## PHYS 570 - Introduction to Synchrotron Radiation

| Term: | Fall 2016 |
| :--- | :--- |
| Meetings: | Monday \& Wednesday 17:00-18:15 |
| Location: | 212 Stuart Building |
|  |  |
| Instructor: | Carlo Segre |
| Office: | 106A Life Sciences |
| Phone: | 312.567.3498 <br> email: <br> segre@iit.edu |



Book: Elements of Modern X-Ray Physics, $2^{\text {nd }}$ ed., J. Als-Nielsen and D. McMorrow (Wiley, 2011)

Web Site: http://csrri.iit.edu/~segre/phys570/16F

## Course objectives

- Understand the means of production of synchrotron x-ray radiation


## Course objectives

- Understand the means of production of synchrotron x-ray radiation
- Understand the function of various components of a synchrotron beamline


## Course objectives

- Understand the means of production of synchrotron x-ray radiation
- Understand the function of various components of a synchrotron beamline
- Be able to perform calculations in support of a synchrotron experiment


## Course objectives

- Understand the means of production of synchrotron x-ray radiation
- Understand the function of various components of a synchrotron beamline
- Be able to perform calculations in support of a synchrotron experiment
- Understand the physics behind a variety of experimental techniques


## Course objectives

- Understand the means of production of synchrotron x-ray radiation
- Understand the function of various components of a synchrotron beamline
- Be able to perform calculations in support of a synchrotron experiment
- Understand the physics behind a variety of experimental techniques
- Be able to make an oral presentation of a synchrotron radiation research topic


## Course objectives

- Understand the means of production of synchrotron x-ray radiation
- Understand the function of various components of a synchrotron beamline
- Be able to perform calculations in support of a synchrotron experiment
- Understand the physics behind a variety of experimental techniques
- Be able to make an oral presentation of a synchrotron radiation research topic
- Be able to write a General User Proposal in the format used by the Advanced Photon Source


## Course syllabus

- Focus on applications of synchrotron radiation


## Course syllabus

- Focus on applications of synchrotron radiation
- Homework assignments


## Course syllabus

- Focus on applications of synchrotron radiation
- Homework assignments
- In-class student presentations on research topics
- Choose a research article which features a synchrotron technique
- Timetable will be posted


## Course syllabus

- Focus on applications of synchrotron radiation
- Homework assignments
- In-class student presentations on research topics
- Choose a research article which features a synchrotron technique
- Timetable will be posted
- Final project - writing a General User Proposal
- Start thinking about a suitable project right away
- Make proposal and get approval before starting


## Course syllabus

- Focus on applications of synchrotron radiation
- Homework assignments
- In-class student presentations on research topics
- Choose a research article which features a synchrotron technique
- Timetable will be posted
- Final project - writing a General User Proposal
- Start thinking about a suitable project right away
- Make proposal and get approval before starting


## Course syllabus

- Focus on applications of synchrotron radiation
- Homework assignments
- In-class student presentations on research topics
- Choose a research article which features a synchrotron technique
- Timetable will be posted
- Final project - writing a General User Proposal
- Start thinking about a suitable project right away
- Make proposal and get approval before starting
- Visits to Advanced Photon Source (outside class, not required)
- All students who plan to attend will need to request badges from APS
- Go to the APS User Portal, https://www1.aps.anl.gov/Users-Information and register as a new user.
- Use MRCAT (Sector 10) as location of experiment
- Use Carlo Segre as local contact
- State that your beamtime will be in the second week of October


## Course grading

$33 \%$ - Homework assignments

## Course grading

33\% - Homework assignments
Weekly or bi-weekly

## Course grading

33\% - Homework assignments
Weekly or bi-weekly
Due at beginning of class

## Course grading

33\% - Homework assignments
Weekly or bi-weekly
Due at beginning of class
May be turned in via Blackboard

## Course grading

33\% - Homework assignments
Weekly or bi-weekly
Due at beginning of class
May be turned in via Blackboard
33\% - General User Proposal

## Course grading

33\% - Homework assignments
Weekly or bi-weekly
Due at beginning of class
May be turned in via Blackboard
33\% - General User Proposal
33\% - Final Exam Presentation

