Today's Outline - September 07, 2016

Today's Outline - September 07, 2016

- Undulator harmonics

Today's Outline - September 07, 2016

- Undulator harmonics
- Undulator coherence

Today's Outline - September 07, 2016

- Undulator harmonics
- Undulator coherence
- Emittance

Today's Outline - September 07, 2016

- Undulator harmonics
- Undulator coherence
- Emittance
- Time structure

Today's Outline - September 07, 2016

- Undulator harmonics
- Undulator coherence
- Emittance
- Time structure
- ERLs and FELs

Today's Outline - September 07, 2016

- Undulator harmonics
- Undulator coherence
- Emittance
- Time structure
- ERLs and FELs

Reading Assignment: Chapter 3.1-3.3

Today's Outline - September 07, 2016

- Undulator harmonics
- Undulator coherence
- Emittance
- Time structure
- ERLs and FELs

Reading Assignment: Chapter 3.1-3.3

Homework Assignment \#01:
Chapter Chapter 2: 2,3,5,6,8
due Monday, September 12, 2016

Undulator review

So far we have derived the following undulator parameters and their relationships

Undulator review

So far we have derived the following undulator parameters and their relationships
the K parameter, a dimensionless quantity which represents the "strength" of the undulator

Undulator review

So far we have derived the following undulator parameters and their relationships
the K parameter, a dimensionless quantity which represents the

$$
K=\frac{e}{2 \pi m c} \lambda_{u} B_{0}
$$ "strength" of the undulator

Undulator review

So far we have derived the following undulator parameters and their relationships
the K parameter, a dimensionless quantity which represents the "strength" of the undulator

$$
\begin{aligned}
K & =\frac{e}{2 \pi m c} \lambda_{u} B_{0} \\
& =0.934 \lambda_{u}[\mathrm{~cm}] \mathrm{B}_{0}[\mathrm{~T}]
\end{aligned}
$$

Undulator review

So far we have derived the following undulator parameters and their relationships
the K parameter, a dimensionless quantity which represents the "strength" of the undulator

$$
\begin{aligned}
K & =\frac{e}{2 \pi m c} \lambda_{u} B_{0} \\
& =0.934 \lambda_{u}[\mathrm{~cm}] \mathrm{B}_{0}[\mathrm{~T}]
\end{aligned}
$$

the fundamental wavelength of the undulator, λ_{1}

Undulator review

So far we have derived the following undulator parameters and their relationships
the K parameter, a dimensionless quantity which represents the "strength" of the undulator

$$
\begin{aligned}
K & =\frac{e}{2 \pi m c} \lambda_{u} B_{0} \\
& =0.934 \lambda_{u}[\mathrm{~cm}] \mathrm{B}_{0}[\mathrm{~T}]
\end{aligned}
$$

the fundamental wavelength of the undulator, λ_{1}

$$
\lambda_{1} \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}\right)
$$

Undulator review

So far we have derived the following undulator parameters and their relationships
the K parameter, a dimensionless quantity which represents the "strength" of the undulator

$$
\begin{aligned}
K & =\frac{e}{2 \pi m c} \lambda_{u} B_{0} \\
& =0.934 \lambda_{u}[\mathrm{~cm}] \mathrm{B}_{0}[\mathrm{~T}]
\end{aligned}
$$

the fundamental wavelength of the undulator, λ_{1}

$$
\lambda_{1} \approx \frac{\lambda_{u}}{2 \gamma^{2}}\left(1+\frac{K^{2}}{2}\right)
$$

Now let us look at the higher harmonics and the coherence of the undulator radiation

Higher harmonics

> Recall that we developed an expression for the Doppler time compression of the emission from a moving electron as a function of the observer angle.

Higher harmonics

> Recall that we developed an expression for the Doppler time compression of the emission from a moving electron as a function of the observer angle.

$$
\frac{d t}{d t^{\prime}}=1-\vec{n} \cdot \vec{\beta}\left(t^{\prime}\right)
$$

Higher harmonics

Recall that we developed an expression for the Doppler time compression of the emission from a moving electron as a function of the observer angle.
This can be rewritten in terms of the coordinates in the figure using the vector of unit length in the observer direction:

$$
\begin{aligned}
& \vec{n}=\left\{\phi, \psi, \sqrt{1-\theta^{2}}\right\} \\
& \vec{\beta}=\beta\left\{\alpha, 0, \sqrt{1-\alpha^{2}}\right\}
\end{aligned}
$$

Higher harmonics

Recall that we developed an expression for the Doppler time compression of the emission from a moving electron as a function of the observer angle.
This can be rewritten in terms of the coordinates in the figure using the vector of unit length in the observer direction:

$$
\begin{aligned}
& \vec{n} \approx\left\{\phi, \psi,\left(1-\theta^{2} / 2\right)\right\} \\
& \vec{\beta} \approx \beta\left\{\alpha, 0,\left(1-\alpha^{2} / 2\right)\right\}
\end{aligned}
$$

Higher harmonics

$$
\begin{aligned}
\frac{d t}{d t^{\prime}} & =1-\vec{n} \cdot \vec{\beta}\left(t^{\prime}\right) & \vec{n} \approx\left\{\phi, \psi,\left(1-\theta^{2} / 2\right)\right\} \\
& \approx 1-\beta\left[\alpha \phi+\left(1-\frac{\theta^{2}}{2}-\frac{\alpha^{2}}{2}\right)\right] & \vec{\beta} \approx \beta\left\{\alpha, 0,\left(1-\alpha^{2} / 2\right)\right\}
\end{aligned}
$$

Recall that we developed an expression for the Doppler time compression of the emission from a moving electron as a function of the observer angle.
This can be rewritten in terms of the coordinates in the figure using the vector of unit length in the observer direction:

Higher harmonics

Recall that we developed an expression for the Doppler time compression of the emission from a moving electron as a function of the observer angle.
This can be rewritten in terms of the coordinates in the figure using the vector of unit length in the observer direction:

$$
\begin{aligned}
& \frac{d t}{d t^{\prime}}=1-\vec{n} \cdot \vec{\beta}\left(t^{\prime}\right) \vec{n} \approx\left\{\phi, \psi,\left(1-\theta^{2} / 2\right)\right\} \\
& \approx 1-\beta\left[\alpha \phi+\left(1-\frac{\theta^{2}}{2}-\frac{\alpha^{2}}{2}\right)\right] \quad \vec{\beta} \approx \beta\left\{\alpha, 0,\left(1-\alpha^{2} / 2\right)\right\} \\
& \frac{d t}{d t^{\prime}} \approx 1-\left(1-\frac{1}{2 \gamma^{2}}\right)\left(1+\alpha \phi-\frac{\theta^{2}}{2}-\frac{\alpha^{2}}{2}\right)
\end{aligned}
$$

