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Refraction of x-rays

X-rays can be treated like light when interaction with a medium. However,
unlike visible light, the index of refraction of x-rays in matter is very close
to unity:

α

α’

n = 1− δ + iβ

with δ ∼ 10−5

Snell’s Law

cosα = n cosα′

where α′ < α unlike for visible light
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Reflection of x-rays

Because n < 1, at a critical angle αc , we no longer have refraction but

total external reflection

α α

Since α′ = 0 when α = αc

n = cosαc

n ≈ 1− α2
c

2

1− δ + iβ ≈ 1− α2
c

2

δ =
α2
c

2
−→ αc =

√
2δ
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Uses of total external reflection

X-ray mirrors

• harmonic rejection

• focusing & collimation

Evanscent wave experiments

• studies of surfaces

• depth profiling
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Magnetic interactions

We have focused on the interaction of x-rays and charged particles.
However, electromagnetic radiation also consists of a traveling mag-
netic field. In principle, this means it should interact with magnetic
materials as well.

Indeed, x-rays do interact with magnetic materials (and electrons which
have magnetic moment and spin) but the strength of the interaction
is comparatively weak.

Amagnetic

Acharge
=

~ω
mc2

=
5.11× 103 eV

0.511× 106 eV
= 0.01

For an x-ray of energy 5.11 keV, interacting with an electron with mass
0.511 MeV. Only with the advent of synchrotron radiation sources has
magnetic x-ray scattering become a practical experimental technique.
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Coherence: what is it?

So far, in our discussion, we have assumed that x-rays are
“plane waves”. What does this really mean?

A plane wave has perfect coherence (like a laser).

Real x-rays are not perfect plane waves in two ways:

• they are not perfectly monochromatic

• they do not travel in a perfectly co-linear direction

Because of these imperfections the “coherence length” of an
x-ray beam is finite and we can calculate it.
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Longitudinal coherence

Definition: Distance over which two waves from the same source point
with slightly different wavelengths will completely dephase.

λ

λ−∆λ

P

2L
L

Two waves of slightly different wavelengths
λ and λ−∆λ are emitted from the same
point in space simultaneously.

After a distance LL, the two waves will be
exactly out of phase and after 2LL they will
once again be in phase.

2LL = Nλ
2LL = (N + 1)(λ−∆λ)

��Nλ = ��Nλ+ λ− N∆λ−∆λ

0 = λ−N∆λ−∆λ −→ λ = (N + 1)∆λ −→ N ≈ λ

∆λ
−→ LL =

λ2

2∆λ
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λ2

2∆λ
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Transverse coherence

Definition: The lateral distance along a wavefront over which there is a
complete dephasing between two waves, of the same wavelength, which
originate from two separate points in space.

λ

D

∆θ

2LT

P

R

∆θ

If we assume that the two waves
originate from points with a small
angular separation ∆θ, The
transverse coherence length is given
by:

λ

2LT
= tan ∆θ ≈ ∆θ

D

R
= tan ∆θ ≈ ∆θ

LT =
λR

2D
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Coherence lengths at the APS

For a typical 3rd generation undulator source, such as at the Advanced
Photon Source the vertical source size is D = 100µm and we are typically
R = 50m away with our experiment. If we assume a typical wavelength of
λ = 1Å, and a monochromator resolution of ∆λ/λ = 10−5 we have for the
vertical direction:

LL =
λ2

2∆λ

=
λ

2
· λ

∆λ
=

1× 10−10

2 · 10−5
= 5µm

LT =
λR

2D

=
(1× 10−10) · 50

2 · (100× 10−6)
= 25µm
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X-ray tube schematics

Fixed anode tube

Rotating anode tube

• low power

• low maintenance

• high power

• high maintenance
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X-ray tube spectrum

• Minimum wavelength
(maximum energy) set
by accelerating
potential

• Bremßtrahlung
radiation provides
smooth background
(charged particle
deceleration)

• Highest intensity at the characteristic fluorescence emission energy of
the anode material

• Unpolarized, incoherent x-rays emitted in all directions from anode
surface, must be collimated with slits
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Synchrotron sources

Bending magnet

• Wide horizontal beam

• Broad spectrum to high
energies

Undulator

• Highly collimated beam

• Highly peaked spectrum
with harmonics
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Bending magnet spectra

0 20000 40000 60000 80000 1e+05
0

1e+13

2e+13

3e+13

APS

NSLS

ALS

ESRF

Lower energy sources, such as NSLS have lower peak energy and higher
intensity at the peak.
Higher energy sources, such as APS have higher energy spectrum and are
only off by a factor of 2 intensity at low energy.
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Bending magnet spectra

