
Today’s Outline - September 19, 2016

• Reflection from a thin slab

• Kiessig fringes

• Kinematical approximation for a thin slab

• Multilayers in the kinematical regime

• Parratt’s exact recursive calculation
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Fresnel equation review

The scattering vector (or momen-
tum transfer) is given by

and for small angles

similarly for the critical angle we de-
fine

defining a reduced scattering vector

Q =
4π

λ
sinα = 2k sinα

≈ 2kα

Qc = 2k sinαc ≈ 2kαc

q =
Q

Qc
≈ 2k

Qc
α, q′ ≈ 2k

Qc
α′

the three defining optical equations become

Snell’s Law

Fresnel equations

q2 = q′2 + 1− 2ibµ, bµ =
2k

Q2
c

µ

r =
q − q′

q + q′
, t =

2q

q + q′
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Limiting cases - q � 1

Start by rearranging Snell’s Law

and since q is real by definition,
when q � 1

this implies Re(q′) ≈ q, while the
imaginary part can be computed by
assuming

Comparing to the equation above
gives

The reflection and transmission co-
efficients are thus

q2= q′ 2 + 1− 2ibµ

q′ 2 = q2 − 1 + 2ibµ

q′ 2 ≈ q2 + 2ibµ

q′ = q + i Im(q′)

q′ 2 = q2

(
1 + i

Im(q′)

q

)2

≈ q2 + 2iq Im(q′)

Im(q′)q ≈ bµ → Im(q′) ≈ bµ
q

r =
(q − q′)(q + q′)

(q + q′)(q + q′)
=

q2 − q′ 2

(q + q′)2
≈ 1

(2q)2
, t =

2q

q + q′
≈ 1 , Λ ≈ α

µ

reflected wave in phase with incident, almost total transmission
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assuming

Comparing to the equation above
gives

The reflection and transmission co-
efficients are thus

q2= q′ 2 + 1− 2ibµ

q′ 2 = q2 − 1 + 2ibµ

q′ 2 ≈ q2 + 2ibµ

q′ = q + i Im(q′)

q′ 2 = q2

(
1 + i

Im(q′)

q

)2

≈ q2 + 2iq Im(q′)

Im(q′)q ≈ bµ → Im(q′) ≈ bµ
q

r =
(q − q′)(q + q′)

(q + q′)(q + q′)
=

q2 − q′ 2

(q + q′)2
≈ 1

(2q)2
, t =

2q

q + q′
≈ 1 , Λ ≈ α

µ
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Limiting cases - q � 1

When q � 1

, q′ is mostly imagi-
nary with magnitude 1 since bµ is
very small

Thus the reflection and transmis-
sion coefficients become

THIS IS A SPACER

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

q′ 2 ≈ −1

q′ ≈ i

r=
(q − q′)

(q + q′)
≈ −q

′

+q′
= −1

t=
2q

q + q′
≈ 2q

q′
= −2iq

Λ ≈ 1

Qc

The reflected wave is out of phase with the incident wave, there is only
small transmission in the form of an evanescent wave, and the penetration
depth is very short.
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Limiting cases - q ∼ 1

If q ∼ 1,

adding and subtracting
bµ, yields that q′ is complex with
real and imaginary parts of equal
magnitude.

Since
√

bµ � 1, the reflection and
transmission coefficients become

q2= q′ 2 + 1− 2ibµ

q′2 = q2 − 1 + 2ibµ

q′ 2 ≈ 2ibµ = bµ(1 + 2i − 1)

= bµ(1 + i)2

q′ ≈
√

bµ(1 + i)

r=
(q − q′)

(q + q′)
≈ q

q
≈ 1

t=
2q

q + q′
≈ 2q

q
= 2

Λ ≈ 1

Qc Im(q′)
≈ 1

Qc

√
bµ

The reflected wave is in phase with the incident, there is significant (larger
amplitude than the reflection) transmission with a large penetration depth.
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Review of interface effects

We have covered the interface boundary conditions which govern the
transmission and reflection of waves at a change in medium.

These result
in the Fresnel equations which we rewrite here in terms of the momentum
transfer.

n
0

n
1

r=
Q − Q ′

Q + Q ′

t=
2Q

Q + Q ′

We have assumed that the transmitted wave eventually attenuates to zero
in all cases due to absorption. We now consider what happens if there is a
second interface encountered by the transmitted wave before it dies away.
That is, a thin slab of material on top of an infinite substrate
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Reflection and transmission coefficients

For a slab of thickness ∆ on a substrate, the transmission and reflection
coefficients at each interface are labeled:

n
0

n
1

r
01

t
01

∆

r01 – reflection in n0 off n1

t01 – transmission from n0 into n1

r12 – reflection in n1 off n2

t12 – transmission from n1 into n2

r10 – reflection in n1 off n0

t10 – transmission from n1 into n0

Build the composite reflection coefficient from all possible events
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Overall reflection from a slab