Higher harmonics

$$
\frac{d t}{d t^{\prime}} \approx 1-\left(1-\frac{1}{2 \gamma^{2}}\right)\left(1+\alpha \phi-\frac{\theta^{2}}{2}-\frac{\alpha^{2}}{2}\right)
$$

Higher harmonics

$$
\begin{aligned}
\frac{d t}{d t^{\prime}} & \approx 1-\left(1-\frac{1}{2 \gamma^{2}}\right)\left(1+\alpha \phi-\frac{\theta^{2}}{2}-\frac{\alpha^{2}}{2}\right) \\
& \approx 1-1-\alpha \phi+\frac{\theta^{2}}{2}+\frac{\alpha^{2}}{2}+\frac{1}{2 \gamma^{2}}
\end{aligned}
$$

Higher harmonics

$$
\begin{aligned}
\frac{d t}{d t^{\prime}} & \approx 1-\left(1-\frac{1}{2 \gamma^{2}}\right)\left(1+\alpha \phi-\frac{\theta^{2}}{2}-\frac{\alpha^{2}}{2}\right) \\
& \approx 1-1-\alpha \phi+\frac{\theta^{2}}{2}+\frac{\alpha^{2}}{2}+\frac{1}{2 \gamma^{2}}=\frac{1}{2}\left(\theta^{2}+\alpha^{2}+\frac{1}{\gamma^{2}}\right)-\alpha \phi
\end{aligned}
$$

Higher harmonics

$$
\begin{aligned}
\frac{d t}{d t^{\prime}} & \approx 1-\left(1-\frac{1}{2 \gamma^{2}}\right)\left(1+\alpha \phi-\frac{\theta^{2}}{2}-\frac{\alpha^{2}}{2}\right) \\
& \approx 1-1-\alpha \phi+\frac{\theta^{2}}{2}+\frac{\alpha^{2}}{2}+\frac{1}{2 \gamma^{2}}=\frac{1}{2}\left(\theta^{2}+\alpha^{2}+\frac{1}{\gamma^{2}}\right)-\alpha \phi
\end{aligned}
$$

This differential equation can be solved, realizing that ϕ and θ are constant while $\alpha\left(t^{\prime}\right)$ varies as the electron moves through the insertion device, and gives:

Higher harmonics

$$
\begin{aligned}
\frac{d t}{d t^{\prime}} & \approx 1-\left(1-\frac{1}{2 \gamma^{2}}\right)\left(1+\alpha \phi-\frac{\theta^{2}}{2}-\frac{\alpha^{2}}{2}\right) \\
& \approx 1-1-\alpha \phi+\frac{\theta^{2}}{2}+\frac{\alpha^{2}}{2}+\frac{1}{2 \gamma^{2}}=\frac{1}{2}\left(\theta^{2}+\alpha^{2}+\frac{1}{\gamma^{2}}\right)-\alpha \phi
\end{aligned}
$$

This differential equation can be solved, realizing that ϕ and θ are constant while $\alpha\left(t^{\prime}\right)$ varies as the electron moves through the insertion device, and gives:
$\omega_{1} t=\omega_{u} t^{\prime}$
$\omega_{1} \gg \omega_{u}$ as expected because of the Doppler compression

Higher harmonics

$$
\begin{aligned}
\frac{d t}{d t^{\prime}} & \approx 1-\left(1-\frac{1}{2 \gamma^{2}}\right)\left(1+\alpha \phi-\frac{\theta^{2}}{2}-\frac{\alpha^{2}}{2}\right) \\
& \approx 1-1-\alpha \phi+\frac{\theta^{2}}{2}+\frac{\alpha^{2}}{2}+\frac{1}{2 \gamma^{2}}=\frac{1}{2}\left(\theta^{2}+\alpha^{2}+\frac{1}{\gamma^{2}}\right)-\alpha \phi
\end{aligned}
$$

This differential equation can be solved, realizing that ϕ and θ are constant while $\alpha\left(t^{\prime}\right)$ varies as the electron moves through the insertion device, and gives:
$\omega_{1} t=\omega_{u} t^{\prime}-\frac{K^{2} / 4}{1+(\gamma \theta)^{2}+K^{2} / 2} \sin \left(2 \omega_{u} t^{\prime}\right)$
$\omega_{1} \gg \omega_{u}$ as expected because of the Doppler compression, but they are not proportional because of the second

Higher harmonics

$$
\begin{aligned}
\frac{d t}{d t^{\prime}} & \approx 1-\left(1-\frac{1}{2 \gamma^{2}}\right)\left(1+\alpha \phi-\frac{\theta^{2}}{2}-\frac{\alpha^{2}}{2}\right) \\
& \approx 1-1-\alpha \phi+\frac{\theta^{2}}{2}+\frac{\alpha^{2}}{2}+\frac{1}{2 \gamma^{2}}=\frac{1}{2}\left(\theta^{2}+\alpha^{2}+\frac{1}{\gamma^{2}}\right)-\alpha \phi
\end{aligned}
$$

This differential equation can be solved, realizing that ϕ and θ are constant while $\alpha\left(t^{\prime}\right)$ varies as the electron moves through the insertion device, and gives:
$\omega_{1} t=\omega_{u} t^{\prime}-\frac{K^{2} / 4}{1+(\gamma \theta)^{2}+K^{2} / 2} \sin \left(2 \omega_{u} t^{\prime}\right)-\frac{2 K \gamma}{1+(\gamma \theta)^{2}+K^{2} / 2} \phi \sin \left(\omega_{u} t^{\prime}\right)$
$\omega_{1} \gg \omega_{u}$ as expected because of the Doppler compression, but they are not proportional because of the second and third terms.

