i
1

iQ

Q2
c

4Q

∫ ∞
−∞

f ′(z)e iQzdz

=
Q2

c

4Q2

∫ ∞
−∞

f ′(z)e iQzdz

The differential reflectivity
from a slab of thickness dz at
depth z is:

integrating, to get the entire
reflectivity

integrating by parts simplifies

the term in front is simply the
Fresnel reflectivity for an inter-
face, rF (Q) when q � 1, the
integral is the Fourier transform
of the density gradient, φ(Q)

Calculating the full reflection coefficient relative to the Fresnel reflection
coefficient

R(Q)

RF (Q)
=

∣∣∣∣∫ ∞
−∞

(
df

dz

)
e iQzdz

∣∣∣∣2

C. Segre (IIT) PHYS 570 - Spring 2016 September 21, 2016 8 / 19



Reflectivity of a graded interface

δr(Q) = −i Q
2
c

4Q
f (z)dz

r(Q) = −i Q
2
c

4Q

∫ ∞
−∞

f (z)e iQzdz

= i
1

iQ

Q2
c

4Q

∫ ∞
−∞

f ′(z)e iQzdz

=
Q2

c

4Q2

∫ ∞
−∞

f ′(z)e iQzdz

The differential reflectivity
from a slab of thickness dz at
depth z is:

integrating, to get the entire
reflectivity

integrating by parts simplifies

the term in front is simply the
Fresnel reflectivity for an inter-
face, rF (Q) when q � 1, the
integral is the Fourier transform
of the density gradient, φ(Q)

Calculating the full reflection coefficient relative to the Fresnel reflection
coefficient

R(Q)

RF (Q)
=

∣∣∣∣∫ ∞
−∞

(
df

dz

)
e iQzdz

∣∣∣∣2

C. Segre (IIT) PHYS 570 - Spring 2016 September 21, 2016 8 / 19



Reflectivity of a graded interface

δr(Q) = −i Q
2
c

4Q
f (z)dz

r(Q) = −i Q
2
c

4Q

∫ ∞
−∞

f (z)e iQzdz

= i
1

iQ

Q2
c

4Q

∫ ∞
−∞

f ′(z)e iQzdz

=
Q2

c

4Q2

∫ ∞
−∞

f ′(z)e iQzdz

The differential reflectivity
from a slab of thickness dz at
depth z is:

integrating, to get the entire
reflectivity

integrating by parts simplifies

the term in front is simply the
Fresnel reflectivity for an inter-
face, rF (Q) when q � 1, the
integral is the Fourier transform
of the density gradient, φ(Q)

Calculating the full reflection coefficient relative to the Fresnel reflection
coefficient

R(Q)

RF (Q)
=

∣∣∣∣∫ ∞
−∞

(
df

dz

)
e iQzdz

∣∣∣∣2

C. Segre (IIT) PHYS 570 - Spring 2016 September 21, 2016 8 / 19



Reflectivity of a graded interface

δr(Q) = −i Q
2
c

4Q
f (z)dz

r(Q) = −i Q
2
c

4Q

∫ ∞
−∞

f (z)e iQzdz

= i
1

iQ

Q2
c

4Q

∫ ∞
−∞

f ′(z)e iQzdz

=
Q2

c

4Q2

∫ ∞
−∞

f ′(z)e iQzdz

The differential reflectivity
from a slab of thickness dz at
depth z is:

integrating, to get the entire
reflectivity

integrating by parts simplifies

the term in front is simply the
Fresnel reflectivity for an inter-
face, rF (Q) when q � 1, the
integral is the Fourier transform
of the density gradient, φ(Q)

Calculating the full reflection coefficient relative to the Fresnel reflection
coefficient

R(Q)

RF (Q)
=

∣∣∣∣∫ ∞
−∞

(
df

dz

)
e iQzdz

∣∣∣∣2

C. Segre (IIT) PHYS 570 - Spring 2016 September 21, 2016 8 / 19



Reflectivity of a graded interface

δr(Q) = −i Q
2
c

4Q
f (z)dz

r(Q) = −i Q
2
c

4Q

∫ ∞
−∞

f (z)e iQzdz

= i
1

iQ

Q2
c

4Q

∫ ∞
−∞

f ′(z)e iQzdz

=
Q2

c

4Q2

∫ ∞
−∞

f ′(z)e iQzdz

The differential reflectivity
from a slab of thickness dz at
depth z is:

integrating, to get the entire
reflectivity

integrating by parts simplifies

the term in front is simply the
Fresnel reflectivity for an inter-
face, rF (Q) when q � 1, the
integral is the Fourier transform
of the density gradient, φ(Q)

