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Thin plate response - scattering approach

Consider a thin plate of thickness A onto which x-rays are incident from a
point source S a perpendicular distance Ry away.
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Thin plate response - scattering approach

R is also the distance between the scattering volume and P so, a wave
(x-ray) which travels from S — P through the scattering volume will have
an extra phase shift

\\\W‘*///
S Ry R, / / P

——A
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Thin plate response - scattering approach
R is also the distance between the scattering volume and P so, a wave
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Thin plate response - scattering approach
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Thin plate response - refraction approach

Now let's look at this phenomenon from a different point of view, that of
refraction.
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Calculating n

We can now compare the expressions obtained by the scattering and
refraction approaches.
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Calculating n

We can now compare the expressions obtained by the scattering and
refraction approaches.

Scattering

2mpbA
w”zwé’[l—:”’; ]

Refraction

PP =yb [14i(n—1)kA]

By inspection we have
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Index of refraction & critical angle

Now that we have an expression for the index of refraction, we can
examine the consequences and estimate it's magnitude.
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Index of refraction & critical angle

Now that we have an expression for the index of refraction, we can
examine the consequences and estimate it's magnitude.

Consider an x-ray incident on an interface at angle o to the surface which
is refracted into the medium of index n, at angle as.

Applying Snell’'s Law, and assuming
that the incident medium is air (vac-
uum).

If we now apply the known form of
the index of refraction for the medium

(n2 =1- (5)
Ny COS (x1 = Ny COS (o
COS vy = N» COS (vn When the incident angle becomes small
cosay = (1 — §)cos enou-gh, there will be total external re-
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Estimation of critical angle

1— 0 =cosac,

C. Segre (IIT) PHYS 570 - Fall 2016 September 14, 2016 8 /18



Estimation of critical angle

1—0 = cosac
2
. - (07
For small angles, the cosine 1-0=1- >

function can expanded

C. Segre (IIT) PHYS 570 - Fall 2016 September 14, 2016 8 /18



Estimation of critical angle

1— 0 =cosac,

2
For small angles, the cosine 1—-6=1-— azc N
function can expanded 5
1 om~1- e
2

C. Segre (IIT) PHYS 570 - Fall 2016 September 14, 2016 8 /18



Estimation of critical angle
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Estimation of critical angle

For small angles, the cosine
function can expanded to give
a simple relation for the critical
angle
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Estimation of critical angle
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For small angles, the cosine 1 5=1-2% + -
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a simple relation for the critical 1-§r1- 2
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If & ~ 1072, then the critical
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Estimation of critical angle

For small angles, the cosine
function can expanded to give
a simple relation for the critical
angle

If & ~ 1072, then the critical
angle is
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Connection to atomic scattering

So far, we have made the assumption that the charge distribution is
uniform. We know that this is not correct, and that usually electron
charge distributions are those of the atoms making up the solid.

2mpbA
P P £TP
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Connection to atomic scattering

So far, we have made the assumption that the charge distribution is
uniform. We know that this is not correct, and that usually electron
charge distributions are those of the atoms making up the solid.
Therefore, it is useful to replace the uniform charge distribution, p, with a
more realistic one, including the atom distribution p:

WP = [1 B I,27prA}

k
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Connection to atomic scattering

So far, we have made the assumption that the charge distribution is
uniform. We know that this is not correct, and that usually electron
charge distributions are those of the atoms making up the solid.
Therefore, it is useful to replace the uniform charge distribution, p, with a
more realistic one, including the atom distribution p:

2mpbA

P_ P |q_ :4TP

vt =t [1 Tk } This holds for forward scattering
p = pafo(6 = 90°) (0 = 90° or v = 0°) only, and a

correction term of sin @ is needed if

the viewing angle is different.
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Connection to atomic scattering

So far, we have made the assumption that the charge distribution is
uniform. We know that this is not correct, and that usually electron
charge distributions are those of the atoms making up the solid.
Therefore, it is useful to replace the uniform charge distribution, p, with a
more realistic one, including the atom distribution p:

2mpbA

P_ Plq_ ;TP

v = [1 Tk } This holds for forward scattering
p = pafo(6 = 90°) k =21/ (6 = 90° or ¢» = 0°) only, and a

correction term of sin @ is needed if

the viewing angle is different.
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Connection to atomic scattering

So far, we have made the assumption that the charge distribution is
uniform. We know that this is not correct, and that usually electron
charge distributions are those of the atoms making up the solid.
Therefore, it is useful to replace the uniform charge distribution, p, with a
more realistic one, including the atom distribution p:

2mpbA
P_ Plq_ ;TP
v = [1 Tk } This holds for forward scattering

p = pafo(6 = 90°) k =21/ (6 = 90° or ¢» = 0°) only, and a
correction term of sin 6 is needed if
the viewing angle is different.
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Connection to atomic scattering

So far, we have made the assumption that the charge distribution is
uniform. We know that this is not correct, and that usually electron
charge distributions are those of the atoms making up the solid.
Therefore, it is useful to replace the uniform charge distribution, p, with a
more realistic one, including the atom distribution p:

2mpbA

P_ P4 _ :4TP

v = [1 Tk } This holds for forward scattering
p = pafo(6 = 90°) k =21/ (6 = 90° or ¢» = 0°) only, and a

correction term of sin 6 is needed if

the viewing angle is different.

The second term is nothing more
than a phase shift to the electro-
magnetic wave.

0
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sin 6
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Connection to atomic scattering

So far, we have made the assumption that the charge distribution is
uniform. We know that this is not correct, and that usually electron
charge distributions are those of the atoms making up the solid.
Therefore, it is useful to replace the uniform charge distribution, p, with a
more realistic one, including the atom distribution p:

2mpbA

P_ P4 _ :4TP

v = [1 Tk } This holds for forward scattering
p = pafo(6 = 90°) k =21/ (6 = 90° or ¢» = 0°) only, and a

correction term of sin 6 is needed if

the viewing angle is different.

The second term is nothing more
than a phase shift to the electro-
magnetic wave.
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Absorption term in n

Since the actual scattering factor of an atom has anomalous terms,
f(Q) = fO(Q) + ' + if”, we must include an absorption term in the
model for the index of refraction.
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Absorption term in n

Since the actual scattering factor of an atom has anomalous terms,
f(Q) = fO(Q) + ' + if”, we must include an absorption term in the
model for the index of refraction.

n=1-0+if
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Absorption term in n

Since the actual scattering factor of an atom has anomalous terms,

f(Q) = fo(Q) + " + if”, we must include an absorption term in the
model for the index of refraction.

Begin with Beer's Law for absorp-
tion n=1—-0+1ip
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model for the index of refraction.

Begin with Beer's Law for absorp-
tion n=1—-0+1ip
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Absorption term in n

Since the actual scattering factor of an atom has anomalous terms,
f(Q) = fO(Q) + ' + if”, we must include an absorption term in the
model for the index of refraction.

Begin with Beer's Law for absorp-
tion n=1—-0+1ip

In the refractive approach, the

— —pz
phase shift caused by a medium is I(2) = loe
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Absorption term in n

Since the actual scattering factor of an atom has anomalous terms,

f(Q) = fo(Q) + " + if”, we must include an absorption term in the

model for the index of refraction.

Begin with Beer's Law for absorp-
tion

In the refractive approach, the
phase shift caused by a medium is
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Absorption term in n

Since the actual scattering factor of an atom has anomalous terms,
f(Q) = fO(Q) + ' + if”, we must include an absorption term in the
model for the index of refraction.

Begin with Beer's Law for absorp-
tion n=1—-0+1ip

In the .refractlve approach, the I(2) = lpe "
phase shift caused by a medium is

The real exponential can be com- einkz _ qi
pared with Beer's Law, noting

that intensity is proportional to the

square of the wave function

1—6)kze—6kz
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Absorption term in n

Since the actual scattering factor of an atom has anomalous terms,
f(Q) = fO(Q) + ' + if”, we must include an absorption term in the
model for the index of refraction.

Begin with Beer's Law for absorp-
tion n=1—-0+1ip

In the .refractive approach, the I(2) = lpe "
phase shift caused by a medium is

The real exponential can be com-
pared with Beer's Law, noting
that intensity is proportional to the "

square of the wave function w=2Bk — B= P

elnkz — el(l—é)kze—ﬁkz
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Absorption term in n

The absorptive term in the index of refraction is directly related to the f”
term in the atomic scattering factor:

C. Segre (IIT) PHYS 570 - Fall 2016 September 14, 2016 11 /18



Absorption term in n

The absorptive term in the index of refraction is directly related to the f”
term in the atomic scattering factor:

2
— S0 [R(Q) + F + if]

n=1 2
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Absorption term in n

The absorptive term in the index of refraction is directly related to the f”
term in the atomic scattering factor:

