
Today’s Outline - September 07, 2016

• Undulator harmonics

• Undulator coherence

• Emittance

• Time structure

• ERLs and FELs

Reading Assignment: Chapter 3.1–3.3
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Chapter Chapter 2: 2,3,5,6,8
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C. Segre (IIT) PHYS 570 - Fall 2016 September 07, 2016 1 / 26



Today’s Outline - September 07, 2016

• Undulator harmonics

• Undulator coherence

• Emittance

• Time structure

• ERLs and FELs

Reading Assignment: Chapter 3.1–3.3

Homework Assignment #01:
Chapter Chapter 2: 2,3,5,6,8
due Monday, September 12, 2016

C. Segre (IIT) PHYS 570 - Fall 2016 September 07, 2016 1 / 26



Today’s Outline - September 07, 2016

• Undulator harmonics

• Undulator coherence

• Emittance

• Time structure

• ERLs and FELs

Reading Assignment: Chapter 3.1–3.3

Homework Assignment #01:
Chapter Chapter 2: 2,3,5,6,8
due Monday, September 12, 2016

C. Segre (IIT) PHYS 570 - Fall 2016 September 07, 2016 1 / 26



Today’s Outline - September 07, 2016

• Undulator harmonics

• Undulator coherence

• Emittance

• Time structure

• ERLs and FELs

Reading Assignment: Chapter 3.1–3.3

Homework Assignment #01:
Chapter Chapter 2: 2,3,5,6,8
due Monday, September 12, 2016

C. Segre (IIT) PHYS 570 - Fall 2016 September 07, 2016 1 / 26



Today’s Outline - September 07, 2016

• Undulator harmonics

• Undulator coherence

• Emittance

• Time structure

• ERLs and FELs

Reading Assignment: Chapter 3.1–3.3

Homework Assignment #01:
Chapter Chapter 2: 2,3,5,6,8
due Monday, September 12, 2016

C. Segre (IIT) PHYS 570 - Fall 2016 September 07, 2016 1 / 26



Today’s Outline - September 07, 2016

• Undulator harmonics

• Undulator coherence

• Emittance

• Time structure

• ERLs and FELs

Reading Assignment: Chapter 3.1–3.3

Homework Assignment #01:
Chapter Chapter 2: 2,3,5,6,8
due Monday, September 12, 2016

C. Segre (IIT) PHYS 570 - Fall 2016 September 07, 2016 1 / 26



Today’s Outline - September 07, 2016

• Undulator harmonics

• Undulator coherence

• Emittance

• Time structure

• ERLs and FELs

Reading Assignment: Chapter 3.1–3.3

Homework Assignment #01:
Chapter Chapter 2: 2,3,5,6,8
due Monday, September 12, 2016

C. Segre (IIT) PHYS 570 - Fall 2016 September 07, 2016 1 / 26



Today’s Outline - September 07, 2016

• Undulator harmonics

• Undulator coherence

• Emittance

• Time structure

• ERLs and FELs

Reading Assignment: Chapter 3.1–3.3

Homework Assignment #01:
Chapter Chapter 2: 2,3,5,6,8
due Monday, September 12, 2016

C. Segre (IIT) PHYS 570 - Fall 2016 September 07, 2016 1 / 26



Undulator review

So far we have derived the following undulator parameters and their
relationships

the K parameter, a dimension-
less quantity which represents the
“strength” of the undulator

the fundamental wavelength of the
undulator, λ1

K =
e

2πmc
λuB0

= 0.934λu[cm]B0[T]

λ1 ≈
λu
2γ2

(
1 +

K 2

2

)
Now let us look at the higher harmonics and the coherence of the
undulator radiation
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Higher harmonics

y
x

z

ψ

φ

θ

n

dt

dt ′
= 1− ~n · ~β(t ′)

≈ 1− β
[
αφ+

(
1− θ2

2
− α2

2

)]

Recall that we developed an expres-
sion for the Doppler time compres-
sion of the emission from a moving
electron as a function of the ob-
server angle.

This can be rewritten in terms of
the coordinates in the figure using
the vector of unit length in the ob-
server direction:

~n ≈
{
φ, ψ, (1− θ2/2)

}
~β ≈ β

{
α, 0, (1− α2/2)

}
dt

dt ′
≈ 1−

(
1− 1

2γ2

)(
1 + αφ− θ2

2
− α2

2

)

C. Segre (IIT) PHYS 570 - Fall 2016 September 07, 2016 3 / 26



Higher harmonics

y
x

z

ψ

φ

θ

n

dt

dt ′
= 1− ~n · ~β(t ′)

≈ 1− β
[
αφ+

(
1− θ2

2
− α2

2

)]

Recall that we developed an expres-
sion for the Doppler time compres-
sion of the emission from a moving
electron as a function of the ob-
server angle.