Calculating the full reflection coefficient relative to the Fresnel reflection
coefficient

R(Q)

RF (Q)
=

∣∣∣∣∫ ∞
−∞

(
df

dz

)
e iQzdz

∣∣∣∣2

C. Segre (IIT) PHYS 570 - Spring 2016 September 21, 2016 8 / 19



Reflectivity of a graded interface

δr(Q) = −i Q
2
c

4Q
f (z)dz

r(Q) = −i Q
2
c

4Q

∫ ∞
−∞

f (z)e iQzdz

= i
1

iQ

Q2
c

4Q

∫ ∞
−∞

f ′(z)e iQzdz

=
Q2

c

4Q2

∫ ∞
−∞

f ′(z)e iQzdz

The differential reflectivity
from a slab of thickness dz at
depth z is:

integrating, to get the entire
reflectivity

integrating by parts simplifies

the term in front is simply the
Fresnel reflectivity for an inter-
face, rF (Q) when q � 1, the
integral is the Fourier transform
of the density gradient, φ(Q)

Calculating the full reflection coefficient relative to the Fresnel reflection
coefficient

R(Q)

RF (Q)
=

∣∣∣∣∫ ∞
−∞

(
df

dz

)
e iQzdz

∣∣∣∣2

C. Segre (IIT) PHYS 570 - Spring 2016 September 21, 2016 8 / 19



Reflectivity of a graded interface

δr(Q) = −i Q
2
c

4Q
f (z)dz

r(Q) = −i Q
2
c

4Q

∫ ∞
−∞

f (z)e iQzdz

= i
1

iQ

Q2
c

4Q

∫ ∞
−∞

f ′(z)e iQzdz

=
Q2

c

4Q2

∫ ∞
−∞

f ′(z)e iQzdz

The differential reflectivity
from a slab of thickness dz at
depth z is:

integrating, to get the entire
reflectivity

integrating by parts simplifies

the term in front is simply the
Fresnel reflectivity for an inter-
face, rF (Q) when q � 1

, the
integral is the Fourier transform
of the density gradient, φ(Q)

Calculating the full reflection coefficient relative to the Fresnel reflection
coefficient

R(Q)

RF (Q)
=

∣∣∣∣∫ ∞
−∞

(
df

dz

)
e iQzdz

∣∣∣∣2

C. Segre (IIT) PHYS 570 - Spring 2016 September 21, 2016 8 / 19



Reflectivity of a graded interface

δr(Q) = −i Q
2
c

4Q
f (z)dz

r(Q) = −i Q
2
c

4Q

∫ ∞
−∞

f (z)e iQzdz

= i
1

iQ

Q2
c

4Q

∫ ∞
−∞

f ′(z)e iQzdz

=
Q2

c

4Q2

∫ ∞
−∞

f ′(z)e iQzdz

The differential reflectivity
from a slab of thickness dz at
depth z is:

integrating, to get the entire
reflectivity

integrating by parts simplifies

the term in front is simply the
Fresnel reflectivity for an inter-
face, rF (Q) when q � 1, the
integral is the Fourier transform
of the density gradient, φ(Q)

Calculating the full reflection coefficient relative to the Fresnel reflection
coefficient

R(Q)

RF (Q)
=

∣∣∣∣∫ ∞
−∞

(
df

dz

)
e iQzdz

∣∣∣∣2

C. Segre (IIT) PHYS 570 - Spring 2016 September 21, 2016 8 / 19



Reflectivity of a graded interface

δr(Q) = −i Q
2
c

4Q
f (z)dz

r(Q) = −i Q
2
c

4Q

∫ ∞
−∞

f (z)e iQzdz

= i
1

iQ

Q2
c

4Q

∫ ∞
−∞

f ′(z)e iQzdz

=
Q2

c

4Q2

∫ ∞
−∞

f ′(z)e iQzdz

The differential reflectivity
from a slab of thickness dz at
depth z is:

integrating, to get the entire
reflectivity

integrating by parts simplifies

the term in front is simply the
Fresnel reflectivity for an inter-
face, rF (Q) when q � 1, the
integral is the Fourier transform
of the density gradient, φ(Q)