27
n=1-— lf;fo [fO(Q) +f + if"]
27patoy 2T Paly
1 k2 [fO( Q) f/] j k2 fl/
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Absorption term in n

The absorptive term in the index of refraction is directly related to the f”
term in the atomic scattering factor:

2
n=1- Wkp;ro [F2(Q) + ' + if"]
27Pato 2T Paly
=1- P [fo(Q)+f’} — i 12 f
=1- 0
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Absorption term in n

The absorptive term in the index of refraction is directly related to the f”

term in the atomic scattering factor:

2
n=1- 20 Q)+ +if]
2TPalo ¢ 0 2T Paly
=1- 20 [(Q) + 1] - i
—1- 5 + B
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Absorption term in n

The absorptive term in the index of refraction is directly related to the f”

term in the atomic scattering factor:

2Tparoy .
n=1-=7=[(Q)+f +if"]
2TPalo ¢ 0 2T Paly
=1- P [f(Q)+f’}—/ 2 i
=1- 1) + g
2mpaf0(0
Since f9(0) > f’ in the forward o~ 7%1(2()r0
direction, we have
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Absorption term in n

The absorptive term in the index of refraction is directly related to the f”

term in the atomic scattering factor:

2
n=1- 20 Q)+ +if]
27Pato 2T paro
=1-—3 [FO(Q)+f] —i e f
=1- ) + B

Since f°(0) > f’ in the forward
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Absorption term in n

The absorptive term in the index of refraction is directly related to the f”

term in the atomic scattering factor:
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Electromagnetic Boundary Conditions

Maxwell’s equations require that an electromagnetic wave and its
derivative be continuous in all directions at any interface. This condition
places restrictions on the waves which exist at any interface:

kg z

o
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Electromagnetic Boundary Conditions

Maxwell’s equations require that an electromagnetic wave and its
derivative be continuous in all directions at any interface. This condition
places restrictions on the waves which exist at any interface:

v Z
ke -
o ) = a;e’™"  incident wave

C. Segre (IIT) PHYS 570 - Fall 2016 September 14, 2016 12 /18



Electromagnetic Boundary Conditions

Maxwell’s equations require that an electromagnetic wave and its
derivative be continuous in all directions at any interface. This condition
places restrictions on the waves which exist at any interface:

-> Z —_
Ky Kr .
k-7 ..
o o = aje’™ incident wave
ikp'?

YR = are reflected wave
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Electromagnetic Boundary Conditions

Maxwell’s equations require that an electromagnetic wave and its
derivative be continuous in all directions at any interface. This condition
places restrictions on the waves which exist at any interface:

¥y = 27T incident wave

Vg = age’*RT  reflected wave

Y7 = are’*™T  transmitted wave
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Electromagnetic Boundary Conditions

Maxwell’s equations require that an electromagnetic wave and its
derivative be continuous in all directions at any interface. This condition
places restrictions on the waves which exist at any interface:

¥y = 27T incident wave
Vg = age’*RT  reflected wave
Y7 = are’*™T  transmitted wave

which leads to conditions on the
amplitudes and the wave vec-
tors of the waves at z = 0.
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Electromagnetic Boundary Conditions

Maxwell’s equations require that an electromagnetic wave and its
derivative be continuous in all directions at any interface. This condition
places restrictions on the waves which exist at any interface:

P = a/e"’;’? incident wave
YR = aRe"k}'F reflected wave
Yr = aTeik}'F transmitted wave
which leads to conditions on the
amplitudes and the wave vec- ar =a;+ar

tors of the waves at z = 0.
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Electromagnetic Boundary Conditions

Maxwell’s equations require that an electromagnetic wave and its
derivative be continuous in all directions at any interface. This condition
places restrictions on the waves which exist at any interface:

P = a/e"’;’? incident wave
YR = aRe"k}'F reflected wave
Yr = aTeik}'F transmitted wave
which leads to conditions on the
amplitudes and the wave vec- ar =a;+ar

tors of the waves at z = 0. - o e
a-,-k-,- = a/k/ + aRkR
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Electromagnetic Boundary Conditions

Maxwell’s equations require that an electromagnetic wave and its
derivative be continuous in all directions at any interface. This condition
places restrictions on the waves which exist at any interface:

P = a/e"’;’? incident wave
YR = aRe"k}'F reflected wave
Yr = aTeik}'F transmitted wave
which leads to conditions on the
amplitudes and the wave vec- ar =a;+ar

tors of the waves at z = 0.

