Today's Outline - September 21, 2016

Today's Outline - September 21, 2016

- Beam time at MRCAT

Today's Outline - September 21, 2016

- Beam time at MRCAT
- How to write a GU proposal

Today's Outline - September 21, 2016

- Beam time at MRCAT
- How to write a GU proposal
- Reflection from a graded index

Today's Outline - September 21, 2016

- Beam time at MRCAT
- How to write a GU proposal
- Reflection from a graded index
- Reflection from rough interfaces and surfaces

Today's Outline - September 21, 2016

- Beam time at MRCAT
- How to write a GU proposal
- Reflection from a graded index
- Reflection from rough interfaces and surfaces
- Models of surfaces

Today's Outline - September 21, 2016

- Beam time at MRCAT
- How to write a GU proposal
- Reflection from a graded index
- Reflection from rough interfaces and surfaces
- Models of surfaces
- Reflectivity from the MRCAT mirror

Today's Outline - September 21, 2016

- Beam time at MRCAT
- How to write a GU proposal
- Reflection from a graded index
- Reflection from rough interfaces and surfaces
- Models of surfaces
- Reflectivity from the MRCAT mirror
- Mirrors

Today's Outline - September 21, 2016

- Beam time at MRCAT
- How to write a GU proposal
- Reflection from a graded index
- Reflection from rough interfaces and surfaces
- Models of surfaces
- Reflectivity from the MRCAT mirror
- Mirrors

Homework Assignment \#03:
Chapter3: 1, 3, 4, 6, 8
due Wednesday, October 05, 2016

Beamtime at MRCAT

Two days have been set aside for our class to be at Sector 10 MRCAT at the Advanced Photon Source

Beamtime at MRCAT

Two days have been set aside for our class to be at Sector 10 MRCAT at the Advanced Photon Source

Friday, October 28, 2016 - bending magnet line

Beamtime at MRCAT

Two days have been set aside for our class to be at Sector 10 MRCAT at the Advanced Photon Source

Friday, October 28, 2016 - bending magnet line
Friday, November 11, 2016 - insertion device line

Beamtime at MRCAT

Two days have been set aside for our class to be at Sector 10 MRCAT at the Advanced Photon Source

Friday, October 28, 2016 - bending magnet line
Friday, November 11, 2016 - insertion device line

Inform me now if you intend to come to one or both sessions

Beamtime at MRCAT

Two days have been set aside for our class to be at Sector 10 MRCAT at the Advanced Photon Source

Friday, October 28, 2016 - bending magnet line
Friday, November 11, 2016 - insertion device line

Inform me now if you intend to come to one or both sessions
You will need to have a badge approved in order to do anthing more than just observe!

We will do flux measurements, reflectivity, x-ray absorption spectroscopy measurements, use ion chambers and the multielement detector, and more

Beamtime at MRCAT

Two days have been set aside for our class to be at Sector 10 MRCAT at the Advanced Photon Source

Friday, October 28, 2016 - bending magnet line
Friday, November 11, 2016 - insertion device line

Inform me now if you intend to come to one or both sessions
You will need to have a badge approved in order to do anthing more than just observe!

We will do flux measurements, reflectivity, x-ray absorption spectroscopy measurements, use ion chambers and the multielement detector, and more

I will try to get BioCAT time as well for those interested

Writing a General User Proposal

(1) Log into the APS site
(2) Start a general user proposal
(3) Add an Abstract
(4) Choose a beam line
(5) Answer the 6 questions

Parratt's recursive method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate.

Parratt's recursive method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take Δ_{j} as the thickness of each layer and $n_{j}=1-\delta_{j}+i \beta_{j}$ as the index of refraction of each layer.

Parratt's recursive method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take Δ_{j} as the thickness of each layer and $n_{j}=1-\delta_{j}+i \beta_{j}$ as the index of refraction of each layer.
Because of continuity, $k_{x j}=k_{x}$ and therefore, we can compute the z-component of \vec{k}_{j}

Parratt's recursive method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take Δ_{j} as the thickness of each layer and $n_{j}=1-\delta_{j}+i \beta_{j}$ as the index of refraction of each layer.
Because of continuity, $k_{x j}=k_{x}$ and therefore, we can compute the z-component of \vec{k}_{j}

$$
k_{z j}^{2}=\left(n_{j} k\right)^{2}-k_{x}^{2}
$$

Parratt's recursive method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take Δ_{j} as the thickness of each layer and $n_{j}=1-\delta_{j}+i \beta_{j}$ as the index of refraction of each layer.
Because of continuity, $k_{x j}=k_{x}$ and therefore, we can compute the z-component of \vec{k}_{j}

$$
\begin{aligned}
k_{z j}^{2} & =\left(n_{j} k\right)^{2}-k_{x}^{2} \\
& =\left(1-\delta_{j}+i \beta_{j}\right)^{2} k^{2}-k_{x}^{2}
\end{aligned}
$$

Parratt's recursive method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take Δ_{j} as the thickness of each layer and $n_{j}=1-\delta_{j}+i \beta_{j}$ as the index of refraction of each layer.
Because of continuity, $k_{x j}=k_{x}$ and therefore, we can compute the z-component of \vec{k}_{j}

$$
\begin{aligned}
k_{z j}^{2} & =\left(n_{j} k\right)^{2}-k_{x}^{2} \\
& =\left(1-\delta_{j}+i \beta_{j}\right)^{2} k^{2}-k_{x}^{2} \\
& \approx k_{z}^{2}-2 \delta_{j} k^{2}+2 i \beta_{j} k^{2}
\end{aligned}
$$

Parratt's recursive method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take Δ_{j} as the thickness of each layer and $n_{j}=1-\delta_{j}+i \beta_{j}$ as the index of refraction of each layer.
Because of continuity, $k_{x j}=k_{x}$ and therefore, we can compute the z-component of \vec{k}_{j}

$$
\begin{aligned}
k_{z j}^{2} & =\left(n_{j} k\right)^{2}-k_{x}^{2} \\
& =\left(1-\delta_{j}+i \beta_{j}\right)^{2} k^{2}-k_{x}^{2} \\
& \approx k_{z}^{2}-2 \delta_{j} k^{2}+2 i \beta_{j} k^{2}
\end{aligned}
$$

and the wavevector transfer in the $\mathrm{j}^{\text {th }}$ layer

Parratt's recursive method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take Δ_{j} as the thickness of each layer and $n_{j}=1-\delta_{j}+i \beta_{j}$ as the index of refraction of each layer.
Because of continuity, $k_{x j}=k_{x}$ and therefore, we can compute the z-component of \vec{k}_{j}

$$
\begin{aligned}
k_{z j}^{2} & =\left(n_{j} k\right)^{2}-k_{x}^{2} \\
& =\left(1-\delta_{j}+i \beta_{j}\right)^{2} k^{2}-k_{x}^{2} \\
& \approx k_{z}^{2}-2 \delta_{j} k^{2}+2 i \beta_{j} k^{2} \\
Q_{j} & =2 k_{j} \sin \alpha_{j}=2 k_{z j}
\end{aligned}
$$

and the wavevector transfer in the $\mathrm{j}^{\text {th }}$ layer

Parratt's recursive method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take Δ_{j} as the thickness of each layer and $n_{j}=1-\delta_{j}+i \beta_{j}$ as the index of refraction of each layer.
Because of continuity, $k_{x j}=k_{x}$ and therefore, we can compute the z-component of \vec{k}_{j}

$$
\begin{aligned}
k_{z j}^{2} & =\left(n_{j} k\right)^{2}-k_{x}^{2} \\
& =\left(1-\delta_{j}+i \beta_{j}\right)^{2} k^{2}-k_{x}^{2} \\
& \approx k_{z}^{2}-2 \delta_{j} k^{2}+2 i \beta_{j} k^{2} \\
Q_{j} & =2 k_{j} \sin \alpha_{j}=2 k_{z j} \\
& =\sqrt{Q^{2}-8 k^{2} \delta_{j}+8 i k^{2} \beta_{j}}
\end{aligned}
$$

and the wavevector transfer in the $\mathrm{j}^{\text {th }}$ layer

Parratt reflectivity calculation

The reflectivity from the interface between layer j and $j+1$, not including multiple reflections is