This can be rewritten in terms of
the coordinates in the figure using
the vector of unit length in the ob-
server direction:

~n ≈
{
φ, ψ, (1− θ2/2)

}
~β ≈ β

{
α, 0, (1− α2/2)

}
dt

dt ′
≈ 1−

(
1− 1

2γ2

)(
1 + αφ− θ2

2
− α2

2

)

C. Segre (IIT) PHYS 570 - Fall 2016 September 07, 2016 3 / 26



Higher harmonics

y
x

z

ψ

φ

θ

n

dt

dt ′
= 1− ~n · ~β(t ′)

≈ 1− β
[
αφ+

(
1− θ2

2
− α2

2

)]

Recall that we developed an expres-
sion for the Doppler time compres-
sion of the emission from a moving
electron as a function of the ob-
server angle.
This can be rewritten in terms of
the coordinates in the figure using
the vector of unit length in the ob-
server direction:

~n =

{
φ, ψ,

√
1− θ2

}
~β = β

{
α, 0,

√
1− α2

}

dt

dt ′
≈ 1−

(
1− 1

2γ2

)(
1 + αφ− θ2

2
− α2

2

)

C. Segre (IIT) PHYS 570 - Fall 2016 September 07, 2016 3 / 26



Higher harmonics

y
x

z

ψ

φ

θ

n

dt

dt ′
= 1− ~n · ~β(t ′)

≈ 1− β
[
αφ+

(
1− θ2

2
− α2

2

)]

Recall that we developed an expres-
sion for the Doppler time compres-
sion of the emission from a moving
electron as a function of the ob-
server angle.
This can be rewritten in terms of
the coordinates in the figure using
the vector of unit length in the ob-
server direction:

~n ≈
{
φ, ψ, (1− θ2/2)

}
~β ≈ β

{
α, 0, (1− α2/2)

}

dt

dt ′
≈ 1−

(
1− 1

2γ2

)(
1 + αφ− θ2

2
− α2

2

)

C. Segre (IIT) PHYS 570 - Fall 2016 September 07, 2016 3 / 26



Higher harmonics

y
x

z

ψ

φ

θ

n

dt

dt ′
= 1− ~n · ~β(t ′)

≈ 1− β
[
αφ+

(
1− θ2

2
− α2

2

)]

Recall that we developed an expres-
sion for the Doppler time compres-
sion of the emission from a moving
electron as a function of the ob-
server angle.
This can be rewritten in terms of
the coordinates in the figure using
the vector of unit length in the ob-
server direction:

~n ≈
{
φ, ψ, (1− θ2/2)

}
~β ≈ β

{
α, 0, (1− α2/2)

}

dt

dt ′
≈ 1−

(
1− 1

2γ2

)(
1 + αφ− θ2

2
− α2

2

)

C. Segre (IIT) PHYS 570 - Fall 2016 September 07, 2016 3 / 26



Higher harmonics

y
x

z

ψ

φ

θ

n

dt

dt ′
= 1− ~n · ~β(t ′)

≈ 1− β
[
αφ+

(
1− θ2

2
− α2

2

)]

Recall that we developed an expres-
sion for the Doppler time compres-
sion of the emission from a moving
electron as a function of the ob-
server angle.
This can be rewritten in terms of
the coordinates in the figure using
the vector of unit length in the ob-
server direction:

~n ≈
{
φ, ψ, (1− θ2/2)

}
~β ≈ β

{
α, 0, (1− α2/2)

}
dt

dt ′
≈ 1−

(
1− 1

2γ2

)(
1 + αφ− θ2

2
− α2

2

)
C. Segre (IIT) PHYS 570 - Fall 2016 September 07, 2016 3 / 26



Higher harmonics

dt

dt ′
≈ 1−

(
1− 1

2γ2

)(
1 + αφ− θ2

2
− α2

2

)

≈ 1− 1− αφ+
θ2

2
+
α2

2
+

1

2γ2
=

1

2

(
θ2 + α2 +

1

γ2

)
− αφ

This differential equation can be solved, realizing that φ and θ are
constant while α(t ′) varies as the electron moves through the insertion
device, and gives:

ω1t = ωut ′− K 2/4

1 + (γθ)2 + K 2/2
sin (2ωut ′)− 2Kγ

1 + (γθ)2 + K 2/2
φ sin (ωut ′)

ω1 � ωu as expected because of the Doppler compression , but they are
not proportional because of the second and third terms.

