PHYS 570 - Introduction to Synchrotron Radiation

Term: Fall 2016
Meetings: Monday & Wednesday 17:00-18:15 Modern \Filfympef
Location: 212 Stuart Building

Instructor:  Carlo Segre

Office: 106A Life Sciences

Phone: 312.567.3498

email: segreQ@iit.edu

Book: Elements of Modern X-Ray Physics, 2? ed.,

J. Als-Nielsen and D. McMorrow (Wiley, 2011)

Web Site:  http://csrri.iit.edu/~segre/phys570/16F
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Course objectives

e Understand the means of production of synchrotron x-ray radiation

e Understand the function of various components of a synchrotron
beamline

e Be able to perform calculations in support of a synchrotron
experiment

e Understand the physics behind a variety of experimental techniques

e Be able to make an oral presentation of a synchrotron radiation
research topic

e Be able to write a General User Proposal in the format used by the
Advanced Photon Source
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Course syllabus

e Focus on applications of synchrotron radiation
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Course syllabus

e Focus on applications of synchrotron radiation

e Homework assignments

e In-class student presentations on research topics

Choose a research article which features a synchrotron technique
Timetable will be posted

Final project - writing a General User Proposal

Start thinking about a suitable project right away
Make proposal and get approval before starting

Visits to Advanced Photon Source (outside class, not required)

All students who plan to attend will need to request badges from APS
Go to the APS User Portal,
https://wwwl.aps.anl.gov/Users-Information and register as a new
user.

Use MRCAT (Sector 10) as location of experiment

Use Carlo Segre as local contact

State that your beamtime will be in the second week of October
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Course grading
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Course grading

33% — Homework assignments
Weekly or bi-weekly
Due at beginning of class
May be turned in via Blackboard

33% — General User Proposal

33% — Final Exam Presentation

Grading scale
A - 80% to 100%
B - 65% to 80%
C - 50% to 65%
E - 0% to 50%
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Topics to be covered (at a minimum)

X-rays and their interaction with matter
e Sources of x-rays

e Refraction and reflection from interfaces
e Kinematical diffraction

o Diffraction by perfect crystals

e Small angle scattering

e Photoelectric absorption

e Resonant scattering
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Topics to be covered (at a minimum)

X-rays and their interaction with matter
e Sources of x-rays

e Refraction and reflection from interfaces
e Kinematical diffraction

o Diffraction by perfect crystals

e Small angle scattering

e Photoelectric absorption

e Resonant scattering

e Imaging
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Resources for the course

e Orange x-ray data booklet:
http://xdb.lbl.gov/xdb-new.pdf
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Orange x-ray data booklet:
http://xdb.Ibl.gov/xdb-new.pdf

o Center for X-Ray Optics web site:
http://cxro.Ibl.gov

e Hephaestus from the Demeter suite:
http://bruceravel.github.io/demeter/

e McMaster data on the Web:
http://csrri.iit.edu/periodic-table.html

e X-ray Oriented Programs:
http://www.esrf.eu/Instrumentation /software/data-analysis/xop2.4
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History of x-ray sources

X-ray interactions with matter

Thomson scattering
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Today's outline - August 22, 2016

History of x-ray sources

X-ray interactions with matter

Thomson scattering

Atomic form factor

Reading Assignment: Chapter 1.1-1.6; 2.1-2.2
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History of x-ray sources
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History of x-ray sources
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The classical x-ray

The classical plane wave representation of x-rays is:
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The classical x-ray

The classical plane wave representation of x-rays is:
E(r,t) = éEoe/rD)

where € is a unit vector in the direction of the electric field, k is the
wavevector of the radiation along the propagation direction, and w is the
angular frequency of oscillation of the radiation.

If the energy, £ is in keV, the relationship among these quantities is given
by:
hw=hy=&E=c

A = hc/E
= (4.1357 x 107 1%V -5)(2.9979 x 108 m/s)/&
= (4.1357 x 107 keV - 5)(2.9979 x 10¥ A/s) /&
= 12.398A.keV/E to give units of A
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Interactions of x-rays with matter

For the purposes of this course, we care most about the interactions of
x-rays with matter.

There are four basic types of such interactions:
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Interactions of x-rays with matter

For the purposes of this course, we care most about the interactions of
x-rays with matter.

There are four basic types of such interactions:

@ Elastic scattering
@ Inelastic scattering
© Absorption

O Pair production
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Interactions of x-rays with matter

For the purposes of this course, we care most about the interactions of
x-rays with matter.

There are four basic types of such interactions:

@ Elastic scattering
@ Inelastic scattering
© Absorption

(4]

We will only discuss the first three.
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Elastic scattering

Most of the phenomena we will discuss can be treated classically as elastic
scattering of electromagnetic waves (x-rays)
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Elastic scattering

Most of the phenomena we will discuss can be treated classically as elastic

scattering of electromagnetic waves (x-rays)

The typical scattering geometry is

K

where an incident x-ray of wave number k
scatters elastically from an electron to k'’
resulting in a scattering vector Q

or in terms of momentum transfer: AQ = hk — hk’

Start with the scattering from a single electron, then build up to more

complexity
[N U) PHYS 570 - Fall 2016

August 22, 2016
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Thomson scattering

Assumptions:

incident x-ray plane wave
electron is a point charge
scattering is elastic
scattered intensity oc 1/R?