Parratt reflectivity calculation

The reflectivity from the interface between layer j and $j+1$, not including multiple

$$
r_{j, j+1}^{\prime}=\frac{Q_{j}-Q_{j+1}}{Q_{j}+Q_{j+1}}
$$ reflections is

Parratt reflectivity calculation

The reflectivity from the interface between layer j and $j+1$, not including multiple

$$
r_{j, j+1}^{\prime}=\frac{Q_{j}-Q_{j+1}}{Q_{j}+Q_{j+1}}
$$ reflections is

Now start calculating the reflectivity from the bottom of the $N^{t h}$ layer, closest to the substrate, where multiple reflections are not present

Parratt reflectivity calculation

The reflectivity from the interface between layer j and $j+1$, not including multiple reflections is

Now start calculating the reflectivity from the bottom of the $N^{t h}$ layer, closest to the substrate, where multiple reflections are not present

$$
r_{j, j+1}^{\prime}=\frac{Q_{j}-Q_{j+1}}{Q_{j}+Q_{j+1}}
$$

Parratt reflectivity calculation

The reflectivity from the interface between layer j and $j+1$, not including multiple reflections is

Now start calculating the reflectivity from the bottom of the $N^{t h}$ layer, closest to the substrate, where multiple reflections are not present

The reflectivity from the top of the
$N^{\text {th }}$ layer, including multiple reflections is
The reflectivity from the top of the
$N^{\text {th }}$ layer, including multiple reflections is now calculated (note no prime!)

$$
r_{j, j+1}^{\prime}=\frac{Q_{j}-Q_{j+1}}{Q_{j}+Q_{j+1}}
$$

$$
r_{N, \infty}^{\prime}=\frac{Q_{N}-Q_{\infty}}{Q_{N}+Q_{\infty}}
$$

Parratt reflectivity calculation

The reflectivity from the interface between layer j and $j+1$, not including multiple reflections is

Now start calculating the reflectivity from the bottom of the $N^{t h}$ layer, closest to the substrate, where multiple reflections are not present

The reflectivity from the top of the $N^{\text {th }}$ layer, including multiple reflections is now calculated (note no prime!)

$$
r_{j, j+1}^{\prime}=\frac{Q_{j}-Q_{j+1}}{Q_{j}+Q_{j+1}}
$$

$$
r_{N, \infty}^{\prime}=\frac{Q_{N}-Q_{\infty}}{Q_{N}+Q_{\infty}}
$$

Parratt reflectivity calculation

The reflectivity from the interface between layer j and $j+1$, not including multiple reflections is

Now start calculating the reflectivity from the bottom of the $N^{t h}$ layer, closest

$$
r_{j, j+1}^{\prime}=\frac{Q_{j}-Q_{j+1}}{Q_{j}+Q_{j+1}}
$$

to the substrate, where multiple reflections are not present

The reflectivity from the top of the $N^{\text {th }}$ layer, including multiple reflections is

$$
r_{N, \infty}^{\prime}=\frac{Q_{N}-Q_{\infty}}{Q_{N}+Q_{\infty}}
$$ now calculated (note no prime!)

The recursive relation can be seen from the calculation of reflectivity of the next layer up

$$
r_{N-2, N-1}=\frac{r_{N-2, N-1}^{\prime}+r_{N-1, N} p_{N-1}^{2}}{1+r_{N-2, N-1}^{\prime} r_{N-1, N} p_{N-1}^{2}}
$$

Kinematical - Parratt comparison

Kinematical - Parratt comparison

Kinematical approximation gives a reasonably good approximation to the correct calculation, with a few exceptions.

Kinematical - Parratt comparison

Kinematical approximation gives a reasonably good approximation to the correct calculation, with a few exceptions.

Parratt calculation gives $R_{\text {Par }}=1$ as $Q \rightarrow 0$ while kinematical diverges $\left(R_{\text {Kin }} \rightarrow \infty\right)$.

Kinematical - Parratt comparison

Kinematical approximation gives a reasonably good approximation to the correct calculation, with a few exceptions.

Parratt calculation gives $R_{\text {Par }}=1$ as $Q \rightarrow 0$ while kinematical diverges $\left(R_{\text {Kin }} \rightarrow \infty\right)$.

Parratt peaks shifted to slightly higher values of Q

Kinematical - Parratt comparison

Kinematical approximation gives a reasonably good approximation to the correct calculation, with a few exceptions.

Parratt calculation gives $R_{\text {Par }}=1$ as $Q \rightarrow 0$ while kinematical diverges $\left(R_{\text {Kin }} \rightarrow \infty\right)$.

Parratt peaks shifted to slightly higher values of Q

Peaks in kinematical calculation are somewhat higher reflectivity than true value.

Graded interfaces

Since most interfaces are not sharp, it is important to be able to model a graded interface, where the density, and therefore the index of refraction varies near the interface itself.

Graded interfaces

Since most interfaces are not sharp, it is important to be able to model a graded interface, where the density, and therefore the index of refraction varies near the interface itself.

The reflectivity of this kind of interface can be calculated best in the kinematical limit $\left(Q>Q_{c}\right)$.

Graded interfaces

Since most interfaces are not sharp, it is important to be able to model a graded interface, where the density, and therefore the index of refraction varies near the interface itself.

The reflectivity of this kind of interface can be calculated best in the kinematical limit $\left(Q>Q_{c}\right)$.

The density profile of the interface can be described by the function $f(z)$ which approaches 1 as $z \rightarrow \infty$.

Graded interfaces

Since most interfaces are not sharp, it is important to be able to model a graded interface, where the density, and therefore the index of refraction varies near the interface itself.

The reflectivity of this kind of interface can be calculated best in the kinematical limit $\left(Q>Q_{c}\right)$.

The density profile of the interface can be described by the function $f(z)$ which approaches 1 as $z \rightarrow \infty$.

The reflectivity can be computed as the superposition of the reflectivity of a series of infinitesmal slabs of thickness $d z$ at a depth z.

Reflectivity of a graded interface

The differential reflectivity from a slab of thickness $d z$ at depth z is:

Reflectivity of a graded interface

$$
\delta r(Q)=-i \frac{Q_{c}^{2}}{4 Q} f(z) d z
$$

The differential reflectivity from a slab of thickness $d z$ at depth z is:

Reflectivity of a graded interface

The differential reflectivity from a slab of thickness $d z$ at depth z is:
integrating, to get the entire reflectivity

Reflectivity of a graded interface

The differential reflectivity from a slab of thickness $d z$ at depth z is:
integrating, to get the entire reflectivity

$$
r(Q)=-i \frac{Q_{c}^{2}}{4 Q} \int_{-\infty}^{\infty} f(z) e^{i Q z} d z
$$

Reflectivity of a graded interface

The differential reflectivity from a slab of thickness $d z$ at depth z is:
integrating, to get the entire reflectivity

$$
r(Q)=-i \frac{Q_{c}^{2}}{4 Q} \int_{-\infty}^{\infty} f(z) e^{i Q z} d z
$$

Reflectivity of a graded interface

$$
\begin{aligned}
\delta r(Q) & =-i \frac{Q_{c}^{2}}{4 Q} f(z) d z \\
r(Q) & =-i \frac{Q_{c}^{2}}{4 Q} \int_{-\infty}^{\infty} f(z) e^{i Q z} d z \\
& =i \frac{1}{i Q} \frac{Q_{c}^{2}}{4 Q} \int_{-\infty}^{\infty} f^{\prime}(z) e^{i Q z} d z
\end{aligned}
$$

The differential reflectivity from a slab of thickness $d z$ at depth z is:
integrating, to get the entire reflectivity
integrating by parts simplifies