The motion of the electron, sinωut ′, is always sinusoidal, but because of
the additional terms, the motion as seen by the observer, sinω1t, is not.
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On-axis undulator characteristics

ω1t = ωut ′ − K 2/4

1 + (γθ)2 + K 2/2
sin (2ωut ′)

Suppose we have K = 1 and θ = 0
(on axis), then

ω1t = ωut ′ +
1

6
sin (2ωut ′)

Plotting sinωut ′ and sinω1t shows
the deviation from sinusoidal.

Similarly, for K = 2 and K =
5, the deviation becomes more pro-
nounced. This shows how higher
harmonics must be present in the ra-
diation as seen by the observer. 0 π/2 π
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Off-axis undulator characteristics

ω1t = ωut ′− K 2/4

1 + (γθ)2 + K 2/2
sin (2ωut ′)− 2Kγ

1 + (γθ)2 + K 2/2
φ sin (ωut ′)
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φ=θ=1/γ

When K = 2 and θ = φ = 1/γ, we
have

ω1t = ωut ′+
1

4
sin (2ωut ′) + sinωut ′

The last term introduces an antisym-
metric term which skews the func-
tion and leads to the presence of
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Spectral comparison

• Brilliance is 6 orders larger
than a bending magnet

• Both odd and even
harmonics appear

• Harmonics can be tuned in
energy (dashed lines)
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Diffraction grating

An N period undulator is basically like a diffraction grating, only in the
time domain rather than the space domain.

A diffraction grating consists of N coherent sources whose emission is
detected at a single point.

δL

The radiation from each slit has to
travel a slightly different distance to
get to the detector. For consecu-
tive slits this path length difference,
Lm+1 − Lm = δL, gives rise to a
phase shift, 2πε = 2πδL/λ. So at the
detector, we have a sum of waves:

N−1∑
m=0

e i(
~k·~r+2πmε) = e i

~k·~r
N−1∑
m=0

e i2πmε
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Geometric series

The sum is simply a geometric series, SN with k = e i2πε

SN =
N−1∑
m=0

km = 1 + k + k2 + · · ·+ kN−2 + kN−1

We can develop a recursion relation by writing the expression for SN−1

SN−1 =
N−2∑
m=0

km = 1 + k + k2 + · · ·+ kN−2

so we can write that SN−1 = SN − kN−1 and

SN = 1 + kSN−1 = 1 + k(SN − kN−1) = 1 + kSN − kN

Solving for SN , we have

SN − kSN = 1− kN −→ SN =
1− kN

1− k
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Intensity from a diffraction grating

Restoring the expression for k = e i2πε, we have:

N−1∑
m=0

e i2πmε = SN =
1− e i2πNε

1− e i2πε
=

(
e−iπNε − e iπNε

e−iπε − e iπε

)
e iπNε

e iπε

SN =

(
sin (πNε)

sin (πε)

)
e iπ(N−1)ε

Therefore, for the diffraction grating we can calculate the intensity at the
detector as

I =

∣∣∣∣∣e i~k·~r
N−1∑
m=0

e i2πmε

∣∣∣∣∣
2

=
∣∣∣e i~k·~rSN

∣∣∣2 =

∣∣∣∣e i~k·~r sin (πNε)

sin (πε)
e iπ(N−1)ε

∣∣∣∣2

I =
sin (πNε)2

sin (πε)2
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e−iπε − e iπε

)
e iπNε

e iπε

SN =

(
sin (πNε)

sin (πε)

)
e iπ(N−1)ε

Therefore, for the diffraction grating we can calculate the intensity at the
detector as

I =
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e i2πmε
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2
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∣∣∣e i~k·~rSN
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∣∣∣∣e i~k·~r sin (πNε)

sin (πε)
e iπ(N−1)ε
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I =
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Beam coherence

An N period undulator is basically like a diffraction grating, only in the
time domain rather than the space domain.
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With the height and width of the peak dependent on the number of poles.
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An N period undulator is basically like a diffraction grating, only in the
time domain rather than the space domain.