100 1000 10000 1e+05
1e+05

1e+10

1e+15

APS

NSLS

ALS

ESRF

Logarithmic scale shows clearly how much more energetic and intense the
bending magnet sources at the 6 GeV and 7 GeV sources are.
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Review of special relativity

v

β =
v

c
γ =

√
1

1− β2

E = γmc2

β =

√
1− 1

γ2
−→ β ≈ 1− 1

2

1

γ2

use binomial expansion since 1/γ2 << 1

Let’s calculate these quantities
for an electron at NSLS and
APS

me = 0.511 MeV/c2

NSLS: E = 1.5 GeV

γ =
1.5× 109

0.511× 106
= 2935

APS: E = 7.0 GeV

γ =
7.0× 109

0.511× 106
= 13700
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“Headlight” effect

In electron rest frame:

emission is symmetric about the
axis of the acceleration vector

In lab frame:

emission is pushed into the direc-
tion of motion of the electron
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Relativistic emission

1/γv

a

the electron is in constant trans-
verse acceleration due to the
Lorentz force from the magnetic
field of the bending magnet

~F = e~v × ~B = me~a

the aperture angle of the radiation
cone is 1/γ

the angular frequency of the elec-
tron in the ring is ω0 ≈ 106 and
the cutoff energy for emission is

Emax ≈ γ3ω0

for the APS, with γ ≈ 104 we have

Emax ≈ (104)3 · 106 = 1018
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Flux and brilliance

There are a number of important quantities which are relevant to the
quality of an x-ray source:

photon flux
photon density
beam divergence
energy resolution

source type optics
source type optics
source type optics
source type optics

All these quantities are conveniently taken into account in a measure
called brilliance

brilliance

=
flux [photons/s]

divergence
[
mrad2

]
· source size [mm2] [0.1% bandwidth]
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Computing brilliance

brilliance =
flux [photons/s]

divergence
[
mrad2

]
· source size [mm2] · [0.1% bandwidth]

Energy

F
lu

x

hν

∆hν

The source size depends on the elec-
tron beam size, its excursion, and
any slits which define how much of
the source is visible by the observer.

The divergence is the angular spread
the x-ray beam in the x and y direc-
tions.

α ≈ x/z β ≈ y/z ,
where z is the distance from the
source over which there is a lateral
spread x and y in each direction
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For a specific photon flux distribu-
tion, we would normally integrate to
get the total flux.

But this ignores
that most experiments are only in-
terested in a specific energy hν.

Take a bandwidth ∆hν = hν/1000,
which is about 10 times wider
than the bandwidth of the typical
monochromator.

Compute the integrated photon flux
in that bandwidth.

C. Segre (IIT) PHYS 570 - Fall 2016 August 29, 2016 19 / 23



Computing brilliance

brilliance =
flux [photons/s]

divergence
[
mrad2

]
· source size [mm2] · [0.1% bandwidth]

Energy

F
lu

x

hν

∆hν

For a specific photon flux distribu-
tion, we would normally integrate to
get the total flux. But this ignores
that most experiments are only in-
terested in a specific energy hν.

Take a bandwidth ∆hν = hν/1000,
which is about 10 times wider
than the bandwidth of the typical
monochromator.

Compute the integrated photon flux
in that bandwidth.

C. Segre (IIT) PHYS 570 - Fall 2016 August 29, 2016 19 / 23



Computing brilliance

brilliance =
flux [photons/s]

divergence
[
mrad2

]
· source size [mm2] · [0.1% bandwidth]

Energy

F
lu

x

hν

∆hν

For a specific photon flux distribu-
tion, we would normally integrate to
get the total flux. But this ignores
that most experiments are only in-
terested in a specific energy hν.

Take a bandwidth ∆hν = hν/1000,
which is about 10 times wider
than the bandwidth of the typical
monochromator.

Compute the integrated photon flux
in that bandwidth.

C. Segre (IIT) PHYS 570 - Fall 2016 August 29, 2016 19 / 23



Computing brilliance

brilliance =
flux [photons/s]

divergence
[
mrad2

]
· source size [mm2] · [0.1% bandwidth]

Energy

F
lu

x

hν

∆hν

For a specific photon flux distribu-
tion, we would normally integrate to
get the total flux. But this ignores
that most experiments are only in-
terested in a specific energy hν.

Take a bandwidth ∆hν = hν/1000,
which is about 10 times wider
than the bandwidth of the typical
monochromator.

Compute the integrated photon flux
in that bandwidth.