Reflectivity of a graded interface

$$
\begin{aligned}
\delta r(Q) & =-i \frac{Q_{c}^{2}}{4 Q} f(z) d z \\
r(Q) & =-i \frac{Q_{c}^{2}}{4 Q} \int_{-\infty}^{\infty} f(z) e^{i Q z} d z \\
& =i \frac{1}{i Q} \frac{Q_{c}^{2}}{4 Q} \int_{-\infty}^{\infty} f^{\prime}(z) e^{i Q z} d z \\
& =\frac{Q_{c}^{2}}{4 Q^{2}} \int_{-\infty}^{\infty} f^{\prime}(z) e^{i Q z} d z
\end{aligned}
$$

The differential reflectivity from a slab of thickness $d z$ at depth z is:
integrating, to get the entire reflectivity
integrating by parts simplifies

Reflectivity of a graded interface

$$
\begin{aligned}
\delta r(Q) & =-i \frac{Q_{c}^{2}}{4 Q} f(z) d z \\
r(Q) & =-i \frac{Q_{c}^{2}}{4 Q} \int_{-\infty}^{\infty} f(z) e^{i Q z} d z \\
& =i \frac{1}{i Q} \frac{Q_{c}^{2}}{4 Q} \int_{-\infty}^{\infty} f^{\prime}(z) e^{i Q z} d z \\
& =\frac{Q_{c}^{2}}{4 Q^{2}} \int_{-\infty}^{\infty} f^{\prime}(z) e^{i Q z} d z
\end{aligned}
$$

The differential reflectivity from a slab of thickness $d z$ at depth z is:
integrating, to get the entire reflectivity
integrating by parts simplifies the term in front is simply the Fresnel reflectivity for an interface, $r_{F}(Q)$ when $q \gg 1$

Reflectivity of a graded interface

$$
\begin{aligned}
\delta r(Q) & =-i \frac{Q_{c}^{2}}{4 Q} f(z) d z \\
r(Q) & =-i \frac{Q_{c}^{2}}{4 Q} \int_{-\infty}^{\infty} f(z) e^{i Q z} d z \\
& =i \frac{1}{i Q} \frac{Q_{c}^{2}}{4 Q} \int_{-\infty}^{\infty} f^{\prime}(z) e^{i Q z} d z \\
& =\frac{Q_{c}^{2}}{4 Q^{2}} \int_{-\infty}^{\infty} f^{\prime}(z) e^{i Q z} d z
\end{aligned}
$$

The differential reflectivity from a slab of thickness $d z$ at depth z is:
integrating, to get the entire reflectivity
integrating by parts simplifies the term in front is simply the Fresnel reflectivity for an interface, $r_{F}(Q)$ when $q \gg 1$, the integral is the Fourier transform of the density gradient, $\phi(Q)$

Reflectivity of a graded interface

$$
\begin{aligned}
\delta r(Q) & =-i \frac{Q_{c}^{2}}{4 Q} f(z) d z \\
r(Q) & =-i \frac{Q_{c}^{2}}{4 Q} \int_{-\infty}^{\infty} f(z) e^{i Q z} d z \\
& =i \frac{1}{i Q} \frac{Q_{c}^{2}}{4 Q} \int_{-\infty}^{\infty} f^{\prime}(z) e^{i Q z} d z \\
& =\frac{Q_{c}^{2}}{4 Q^{2}} \int_{-\infty}^{\infty} f^{\prime}(z) e^{i Q z} d z
\end{aligned}
$$

The differential reflectivity from a slab of thickness $d z$ at depth z is:

> integrating, to get the entire reflectivity
integrating by parts simplifies the term in front is simply the Fresnel reflectivity for an interface, $r_{F}(Q)$ when $q \gg 1$, the integral is the Fourier transform of the density gradient, $\phi(Q)$
Calculating the full reflection coefficient relative to the Fresnel reflection coefficient

$$
\frac{R(Q)}{R_{F}(Q)}=\left|\int_{-\infty}^{\infty}\left(\frac{d f}{d z}\right) e^{i Q z} d z\right|^{2}
$$

The error function - a specific case

The error function is often chosen as a model for the density gradient

$$
f(z)=\operatorname{erf}\left(\frac{z}{\sqrt{2} \sigma}\right)=\frac{1}{\sqrt{\pi}} \int_{0}^{z / \sqrt{2} \sigma} e^{-t^{2}} d t
$$

The error function - a specific case

The error function is often chosen as a model for the density gradient

$$
f(z)=\operatorname{erf}\left(\frac{z}{\sqrt{2} \sigma}\right)=\frac{1}{\sqrt{\pi}} \int_{0}^{z / \sqrt{2} \sigma} e^{-t^{2}} d t
$$

the gradient of the error function is simply a Gaussian

$$
\frac{d f(z)}{d z}=\frac{d}{d z} \operatorname{erf}\left(\frac{z}{\sqrt{2} \sigma}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2} \frac{z^{2}}{\sigma^{2}}}
$$

The error function - a specific case

The error function is often chosen as a model for the density gradient

$$
f(z)=\operatorname{erf}\left(\frac{z}{\sqrt{2} \sigma}\right)=\frac{1}{\sqrt{\pi}} \int_{0}^{z / \sqrt{2} \sigma} e^{-t^{2}} d t
$$

the gradient of the error function is simply a Gaussian

$$
\frac{d f(z)}{d z}=\frac{d}{d z} e r f\left(\frac{z}{\sqrt{2} \sigma}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2} \frac{z^{2}}{\sigma^{2}}}
$$

whose Fourier transform is also a Gaussian, which when squared to obtain the reflection coefficient, gives.

$$
R(Q)=R_{F}(Q) e^{-Q^{2} \sigma^{2}}
$$

The error function - a specific case

The error function is often chosen as a model for the density gradient

$$
f(z)=\operatorname{erf}\left(\frac{z}{\sqrt{2} \sigma}\right)=\frac{1}{\sqrt{\pi}} \int_{0}^{z / \sqrt{2} \sigma} e^{-t^{2}} d t
$$

the gradient of the error function is simply a Gaussian

$$
\frac{d f(z)}{d z}=\frac{d}{d z} e r f\left(\frac{z}{\sqrt{2} \sigma}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2} \frac{z^{2}}{\sigma^{2}}}
$$

whose Fourier transform is also a Gaussian, which when squared to obtain the reflection coefficient, gives. Or more accurately.

$$
R(Q)=R_{F}(Q) e^{-Q^{2} \sigma^{2}}=R_{F}(Q) e^{-Q Q^{\prime} \sigma^{2}}
$$

The error function - a specific case

The error function is often chosen as a model for the density gradient

$$
f(z)=\operatorname{erf}\left(\frac{z}{\sqrt{2} \sigma}\right)=\frac{1}{\sqrt{\pi}} \int_{0}^{z / \sqrt{2} \sigma} e^{-t^{2}} d t
$$

the gradient of the error function is simply a Gaussian

$$
\frac{d f(z)}{d z}=\frac{d}{d z} e r f\left(\frac{z}{\sqrt{2} \sigma}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2} \frac{z^{2}}{\sigma^{2}}}
$$

whose Fourier transform is also a Gaussian, which when squared to obtain the reflection coefficient, gives. Or more accurately.

$$
\begin{gathered}
R(Q)=R_{F}(Q) e^{-Q^{2} \sigma^{2}}=R_{F}(Q) e^{-Q Q^{\prime} \sigma^{2}} \\
Q=k \sin \theta, \quad Q^{\prime}=k^{\prime} \sin \theta^{\prime}
\end{gathered}
$$

Rough surfaces

When a surface or interface is not perfectly smooth but has some roughness the reflectivity is no longer simply specular but has a non-zero diffuse component which we must include in the model.

Rough surfaces

When a surface or interface is not perfectly smooth but has some roughness the reflectivity is no longer simply specular but has a non-zero diffuse component which we must include in the model.

Rough surfaces

When a surface or interface is not perfectly smooth but has some roughness the reflectivity is no longer simply specular but has a non-zero diffuse component which we must include in the model.

V
The incident and scattered angles are no longer the same, the x-rays illuminate the volume V.

Rough surfaces

When a surface or interface is not perfectly smooth but has some roughness the reflectivity is no longer simply specular but has a non-zero diffuse component which we must include in the model.