Higher harmonics

$$
\begin{aligned}
\frac{d t}{d t^{\prime}} & \approx 1-\left(1-\frac{1}{2 \gamma^{2}}\right)\left(1+\alpha \phi-\frac{\theta^{2}}{2}-\frac{\alpha^{2}}{2}\right) \\
& \approx 1-1-\alpha \phi+\frac{\theta^{2}}{2}+\frac{\alpha^{2}}{2}+\frac{1}{2 \gamma^{2}}=\frac{1}{2}\left(\theta^{2}+\alpha^{2}+\frac{1}{\gamma^{2}}\right)-\alpha \phi
\end{aligned}
$$

This differential equation can be solved, realizing that ϕ and θ are constant while $\alpha\left(t^{\prime}\right)$ varies as the electron moves through the insertion device, and gives:
$\omega_{1} t=\omega_{u} t^{\prime}-\frac{K^{2} / 4}{1+(\gamma \theta)^{2}+K^{2} / 2} \sin \left(2 \omega_{u} t^{\prime}\right)-\frac{2 K \gamma}{1+(\gamma \theta)^{2}+K^{2} / 2} \phi \sin \left(\omega_{u} t^{\prime}\right)$
$\omega_{1} \gg \omega_{u}$ as expected because of the Doppler compression, but they are not proportional because of the second and third terms.

The motion of the electron, $\sin \omega_{u} t^{\prime}$, is always sinusoidal, but because of the additional terms, the motion as seen by the observer, $\sin \omega_{1} t$, is not.

On-axis undulator characteristics

$$
\omega_{1} t=\omega_{u} t^{\prime}-\frac{K^{2} / 4}{1+(\gamma \theta)^{2}+K^{2} / 2} \sin \left(2 \omega_{u} t^{\prime}\right)
$$

Suppose we have $K=1$ and $\theta=0$ (on axis), then

On-axis undulator characteristics

$$
\omega_{1} t=\omega_{u} t^{\prime}-\frac{K^{2} / 4}{1+(\gamma \theta)^{2}+K^{2} / 2} \sin \left(2 \omega_{u} t^{\prime}\right)
$$

Suppose we have $K=1$ and $\theta=0$ (on axis), then

$$
\omega_{1} t=\omega_{u} t^{\prime}+\frac{1}{6} \sin \left(2 \omega_{u} t^{\prime}\right)
$$

On-axis undulator characteristics

$$
\omega_{1} t=\omega_{u} t^{\prime}-\frac{K^{2} / 4}{1+(\gamma \theta)^{2}+K^{2} / 2} \sin \left(2 \omega_{u} t^{\prime}\right)
$$

Suppose we have $K=1$ and $\theta=0$ (on axis), then

$$
\omega_{1} t=\omega_{u} t^{\prime}+\frac{1}{6} \sin \left(2 \omega_{u} t^{\prime}\right)
$$

Plotting $\sin \omega_{u} t^{\prime}$ and $\sin \omega_{1} t$ shows the deviation from sinusoidal.

On-axis undulator characteristics

$$
\omega_{1} t=\omega_{u} t^{\prime}-\frac{K^{2} / 4}{1+(\gamma \theta)^{2}+K^{2} / 2} \sin \left(2 \omega_{u} t^{\prime}\right)
$$

Suppose we have $K=1$ and $\theta=0$ (on axis), then

$$
\omega_{1} t=\omega_{u} t^{\prime}+\frac{1}{6} \sin \left(2 \omega_{u} t^{\prime}\right)
$$

Plotting $\sin \omega_{u} t^{\prime}$ and $\sin \omega_{1} t$ shows the deviation from sinusoidal.

Similarly, for $K=2$

On-axis undulator characteristics

$$
\omega_{1} t=\omega_{u} t^{\prime}-\frac{K^{2} / 4}{1+(\gamma \theta)^{2}+K^{2} / 2} \sin \left(2 \omega_{u} t^{\prime}\right)
$$

Suppose we have $K=1$ and $\theta=0$ (on axis), then

$$
\omega_{1} t=\omega_{u} t^{\prime}+\frac{1}{6} \sin \left(2 \omega_{u} t^{\prime}\right)
$$

Plotting $\sin \omega_{\mu} t^{\prime}$ and $\sin \omega_{1} t$ shows the deviation from sinusoidal.

Similarly, for $K=2$ and $K=$ 5 , the deviation becomes more pronounced.

On-axis undulator characteristics

$$
\omega_{1} t=\omega_{u} t^{\prime}-\frac{K^{2} / 4}{1+(\gamma \theta)^{2}+K^{2} / 2} \sin \left(2 \omega_{u} t^{\prime}\right)
$$

Suppose we have $K=1$ and $\theta=0$ (on axis), then

$$
\omega_{1} t=\omega_{u} t^{\prime}+\frac{1}{6} \sin \left(2 \omega_{u} t^{\prime}\right)
$$

Plotting $\sin \omega_{\mu} t^{\prime}$ and $\sin \omega_{1} t$ shows the deviation from sinusoidal.

Similarly, for $K=2$ and $K=$ 5 , the deviation becomes more pronounced. This shows how higher harmonics must be present in the radiation as seen by the observer.

Off-axis undulator characteristics

$\omega_{1} t=\omega_{u} t^{\prime}-\frac{K^{2} / 4}{1+(\gamma \theta)^{2}+K^{2} / 2} \sin \left(2 \omega_{u} t^{\prime}\right)-\frac{2 K \gamma}{1+(\gamma \theta)^{2}+K^{2} / 2} \phi \sin \left(\omega_{u} t^{\prime}\right)$

When $K=2$ and $\theta=\phi=1 / \gamma$, we have

Off-axis undulator characteristics

$$
\omega_{1} t=\omega_{u} t^{\prime}-\frac{K^{2} / 4}{1+(\gamma \theta)^{2}+K^{2} / 2} \sin \left(2 \omega_{u} t^{\prime}\right)-\frac{2 K \gamma}{1+(\gamma \theta)^{2}+K^{2} / 2} \phi \sin \left(\omega_{u} t^{\prime}\right)
$$

When $K=2$ and $\theta=\phi=1 / \gamma$, we have
$\omega_{1} t=\omega_{u} t^{\prime}+\frac{1}{4} \sin \left(2 \omega_{u} t^{\prime}\right)+\sin \omega_{u} t^{\prime}$

Phase Angle (radians)

Off-axis undulator characteristics

$$
\omega_{1} t=\omega_{u} t^{\prime}-\frac{K^{2} / 4}{1+(\gamma \theta)^{2}+K^{2} / 2} \sin \left(2 \omega_{u} t^{\prime}\right)-\frac{2 K \gamma}{1+(\gamma \theta)^{2}+K^{2} / 2} \phi \sin \left(\omega_{u} t^{\prime}\right)
$$