C. Segre (IIT) PHYS 570 - Fall 2016 August 29, 2016 19 / 23



Computing brilliance

brilliance =
flux [photons/s]

divergence
[
mrad2

]
· source size [mm2] · [0.1% bandwidth]

Energy

F
lu

x

hν

∆hν

The source size depends on the elec-
tron beam size, its excursion, and
any slits which define how much of
the source is visible by the observer.

The divergence is the angular spread
the x-ray beam in the x and y direc-
tions.

α ≈ x/z β ≈ y/z ,
where z is the distance from the
source over which there is a lateral
spread x and y in each direction

C. Segre (IIT) PHYS 570 - Fall 2016 August 29, 2016 19 / 23



Computing brilliance

brilliance =
flux [photons/s]

divergence
[
mrad2

]
· source size [mm2] · [0.1% bandwidth]

Energy

F
lu

x

hν

∆hν

The source size depends on the elec-
tron beam size, its excursion, and
any slits which define how much of
the source is visible by the observer.

The divergence is the angular spread
the x-ray beam in the x and y direc-
tions.

α ≈ x/z β ≈ y/z ,
where z is the distance from the
source over which there is a lateral
spread x and y in each direction

C. Segre (IIT) PHYS 570 - Fall 2016 August 29, 2016 19 / 23



Computing brilliance

brilliance =
flux [photons/s]

divergence
[
mrad2

]
· source size [mm2] · [0.1% bandwidth]

Energy

F
lu

x

hν

∆hν

The source size depends on the elec-
tron beam size, its excursion, and
any slits which define how much of
the source is visible by the observer.

The divergence is the angular spread
the x-ray beam in the x and y direc-
tions.

α ≈ x/z β ≈ y/z ,
where z is the distance from the
source over which there is a lateral
spread x and y in each direction

C. Segre (IIT) PHYS 570 - Fall 2016 August 29, 2016 19 / 23



Segmented arc approximation

A

B C

v∆t’

c∆t’

(c-v)∆t’

• Approximate the electron’s path
as a series of segments

• At each corner the electron is
accelerated and emits radiation

• Consider the emissions at points
B and C

The electron travels the distance from B to C in ∆t ′ while the light pulse
emitted at B travels further, c∆t ′, in the same time.
The light pulse emitted at C is therefore, a distance (c − v)∆t ′ behind the
pulse emitted at B.
The observer will measure a time between the two pulses:

∆t =
(c − v)∆t ′

c
=
(

1− v

c

)
∆t ′ = (1− β)∆t ′
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Doppler compression

A

B C

v∆t’

c∆t’

(c-v)∆t’

∆t = (1− β)∆t ′

Since 0 < β < 1 this translates
to a Doppler compression of the
emitted wavelength.

Recall that

β =

√
1− 1

γ2
,

but for synchrotron radiation, γ > 1000, so 1/γ � 1 and we can,
therefore, approximate

β =

(
1− 1

γ2

)1/2

= 1− 1

2

1

γ2
+

1

2

1

2

1

2!

1

γ4
+ · · · ≈ 1− 1

2γ2
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Off-axis emission

A

B C

v cosα ∆t’

c∆t’

α

(c-v cosα)∆t’

Consider the emission from seg-
ment AB, which is not along
the line toward the observer.

While on the AB segment, the
electron moves only a distance
v cosα∆t ′ in the direction of
the BC segment.

The light pulse emitted at A still travels c∆t ′, in the same time.
The light pulse emitted at B is therefore, a distance (c − v cosα)∆t ′

behind the pulse emitted at A. The observer will measure a time between
the two pulses:

∆t =
(c − v cosα)∆t ′

c
=
(

1− v

c
cosα

)
∆t ′ = (1− β cosα)∆t ′
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The light pulse emitted at B is therefore, a distance (c − v cosα)∆t ′

behind the pulse emitted at A.

The observer will measure a time between
the two pulses:

∆t =
(c − v cosα)∆t ′

c
=
(

1− v

c
cosα

)
∆t ′ = (1− β cosα)∆t ′
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Corrected Doppler shift

A

B C

v cosα ∆t’

c∆t’

α

(c-v cosα)∆t’

∆t = (1− βcosα)∆t ′

Since α is very small:

cosα ≈ 1− α2

2

and γ is very large, we have

∆t

∆t ′
≈ 1−

(
1− 1

2γ2

)(
1− α2

2

)
= 1− 1 +

α2

2
+

1

2γ2
− α2

2γ2

∆t

∆t ′
≈ α2

2
+

1

2γ2
=

1 + α2γ2

2γ2

called the time compression ratio.
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