V
The incident and scattered angles are no longer the same, the x-rays illuminate the volume V. The scattering from the entire, illuminated volume is given by

Rough surfaces

When a surface or interface is not perfectly smooth but has some roughness the reflectivity is no longer simply specular but has a non-zero diffuse component which we must include in the model.

The incident and scattered angles are no longer the same, the x-rays illuminate the volume V. The scattering from the entire,

$$
r_{V}=-r_{0} \int_{V}(\rho d \vec{r}) e^{i \vec{Q} \cdot \vec{r}}
$$

Rough surfaces

When a surface or interface is not perfectly smooth but has some roughness the reflectivity is no longer simply specular but has a non-zero diffuse component which we must include in the model.

The incident and scattered angles are no longer the same, the x-rays illuminate the volume V. The scattering from the entire,

$$
r_{V}=-r_{0} \int_{V}(\rho d \vec{r}) e^{i \vec{Q} \cdot \vec{r}}
$$ illuminated volume is given by using Gauss' theorem.

Rough surfaces

When a surface or interface is not perfectly smooth but has some roughness the reflectivity is no longer simply specular but has a non-zero diffuse component which we must include in the model.

The incident and scattered angles are no longer the same, the x-rays illuminate the volume V. The scattering from the entire,

$$
r_{V}=-r_{0} \int_{V}(\rho d \vec{r}) e^{i \vec{Q} \cdot \vec{r}}
$$

$$
\int_{V}(\vec{\nabla} \cdot \vec{C}) d \vec{r}=\int_{S} \vec{C} \cdot d \vec{S}
$$

Conversion to surface integral

$$
\int_{V}(\vec{\nabla} \cdot \vec{C}) d \vec{r}=\int_{S} \vec{C} \cdot d \vec{S}
$$

$$
r_{V}=-r_{0} \rho \int_{V} e^{i \vec{Q} \cdot \vec{r}} d \vec{r}
$$

Conversion to surface integral

$$
\int_{V}(\vec{\nabla} \cdot \vec{C}) d \vec{r}=\int_{S} \vec{C} \cdot d \vec{S}
$$

$$
r_{V}=-r_{0} \rho \int_{V} e^{i \vec{Q} \cdot \vec{r}} d \vec{r}
$$

Taking

$$
\vec{C}=\hat{z} \frac{e^{i \vec{Q} \cdot \vec{r}}}{i Q_{z}}
$$

Conversion to surface integral

$$
\int_{V}(\vec{\nabla} \cdot \vec{C}) d \vec{r}=\int_{S} \vec{C} \cdot d \vec{S}
$$

$$
r_{V}=-r_{0} \rho \int_{V} e^{i \vec{Q} \cdot \vec{r}} d \vec{r}
$$

Taking

$$
\vec{C}=\hat{z} \frac{e^{i \vec{Q} \cdot \vec{r}}}{i Q_{z}}
$$

We have

$$
\vec{\nabla} \cdot \vec{C}=\frac{e^{i \vec{Q} \cdot \vec{r}}}{i Q_{z}} i Q_{z}
$$

Conversion to surface integral

$$
\int_{V}(\vec{\nabla} \cdot \vec{C}) d \vec{r}=\int_{S} \vec{C} \cdot d \vec{S}
$$

$$
r_{V}=-r_{0} \rho \int_{V} e^{i \vec{Q} \cdot \vec{r}} d \vec{r}
$$

Taking

$$
\vec{C}=\hat{z} \frac{e^{i \vec{Q} \cdot \vec{r}}}{i Q_{z}}
$$

We have

$$
\vec{\nabla} \cdot \vec{C}=\frac{e^{i \vec{Q} \cdot \vec{r}}}{i Q_{z}} i Q_{z}=e^{i \vec{Q} \cdot \vec{r}}
$$

Conversion to surface integral

$$
\int_{V}(\vec{\nabla} \cdot \vec{C}) d \vec{r}=\int_{S} \vec{C} \cdot d \vec{S}
$$

$$
r_{V}=-r_{0} \rho \int_{V} e^{i \vec{Q} \cdot \vec{r}} d \vec{r}
$$

Taking

$$
\vec{C}=\hat{z} \frac{e^{i \vec{Q} \cdot \vec{r}}}{i Q_{z}}
$$

$$
=-r_{0} \rho \int_{V} \vec{\nabla} \cdot\left(\hat{z} \frac{e^{i \vec{Q} \cdot \vec{r}}}{i Q_{z}}\right) \cdot d \vec{r}
$$

We have

$$
\vec{\nabla} \cdot \vec{C}=\frac{e^{i \vec{Q} \cdot \vec{r}}}{i Q_{z}} i Q_{z}=e^{i \vec{Q} \cdot \vec{r}}
$$

Conversion to surface integral

$$
\int_{V}(\vec{\nabla} \cdot \vec{C}) d \vec{r}=\int_{S} \vec{C} \cdot d \vec{S}
$$

$$
\begin{aligned}
r_{V} & =-r_{0} \rho \int_{V} e^{i \vec{Q} \cdot \vec{r}} d \vec{r} \\
& =-r_{0} \rho \int_{V} \vec{\nabla} \cdot\left(\hat{z} \frac{e^{i \vec{Q} \cdot \vec{r}}}{i Q_{z}}\right) \cdot d \vec{r} \\
r_{S} & =-r_{0} \rho \int_{S}\left(\hat{z} \frac{e^{i \vec{Q} \cdot \vec{r}}}{i Q_{z}}\right) \cdot d \vec{S}
\end{aligned}
$$

Taking

$$
\vec{C}=\hat{z} \frac{e^{i \vec{Q} \cdot \vec{r}}}{i Q_{z}}
$$

We have

$$
\vec{\nabla} \cdot \vec{C}=\frac{e^{i \vec{Q} \cdot \vec{r}}}{i Q_{z}} i Q_{z}=e^{i \vec{Q} \cdot \vec{r}}
$$

Conversion to surface integral

$$
\int_{V}(\vec{\nabla} \cdot \vec{C}) d \vec{r}=\int_{S} \vec{C} \cdot d \vec{S}
$$

$$
\begin{aligned}
r_{V} & =-r_{0} \rho \int_{V} e^{i \vec{Q} \cdot \vec{r}} d \vec{r} \\
& =-r_{0} \rho \int_{V} \vec{\nabla} \cdot\left(\hat{z} \frac{e^{i \vec{Q} \cdot \vec{r}}}{i Q_{z}}\right) \cdot d \vec{r} \\
r_{S} & =-r_{0} \rho \int_{S}\left(\hat{z} \frac{e^{i \vec{Q} \cdot \vec{r}}}{i Q_{z}}\right) \cdot d \vec{S}
\end{aligned}
$$

Taking

$$
\vec{C}=\hat{z} \frac{e^{i \vec{Q} \cdot \vec{r}}}{i Q_{z}}
$$

We have

$$
\vec{\nabla} \cdot \vec{C}=\frac{e^{i \vec{Q} \cdot \vec{r}}}{i Q_{z}} i Q_{z}=e^{i \vec{Q} \cdot \vec{r}}
$$

$$
r_{S}=-r_{0} \rho \frac{1}{i Q_{z}} \int_{S} e^{i \vec{Q} \cdot \vec{r}} d x d y
$$

Evaluation of surface integral

The side surfaces of the volume do not contribute to this integral as they are along the \hat{z} direction, but we can also choose the thickness of the slab such that the lower surface will not contribute either.

Evaluation of surface integral

The side surfaces of the volume do not contribute to this integral as they are along the \hat{z} direction, but we can also choose the thickness of the slab such that the lower surface will not contribute either.

Thus, the integral need only be evaluated over the top, rough surface whose variation we characterize by the function $h(x, y)$

Evaluation of surface integral

The side surfaces of the volume do not contribute to this integral as they are along the \hat{z} direction, but we can also choose the thickness of the slab such that the lower surface will not contribute either.