When $K=2$ and $\theta=\phi=1 / \gamma$, we have
$\omega_{1} t=\omega_{u} t^{\prime}+\frac{1}{4} \sin \left(2 \omega_{u} t^{\prime}\right)+\sin \omega_{u} t^{\prime}$
The last term introduces an antisymmetric term which skews the function

Off-axis undulator characteristics

$$
\omega_{1} t=\omega_{u} t^{\prime}-\frac{K^{2} / 4}{1+(\gamma \theta)^{2}+K^{2} / 2} \sin \left(2 \omega_{u} t^{\prime}\right)-\frac{2 K \gamma}{1+(\gamma \theta)^{2}+K^{2} / 2} \phi \sin \left(\omega_{u} t^{\prime}\right)
$$

When $K=2$ and $\theta=\phi=1 / \gamma$, we have
$\omega_{1} t=\omega_{u} t^{\prime}+\frac{1}{4} \sin \left(2 \omega_{u} t^{\prime}\right)+\sin \omega_{u} t^{\prime}$
The last term introduces an antisymmetric term which skews the function and leads to the presence of forbidden harmonics ($2^{\text {nd }}, 4^{\text {th }}$, etc) in the radiation from the undulator compared to the on-axis radiation.

Spectral comparison

Spectral comparison

- Brilliance is 6 orders larger than a bending magnet

Spectral comparison

- Brilliance is 6 orders larger than a bending magnet
- Both odd and even harmonics appear

Spectral comparison

- Brilliance is 6 orders larger than a bending magnet
- Both odd and even harmonics appear
- Harmonics can be tuned in energy (dashed lines)

Diffraction grating

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

Diffraction grating

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.
A diffraction grating consists of N coherent sources whose emission is detected at a single point.

Diffraction grating

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.
A diffraction grating consists of N coherent sources whose emission is detected at a single point.

The radiation from each slit has to
 travel a slightly different distance to get to the detector.

Diffraction grating

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.
A diffraction grating consists of N coherent sources whose emission is detected at a single point.

The radiation from each slit has to
 travel a slightly different distance to get to the detector. For consecutive slits this path length difference, $L_{m+1}-L_{m}=\delta L$,

Diffraction grating

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.
A diffraction grating consists of N coherent sources whose emission is detected at a single point.

The radiation from each slit has to
 travel a slightly different distance to get to the detector. For consecutive slits this path length difference, $L_{m+1}-L_{m}=\delta L$, gives rise to a phase shift, $2 \pi \epsilon=2 \pi \delta L / \lambda$.

Diffraction grating

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.
A diffraction grating consists of N coherent sources whose emission is detected at a single point.

The radiation from each slit has to
 travel a slightly different distance to get to the detector. For consecutive slits this path length difference, $L_{m+1}-L_{m}=\delta L$, gives rise to a phase shift, $2 \pi \epsilon=2 \pi \delta L / \lambda$. So at the detector, we have a sum of waves:

$$
\sum_{m=0}^{N-1} e^{i(\vec{k} \cdot \vec{r}+2 \pi m \epsilon)}
$$

Diffraction grating

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.
A diffraction grating consists of N coherent sources whose emission is detected at a single point.

The radiation from each slit has to
 travel a slightly different distance to get to the detector. For consecutive slits this path length difference, $L_{m+1}-L_{m}=\delta L$, gives rise to a phase shift, $2 \pi \epsilon=2 \pi \delta L / \lambda$. So at the detector, we have a sum of waves:

$$
\sum_{m=0}^{N-1} e^{i(\vec{k} \cdot \vec{r}+2 \pi m \epsilon)}=e^{i \vec{k} \cdot \vec{r}} \sum_{m=0}^{N-1} e^{i 2 \pi m \epsilon}
$$

