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Scattering from molecules

Recall for a single atom we have a form factor

f (Q) = f 0(Q) + f ′(~ω) + if ′′(~ω)

extending to a molecule . . .

Fmolecule(Q) =
∑
j

fj(Q)e iQ·rj

Fmolecule(Q) = f1(Q)e iQ·r1 + f2(Q)e iQ·r2 + f3(Q)e iQ·r3
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Scattering from a crystal

and similarly, to a crystal lattice ...

. . . which is simply a periodic array of molecules

F crystal(Q) = FmoleculeF lattice

F crystal(Q) =
∑
j

fj(Q)e iQ·rj
∑
n

e iQ·Rn

The lattice term,
∑

e iQ·Rn , is a sum over a large number so it is always
small unless Q · Rn = 2πm where Rn = n1a1 + n2a2 + n3a3 is a real space
lattice vector and m is an integer. This condition is fulfilled only when Q
is a reciprocal lattice vector.
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Crystal lattices

There are 7 possible real space lattices: triclinic,

monoclinic, orthorhombic,
tetragonal, hexagonal, rhombohedral, cubic
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Lattice properties

Consider the orthorhombic lattice for simplicity (the others give exactly the
same result).

a1 = ax̂, a2 = bŷ, a3 = c ẑ

a1 × a2 = abẑ

(a1 × a2) · a3 = abẑ · c ẑ
(a1 × a2) · a3 = abc = V

A simple way of calculating the volume of the unit cell!

This unit cell is repeated infintely in 3-dimensions and thus, the location of
each lattice point can be calculated relative to any arbitrary lattice point
designated as the origin.

Each lattice point is at the end of a lattice vector, Rn and a crystal is
made by putting a molecule at each lattice point.

Rn = n1a1 + n2a2 + n3a3
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(a1 × a2) · a3 = abc = V

A simple way of calculating the volume of the unit cell!

This unit cell is repeated infintely in 3-dimensions and thus, the location of
each lattice point can be calculated relative to any arbitrary lattice point
designated as the origin.

Each lattice point is at the end of a lattice vector, Rn and a crystal is
made by putting a molecule at each lattice point.

Rn = n1a1 + n2a2 + n3a3

C. Segre (IIT) PHYS 570 - Fall 2016 August 24, 2016 5 / 22



Lattice properties

Consider the orthorhombic lattice for simplicity (the others give exactly the
same result).

a1 = ax̂, a2 = bŷ, a3 = c ẑ
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a1 × a2 = abẑ
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Reciprocal lattice

For any lattice in real space, it is useful to construct what is called a
reciprocal space lattice.

Define the reciprocal lattice vectors in terms of the real space unit vectors

a∗1 = 2π
a2 × a3

a1 · (a2 × a3)
= 2π

a2 × a3
V

a∗2 = 2π
a3 × a1

a2 · (a3 × a1)
= 2π

a3 × a1
V

a∗3 = 2π
a1 × a2

a3 · (a1 × a2)
= 2π

a1 × a2
V

In analogy to Rn, we can construct an arbitrary reciprocal space lattice
vector Ghkl

Ghkl = ha∗1 + ka∗2 + la∗3

where h, k, and l are integers called Miller indices
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Laue condition

Because of the construction of the reciprocal lattice

Ghkl · Rn = (n1a1 + n2a2 + n3a3) · (ha∗1 + ka∗2 + la∗3)

= (n1a1 + n2a2 + n3a3) · 2π
(
h
a2 × a3

V
+ k

a3 × a1
V

+ l
a1 × a2

V

)
= 2π(hn1 + kn2 + ln3) = 2πm

and therefore, the crystal scattering factor is non-zero only when∑
e iQ·Rn 6= 0 Q = Ghkl

so a significant number of molecules scatter in phase with each other
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Multiple slit interference

A crystal is, therefore, a diffraction grating with ∼ 1020 slits!

When Q is a reciprocal lattice vector, a very strong, narrow diffraction
peak is seen at the detector.
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Compton scattering

A photon-electron collision

ϕ

θ

λ

v

λ

p = ~k = 2π~/λ
p′ = ~k′ = 2π~/λ′

|k| 6=
∣∣k′∣∣

Treat the electron relativistically and conserve energy and momentum

mc2 +
hc

λ
=

hc

λ′
+ γmc2 (energy)

h

λ
=

h

λ′
cosφ+ γmv cos θ (x-axis)

0 =
h

λ′
sinφ+ γmv sin θ (y-axis)
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Compton scattering derivation

squaring the momentum
equations

(
h

λ
− h

λ′
cosφ

)2

= γ2m2v2 cos2 θ(
− h

λ′
sinφ

)2

= γ2m2v2 sin2 θ

now add them together, substitute sin2 θ + cos2 θ = 1, expand the squares,
and sin2 φ+ cos2 φ = 1, then rearrange and substitute v = βc

γ2m2v2
(
sin2 θ + cos2 θ

)
=

(
h

λ
− h

λ′
cosφ

)2

+

(
− h

λ′
sinφ

)2

γ2m2v2 =
h2

λ2
− 2h2

λλ′
cosφ+

h2

λ′2
sin2 φ+

h2

λ′2
cos2 φ

m2c2β2

1− β2
=

m2v2

1− β2
=

h2

λ2
− 2h2

λλ′
cosφ+

h2

λ′2
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Compton scattering derivation (cont.)