Thus, the integral need only be evaluated over the top,

$$
\vec{Q} \cdot \vec{r}=Q_{z} h(x, y)+Q_{x} x+Q_{y} y
$$ rough surface whose variation we characterize by the function $h(x, y)$

Evaluation of surface integral

The side surfaces of the volume do not contribute to this integral as they are along the \hat{z} direction, but we can also choose the thickness of the slab such that the lower surface will not contribute either.

Thus, the integral need only be evaluated over the top,

$$
\vec{Q} \cdot \vec{r}=Q_{z} h(x, y)+Q_{x} x+Q_{y} y
$$ rough surface whose variation we characterize by the function $h(x, y)$

$$
r_{S}=-\frac{r_{0} \rho}{i Q_{z}} \int_{S} e^{i Q_{z} h(x, y)} e^{i\left(Q_{x} x+Q_{y} y\right)} d x d y
$$

Evaluation of surface integral

The side surfaces of the volume do not contribute to this integral as they are along the \hat{z} direction, but we can also choose the thickness of the slab such that the lower surface will not contribute either.

Thus, the integral need only be evaluated over the top,

$$
\vec{Q} \cdot \vec{r}=Q_{z} h(x, y)+Q_{x} x+Q_{y} y
$$ rough surface whose variation we characterize by the function $h(x, y)$

$$
r_{S}=-\frac{r_{0} \rho}{i Q_{z}} \int_{S} e^{i Q_{z} h(x, y)} e^{i\left(Q_{x} x+Q_{y} y\right)} d x d y
$$

The actual scattering cross section is the square of this integral

$$
\frac{d \sigma}{d \Omega}=\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \int_{S} \int_{S^{\prime}} e^{i Q_{z}\left(h(x, y)-h\left(x^{\prime}, y^{\prime}\right)\right)} e^{i Q_{x}\left(x-x^{\prime}\right)} e^{i Q_{y}\left(y-y^{\prime}\right)} d x d y d x^{\prime} d y^{\prime}
$$

Scattering cross section

If we assume that $h(x, y)-h\left(x^{\prime}, y^{\prime}\right)$ depends only on the relative difference in position, $x-x^{\prime}$ and $y-y^{\prime}$ the four dimensional integral collapses to the product of two two dimensional integrals

Scattering cross section

If we assume that $h(x, y)-h\left(x^{\prime}, y^{\prime}\right)$ depends only on the relative difference in position, $x-x^{\prime}$ and $y-y^{\prime}$ the four dimensional integral collapses to the product of two two dimensional integrals

$$
\left(\frac{d \sigma}{d \Omega}\right)=\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \int_{S^{\prime}} d x^{\prime} d y^{\prime} \int_{S}\left\langle e^{i Q_{z}(h(0,0)-h(x, y))}\right\rangle e^{i Q_{x} x} e^{i Q_{y} y} d x d y
$$

Scattering cross section

If we assume that $h(x, y)-h\left(x^{\prime}, y^{\prime}\right)$ depends only on the relative difference in position, $x-x^{\prime}$ and $y-y^{\prime}$ the four dimensional integral collapses to the product of two two dimensional integrals

$$
\begin{aligned}
\left(\frac{d \sigma}{d \Omega}\right) & =\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \int_{S^{\prime}} d x^{\prime} d y^{\prime} \int_{S}\left\langle e^{i Q_{z}(h(0,0)-h(x, y))}\right\rangle e^{i Q_{x} x} e^{i Q_{y} y} d x d y \\
& =\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} \int\left\langle e^{i Q_{z}(h(0,0)-h(x, y))}\right\rangle e^{i Q_{x} x} e^{i Q_{y} y} d x d y
\end{aligned}
$$

Scattering cross section

If we assume that $h(x, y)-h\left(x^{\prime}, y^{\prime}\right)$ depends only on the relative difference in position, $x-x^{\prime}$ and $y-y^{\prime}$ the four dimensional integral collapses to the product of two two dimensional integrals

$$
\begin{aligned}
\left(\frac{d \sigma}{d \Omega}\right) & =\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \int_{S^{\prime}} d x^{\prime} d y^{\prime} \int_{S}\left\langle e^{i Q_{z}(h(0,0)-h(x, y))}\right\rangle e^{i Q_{x} x} e^{i Q_{y} y} d x d y \\
& =\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} \int\left\langle e^{i Q_{z}(h(0,0)-h(x, y))}\right\rangle e^{i Q_{x} x} e^{i Q_{y} y} d x d y
\end{aligned}
$$

where $A_{0} / \sin \theta_{1}$ is just the illuminated surface area

Scattering cross section

If we assume that $h(x, y)-h\left(x^{\prime}, y^{\prime}\right)$ depends only on the relative difference in position, $x-x^{\prime}$ and $y-y^{\prime}$ the four dimensional integral collapses to the product of two two dimensional integrals

$$
\begin{aligned}
\left(\frac{d \sigma}{d \Omega}\right) & =\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \int_{S^{\prime}} d x^{\prime} d y^{\prime} \int_{S}\left\langle e^{i Q_{z}(h(0,0)-h(x, y))}\right\rangle e^{i Q_{x} x} e^{i Q_{y} y} d x d y \\
& =\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} \int\left\langle e^{i Q_{z}(h(0,0)-h(x, y))}\right\rangle e^{i Q_{x} x} e^{i Q_{y} y} d x d y
\end{aligned}
$$

where $A_{0} / \sin \theta_{1}$ is just the illuminated surface area and the term in the angled brackets is an ensemble average over all possible choices of the origin within the illuminated area.

Scattering cross section

If we assume that $h(x, y)-h\left(x^{\prime}, y^{\prime}\right)$ depends only on the relative difference in position, $x-x^{\prime}$ and $y-y^{\prime}$ the four dimensional integral collapses to the product of two two dimensional integrals

$$
\begin{aligned}
\left(\frac{d \sigma}{d \Omega}\right) & =\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \int_{S^{\prime}} d x^{\prime} d y^{\prime} \int_{S}\left\langle e^{i Q_{z}(h(0,0)-h(x, y))}\right\rangle e^{i Q_{x} x} e^{i Q_{y} y} d x d y \\
& =\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} \int\left\langle e^{i Q_{z}(h(0,0)-h(x, y))}\right\rangle e^{i Q_{x} x} e^{i Q_{y} y} d x d y
\end{aligned}
$$

where $A_{0} / \sin \theta_{1}$ is just the illuminated surface area and the term in the angled brackets is an ensemble average over all possible choices of the origin within the illuminated area.
Finally, it is assumed that the statistics of the height variation are Gaussian and

$$
\left(\frac{d \sigma}{d \Omega}\right)=\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} \int e^{-Q_{z}^{2}\left\langle[h(0,0)-h(x, y)]^{2}\right\rangle / 2} e^{i Q_{x} x} e^{i Q_{y} y} d x d y
$$

Limiting Case - Flat surface

Define a function $g(x, y)=\left\langle[h(0,0)-h(x, y)]^{2}\right\rangle$ which can be modeled in various ways.

Limiting Case - Flat surface

Define a function $g(x, y)=\left\langle[h(0,0)-h(x, y)]^{2}\right\rangle$ which can be modeled in various ways.
For a perfectly flat surface, $h(x, y)=0$ for all x and y.