C. Segre (lIT)

The electron is exposed to the
incident electric field E;,(t") and
is accelerated

The acceleration of the electron,
ax(t"), results in the radiation of
a spherical wave with the same
frequency

The observer at R “sees” a scat-
tered electric field E,.q(R,t) at
alatertime t =t' + R/c

Using this, calculate the elastic
scattering cross-section
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Thomson scattering
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Thomson scattering

—e
— a2
Aregc?R

Eq(R,t) = — (t)sinW  where t' =t—R/c
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Thomson scattering

E.4(R,t)=— ay(t)sinV¥ where t=t—R/c
rad (R ) 4megc?R X(t) /
e e
ax(tl) — _*Eer Iwt
m
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Thomson scattering
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Thomson scattering

4
y
Eraa(R, t) = —M;ﬁax(t’)sinw where  t' =t— R/c
ax(tl) _ —EEX e—mt' — _EExoe—iwtein/c
m
aX(t/) - _ El_nele/c
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Thomson scattering

—€ —e€ i .
Erad(R, t) = —m?EjneIWR/C sin¥
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Thomson scattering

—€ —e€ i .
Erad(R, t) = —m?Ejnele/c sin¥
2 iwR/c
Erad(R, t) _ e e G
E,‘n 471'6()mC2 R
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Thomson scattering

—€ —€ ; .
Erad(R, t) = —m?Emele/c sin¥
E,.qa(R,t) e2  elwR/c
E.  dmeem® R sin ¥ but k =w/c
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Thomson scattering

Erad(Ra t) 62 eikR ) eikR )
= — V=—rn— v
Ein dreomc?® R >In TR
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Thomson scattering

z
y
Erad(Ra t) 62 eikR ) eikR )
E;, Amegmc? R > 0 R >
&2
n=-———-=282x10"°A
4megmc?
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Scattering cross-section

Ein
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y
Detector of solid angle AQ at a dis-
tance R from electron
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Scattering cross-section

y
Detector of solid angle AQ at a dis- Io |Einl?
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Scattering cross-section

y
Detector of solid angle AQ at a dis- Io |Einl?
tance R from electron ®o = Ao = e
Cross-section of incoming beam is IE |2
Ao Ise oc c(RPAQ) =291

hw
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Scattering cross-section

y
Detector of solid angle AQ at a dis- Io |Einl?
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Scattering cross-section

Detector of solid angle AQ at a dis-
tance R from electron
Cross-section of incoming beam is
Ao

Cross section of scattered beam
(into detector) is R2AQ
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Scattering cross-section

Ein z

Differential cross-section is obtained by normalizing
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Differential cross-section is obtained by normalizing

do lsc lse

dQ ~ DAQ  (lb/A)) AQ
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Scattering cross-section

Ein z

Differential cross-section is obtained by normalizing

2 _ lsc _ Isc _ |Erad|2 2
dQ2  OgAQ (IO/AO) AQ ‘Ein|2
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Scattering cross-section

Ein z

Differential cross-section is obtained by normalizing

2 _ lsc _ Isc _ |Erad|2
dQ2 ¢0AQ (/O/Ao) AQ ‘Ein|2
Fas _ @ Jee)
Ein
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Scattering cross-section

Differential cross-section is obtained by normalizing

2 _ lsc _ Isc _ |Erad|2 2
dQ?  OgAQ (/O/Ao) AQ ‘Ein|2
Erad eikR N eikR -
=—rp—— €& = —rp—|cos (5 — W
Ein o R ‘6 € ‘ o R ‘ (2 ) }
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Scattering cross-section

Differential cross-section is obtained by normalizing

2 _ Isc _ Isc _ |Erad|2 2

dQ  ®AQ (/A AQ  |E,[?

E, ikR ikR ikR

Ej,,d :_roe?‘g.g‘ :_roe?‘cos(%—lll)} :—,OeR_sin\U
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Scattering cross-section

Differential cross-section is obtained by normalizing

do lsc Isc |Erad|2 2 2 -2

dQ ~ A0 (lb/A)AQ |5, P Chal
E, ikR ikR ikR

o 1S (68| = —r - [cos (5~ W)| =~ sin
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Total cross-section

Integrate to obtain the total Thomson scattering cross-section from an
electron.
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Total cross-section

Integrate to obtain the total Thomson scattering cross-section from an

electron.
8 ,
o= —r
30
= 0.665 x 1072* cm?
= 0.665 barn
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Total cross-section

Integrate to obtain the total Thomson scattering cross-section from an
electron. If displacement is in vertical direction, sin W term is replaced
by unity and if the source is unpolarized, it is a combination.