Geometric series

The sum is simply a geometric series, S_{N} with $k=e^{i 2 \pi \epsilon}$

Geometric series

The sum is simply a geometric series, S_{N} with $k=e^{i 2 \pi \epsilon}$

$$
S_{N}=\sum_{m=0}^{N-1} k^{m}
$$

Geometric series

The sum is simply a geometric series, S_{N} with $k=e^{i 2 \pi \epsilon}$

$$
S_{N}=\sum_{m=0}^{N-1} k^{m}=1+k+k^{2}+\cdots+k^{N-2}+k^{N-1}
$$

Geometric series

The sum is simply a geometric series, S_{N} with $k=e^{i 2 \pi \epsilon}$

$$
S_{N}=\sum_{m=0}^{N-1} k^{m}=1+k+k^{2}+\cdots+k^{N-2}+k^{N-1}
$$

We can develop a recursion relation by writing the expression for S_{N-1}

$$
S_{N-1}=\sum_{m=0}^{N-2} k^{m}=1+k+k^{2}+\cdots+k^{N-2}
$$

Geometric series

The sum is simply a geometric series, S_{N} with $k=e^{i 2 \pi \epsilon}$

$$
S_{N}=\sum_{m=0}^{N-1} k^{m}=1+k+k^{2}+\cdots+k^{N-2}+k^{N-1}
$$

We can develop a recursion relation by writing the expression for S_{N-1}

$$
S_{N-1}=\sum_{m=0}^{N-2} k^{m}=1+k+k^{2}+\cdots+k^{N-2}
$$

so we can write that $S_{N-1}=S_{N}-k^{N-1}$

Geometric series

The sum is simply a geometric series, S_{N} with $k=e^{i 2 \pi \epsilon}$

$$
S_{N}=\sum_{m=0}^{N-1} k^{m}=1+k+k^{2}+\cdots+k^{N-2}+k^{N-1}
$$

We can develop a recursion relation by writing the expression for S_{N-1}

$$
S_{N-1}=\sum_{m=0}^{N-2} k^{m}=1+k+k^{2}+\cdots+k^{N-2}
$$

so we can write that $S_{N-1}=S_{N}-k^{N-1}$ and

$$
S_{N}=1+k S_{N-1}
$$

Geometric series

The sum is simply a geometric series, S_{N} with $k=e^{i 2 \pi \epsilon}$

$$
S_{N}=\sum_{m=0}^{N-1} k^{m}=1+k+k^{2}+\cdots+k^{N-2}+k^{N-1}
$$

We can develop a recursion relation by writing the expression for S_{N-1}

$$
S_{N-1}=\sum_{m=0}^{N-2} k^{m}=1+k+k^{2}+\cdots+k^{N-2}
$$

so we can write that $S_{N-1}=S_{N}-k^{N-1}$ and

$$
S_{N}=1+k S_{N-1}=1+k\left(S_{N}-k^{N-1}\right)
$$

Geometric series

The sum is simply a geometric series, S_{N} with $k=e^{i 2 \pi \epsilon}$

$$
S_{N}=\sum_{m=0}^{N-1} k^{m}=1+k+k^{2}+\cdots+k^{N-2}+k^{N-1}
$$

We can develop a recursion relation by writing the expression for S_{N-1}

$$
S_{N-1}=\sum_{m=0}^{N-2} k^{m}=1+k+k^{2}+\cdots+k^{N-2}
$$

so we can write that $S_{N-1}=S_{N}-k^{N-1}$ and

$$
S_{N}=1+k S_{N-1}=1+k\left(S_{N}-k^{N-1}\right)=1+k S_{N}-k^{N}
$$

Geometric series

The sum is simply a geometric series, S_{N} with $k=e^{i 2 \pi \epsilon}$

$$
S_{N}=\sum_{m=0}^{N-1} k^{m}=1+k+k^{2}+\cdots+k^{N-2}+k^{N-1}
$$

We can develop a recursion relation by writing the expression for S_{N-1}

$$
S_{N-1}=\sum_{m=0}^{N-2} k^{m}=1+k+k^{2}+\cdots+k^{N-2}
$$

so we can write that $S_{N-1}=S_{N}-k^{N-1}$ and

$$
S_{N}=1+k S_{N-1}=1+k\left(S_{N}-k^{N-1}\right)=1+k S_{N}-k^{N}
$$

Solving for S_{N}, we have

Geometric series

The sum is simply a geometric series, S_{N} with $k=e^{i 2 \pi \epsilon}$

$$
S_{N}=\sum_{m=0}^{N-1} k^{m}=1+k+k^{2}+\cdots+k^{N-2}+k^{N-1}
$$

We can develop a recursion relation by writing the expression for S_{N-1}

$$
S_{N-1}=\sum_{m=0}^{N-2} k^{m}=1+k+k^{2}+\cdots+k^{N-2}
$$

so we can write that $S_{N-1}=S_{N}-k^{N-1}$ and

$$
S_{N}=1+k S_{N-1}=1+k\left(S_{N}-k^{N-1}\right)=1+k S_{N}-k^{N}
$$

Solving for S_{N}, we have

$$
S_{N}-k S_{N}=1-k^{N}
$$

Geometric series

The sum is simply a geometric series, S_{N} with $k=e^{i 2 \pi \epsilon}$

$$
S_{N}=\sum_{m=0}^{N-1} k^{m}=1+k+k^{2}+\cdots+k^{N-2}+k^{N-1}
$$

We can develop a recursion relation by writing the expression for S_{N-1}

$$
S_{N-1}=\sum_{m=0}^{N-2} k^{m}=1+k+k^{2}+\cdots+k^{N-2}
$$

so we can write that $S_{N-1}=S_{N}-k^{N-1}$ and

$$
S_{N}=1+k S_{N-1}=1+k\left(S_{N}-k^{N-1}\right)=1+k S_{N}-k^{N}
$$

Solving for S_{N}, we have

$$
S_{N}-k S_{N}=1-k^{N} \quad \longrightarrow \quad S_{N}=\frac{1-k^{N}}{1-k}
$$

Intensity from a diffraction grating

Restoring the expression for $k=e^{i 2 \pi \epsilon}$, we have:

Intensity from a diffraction grating

Restoring the expression for $k=e^{i 2 \pi \epsilon}$, we have:

$$
\sum_{m=0}^{N-1} e^{i 2 \pi m \epsilon}=S_{N}
$$

Intensity from a diffraction grating

Restoring the expression for $k=e^{i 2 \pi \epsilon}$, we have:

$$
\sum_{m=0}^{N-1} e^{i 2 \pi m \epsilon}=S_{N}=\frac{1-e^{i 2 \pi N \epsilon}}{1-e^{i 2 \pi \epsilon}}
$$

Intensity from a diffraction grating

Restoring the expression for $k=e^{i 2 \pi \epsilon}$, we have:

$$
\sum_{m=0}^{N-1} e^{i 2 \pi m \epsilon}=S_{N}=\frac{1-e^{i 2 \pi N \epsilon}}{1-e^{i 2 \pi \epsilon}}=\left(\frac{e^{-i \pi N \epsilon}-e^{i \pi N \epsilon}}{e^{-i \pi \epsilon}-e^{i \pi \epsilon}}\right) \frac{e^{i \pi N \epsilon}}{e^{i \pi \epsilon}}
$$

Intensity from a diffraction grating

Restoring the expression for $k=e^{i 2 \pi \epsilon}$, we have:

$$
\begin{gathered}
\sum_{m=0}^{N-1} e^{i 2 \pi m \epsilon}=S_{N}=\frac{1-e^{i 2 \pi N \epsilon}}{1-e^{i 2 \pi \epsilon}}=\left(\frac{e^{-i \pi N \epsilon}-e^{i \pi N \epsilon}}{e^{-i \pi \epsilon}-e^{i \pi \epsilon}}\right) \frac{e^{i \pi N \epsilon}}{e^{i \pi \epsilon}} \\
S_{N}=\left(\frac{\sin (\pi N \epsilon)}{\sin (\pi \epsilon)}\right) e^{i \pi(N-1) \epsilon}
\end{gathered}
$$

Intensity from a diffraction grating

Restoring the expression for $k=e^{i 2 \pi \epsilon}$, we have:

$$
\begin{gathered}
\sum_{m=0}^{N-1} e^{i 2 \pi m \epsilon}=S_{N}=\frac{1-e^{i 2 \pi N \epsilon}}{1-e^{i 2 \pi \epsilon}}=\left(\frac{e^{-i \pi N \epsilon}-e^{i \pi N \epsilon}}{e^{-i \pi \epsilon}-e^{i \pi \epsilon}}\right) \frac{e^{i \pi N \epsilon}}{e^{i \pi \epsilon}} \\
S_{N}=\left(\frac{\sin (\pi N \epsilon)}{\sin (\pi \epsilon)}\right) e^{i \pi(N-1) \epsilon}
\end{gathered}
$$

Therefore, for the diffraction grating we can calculate the intensity at the detector as