Calculating the full reflection coefficient relative to the Fresnel reflection
coefficient

R(Q)

RF (Q)
=

∣∣∣∣∫ ∞
−∞

(
df

dz

)
e iQzdz

∣∣∣∣2
C. Segre (IIT) PHYS 570 - Spring 2016 September 21, 2016 8 / 19



The error function - a specific case

The error function is often chosen as a model for the density gradient

f (z) = erf (
z√
2σ

) =
1√
π

∫ z/
√
2σ

0
e−t2dt

the gradient of the error function is simply a Gaussian

df (z)

dz
=

d

dz
erf (

z√
2σ

) =
1√

2πσ2
e−

1
2

z2

σ2

whose Fourier transform is also a Gaussian, which when squared to obtain
the reflection coefficient, gives.

Or more accurately.

R(Q) = RF (Q)e−Q2σ2

= RF (Q)e−QQ′σ2

Q = k sin θ, Q ′ = k ′ sin θ′
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Rough surfaces

When a surface or interface is not perfectly smooth but has some
roughness the reflectivity is no longer simply specular but has a non-zero
diffuse component which we must include in the model.

θ
2

θ
1

V

rV = −r0
∫

V
(ρd~r)e i ~Q·~r

∫
V

(
~∇ · ~C

)
d~r =

∫
S

~C ·d~S

The incident and scattered angles are no
longer the same, the x-rays illuminate the
volume V . The scattering from the entire,
illuminated volume is given by using Gauss’
theorem.
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Conversion to surface integral

∫
V

(
~∇ · ~C

)
d~r =

∫
S

~C · d~S

Taking

~C = ẑ
e i ~Q·~r

iQz

We have

~∇ · ~C =
e i ~Q·~r

iQz
iQz = e i ~Q·~r

rV = −r0ρ
∫

V
e i ~Q·~rd~r

= −r0ρ
∫

V

~∇ ·

(
ẑ
e i ~Q·~r

iQz

)
· d~r

rS = −r0ρ
∫

S

(
ẑ
e i ~Q·~r

iQz

)
· d~S

rS = −r0ρ
1

iQz

∫
S
e i ~Q·~rdxdy
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Evaluation of surface integral

The side surfaces of the volume do not contribute to this integral as they
are along the ẑ direction, but we can also choose the thickness of the slab
such that the lower surface will not contribute either.

Thus, the integral need only
be evaluated over the top,
rough surface whose varia-
tion we characterize by the
function h(x , y)

~Q ·~r = Qzh(x , y) + Qxx + Qyy

rS = − r0ρ

iQz

∫
S
e iQz h(x ,y)e i(Qx x+Qy y)dxdy

The actual scattering cross section is the square of this integral

dσ

dΩ
=

(
r0ρ

Qz

)2 ∫
S

∫
S ′
e iQz (h(x ,y)−h(x ′,y ′))e iQx (x−x ′)e iQy (y−y ′)dxdydx ′dy ′
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Scattering cross section

If we assume that h(x , y)− h(x ′, y ′) depends only on the relative
difference in position, x − x ′ and y − y ′ the four dimensional integral
collapses to the product of two two dimensional integrals

(
dσ

dΩ

)
=

(
r0ρ

Qz

)2 ∫
S ′
dx ′dy ′

∫
S

〈
e iQz (h(0,0)−h(x ,y))

〉
e iQx xe iQy ydxdy

=

(
r0ρ

Qz

)2 A0

sin θ1

∫ 〈
e iQz (h(0,0)−h(x ,y))

〉
e iQx xe iQy ydxdy

where A0/ sin θ1 is just the illuminated surface area and the term in the
angled brackets is an ensemble average over all possible choices of the
origin within the illuminated area.
Finally, it is assumed that the statistics of the height variation are
Gaussian and(

dσ

dΩ

)
=

(
r0ρ

Qz

)2 A0

sin θ1

∫
e−Q2

z 〈[h(0,0)−h(x ,y)]2〉/2e iQx xe iQy ydxdy
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Limiting Case - Flat surface

Define a function g(x , y) =
〈

[h(0, 0)− h(x , y)]2
〉

which can be modeled

in various ways.