87T 2 1
o= —10n
3 " ) Polarization factor = < sin? ¥
= 0.665 x 107" cm 1 .0
— 0.665 barn 2 (1+sin*V)
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Atomic scattering
If we have a charge distribution instead of a

single electron, the scattering is more com-
plex
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A phase shift arises because of scattering
from different portions of extended electron
distribution
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Atomic scattering

If we have a charge distribution instead of a
single electron, the scattering is more com-
plex

A phase shift arises because of scattering
from different portions of extended electron
distribution

Ap(r)=(k—kK)-r=Q-r

where the scattering vector, Q is given by

|Q| = 2|k| sinf = 4Twsine
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Atomic form factor

The volume element at r contributes —rop(r)d®r with phase factor e/@*
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The volume element at r contributes —rop(r)d®r with phase factor e/@*
for an entire atom, integrate to get the atomic form factor fO(Q):
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Atomic form factor

The volume element at r contributes —rop(r)d®r with phase factor e/@*
for an entire atom, integrate to get the atomic form factor fO(Q):

—rofo(Q) = —ro/p(r)eio'rd3r
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Atomic form factor

The volume element at r contributes —rop(r)d®r with phase factor e/@*
for an entire atom, integrate to get the atomic form factor fO(Q):

—rofo(Q) = —ro/p(r)eiQ'rd3r

Electrons which are tightly bound cannot respond like a free electron. This
results in a depression of the atomic form factor, called f’ and a lossy term
near an ionization energy, called f”. Together these are the anomalous
corrections to the atomic form factor.
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Atomic form factor

The volume element at r contributes —rop(r)d®r with phase factor e/@*
for an entire atom, integrate to get the atomic form factor fO(Q):

—rofo(Q) = —ro/p(r)eiQ'rd3r

Electrons which are tightly bound cannot respond like a free electron. This
results in a depression of the atomic form factor, called f’ and a lossy term
near an ionization energy, called f”. Together these are the anomalous
corrections to the atomic form factor.
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Atomic form factor

The volume element at r contributes —rop(r)d®r with phase factor e/@*
for an entire atom, integrate to get the atomic form factor fO(Q):

—rofo(Q) = —ro/p(r)eiQ'rd3r

Electrons which are tightly bound cannot respond like a free electron. This
results in a depression of the atomic form factor, called f’ and a lossy term
near an ionization energy, called f”. Together these are the anomalous
corrections to the atomic form factor.
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Atomic form factor

The volume element at r contributes —rop(r)d®r with phase factor e/@*
for an entire atom, integrate to get the atomic form factor fO(Q):

—rofo(Q) = —ro/p(r)eiQ'rd3r

Electrons which are tightly bound cannot respond like a free electron. This
results in a depression of the atomic form factor, called f’ and a lossy term
near an ionization energy, called f”. Together these are the anomalous
corrections to the atomic form factor.

T T T

-
\J\ the total atomic scattering factor is

f(Q, hw) = fO(Q) + ' (hw) + if"(hw)
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Atomic form factor

The atomic form factor has
an angular dependence

f (electrons)

! ! !
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sin(8)/A (1/A)
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Atomic form factor
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Atomic form

f (electrons)
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Atomic form factor

20 T T
The atomic form factor has

an angular dependence

4
Q:;sine

f (electrons)

lighter atoms have a broader
form factor

forward scattering counts
electrons, 7(0) = Z

| |
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sin(8)/A (1/A)
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Atomic form factor

20 T T
The atomic form factor has

an angular dependence

4
Q:;sine

f (electrons)

lighter atoms have a broader
form factor
forward scattering counts

electrons, 7(0) = Z
O, Cl, CI7, Ar

0 1 1
0 0.1 02 0.3 0.4 0.5 0.6

sin(8)/A (1/A)
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Scattering from atoms: all effects

Scattering from an atom is built up from component quantities:
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Scattering from atoms: all effects

Scattering from an atom is built up from component quantities:

2
. . €
Thomson scattering from a single electron —h=—-—>
dmegmce
—h = —h
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Scattering from atoms: all effects

Scattering from an atom is built up from component quantities:

2
. ) e
Thomson scattering from a single electron —f =
dmegmce
atomic form factor fO(Q) — /p(r)eiq'rd3r
— nf(Q, hw) = 1 [F(Q)
0 ) 0
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Scattering from atoms: all effects

Scattering from an atom is built up from component quantities:

2
. . e
Thomson scattering from a single electron —r = " meomc?
atomic form factor Q) = /p(r)eio'rd3r
anomalous scattering terms f'(hw) + if" (hw)
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Scattering from atoms: all effects

Scattering from an atom is built up from component quantities:

2
e

Thomson scattering from a single electron —h=—-—>

dmegmce
atomic form factor fO(Q) — /p(r)eiq"d3r
anomalous scattering terms f'(hw) + if" (hw)

1
polarization factor P={sinV

(1 +sin? V)

— rof(Q, hw) sin® W = — 1y [FO(Q) + £/ (hw) + if " (hw)] sin” W
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