Intensity from a diffraction grating

Restoring the expression for $k=e^{i 2 \pi \epsilon}$, we have:

$$
\begin{gathered}
\sum_{m=0}^{N-1} e^{i 2 \pi m \epsilon}=S_{N}=\frac{1-e^{i 2 \pi N \epsilon}}{1-e^{i 2 \pi \epsilon}}=\left(\frac{e^{-i \pi N \epsilon}-e^{i \pi N \epsilon}}{e^{-i \pi \epsilon}-e^{i \pi \epsilon}}\right) \frac{e^{i \pi N \epsilon}}{e^{i \pi \epsilon}} \\
S_{N}=\left(\frac{\sin (\pi N \epsilon)}{\sin (\pi \epsilon)}\right) e^{i \pi(N-1) \epsilon}
\end{gathered}
$$

Therefore, for the diffraction grating we can calculate the intensity at the detector as

$$
I=\left|e^{i \vec{k} \cdot \vec{r}} \sum_{m=0}^{N-1} e^{i 2 \pi m \epsilon}\right|^{2}
$$

Intensity from a diffraction grating

Restoring the expression for $k=e^{i 2 \pi \epsilon}$, we have:

$$
\begin{gathered}
\sum_{m=0}^{N-1} e^{i 2 \pi m \epsilon}=S_{N}=\frac{1-e^{i 2 \pi N \epsilon}}{1-e^{i 2 \pi \epsilon}}=\left(\frac{e^{-i \pi N \epsilon}-e^{i \pi N \epsilon}}{e^{-i \pi \epsilon}-e^{i \pi \epsilon}}\right) \frac{e^{i \pi N \epsilon}}{e^{i \pi \epsilon}} \\
S_{N}=\left(\frac{\sin (\pi N \epsilon)}{\sin (\pi \epsilon)}\right) e^{i \pi(N-1) \epsilon}
\end{gathered}
$$

Therefore, for the diffraction grating we can calculate the intensity at the detector as

$$
I=\left|e^{i \vec{k} \cdot \vec{r}} \sum_{m=0}^{N-1} e^{i 2 \pi m \epsilon}\right|^{2}=\left|e^{i \vec{k} \cdot \vec{r}} S_{N}\right|^{2}
$$

Intensity from a diffraction grating

Restoring the expression for $k=e^{i 2 \pi \epsilon}$, we have:

$$
\begin{gathered}
\sum_{m=0}^{N-1} e^{i 2 \pi m \epsilon}=S_{N}=\frac{1-e^{i 2 \pi N \epsilon}}{1-e^{i 2 \pi \epsilon}}=\left(\frac{e^{-i \pi N \epsilon}-e^{i \pi N \epsilon}}{e^{-i \pi \epsilon}-e^{i \pi \epsilon}}\right) \frac{e^{i \pi N \epsilon}}{e^{i \pi \epsilon}} \\
S_{N}=\left(\frac{\sin (\pi N \epsilon)}{\sin (\pi \epsilon)}\right) e^{i \pi(N-1) \epsilon}
\end{gathered}
$$

Therefore, for the diffraction grating we can calculate the intensity at the detector as

$$
I=\left|e^{i \vec{k} \cdot \vec{r}} \sum_{m=0}^{N-1} e^{i 2 \pi m \epsilon}\right|^{2}=\left|e^{i \vec{k} \cdot \vec{r}} S_{N}\right|^{2}=\left|e^{i \vec{k} \cdot \vec{r}} \frac{\sin (\pi N \epsilon)}{\sin (\pi \epsilon)} e^{i \pi(N-1) \epsilon}\right|^{2}
$$

Intensity from a diffraction grating

Restoring the expression for $k=e^{i 2 \pi \epsilon}$, we have:

$$
\begin{gathered}
\sum_{m=0}^{N-1} e^{i 2 \pi m \epsilon}=S_{N}=\frac{1-e^{i 2 \pi N \epsilon}}{1-e^{i 2 \pi \epsilon}}=\left(\frac{e^{-i \pi N \epsilon}-e^{i \pi N \epsilon}}{e^{-i \pi \epsilon}-e^{i \pi \epsilon}}\right) \frac{e^{i \pi N \epsilon}}{e^{i \pi \epsilon}} \\
S_{N}=\left(\frac{\sin (\pi N \epsilon)}{\sin (\pi \epsilon)}\right) e^{i \pi(N-1) \epsilon}
\end{gathered}
$$

Therefore, for the diffraction grating we can calculate the intensity at the detector as

$$
\begin{gathered}
I=\left|e^{i \vec{k} \cdot \vec{r}} \sum_{m=0}^{N-1} e^{i 2 \pi m \epsilon}\right|^{2}=\left|e^{i \vec{k} \cdot \vec{r}} S_{N}\right|^{2}=\left|e^{i \vec{k} \cdot \vec{r}} \frac{\sin (\pi N \epsilon)}{\sin (\pi \epsilon)} e^{i \pi(N-1) \epsilon}\right|^{2} \\
I=\frac{\sin (\pi N \epsilon)^{2}}{\sin (\pi \epsilon)^{2}}
\end{gathered}
$$

Beam coherence

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

Beam coherence

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.
$2 \pi \varepsilon=0$

Beam coherence

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

$$
2 \pi \varepsilon=5^{\circ}
$$

Beam coherence

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

Beam coherence

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

Beam coherence

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

Beam coherence

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

Beam coherence

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

Beam coherence

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

Beam coherence

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

Beam coherence

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

Beam coherence

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

With the height and width of the peak dependent on the number of poles.

Undulator coherence

Undulator coherence

Synchrotron time structure

Emittance

Is there a limit to the brilliance of an undulator source at a synchrotron?