Now take the energy equation and square it,

then solve it for β2 which is
substituted into the equation from the momentum.

(
mc2 +

hc

λ
− hc

λ′

)2

= γ2m2c4 =
m2c4

1− β2

β2 = 1− m2c4(
mc2 + hc

λ −
hc
λ′

)2
h2

λ2
+

h2

λ′2
− 2h2

λλ′
cosφ =

m2c2β2

1− β2

=
1

c2

(
mc2 +

hc

λ
− hc

λ′

)2

−m2c2
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Compton scattering results

Thus, for an electron

Comparing the two scattering lengths:
r0/λC = 1/137

λc = ~/mc = 3.86× 10−3Å

r0 =
e2

4πε0mc2
= 2.82× 10−5Å
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r0 =
e2

4πε0mc2
= 2.82× 10−5Å
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X-ray absorption

I
o

z

dz

µ

integrating both sides

and taking the anti-log

if the intensity at z = 0
is I0, then

For absorption coefficient µ and thick-
ness dz the x-ray intensity is attenuated
as

dI = −I (z)µdz −→ dI

I (z)
= −µdz∫

dI

I (z)
= −

∫
µdz −→ ln(I ) = −µz + C

I = eCe−µz = Ae−µz

I = I0e
−µz

This is just Beer’s law with an absorption coefficient which depends on
x-ray parameters.
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Absorption event

νh

k

• X-ray is absorbed by an atom

• Energy is transferred to a core electron

• Electron escapes atomic potential into the
continuum

• Ion remains with a core-hole
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Fluorescence emission

An ion with a core-hole is quite unstable (≈ 10−15s)

∆t

−→

νh

• After a short time a higher level
electron will drop down in energy to
fill the core hole

• Energy is liberated in the form of a
fluorescence photon

• This leaves a second hole (not core)
which is then filled from an even
higher shell

• The result is a cascade of fluorescence
photons which are characteristic of the
absorbing atom
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Auger emission

While fluorescence is the most probable method of core-hole relaxation
there are other possible mechanisms

∆t

−→

k
• In the Auger process, a higher level

electron will drop down in energy to
fill the core hole

• The energy liberated causes the
secondary emission of an electron

• This leaves two holes which then filled
from higher shells

• So that the secondary electron is
accompanied by fluorescence emissions
at lower energies
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Absorption coefficient

The absorption coefficient µ, depends strongly on the x-ray energy E , the
atomic number of the absorbing atoms Z , as well as the density ρ, and
atomic mass A:

µ ∼

ρZ 4

AE 3
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Absorption coefficient

Isolated gas atoms show a sharp jump and a smooth curve

Atoms in a solid or liquid show fine structure after the absorption edge
called XANES and EXAFS

−→
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Absorption coefficient

For an elemental material, the absorption coefficient, µ, is simply the
product of the atomic density, ρa, times the atomic absorption
cross-section, σa.

rewriting in terms of the mass density, ρm, the atomic mass, Ma, and
Avogadro’s number, NA, the absorption coefficient becomes

µ = ρaσa =

(
ρmNA

Ma

)
σa

if the absorber is made up of a number of different atoms, this calculation
can be generalized

µ =
∑
j

ρjσaj

where ρj and σsj are the atomic density and atomic absorption
cross-section of each component
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Absorption coefficient of a compound

µ[cm−1] is the linear absorption coefficient.
It is useful in practice to define the mass ab-
sorption coefficient, µm[cm2/g]

Beer’s Law now becomes

µm = µ/ρ

I = I0e
−µz = I0e

−µmρz

Suppose we want to compute the absorption coefficient per unit mass of a
compound if we distribute it over an area A

If the compound is made up of xj atoms with
atomic mass Mj and has a molecular mass
Mc and density ρc , we can write:

The “thickness” of a mass m of the com-
pound, distributed over an area A is then:

This leads to an absorption per unit mass of
µm/A and Beer’s law becomes

Mc =
∑
j

xjMj

µm = (NA/Mc)
∑
j

xjσaj

z =
m

ρcA

I = I0e
−(µm/A)m
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Absorption of Fe2O3 at 5 keV

The most commonly tabulated cross-sections are not the atomic
cross-sections but the mass cross sections, σj = NAσaj/Mj so we have

I = I0e
−(µm/A)m, µm =

NA

Mc

∑
j

xjσaj

=
NA

Mc

∑
j

Mj

NA
xjσj =

1

Mc

∑
j

Mjxjσj

the molecular mass and density of
Fe2O3 are

begin by finding tabulated values of
the cross-section for the elements Fe
and O at 5 keV

assuming a 5 mm diameter pellet

ρ = 5.24 g/cm2

MFe = 55.895 g/mol

MO = 16.000 g/mol

Mc = 159.69 g/mol

σFe = 138.860 cm2/g

σO = 46.666 cm2/g

A = π(0.25 cm)2 = 0.1963 cm2

µm =
1

159.69
[2 · 55.895 · 138.860 + 3 · 16.000 · 46.666] = 111.23 cm2/g

µm/A = 566.7 g−1 µ = µmρ = 582.9 cm−1 1/µ = 17.2µm
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