Limiting Case - Flat surface

Define a function $g(x, y)=\left\langle[h(0,0)-h(x, y)]^{2}\right\rangle$ which can be modeled in various ways.
For a perfectly flat surface, $h(x, y)=0$ for all x and y.

$$
\left(\frac{d \sigma}{d \Omega}\right)=\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} \int e^{i Q_{x} x} e^{i Q_{y} y} d x d y
$$

Limiting Case - Flat surface

Define a function $g(x, y)=\left\langle[h(0,0)-h(x, y)]^{2}\right\rangle$ which can be modeled in various ways.
For a perfectly flat surface, $h(x, y)=0$ for all x and y. by the definition of a delta function

$$
2 \pi \delta(q)=\int e^{i q x} d x \quad\left(\frac{d \sigma}{d \Omega}\right)=\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} \int e^{i Q_{x} x} e^{i Q_{y} y} d x d y
$$

Limiting Case - Flat surface

Define a function $g(x, y)=\left\langle[h(0,0)-h(x, y)]^{2}\right\rangle$ which can be modeled in various ways.
For a perfectly flat surface, $h(x, y)=0$ for all x and y. by the definition of a delta function

$$
2 \pi \delta(q)=\int e^{i q x} d x
$$

$$
\begin{aligned}
\left(\frac{d \sigma}{d \Omega}\right) & =\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} \int e^{i Q_{x} x} e^{i Q_{y} y} d x d y \\
& =\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} \delta\left(Q_{x}\right) \delta\left(Q_{y}\right)
\end{aligned}
$$

Limiting Case - Flat surface

Define a function $g(x, y)=\left\langle[h(0,0)-h(x, y)]^{2}\right\rangle$ which can be modeled in various ways.
For a perfectly flat surface, $h(x, y)=0$ for all x and y. by the definition of a delta function

$$
2 \pi \delta(q)=\int e^{i q x} d x
$$

$$
\begin{aligned}
\left(\frac{d \sigma}{d \Omega}\right) & =\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} \int e^{i Q_{x} x} e^{i Q_{y} y} d x d y \\
& =\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} \delta\left(Q_{x}\right) \delta\left(Q_{y}\right)
\end{aligned}
$$

the expression for the scattered intensity in terms of the momentum transfer wave vectors is

Limiting Case - Flat surface

Define a function $g(x, y)=\left\langle[h(0,0)-h(x, y)]^{2}\right\rangle$ which can be modeled in various ways.
For a perfectly flat surface, $h(x, y)=0$ for all x and y. by the definition of a delta function

$$
2 \pi \delta(q)=\int e^{i q x} d x
$$

$$
\begin{aligned}
\left(\frac{d \sigma}{d \Omega}\right) & =\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} \int e^{i Q_{x} x} e^{i Q_{y} y} d x d y \\
& =\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} \delta\left(Q_{x}\right) \delta\left(Q_{y}\right)
\end{aligned}
$$

the expression for the scattered intensity in terms of the momentum transfer wave vectors is

$$
I_{s c}=\left(\frac{I_{0}}{A_{0}}\right)\left(\frac{d \sigma}{d \Omega}\right) \frac{\Delta Q_{x} \Delta Q_{y}}{k^{2} \sin \theta_{2}}
$$

Limiting Case - Flat surface

Define a function $g(x, y)=\left\langle[h(0,0)-h(x, y)]^{2}\right\rangle$ which can be modeled in various ways.
For a perfectly flat surface, $h(x, y)=0$ for all x and y. by the definition of a delta function

$$
\begin{aligned}
\left(\frac{d \sigma}{d \Omega}\right) & =\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} \int e^{i Q_{x} x} e^{i Q_{y} y} d x d y \\
& =\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} \delta\left(Q_{x}\right) \delta\left(Q_{y}\right)
\end{aligned}
$$

the expression for the scattered intensity in terms of the momentum transfer wave vectors is

$$
I_{s c}=\left(\frac{I_{0}}{A_{0}}\right)\left(\frac{d \sigma}{d \Omega}\right) \frac{\Delta Q_{x} \Delta Q_{y}}{k^{2} \sin \theta_{2}}
$$

$$
R\left(Q_{z}\right)=\frac{I_{s c}}{I_{0}}=\left(\frac{Q_{c}^{2} / 8}{Q_{z}}\right)^{2}\left(\frac{1}{Q_{z} / 2}\right)^{2}=\left(\frac{Q_{c}}{2 Q_{z}}\right)^{4}
$$

Uncorrelated surfaces

For a totally uncorrelated surface, $h(x, y)$ is independent from $h\left(x^{\prime}, y^{\prime}\right)$ and

Uncorrelated surfaces

For a totally uncorrelated surface, $h(x, y)$ is independent from $h\left(x^{\prime}, y^{\prime}\right)$ and

$$
\left\langle[h(0,0)-h(x, y)]^{2}\right\rangle=\langle h(0,0)\rangle^{2}-2\langle h(0,0)\rangle\langle h(x, y)\rangle+\langle h(x, y)\rangle^{2}
$$

Uncorrelated surfaces

For a totally uncorrelated surface, $h(x, y)$ is independent from $h\left(x^{\prime}, y^{\prime}\right)$ and

$$
\begin{aligned}
\left\langle[h(0,0)-h(x, y)]^{2}\right\rangle & =\langle h(0,0)\rangle^{2}-2\langle h(0,0)\rangle\langle h(x, y)\rangle+\langle h(x, y)\rangle^{2} \\
& =2\left\langle h^{2}\right\rangle
\end{aligned}
$$

Uncorrelated surfaces

For a totally uncorrelated surface, $h(x, y)$ is independent from $h\left(x^{\prime}, y^{\prime}\right)$ and

$$
\begin{aligned}
\left\langle[h(0,0)-h(x, y)]^{2}\right\rangle & =\langle h(0,0)\rangle^{2}-2\langle h(0,0)\rangle\langle h(x, y)\rangle+\langle h(x, y)\rangle^{2} \\
& =2\left\langle h^{2}\right\rangle
\end{aligned}
$$

This quantity is simply related to the rms roughness, σ by $\sigma^{2}=\left\langle h^{2}\right\rangle$ and the cross-section is given by

$$
\left(\frac{d \sigma}{d \Omega}\right)=
$$

Uncorrelated surfaces

For a totally uncorrelated surface, $h(x, y)$ is independent from $h\left(x^{\prime}, y^{\prime}\right)$ and

$$
\begin{aligned}
\left\langle[h(0,0)-h(x, y)]^{2}\right\rangle & =\langle h(0,0)\rangle^{2}-2\langle h(0,0)\rangle\langle h(x, y)\rangle+\langle h(x, y)\rangle^{2} \\
& =2\left\langle h^{2}\right\rangle
\end{aligned}
$$

This quantity is simply related to the rms roughness, σ by $\sigma^{2}=\left\langle h^{2}\right\rangle$ and the cross-section is given by

$$
\left(\frac{d \sigma}{d \Omega}\right)=\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} \int e^{-Q_{z}^{2}\left\langle h^{2}\right\rangle / 2} e^{i Q_{x} x} e^{i Q_{y} y} d x d y
$$

Uncorrelated surfaces

For a totally uncorrelated surface, $h(x, y)$ is independent from $h\left(x^{\prime}, y^{\prime}\right)$ and

$$
\begin{aligned}
\left\langle[h(0,0)-h(x, y)]^{2}\right\rangle & =\langle h(0,0)\rangle^{2}-2\langle h(0,0)\rangle\langle h(x, y)\rangle+\langle h(x, y)\rangle^{2} \\
& =2\left\langle h^{2}\right\rangle
\end{aligned}
$$

This quantity is simply related to the rms roughness, σ by $\sigma^{2}=\left\langle h^{2}\right\rangle$ and the cross-section is given by

$$
\begin{aligned}
\left(\frac{d \sigma}{d \Omega}\right) & =\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} \int e^{-Q_{z}^{2}\left\langle h^{2}\right\rangle / 2} e^{i Q_{x} x} e^{i Q_{y} y} d x d y \\
& =\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} e^{-Q_{z}^{2} \sigma^{2}} \int e^{i Q_{x} x} e^{i Q_{y} y} d x d y
\end{aligned}
$$

Uncorrelated surfaces

For a totally uncorrelated surface, $h(x, y)$ is independent from $h\left(x^{\prime}, y^{\prime}\right)$ and

$$
\begin{aligned}
\left\langle[h(0,0)-h(x, y)]^{2}\right\rangle & =\langle h(0,0)\rangle^{2}-2\langle h(0,0)\rangle\langle h(x, y)\rangle+\langle h(x, y)\rangle^{2} \\
& =2\left\langle h^{2}\right\rangle
\end{aligned}
$$