Emittance

Is there a limit to the brilliance of an undulator source at a synchrotron? the brilliance is inversely proportional to the square of the product of the linear source size and the angular divergence

$$
\text { brilliance }=\frac{\text { flux }[\text { photons } / \mathrm{s}]}{\text { divergence }\left[\mathrm{mrad}^{2}\right] \cdot \text { source size }\left[\mathrm{mm}^{2}\right][0.1 \% \text { bandwidth }]}
$$

Emittance

Is there a limit to the brilliance of an undulator source at a synchrotron? the brilliance is inversely proportional to the square of the product of the linear source size and the angular divergence

$$
\text { brilliance }=\frac{\text { flux }[\text { photons } / \mathrm{s}]}{\text { divergence }\left[\mathrm{mrad}^{2}\right] \cdot \text { source size }\left[\mathrm{mm}^{2}\right][0.1 \% \text { bandwidth }]}
$$

the product of the source size and divergence is called the emittance, ϵ

Emittance

Is there a limit to the brilliance of an undulator source at a synchrotron? the brilliance is inversely proportional to the square of the product of the linear source size and the angular divergence

$$
\text { brilliance }=\frac{\text { flux }[\text { photons } / \mathrm{s}]}{\text { divergence }\left[\mathrm{mrad}^{2}\right] \cdot \text { source size }\left[\mathrm{mm}^{2}\right][0.1 \% \text { bandwidth }]}
$$

the product of the source size and divergence is called the emittance, ϵ and the brilliance is thus limited by the product of the emittance of the radiation in the horizontal and vertical directions $\epsilon_{x} \epsilon_{y}$

Emittance

Is there a limit to the brilliance of an undulator source at a synchrotron? the brilliance is inversely proportional to the square of the product of the linear source size and the angular divergence

$$
\text { brilliance }=\frac{\text { flux }[\text { photons } / \mathrm{s}]}{\text { divergence }\left[\mathrm{mrad}^{2}\right] \cdot \text { source size }\left[\mathrm{mm}^{2}\right][0.1 \% \text { bandwidth }]}
$$

the product of the source size and divergence is called the emittance, ϵ and the brilliance is thus limited by the product of the emittance of the radiation in the horizontal and vertical directions $\epsilon_{x} \epsilon_{y}$
this emittance cannot be changed but it can be rotated

Emittance

Is there a limit to the brilliance of an undulator source at a synchrotron? the brilliance is inversely proportional to the square of the product of the linear source size and the angular divergence

$$
\text { brilliance }=\frac{\text { flux }[\text { photons } / \mathrm{s}]}{\text { divergence }\left[\mathrm{mrad}^{2}\right] \cdot \text { source size }\left[\mathrm{mm}^{2}\right][0.1 \% \text { bandwidth }]}
$$

the product of the source size and divergence is called the emittance, ϵ and the brilliance is thus limited by the product of the emittance of the radiation in the horizontal and vertical directions $\epsilon_{x} \epsilon_{y}$
this emittance cannot be changed but it can be rotated or deformed by magnetic fields as the electron beam travels around the storage ring as long as the area is kept constant

APS emittance

For photon emission from a single electron in a $2 m$ undulator at $1 \AA$

APS emittance

For photon emission from a single electron in a $2 m$ undulator at $1 \AA$

$$
\sigma_{\gamma}=\frac{\sqrt{L \lambda}}{4 \pi}=1.3 \mu \mathrm{~m}
$$

APS emittance

For photon emission from a single electron in a $2 m$ undulator at $1 \AA$

$$
\begin{aligned}
& \sigma_{\gamma}=\frac{\sqrt{L \lambda}}{4 \pi}=1.3 \mu \mathrm{~m} \\
& \sigma_{\gamma}^{\prime}=\sqrt{\frac{\lambda}{L}}=7.1 \mu \mathrm{rad}
\end{aligned}
$$

APS emittance

For photon emission from a single electron in a $2 m$ undulator at $1 \AA$

$$
\begin{aligned}
& \sigma_{\gamma}=\frac{\sqrt{L \lambda}}{4 \pi}=1.3 \mu \mathrm{~m} \\
& \sigma_{\gamma}^{\prime}=\sqrt{\frac{\lambda}{L}}=7.1 \mu \mathrm{rad}
\end{aligned}
$$

current APS electron beam parameters are

APS emittance

For photon emission from a single electron in a $2 m$ undulator at $1 \AA$

$$
\sigma_{y}=9.1 \mu \mathrm{~m}
$$

APS emittance

For photon emission from a single electron in a $2 m$ undulator at $1 \AA$

$$
\begin{aligned}
& \sigma_{\gamma}=\frac{\sqrt{L \lambda}}{4 \pi}=1.3 \mu \mathrm{~m} \\
& \sigma_{\gamma}^{\prime}=\sqrt{\frac{\lambda}{L}}=7.1 \mu \mathrm{rad}
\end{aligned}
$$

current APS electron beam parameters are

$$
\begin{aligned}
\sigma_{y} & =9.1 \mu \mathrm{~m} \\
\sigma_{y}^{\prime} & =3.0 \mu \mathrm{rad}
\end{aligned}
$$

must convolute to get photon emission from entire beam (in vertical direction)

APS emittance

For photon emission from a single electron in a $2 m$ undulator at $1 \AA$

$$
\begin{aligned}
& \sigma_{\gamma}=\frac{\sqrt{L \lambda}}{4 \pi}=1.3 \mu \mathrm{~m} \\
& \sigma_{\gamma}^{\prime}=\sqrt{\frac{\lambda}{L}}=7.1 \mu \mathrm{rad}
\end{aligned}
$$

current APS electron beam parameters are

$$
\begin{aligned}
\sigma_{y} & =9.1 \mu \mathrm{~m} \\
\sigma_{y}^{\prime} & =3.0 \mu \mathrm{rad}
\end{aligned}
$$

must convolute to get photon emission from entire beam (in vertical direction)

APS emittance

For photon emission from a single electron in a $2 m$ undulator at $1 \AA$

$$
\begin{aligned}
& \sigma_{\gamma}=\frac{\sqrt{L \lambda}}{4 \pi}=1.3 \mu \mathrm{~m} \\
& \sigma_{\gamma}^{\prime}=\sqrt{\frac{\lambda}{L}}=7.1 \mu \mathrm{rad}
\end{aligned}
$$

current APS electron beam parameters are

$$
\begin{aligned}
\sigma_{y} & =9.1 \mu \mathrm{~m} \\
\sigma_{y}^{\prime} & =3.0 \mu \mathrm{rad}
\end{aligned}
$$

must convolute to get photon emission from entire beam (in vertical direction)

Evolution of APS parameters

Parameter	$\mathbf{1 9 9 5}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 5}$
σ_{x}	$334 \mu \mathrm{~m}$	$352 \mu \mathrm{~m}$	$280 \mu \mathrm{~m}$
σ_{x}^{\prime}	$24 \mu \mathrm{rad}$	$22 \mu \mathrm{rad}$	$11.6 \mu \mathrm{rad}$
σ_{y}	$89 \mu \mathrm{~m}$	$18.4 \mu \mathrm{~m}$	$9.1 \mu \mathrm{~m}$
σ_{y}^{\prime}	$8.9 \mu \mathrm{rad}$	$4.2 \mu \mathrm{rad}$	$3.0 \mu \mathrm{rad}$