2πε=5
o

0 10 20 30 40

2πε [degrees]

In
te

n
s
it
y
 (

a
rb

 u
n

it
s
)

With the height and width of the peak dependent on the number of poles.

C. Segre (IIT) PHYS 570 - Fall 2016 September 07, 2016 11 / 26



Beam coherence

An N period undulator is basically like a diffraction grating, only in the
time domain rather than the space domain.
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Beam coherence

An N period undulator is basically like a diffraction grating, only in the
time domain rather than the space domain.
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Beam coherence

An N period undulator is basically like a diffraction grating, only in the
time domain rather than the space domain.
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Beam coherence

An N period undulator is basically like a diffraction grating, only in the
time domain rather than the space domain.
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Beam coherence

An N period undulator is basically like a diffraction grating, only in the
time domain rather than the space domain.
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Beam coherence

An N period undulator is basically like a diffraction grating, only in the
time domain rather than the space domain.
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Beam coherence

An N period undulator is basically like a diffraction grating, only in the
time domain rather than the space domain.
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Beam coherence

An N period undulator is basically like a diffraction grating, only in the
time domain rather than the space domain.
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Undulator coherence
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Synchrotron time structure
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Emittance

Is there a limit to the brilliance of an undulator source at a synchrotron?

the brilliance is inversely proportional to the square of the product of the
linear source size and the angular divergence

brilliance =
flux [photons/s]

divergence
[
mrad2

]
· source size [mm2] [0.1% bandwidth]

the product of the source size and divergence is
called the emittance, ε and the brilliance is thus
limited by the product of the emittance of the
radiation in the horizontal and vertical directions
εxεy

this emittance cannot be changed but it can be
rotated or deformed by magnetic fields as the
electron beam travels around the storage ring
as long as the area is kept constant
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y

σ

σ
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y
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APS emittance

For photon emission from a single electron in a 2m undulator at 1Å

y

10µrad

-10µrad

10µm-10µm

y

σradiation = 9.1µm

σ′radiation = 7.7µrad

σγ=

√
Lλ

4π
= 1.3µm

σ′γ=

√
λ

L
= 7.1µrad

current APS electron beam
parameters are

σy= 9.1µm

σ′y= 3.0µrad

must convolute to get pho-
ton emission from entire
beam (in vertical direction)
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y

10µrad

-10µrad

10µm-10µm

y

σradiation = 9.1µm

σ′radiation = 7.7µrad

σγ=

√
Lλ

4π
= 1.3µm

σ′γ=

√
λ

L
= 7.1µrad

current APS electron beam
parameters are

σy= 9.1µm

σ′y= 3.0µrad

must convolute to get pho-
ton emission from entire
beam (in vertical direction)

C. Segre (IIT) PHYS 570 - Fall 2016 September 07, 2016 15 / 26



APS emittance

For photon emission from a single electron in a 2m undulator at 1Å
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Evolution of APS parameters

Parameter 1995 2001 2005
σx 334 µm 352 µm 280 µm
σ′x 24 µrad 22 µrad 11.6 µrad

σy 89 µm 18.4 µm 9.1 µm
σ′y 8.9 µrad 4.2 µrad 3.0 µrad

When first commissioned in 1995, the APS electron beam size and
divergence was relatively large, particularly in the horizontal, x direction

By the end of the first decade of operation, the horizontal source size
decreased by about 16% and its horizontal divergence by more than 50%

At the same time the vertical source size decreased by over 90% and the
vertical divergence by nearly 67%

The next big upgrade (slated for 2020) will make the beam more square in
space and by choosing the undulator correctly, a higher performance
insertion device.
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APS upgrade

In 2020, the APS will shut
down for a major rebuild with
a totally new magnetic lat-
tice, lower energy (6.0 GeV)
and doubled current (200
mA).

Since MRCAT’s science is
primarily flux driven, the goal
will be to replace the 2.4m
undulator with one that out-
performs the current 33mm
period but with only modest
increase in power.
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Energy recovery linacs

Undulators have limited peak brilliance

but the use of an energy recovery
linac can overcome this limitation and enhance peak brilliance by up to
three orders of magnitude
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Free electron laser

• Initial electron cloud, each
electron emits coherently but
independently

• Over course of 100 m, electric
field of photons, feeds back on
electron bunch

• Microbunches form with period
of FEL (and radiation in
electron frame)

• Each microbunch emits
coherently with neighboring
ones
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Self-amplified spontaneous emission
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FEL emission
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FEL emission
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FEL emission
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FEL layout
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Compact sources
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