The composite reflection coefficient for each ray emerging from the top
surface is computed

n
0

n
1

n
2

∆

r01

+
t01r12t10

· p2

+
t01r12r10r12t10

· p4

Inside the medium, the x-rays are travelling an additional 2∆ per traversal.
This adds a phase shift of

p2 = e i2(k1 sinα1)∆

= e iQ1∆

which multiplies the reflection coefficient with each pass through the slab
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Composite reflection coefficient

The composite reflection coefficient can now be expressed as a sum

rslab = r01 + t01r12t10p
2 + t01r10r

2
12t10p

4 + t01r
2
10r

3
12t10p

6 + · · ·

rslab = r01 + t01t10r12p
2
∞∑

m=0

(
r10r12p

2
)m

= r01 + t01t10r12p
2 1

1− r10r12p2

factoring out the second term
from all the rest

summing the geometric series
as previously

The individual reflection and transmission coefficients can be determined
using the Fresnel equations. Recall

r =
Q − Q ′

Q + Q ′
, t =

2Q

Q + Q ′
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Fresnel equation identity

Applying the Fresnel equations to the top interface

r01 =
Q0 − Q1

Q0 + Q1

r10 =
Q1 − Q0

Q1 + Q0
= −r01

t01 =
2Q0

Q0 + Q1

t10 =
2Q1

Q1 + Q0

we can, therefore, construct the following identity

r2
01 + t01t10 =

(Q0 − Q1)2

(Q0 + Q1)2
+

2Q0

Q0 + Q1

2Q1

Q1 + Q0

=
Q2

0 − 2Q0Q1 + Q2
1 + 4Q0Q1

(Q0 + Q1)2
=

Q2
0 + 2Q0Q1 + Q2

1

(Q0 + Q1)2
=

(Q0 + Q1)2

(Q0 + Q1)2
= 1
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Reflection coefficient of a slab

Starting with the reflection coefficient of the slab obtained earlier

rslab = r01 + t01t10r12p
2 1

1− r10r12p2

= r01 +
(
1− r2

01

)
r12p

2 1

1− r10r12p2

=
r01 + r2

01r12p
2 +

(
1− r2

01

)
r12p

2

1− r10r12p2

rslab =
r01 + r12p

2

1 + r01r12p2
=

r01

(
1− p2

)
1− r2

01p
2

Using the identity

t01t10 = 1− r2
01

Expanding over a com-
mon denominator and re-
calling that r10 = −r01.

In the case of n0 = n2

there is the further simpli-
fication of r12 = −r01.
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Kiessig fringes

p2 = e iQ1∆

rslab =
r01

(
1− p2

)
1− r2

01p
2

If we plot the reflectivity

Rslab = |rslab|2

These are Kiessig fringes which
arise from interference between
reflections at the top and bot-
tom of the slab. They have an
oscillation frequency

2π/∆ = 0.092Å
−1 0 0.2 0.4 0.6 0.8 1

Q (Å
-1

)

0

1

R
S

la
b

∆=68 Å
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Kinematical reflection from a thin slab

Recall the reflection coefficient for a thin slab.

If the slab is thin and we
are well above the critical angle refraction effects can be ignored and we
are in the “kinematical” regime.

rslab =
r01

(
1− p2

)
1− r2

01p
2

≈ r01

(
1− p2

)
= r01

(
1− e iQ∆

)
rslab ≈

(
Qc

2Q0

)2 (
1− e iQ∆

)

q � 1

|r01| � 1 α > αc

r01 =
q0 − q1

q0 + q1

q0 + q1

q0 + q1
=

q2
0 − q2

1

(q0 + q1)2

≈ 1

(2q0)2
=

(
Qc

2Q0

)2

rslab = −16πρro
4Q2

e iQ∆/2
(
e iQ∆/2 − e−iQ∆/2

)
= −i

(
4πρr0∆

Q

)
�
���

��sin(Q∆/2)

Q∆/2
����
e iQ∆/2 ≈ −i λρro∆

sinα
= rthin slab

Since Q∆� 1 for a thin slab
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Multilayers in the kinematical regime

Λ1

2

3

N

.

.

.

.

.

.

.

θ θ
N repetitions of a bilayer of thickness Λ
composed of two materials, A and B which
have a density contrast (ρA > ρB).

r1 is the reflectivity of a single bilayer

β is the average absorption per bilayer

ζ = QΛ/2π is a dimensionless parameter
related to the phase shift of a single bilayer

Form a stack of N bilayers

rN(ζ) =
N−1∑
ν=0

r1(ζ)e i2πζνe−βν = r1(ζ)
1− e i2πζNe−βN

1− e i2πζe−β

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 14 / 18



Multilayers in the kinematical regime

Λ1

2

3

N

.