For a perfectly flat surface, h(x , y) = 0 for all x and y .

by the definition of a delta
function

2πδ(q) =

∫
e iqxdx

the expression for the scat-
tered intensity in terms of
the momentum transfer wave
vectors is

(
dσ

dΩ

)
=

(
r0ρ

Qz

)2 A0

sin θ1

∫
e iQx xe iQy ydxdy

=

(
r0ρ

Qz

)2 A0

sin θ1
δ(Qx )δ(Qy )

Isc =

(
I0
A0

)(
dσ

dΩ

)
∆Qx ∆Qy

k2 sin θ2

R(Qz ) =
Isc

I0
=

(
Q2

c /8

Qz

)2(
1

Qz/2

)2

=

(
Qc

2Qz

)4
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Uncorrelated surfaces

For a totally uncorrelated surface, h(x , y) is independent from h(x ′, y ′) and

〈
[h(0, 0)− h(x , y)]2

〉
= 〈h(0, 0)〉2 − 2 〈h(0, 0)〉 〈h(x , y)〉+ 〈h(x , y)〉2

= 2
〈
h2
〉

This quantity is simply related to the rms roughness, σ by σ2 =
〈
h2
〉

and
the cross-section is given by(

dσ

dΩ

)
=

(
r0ρ

Qz

)2 A0

sin θ1

∫
e−Q2

z 〈h2〉/2e iQx xe iQy ydxdy

=

(
r0ρ

Qz

)2 A0

sin θ1
e−Q2

z σ
2
∫

e iQx xe iQy ydxdy

Which, apart from the term containing σ is simply the Fresnel
cross-section for a flat surface(

dσ

dΩ

)
=

(
dσ

dΩ

)
Fresnel

e−Q2
z σ

2
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Surface roughness effect

(
dσ

dΩ

)
=

(
dσ

dΩ

)
Fresnel

e−Q2
z σ

2

for a perfectly flat surface,
we get the Fresnel reflectivity
derived for a thin slab

for an uncorrelated rough
surface, the reflectivity is
reduced by an exponential
factor controlled by the rms
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Correlated surfaces

Assume that height fluctuations are isotropically correlated in the x-y
plane. Therefore, g(x , y) = g(r) = g(

√
x2 + y2).

In the limit that the correlations are unbounded as r →∞, g(x , y) is
given by

g(x , y) = Ar2h

where h is a fractal parameter which defines the shape of the surface.

jagged surface for h� 1 smoother surface for h→ 1

If the resolution in the y direction is very broad (typical for a synchrotron),
we can eliminate the y-integral and have(

dσ

dΩ

)
=

(
r0ρ

Qz

)2 A0

sin θ1

∫
e−AQ2

z |x |
2h/2 cos(Qxx)dx
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Unbounded correlations - limiting cases

This integral can be evaluated in closed form for two special cases, both
having a broad diffuse scattering and no specular peak.

h = 1/2(
dσ

dΩ

)
=

(
A0r

2
0ρ

2

2 sin θ1

)
A

(Q2
x + (A/2)2Q4

z )

Lorentzian with half-width AQ2
z /2

h = 1(
dσ

dΩ

)
=

(
2
√
πA0r

2
0ρ

2

2 sin θ1

)
1

Q4
z

e
− 1

2

(
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z
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Bounded correlations

If the correlations remain bounded as r →∞

g(x , y) = 2
〈
h2
〉
− 2 〈h(0, 0)h(x .y)〉 = 2σ2 − 2C (x , y)

where
C (x , y) = σ2e−(r/ξ)

2h

(
dσ

dΩ

)
=

(
r0ρ

Qz

)2 A0

sin θ1
e−Q2

z σ
2
∫

eQ2
z C(x ,y)e iQx xe iQy ydxdy

=

(
r0ρ

Qz

)2 A0

sin θ1
e−Q2

z σ
2
∫ [

eQ2
z C(x ,y) − 1 + 1

]
e iQx xe iQy ydxdy

=

(
dσ

dΩ

)
Fresnel

e−Q2
z σ

2
+

(
r0ρ

Qz

)2 A0

sin θ1
e−Q2

z σ
2
Fdiffuse(~Q)

And the scattering exhibits both a specular peak, reduced by uncorrelated
roughness, and diffuse scattering from the correlated portion of the surface
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