. arkr = ajki + arkr
Taking vector components:
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Electromagnetic Boundary Conditions

Maxwell’s equations require that an electromagnetic wave and its
derivative be continuous in all directions at any interface. This condition
places restrictions on the waves which exist at any interface:

P = a/e"’;’? incident wave
YR = aRe"k}'F reflected wave
Yr = aTeik}'F transmitted wave
which leads to conditions on the
amplitudes and the wave vec- ar =a;+ar

tors of the waves at z = 0.

. arkr = ajki + arkr
Taking vector components:

arkr cosa’ = ajk; cos a + arkg cos o
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Electromagnetic Boundary Conditions

Maxwell’s equations require that an electromagnetic wave and its
derivative be continuous in all directions at any interface. This condition
places restrictions on the waves which exist at any interface:

P = a/e"’;’? incident wave
YR = aRe"k}'F reflected wave
Yr = aTeik}'F transmitted wave
which leads to conditions on the
amplitudes and the wave vec- ar =a;+ar

tors of the waves at z = 0.

. arkr = ajki + arkr
Taking vector components:

arkr cosa’ = ajk; cos a + arkg cos o

— arkysinad’ = —ajkysina + agkg sina
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Parallel Projection & Snell's Law

Starting with the equation for the
parallel projection of the field on
the surface and noting that
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Starting with the equation for the

parallel projection of the field on |kr| = |ki| = k

the surface and noting that
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Parallel Projection & Snell's Law

Starting with the equation for the . .
parallel projection of the field on |kr| = |ki| = k

in vacuum
the surface and noting that

|kt| = nk  in medium
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Parallel Projection & Snell's Law

Starting with the equation for the . .
parallel projection of the field on |kr| = |ki| = k

in vacuum
the surface and noting that

|kt| = nk  in medium

arnkcosa’ = ajk cosa + agk cos o
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Parallel Projection & Snell's Law

Starting with the equation for the . .
parallel projection of the field on |kr| = |ki| = k in vacuum

the surface and noting that |k7| = nk  in medium

Combining with the

amplitude  equation arnkcosa’ = ajk cosa + agk cos o
and cancelling

ar =a;t+ar
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Parallel Projection & Snell's Law

Starting with the equation for the . .
parallel projection of the field on |kr| = |ki| = k in vacuum

the surface and noting that |k7| = nk  in medium

Combining with the

amplitude  equation arnkcosa’ = ajk cosa + agk cos o
and cancelling

ar =a; + ar (aj + ag)ncosa’ = (a; + aR) cos

C. Segre (lIT) PHYS 570 - Fall 2016 September 14, 2016 13 /18



Parallel Projection & Snell's Law

Starting with the equation for the . .
parallel projection of the field on |kr| = |ki| = k in vacuum

the surface and noting that |k7| = nk  in medium

Combining with the
amplitude  equation arnkcosa’ = ajk cosa + agk cos o
and cancelling

ar =a; + ar (aj + ag)ncosa’ = (a; + aR) cos

This simply results in
Snell's Law cosa = ncos o’
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Parallel Projection & Snell's Law

Starting with the equation for the . .
parallel projection of the field on |kr| = |ki| = k in vacuum

the surface and noting that |k7| = nk  in medium

Combining with the
amplitude  equation arnkcosa’ = ajk cosa + agk cos o
and cancelling

ar =a; + ar (aj + ag)ncosa’ = (a; + aR) cos
This simply results in
Snell's Law which for cosa = ncosa’
small angles can be ex-
panded.
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Parallel Projection & Snell's Law

Starting with the equation for the . .
parallel projection of the field on |kr| = |ki| = k in vacuum

the surface and noting that |k7| = nk  in medium

Combining with the
amplitude  equation arnkcosa’ = ajk cosa + agk cos o
and cancelling

ar =a; + ar (aj + ag)ncosa’ = (a; + aR) cos
This simply results in
Snell's Law which for cosa = ncosa’
small angles can be ex- a2 _ a'?
panded. 1—7:(1—5+’5) 1—7
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Parallel Projection & Snell's Law

Starting with the equation for the . .
parallel projection of the field on |kr| = |ki| = k in vacuum

the surface and noting that |k7| = nk  in medium

Combining with the
amplitude  equation arnkcosa’ = ajk cosa + agk cos o
and cancelling

ar =a; + ar (aj + ag)ncosa’ = (a; + aR) cos
This simply results in
Snell's Law which for cosa = ncosa’
small angles can be ex- a2 _ a'?
panded. 1—7:(1—5+’5) 1—7

—a?=—-a'?2-25+2iB
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Parallel Projection & Snell's Law