.

.

.

.

.

.

θ θ
N repetitions of a bilayer of thickness Λ
composed of two materials, A and B which
have a density contrast (ρA > ρB).

r1 is the reflectivity of a single bilayer

β is the average absorption per bilayer

ζ = QΛ/2π is a dimensionless parameter
related to the phase shift of a single bilayer

Form a stack of N bilayers

rN(ζ) =
N−1∑
ν=0

r1(ζ)e i2πζνe−βν = r1(ζ)
1− e i2πζNe−βN

1− e i2πζe−β

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 14 / 18



Multilayers in the kinematical regime

Λ1

2

3

N

.

.

.

.

.

.

.

θ θ
N repetitions of a bilayer of thickness Λ
composed of two materials, A and B which
have a density contrast (ρA > ρB).

r1 is the reflectivity of a single bilayer

β is the average absorption per bilayer

ζ = QΛ/2π is a dimensionless parameter
related to the phase shift of a single bilayer

Form a stack of N bilayers

rN(ζ) =
N−1∑
ν=0

r1(ζ)e i2πζνe−βν = r1(ζ)
1− e i2πζNe−βN

1− e i2πζe−β

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 14 / 18



Multilayers in the kinematical regime

Λ1

2

3

N

.

.

.

.

.

.

.

θ θ
N repetitions of a bilayer of thickness Λ
composed of two materials, A and B which
have a density contrast (ρA > ρB).

r1 is the reflectivity of a single bilayer

β is the average absorption per bilayer

ζ = QΛ/2π is a dimensionless parameter
related to the phase shift of a single bilayer

Form a stack of N bilayers

rN(ζ) =
N−1∑
ν=0

r1(ζ)e i2πζνe−βν = r1(ζ)
1− e i2πζNe−βN

1− e i2πζe−β

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 14 / 18



Multilayers in the kinematical regime

Λ1

2

3

N

.

.

.

.

.

.

.

θ θ
N repetitions of a bilayer of thickness Λ
composed of two materials, A and B which
have a density contrast (ρA > ρB).

r1 is the reflectivity of a single bilayer

β is the average absorption per bilayer

ζ = QΛ/2π is a dimensionless parameter
related to the phase shift of a single bilayer

Form a stack of N bilayers

rN(ζ) =
N−1∑
ν=0

r1(ζ)e i2πζνe−βν

= r1(ζ)
1− e i2πζNe−βN

1− e i2πζe−β

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 14 / 18



Multilayers in the kinematical regime

Λ1

2

3

N

.

.

.

.

.

.

.

θ θ
N repetitions of a bilayer of thickness Λ
composed of two materials, A and B which
have a density contrast (ρA > ρB).

r1 is the reflectivity of a single bilayer

β is the average absorption per bilayer

ζ = QΛ/2π is a dimensionless parameter
related to the phase shift of a single bilayer

Form a stack of N bilayers

rN(ζ) =
N−1∑
ν=0

r1(ζ)e i2πζνe−βν = r1(ζ)
1− e i2πζNe−βN

1− e i2πζe−β

C. Segre (IIT) PHYS 570 - Fall 2016 September 19, 2016 14 / 18



Reflectivity of a bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivity
developed for a slab but replacing the density of the slab material with the
difference in densities of the bilayer components

and assuming that
material A is a fraction Γ of the bilayer thickness

ρ −→ ρAB = ρA − ρB

r1(ζ) = −i λroρAB
sin θ

∫ +ΓΛ/2

−ΓΛ/2
e i2πζz/Λdz

= −i λroρAB
sin θ

Λ

i2πζ

[
e iπζΓ − e−iπζΓ

]

r1 = −2iroρAB

(
Λ2Γ

ζ

)
sin (πΓζ)

πΓζ

e ix − e−ix = 2i sin x

Q = 4π sin θ/λ = 2πζ/Λ
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Absorption coefficient of a bilayer

The total reflectivity for the multilayer is therefore:

rN = −2iroρAB

(
Λ2Γ

ζ

)
sin (πΓζ)

πΓζ

1− e i2πζNe−βN

1− e i2πζe−β

The incident x-ray has a path length Λ/ sin θ in a bilayer, a fraction Γ
through nA and a fraction (1− Γ) through nB . The amplitude absorption
coefficient, β is

β = 2

[
µA
2

ΓΛ

sin θ
+
µB
2

(1− Γ)Λ

sin θ

]
=

Λ

sin θ
[µAΓ + µB(1− Γ)]
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Reflectivity calculation
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• As N becomes larger, these
peaks would become more
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• This is effectively a
diffraction grating for
x-rays

• Multilayers are used
commonly on laboratory
sources as well as at
synchrotrons as mirrors
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Slab - multilayer comparison
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