This quantity is simply related to the rms roughness, σ by $\sigma^{2}=\left\langle h^{2}\right\rangle$ and the cross-section is given by

$$
\begin{aligned}
\left(\frac{d \sigma}{d \Omega}\right) & =\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} \int e^{-Q_{z}^{2}\left\langle h^{2}\right\rangle / 2} e^{i Q_{x} x} e^{i Q_{y} y} d x d y \\
& =\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} e^{-Q_{z}^{2} \sigma^{2}} \int e^{i Q_{x} x} e^{i Q_{y} y} d x d y
\end{aligned}
$$

Which, apart from the term containing σ is simply the Fresnel cross-section for a flat surface

Uncorrelated surfaces

For a totally uncorrelated surface, $h(x, y)$ is independent from $h\left(x^{\prime}, y^{\prime}\right)$ and

$$
\begin{aligned}
\left\langle[h(0,0)-h(x, y)]^{2}\right\rangle & =\langle h(0,0)\rangle^{2}-2\langle h(0,0)\rangle\langle h(x, y)\rangle+\langle h(x, y)\rangle^{2} \\
& =2\left\langle h^{2}\right\rangle
\end{aligned}
$$

This quantity is simply related to the rms roughness, σ by $\sigma^{2}=\left\langle h^{2}\right\rangle$ and the cross-section is given by

$$
\begin{aligned}
\left(\frac{d \sigma}{d \Omega}\right) & =\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} \int e^{-Q_{z}^{2}\left\langle h^{2}\right\rangle / 2} e^{i Q_{x} x} e^{i Q_{y} y} d x d y \\
& =\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} e^{-Q_{z}^{2} \sigma^{2}} \int e^{i Q_{x} x} e^{i Q_{y} y} d x d y
\end{aligned}
$$

Which, apart from the term containing σ is simply the Fresnel cross-section for a flat surface

$$
\left(\frac{d \sigma}{d \Omega}\right)=\left(\frac{d \sigma}{d \Omega}\right)_{\text {Fresnel }} e^{-Q_{z}^{2} \sigma^{2}}
$$

Surface roughness effect

$$
\left(\frac{d \sigma}{d \Omega}\right)=\left(\frac{d \sigma}{d \Omega}\right)_{\text {Fresnel }} e^{-Q_{z}^{2} \sigma^{2}}
$$

Surface roughness effect

$$
\left(\frac{d \sigma}{d \Omega}\right)=\left(\frac{d \sigma}{d \Omega}\right)_{\text {Fresnel }} e^{-Q_{z}^{2} \sigma^{2}}
$$

for a perfectly flat surface, we get the Fresnel reflectivity derived for a thin slab

Surface roughness effect

$\left(\frac{d \sigma}{d \Omega}\right)=\left(\frac{d \sigma}{d \Omega}\right)_{\text {Fresnel }} e^{-Q_{z}^{2} \sigma^{2}}$
for a perfectly flat surface, we get the Fresnel reflectivity derived for a thin slab
for an uncorrelated rough surface, the reflectivity is reduced by an exponential factor controlled by the rms surface roughness σ

Surface roughness effect

$$
\left(\frac{d \sigma}{d \Omega}\right)=\left(\frac{d \sigma}{d \Omega}\right)_{\text {Fresnel }} e^{-Q_{z}^{2} \sigma^{2}}
$$

for a perfectly flat surface, we get the Fresnel reflectivity derived for a thin slab
for an uncorrelated rough surface, the reflectivity is reduced by an exponential factor controlled by the rms surface roughness σ

Correlated surfaces

Assume that height fluctuations are isotropically correlated in the $x-y$ plane. Therefore, $g(x, y)=g(r)=g\left(\sqrt{x^{2}+y^{2}}\right)$.

Correlated surfaces

Assume that height fluctuations are isotropically correlated in the $x-y$ plane. Therefore, $g(x, y)=g(r)=g\left(\sqrt{x^{2}+y^{2}}\right)$.
In the limit that the correlations are unbounded as $r \rightarrow \infty, g(x, y)$ is given by

$$
g(x, y)=\mathcal{A} r^{2 h}
$$

where h is a fractal parameter which defines the shape of the surface.

Correlated surfaces

Assume that height fluctuations are isotropically correlated in the $x-y$ plane. Therefore, $g(x, y)=g(r)=g\left(\sqrt{x^{2}+y^{2}}\right)$.
In the limit that the correlations are unbounded as $r \rightarrow \infty, g(x, y)$ is given by

$$
g(x, y)=\mathcal{A} r^{2 h}
$$

where h is a fractal parameter which defines the shape of the surface. jagged surface for $h \ll 1$

Correlated surfaces

Assume that height fluctuations are isotropically correlated in the $x-y$ plane. Therefore, $g(x, y)=g(r)=g\left(\sqrt{x^{2}+y^{2}}\right)$.
In the limit that the correlations are unbounded as $r \rightarrow \infty, g(x, y)$ is given by

$$
g(x, y)=\mathcal{A} r^{2 h}
$$

where h is a fractal parameter which defines the shape of the surface. jagged surface for $h \ll 1 \quad$ smoother surface for $h \rightarrow 1$

Correlated surfaces

Assume that height fluctuations are isotropically correlated in the $x-y$ plane. Therefore, $g(x, y)=g(r)=g\left(\sqrt{x^{2}+y^{2}}\right)$.
In the limit that the correlations are unbounded as $r \rightarrow \infty, g(x, y)$ is given by

$$
g(x, y)=\mathcal{A} r^{2 h}
$$

where h is a fractal parameter which defines the shape of the surface. jagged surface for $h \ll 1 \quad$ smoother surface for $h \rightarrow 1$ If the resolution in the y direction is very broad (typical for a synchrotron), we can eliminate the y-integral and have

Correlated surfaces

Assume that height fluctuations are isotropically correlated in the $x-y$ plane. Therefore, $g(x, y)=g(r)=g\left(\sqrt{x^{2}+y^{2}}\right)$.
In the limit that the correlations are unbounded as $r \rightarrow \infty, g(x, y)$ is given by

$$
g(x, y)=\mathcal{A} r^{2 h}
$$

where h is a fractal parameter which defines the shape of the surface. jagged surface for $h \ll 1 \quad$ smoother surface for $h \rightarrow 1$

If the resolution in the y direction is very broad (typical for a synchrotron), we can eliminate the y-integral and have

$$
\left(\frac{d \sigma}{d \Omega}\right)=\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} \int e^{-\mathcal{A} Q_{z}^{2}|x|^{2 h} / 2} \cos \left(Q_{x} x\right) d x
$$

Unbounded correlations - limiting cases

This integral can be evaluated in closed form for two special cases, both having a broad diffuse scattering and no specular peak.

Unbounded correlations - limiting cases

This integral can be evaluated in closed form for two special cases, both having a broad diffuse scattering and no specular peak.
$h=1 / 2$
$\left(\frac{d \sigma}{d \Omega}\right)=\left(\frac{A_{0} r_{0}^{2} \rho^{2}}{2 \sin \theta_{1}}\right) \frac{\mathcal{A}}{\left(Q_{X}^{2}+(\mathcal{A} / 2)^{2} Q_{z}^{4}\right)}$

Unbounded correlations - limiting cases

This integral can be evaluated in closed form for two special cases, both having a broad diffuse scattering and no specular peak.
$h=1 / 2$
$\left(\frac{d \sigma}{d \Omega}\right)=\left(\frac{A_{0} r_{0}^{2} \rho^{2}}{2 \sin \theta_{1}}\right) \frac{\mathcal{A}}{\left(Q_{X}^{2}+(\mathcal{A} / 2)^{2} Q_{Z}^{4}\right)}$
Lorentzian with half-width $\mathcal{A} Q_{z}^{2} / 2$

Unbounded correlations - limiting cases

This integral can be evaluated in closed form for two special cases, both having a broad diffuse scattering and no specular peak.
$h=1 / 2$
$\left(\frac{d \sigma}{d \Omega}\right)=\left(\frac{A_{0} r_{0}^{2} \rho^{2}}{2 \sin \theta_{1}}\right) \frac{\mathcal{A}}{\left(Q_{x}^{2}+(\mathcal{A} / 2)^{2} Q_{Z}^{4}\right)}$
Lorentzian with half-width $\mathcal{A} Q_{z}^{2} / 2$