Starting with the equation for the . .
parallel projection of the field on |kr| = |ki| = k in vacuum

the surface and noting that |k7| = nk  in medium

Combining with the
amplitude  equation arnkcosa’ = ajk cosa + agk cos o
and cancelling

ar =a; + ar (aj + ag)ncosa’ = (a; + aR) cos
This simply results in
Snell's Law which for cosa = ncosa’
small angles can be ex- a2 a'?
panded. 1—2:(1—5+’5)<1—2>
Recalling that —a?=—-a'?—-25+2i8

e = V20 o?=a'2+a?-2ip
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Perpendicular Projection & Fresnel Equations

Taking the perpendicular projection, substituting for the wave vectors
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Perpendicular Projection & Fresnel Equations

Taking the perpendicular projection, substituting for the wave vectors

— arkysinad’ = —ajksina + agkgr sina
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Perpendicular Projection & Fresnel Equations

Taking the perpendicular projection, substituting for the wave vectors

— arkysinad’ = —ajksina + agkgr sina

—arnksina’ = —(a; — ag)ksina
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Perpendicular Projection & Fresnel Equations

Taking the perpendicular projection, substituting for the wave vectors and
using the amplitude equation

— arkysinad’ = —ajk;sina + agkgr sina
- / .
- —arnksina’ = —(a; — ag)ksina
ar = a; + ar . )
(as + ar)nsina’ = (aj — ar)ksin«
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Perpendicular Projection & Fresnel Equations

Taking the perpendicular projection, substituting for the wave vectors and
using the amplitude equation

— arkysinad’ = —ajk;sina + agkgr sina
9y — a4+ —arnksind’ = —(a; — ag)ksina
T =245 Tar . .
(as + ar)nsina’ = (aj — ar)ksin«
d|] — ar nsin o
aj + ar sin «
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Perpendicular Projection & Fresnel Equations

Taking the perpendicular projection, substituting for the wave vectors and
using the amplitude equation

— arkysinad’ = —ajk;sina + agkgr sina
9y — a4+ —arnksind’ = —(a; — ag)ksina
T =245 Tar . .
(as + ar)nsina’ = (aj — ar)ksin«
aj—ar nsind/ o
= ~ n—

a; + ar sin «
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Perpendicular Projection & Fresnel Equations

Taking the perpendicular projection, substituting for the wave vectors and

using the amplitude equation

— aTkT sin Oé/ =

H /
— arnksina
ar = aj+ ar

(aj + ag)nsina’

—arkysina + agpkg sin o
—(a; — ar)ksina
(aj — ar)ksina

nsin o’ o o

a; — ar
taking n ~ 1 aj +ar
C. Segre (IIT) PHYS 570 - Fall 2016
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Perpendicular Projection & Fresnel Equations

Taking the perpendicular projection, substituting for the wave vectors and
using the amplitude equation

— arkysinad’ = —ajksina + agkg sina

9y — a4+ —arnksina’ = —(a; — ag)ksina

T =245 Tar . .
(a; + ag)nsina’ = (aj — ar)k sin«

aj—ar nsinad/ o o

= ~Nn—~ —

taking n~ 1 aj+ ar sin o o «

The Fresnel Equations
can now be derived
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Perpendicular Projection & Fresnel Equations

Taking the perpendicular projection, substituting for the wave vectors and
using the amplitude equation

— arkysinad’ = —ajksina + agkg sina

9y — a4+ —arnksina’ = —(a; — ag)ksina

T =245 Tar . .
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Reflectivity and Transmittivity

r and t are called the reflection and ar a—ad
transmission coefficients, respectively. r= a2 a+d
art 2«
t= — =

aj o+ o
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Wavevector Transfers

While it is physically easier to think of angles, a more useful parameter is
called the wavevector transfer.
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Wavevector Transfers

While it is physically easier to think of angles, a more useful parameter is
called the wavevector transfer.

Q =2ksina ~ 2ka
and for the critical angle
Qc = 2ksin o ~ 2ka
in dimensionless units, these become

Q _ 2k , Q2

Tt TR

g is a convenient parameter to use because it is a combination of two
parameters which are often varied in experiments, the angle of incidence «
and the wavenumber (energy) of the x-ray, k.
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Defining Equations in g

Start with the reduced ver-
sion of Snell’s Law

o®=a'?+a%-2ip
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Limiting Cases - ¢ > 1

Snell's Law in its reduced version
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can be rearranged qg°=q°+1-2ib,
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