## Course grading

33\% - Homework assignments
Weekly or bi-weekly
Due at beginning of class
May be turned in via Blackboard
33\% - General User Proposal
33\% - Final Exam Presentation

Grading scale

$$
\begin{aligned}
& \text { A - } 80 \% \text { to } 100 \% \\
& \text { B - } 65 \% \text { to } 80 \% \\
& \text { C - } 50 \% \text { to } 65 \% \\
& \text { E - } 0 \% \text { to } 50 \%
\end{aligned}
$$

## Topics to be covered (at a minimum)

## Topics to be covered (at a minimum)

- X-rays and their interaction with matter


## Topics to be covered (at a minimum)

- X-rays and their interaction with matter
- Sources of x-rays


## Topics to be covered (at a minimum)

- X-rays and their interaction with matter
- Sources of x-rays
- Refraction and reflection from interfaces


## Topics to be covered (at a minimum)

- X-rays and their interaction with matter
- Sources of x-rays
- Refraction and reflection from interfaces
- Kinematical diffraction


## Topics to be covered (at a minimum)

- X-rays and their interaction with matter
- Sources of x-rays
- Refraction and reflection from interfaces
- Kinematical diffraction
- Diffraction by perfect crystals


## Topics to be covered (at a minimum)

- X-rays and their interaction with matter
- Sources of x-rays
- Refraction and reflection from interfaces
- Kinematical diffraction
- Diffraction by perfect crystals
- Small angle scattering


## Topics to be covered (at a minimum)

- X-rays and their interaction with matter
- Sources of x-rays
- Refraction and reflection from interfaces
- Kinematical diffraction
- Diffraction by perfect crystals
- Small angle scattering
- Photoelectric absorption


## Topics to be covered (at a minimum)

- X-rays and their interaction with matter
- Sources of x-rays
- Refraction and reflection from interfaces
- Kinematical diffraction
- Diffraction by perfect crystals
- Small angle scattering
- Photoelectric absorption
- Resonant scattering


## Topics to be covered (at a minimum)

- X-rays and their interaction with matter
- Sources of x-rays
- Refraction and reflection from interfaces
- Kinematical diffraction
- Diffraction by perfect crystals
- Small angle scattering
- Photoelectric absorption
- Resonant scattering
- Imaging


## Resources for the course

- Orange x-ray data booklet: http://xdb.lbl.gov/xdb-new.pdf


## Resources for the course

- Orange x-ray data booklet: http://xdb.lbl.gov/xdb-new.pdf
- Center for X-Ray Optics web site: http://cxro.lbl.gov



## Resources for the course

- Orange x-ray data booklet: http://xdb.lbl.gov/xdb-new.pdf
- Center for X-Ray Optics web site: http://cxro.lbl.gov
- Hephaestus from the Demeter suite: http://bruceravel.github.io/demeter/



## Resources for the course

- Orange x-ray data booklet: http://xdb.lbl.gov/xdb-new.pdf
- Center for X-Ray Optics web site: http://cxro.lbl.gov
- Hephaestus from the Demeter suite: http://bruceravel.github.io/demeter/
- McMaster data on the Web: http://csrri.iit.edu/periodic-table.html


## Resources for the course

- Orange x-ray data booklet: http://xdb.lbl.gov/xdb-new.pdf
- Center for X-Ray Optics web site: http://cxro.lbl.gov
- Hephaestus from the Demeter suite: http://bruceravel.github.io/demeter/
- McMaster data on the Web: http://csrri.iit.edu/periodic-table.html
- X-ray Oriented Programs: http://www.esrf.eu/Instrumentation/software/data-analysis/xop2.4


## Today's outline - August 22, 2016

## Today's outline - August 22, 2016

- History of x-ray sources


## Today's outline - August 22, 2016

- History of x-ray sources
- X-ray interactions with matter


## Today's outline - August 22, 2016

- History of x-ray sources
- X-ray interactions with matter
- Thomson scattering


## Today's outline - August 22, 2016

- History of x-ray sources
- X-ray interactions with matter
- Thomson scattering
- Atomic form factor


## Today's outline - August 22, 2016

- History of x-ray sources
- X-ray interactions with matter
- Thomson scattering
- Atomic form factor