Evolution of APS parameters

Parameter	$\mathbf{1 9 9 5}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 5}$
σ_{x}	$334 \mu \mathrm{~m}$	$352 \mu \mathrm{~m}$	$280 \mu \mathrm{~m}$
σ_{x}^{\prime}	$24 \mu \mathrm{rad}$	$22 \mu \mathrm{rad}$	$11.6 \mu \mathrm{rad}$
σ_{y}	$89 \mu \mathrm{~m}$	$18.4 \mu \mathrm{~m}$	$9.1 \mu \mathrm{~m}$
σ_{y}^{\prime}	$8.9 \mu \mathrm{rad}$	$4.2 \mu \mathrm{rad}$	$3.0 \mu \mathrm{rad}$

When first commissioned in 1995, the APS electron beam size and divergence was relatively large, particularly in the horizontal, x direction

Evolution of APS parameters

Parameter	$\mathbf{1 9 9 5}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 5}$
σ_{x}	$334 \mu \mathrm{~m}$	$352 \mu \mathrm{~m}$	$280 \mu \mathrm{~m}$
σ_{x}^{\prime}	$24 \mu \mathrm{rad}$	$22 \mu \mathrm{rad}$	$11.6 \mu \mathrm{rad}$
σ_{y}	$89 \mu \mathrm{~m}$	$18.4 \mu \mathrm{~m}$	$9.1 \mu \mathrm{~m}$
σ_{y}^{\prime}	$8.9 \mu \mathrm{rad}$	$4.2 \mu \mathrm{rad}$	$3.0 \mu \mathrm{rad}$

When first commissioned in 1995, the APS electron beam size and divergence was relatively large, particularly in the horizontal, x direction By the end of the first decade of operation, the horizontal source size decreased by about 16% and its horizontal divergence by more than 50%

Evolution of APS parameters

Parameter	$\mathbf{1 9 9 5}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 5}$
σ_{x}	$334 \mu \mathrm{~m}$	$352 \mu \mathrm{~m}$	$280 \mu \mathrm{~m}$
σ_{x}^{\prime}	$24 \mu \mathrm{rad}$	$22 \mu \mathrm{rad}$	$11.6 \mu \mathrm{rad}$
σ_{y}	$89 \mu \mathrm{~m}$	$18.4 \mu \mathrm{~m}$	$9.1 \mu \mathrm{~m}$
σ_{y}^{\prime}	$8.9 \mu \mathrm{rad}$	$4.2 \mu \mathrm{rad}$	$3.0 \mu \mathrm{rad}$

When first commissioned in 1995, the APS electron beam size and divergence was relatively large, particularly in the horizontal, x direction By the end of the first decade of operation, the horizontal source size decreased by about 16% and its horizontal divergence by more than 50% At the same time the vertical source size decreased by over 90% and the vertical divergence by nearly 67%

Evolution of APS parameters

Parameter	$\mathbf{1 9 9 5}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 5}$
σ_{x}	$334 \mu \mathrm{~m}$	$352 \mu \mathrm{~m}$	$280 \mu \mathrm{~m}$
σ_{x}^{\prime}	$24 \mu \mathrm{rad}$	$22 \mu \mathrm{rad}$	$11.6 \mu \mathrm{rad}$
σ_{y}	$89 \mu \mathrm{~m}$	$18.4 \mu \mathrm{~m}$	$9.1 \mu \mathrm{~m}$
σ_{y}^{\prime}	$8.9 \mu \mathrm{rad}$	$4.2 \mu \mathrm{rad}$	$3.0 \mu \mathrm{rad}$

When first commissioned in 1995, the APS electron beam size and divergence was relatively large, particularly in the horizontal, x direction By the end of the first decade of operation, the horizontal source size decreased by about 16% and its horizontal divergence by more than 50% At the same time the vertical source size decreased by over 90% and the vertical divergence by nearly 67%

The next big upgrade (slated for 2020) will make the beam more square in space and by choosing the undulator correctly, a higher performance insertion device.

APS upgrade

In 2020, the APS will shut down for a major rebuild with a totally new magnetic lattice, lower energy (6.0 GeV) and doubled current (200 mA).

APS upgrade

In 2020, the APS will shut down for a major rebuild with a totally new magnetic lattice, lower energy (6.0 GeV) and doubled current (200 mA).

Since MRCAT's science is primarily flux driven, the goal will be to replace the 2.4 m undulator with one that outperforms the current 33mm period but with only modest increase in power.

APS upgrade

In 2020, the APS will shut down for a major rebuild with a totally new magnetic lattice, lower energy (6.0 GeV) and doubled current (200 mA).

Since MRCAT's science is primarily flux driven, the goal will be to replace the 2.4 m undulator with one that outperforms the current 33mm period but with only modest increase in power.

Energy recovery linacs

Undulators have limited peak brilliance

Energy recovery linacs

Undulators have limited peak brilliance but the use of an energy recovery linac can overcome this limitation and enhance peak brilliance by up to three orders of magnitude

Energy recovery linacs

Undulators have limited peak brilliance but the use of an energy recovery linac can overcome this limitation and enhance peak brilliance by up to three orders of magnitude

Free electron laser

Free electron laser

- Initial electron cloud, each electron emits coherently but independently

Free electron laser

- Initial electron cloud, each electron emits coherently but independently
- Over course of 100 m , electric field of photons, feeds back on electron bunch

Free electron laser

- Initial electron cloud, each electron emits coherently but independently
- Over course of 100 m , electric field of photons, feeds back on electron bunch

Free electron laser

- Initial electron cloud, each electron emits coherently but independently
- Over course of 100 m , electric field of photons, feeds back on electron bunch
- Microbunches form with period of FEL (and radiation in electron frame)

Free electron laser

- Initial electron cloud, each electron emits coherently but independently
- Over course of 100 m , electric field of photons, feeds back on electron bunch
- Microbunches form with period of FEL (and radiation in electron frame)
- Each microbunch emits coherently with neighboring ones

Self-amplified spontaneous emission

FEL emission

Distance along undulator

FEL emission

FEL emission

FEL layout

Compact sources

Lyncean CLS