$h=1$
$\left(\frac{d \sigma}{d \Omega}\right)=\left(\frac{2 \sqrt{\pi} A_{0} r_{0}^{2} \rho^{2}}{2 \sin \theta_{1}}\right) \frac{1}{Q_{Z}^{4}} e^{-\frac{1}{2}\left(\frac{Q_{x}^{2}}{A Q_{Z}^{2}}\right)}$

Unbounded correlations - limiting cases

This integral can be evaluated in closed form for two special cases, both having a broad diffuse scattering and no specular peak.
$h=1 / 2$
$\left(\frac{d \sigma}{d \Omega}\right)=\left(\frac{A_{0} r_{0}^{2} \rho^{2}}{2 \sin \theta_{1}}\right) \frac{\mathcal{A}}{\left(Q_{x}^{2}+(\mathcal{A} / 2)^{2} Q_{Z}^{4}\right)}$
Lorentzian with half-width $\mathcal{A} Q_{z}^{2} / 2$

$h=1$
$\left(\frac{d \sigma}{d \Omega}\right)=\left(\frac{2 \sqrt{\pi} A_{0} r_{0}^{2} \rho^{2}}{2 \sin \theta_{1}}\right) \frac{1}{Q_{Z}^{4}} e^{-\frac{1}{2}\left(\frac{Q_{x}^{2}}{A Q_{Z}^{2}}\right)}$

Unbounded correlations - limiting cases

This integral can be evaluated in closed form for two special cases, both having a broad diffuse scattering and no specular peak.
$h=1 / 2$
$\left(\frac{d \sigma}{d \Omega}\right)=\left(\frac{A_{0} r_{0}^{2} \rho^{2}}{2 \sin \theta_{1}}\right) \frac{\mathcal{A}}{\left(Q_{x}^{2}+(\mathcal{A} / 2)^{2} Q_{z}^{4}\right)}$
Lorentzian with half-width $\mathcal{A} Q_{z}^{2} / 2$

$h=1$
$\left(\frac{d \sigma}{d \Omega}\right)=\left(\frac{2 \sqrt{\pi} A_{0} r_{0}^{2} \rho^{2}}{2 \sin \theta_{1}}\right) \frac{1}{Q_{Z}^{4}} e^{-\frac{1}{2}\left(\frac{Q_{x}^{2}}{A Q_{Z}^{2}}\right)}$
Gaussian with variance $\mathcal{A} Q_{z}^{2}$

Bounded correlations

If the correlations remain bounded as $r \rightarrow \infty$

Bounded correlations

If the correlations remain bounded as $r \rightarrow \infty$

$$
g(x, y)=2\left\langle h^{2}\right\rangle-2\langle h(0,0) h(x \cdot y)\rangle=2 \sigma^{2}-2 C(x, y)
$$

where

$$
C(x, y)=\sigma^{2} e^{-(r / \xi)^{2 h}}
$$

Bounded correlations

If the correlations remain bounded as $r \rightarrow \infty$

$$
g(x, y)=2\left\langle h^{2}\right\rangle-2\langle h(0,0) h(x \cdot y)\rangle=2 \sigma^{2}-2 C(x, y)
$$

where

$$
C(x, y)=\sigma^{2} e^{-(r / \xi)^{2 h}}
$$

$$
\left(\frac{d \sigma}{d \Omega}\right)=\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} e^{-Q_{z}^{2} \sigma^{2}} \int e^{Q_{z}^{2} C(x, y)} e^{i Q_{x} x} e^{i Q_{y} y} d x d y
$$

Bounded correlations

If the correlations remain bounded as $r \rightarrow \infty$

$$
g(x, y)=2\left\langle h^{2}\right\rangle-2\langle h(0,0) h(x . y)\rangle=2 \sigma^{2}-2 C(x, y)
$$

where

$$
C(x, y)=\sigma^{2} e^{-(r / \xi)^{2 h}}
$$

$$
\begin{aligned}
\left(\frac{d \sigma}{d \Omega}\right) & =\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} e^{-Q_{z}^{2} \sigma^{2}} \int e^{Q_{z}^{2} C(x, y)} e^{i Q_{x} x} e^{i Q_{y} y} d x d y \\
& =\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} e^{-Q_{z}^{2} \sigma^{2}} \int\left[e^{Q_{z}^{2} C(x, y)}-1+1\right] e^{i Q_{x} x} e^{i Q_{y} y} d x d y
\end{aligned}
$$

Bounded correlations

If the correlations remain bounded as $r \rightarrow \infty$

$$
g(x, y)=2\left\langle h^{2}\right\rangle-2\langle h(0,0) h(x . y)\rangle=2 \sigma^{2}-2 C(x, y)
$$

where

$$
C(x, y)=\sigma^{2} e^{-(r / \xi)^{2 h}}
$$

$$
\begin{aligned}
\left(\frac{d \sigma}{d \Omega}\right) & =\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} e^{-Q_{z}^{2} \sigma^{2}} \int e^{Q_{z}^{2} C(x, y)} e^{i Q_{x} x} e^{i Q_{y} y} d x d y \\
& =\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} e^{-Q_{z}^{2} \sigma^{2}} \int\left[e^{Q_{z}^{2} C(x, y)}-1+1\right] e^{i Q_{x} x} e^{i Q_{y} y} d x d y
\end{aligned}
$$

Bounded correlations

If the correlations remain bounded as $r \rightarrow \infty$

$$
g(x, y)=2\left\langle h^{2}\right\rangle-2\langle h(0,0) h(x . y)\rangle=2 \sigma^{2}-2 C(x, y)
$$

where

$$
C(x, y)=\sigma^{2} e^{-(r / \xi)^{2 h}}
$$

$$
\begin{aligned}
\left(\frac{d \sigma}{d \Omega}\right) & =\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} e^{-Q_{z}^{2} \sigma^{2}} \int e^{Q_{z}^{2} C(x, y)} e^{i Q_{x} x} e^{i Q_{y} y} d x d y \\
& =\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} e^{-Q_{z}^{2} \sigma^{2}} \int\left[e^{Q_{z}^{2} C(x, y)}-1+1\right] e^{i Q_{x} x} e^{i Q_{y} y} d x d y \\
& =\left(\frac{d \sigma}{d \Omega}\right)_{\text {Fresnel }} e^{-Q_{z}^{2} \sigma^{2}}+\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} e^{-Q_{z}^{2} \sigma^{2}} F_{\text {diffuse }}(\vec{Q})
\end{aligned}
$$

Bounded correlations

If the correlations remain bounded as $r \rightarrow \infty$

$$
g(x, y)=2\left\langle h^{2}\right\rangle-2\langle h(0,0) h(x . y)\rangle=2 \sigma^{2}-2 C(x, y)
$$

where

$$
C(x, y)=\sigma^{2} e^{-(r / \xi)^{2 h}}
$$

$$
\begin{aligned}
\left(\frac{d \sigma}{d \Omega}\right) & =\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} e^{-Q_{z}^{2} \sigma^{2}} \int e^{Q_{z}^{2} C(x, y)} e^{i Q_{x} x} e^{i Q_{y} y} d x d y \\
& =\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} e^{-Q_{z}^{2} \sigma^{2}} \int\left[e^{Q_{z}^{2} C(x, y)}-1+1\right] e^{i Q_{x} x} e^{i Q_{y} y} d x d y \\
& =\left(\frac{d \sigma}{d \Omega}\right)_{\text {Fresnel }} e^{-Q_{z}^{2} \sigma^{2}}+\left(\frac{r_{0} \rho}{Q_{z}}\right)^{2} \frac{A_{0}}{\sin \theta_{1}} e^{-Q_{z}^{2} \sigma^{2}} F_{\text {diffuse }}(\vec{Q})
\end{aligned}
$$

And the scattering exhibits both a specular peak, reduced by uncorrelated roughness, and diffuse scattering from the correlated portion of the surface