Reading Assignment: Chapter 1.1-1.6; 2.1-2.2

## History of x-ray sources



- 1895 x-rays discovered by William Röntgen


## History of x-ray sources



- 1895 x-rays discovered by William Röntgen
- $1^{\text {st }}$ generation synchrotrons initially used in parasitic mode (SSRL, CHESS)
- $2^{\text {nd }}$ generation were dedicated sources (NSLS, SRC, CAMD)
- $3^{r d}$ generation featured insertion devices (APS, ESRF, ALS)
- $4^{\text {th }}$ generation are free electron lasers (LCLS, XFEL)


## The classical x-ray

The classical plane wave representation of $x$-rays is:

## The classical x-ray

The classical plane wave representation of $x$-rays is:

$$
\mathbf{E}(\mathbf{r}, t)=\hat{\epsilon} E_{0} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}
$$

## The classical x-ray

The classical plane wave representation of $x$-rays is:

$$
\mathbf{E}(\mathbf{r}, t)=\hat{\epsilon} E_{0} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}
$$

where $\hat{\epsilon}$ is a unit vector in the direction of the electric field

## The classical x-ray

The classical plane wave representation of $x$-rays is:

$$
\mathbf{E}(\mathbf{r}, t)=\hat{\epsilon} E_{0} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}
$$

where $\hat{\epsilon}$ is a unit vector in the direction of the electric field, $\mathbf{k}$ is the wavevector of the radiation along the propagation direction

## The classical x-ray

The classical plane wave representation of $x$-rays is:

$$
\mathbf{E}(\mathbf{r}, t)=\hat{\epsilon} E_{0} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}
$$

where $\hat{\epsilon}$ is a unit vector in the direction of the electric field, $\mathbf{k}$ is the wavevector of the radiation along the propagation direction, and $\omega$ is the angular frequency of oscillation of the radiation.

## The classical x-ray

The classical plane wave representation of $x$-rays is:

$$
\mathbf{E}(\mathbf{r}, t)=\hat{\epsilon} E_{0} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}
$$

where $\hat{\epsilon}$ is a unit vector in the direction of the electric field, $\mathbf{k}$ is the wavevector of the radiation along the propagation direction, and $\omega$ is the angular frequency of oscillation of the radiation.

If the energy, $\mathcal{E}$ is in $k e V$, the relationship among these quantities is given by:

## The classical x-ray

The classical plane wave representation of $x$-rays is:

$$
\mathbf{E}(\mathbf{r}, t)=\hat{\epsilon} E_{0} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}
$$

where $\hat{\epsilon}$ is a unit vector in the direction of the electric field, $\mathbf{k}$ is the wavevector of the radiation along the propagation direction, and $\omega$ is the angular frequency of oscillation of the radiation.

If the energy, $\mathcal{E}$ is in $k e V$, the relationship among these quantities is given by:

$$
\hbar \omega=h \nu=\mathcal{E}, \lambda \nu=c
$$

## The classical x-ray

The classical plane wave representation of $x$-rays is:

$$
\mathbf{E}(\mathbf{r}, t)=\hat{\epsilon} E_{0} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}
$$

where $\hat{\epsilon}$ is a unit vector in the direction of the electric field, $\mathbf{k}$ is the wavevector of the radiation along the propagation direction, and $\omega$ is the angular frequency of oscillation of the radiation.

If the energy, $\mathcal{E}$ is in keV , the relationship among these quantities is given by:

$$
\hbar \omega=h \nu=\mathcal{E}, \lambda \nu=c
$$

$$
\begin{aligned}
\lambda & =h c / \mathcal{E} \\
& =\left(4.1357 \times 10^{-15} \mathrm{eV} \cdot \mathrm{~s}\right)\left(2.9979 \times 10^{8} \mathrm{~m} / \mathrm{s}\right) / \mathcal{E} \\
& =\left(4.1357 \times 10^{-18} \mathrm{keV} \cdot \mathrm{~s}\right)\left(2.9979 \times 10^{18} \AA / \mathrm{s}\right) / \mathcal{E} \\
& =12.398 \AA \cdot \mathrm{keV} / \mathcal{E} \quad \text { to give units of } \AA
\end{aligned}
$$

## Interactions of x-rays with matter

For the purposes of this course, we care most about the interactions of $x$-rays with matter.

There are four basic types of such interactions:

## Interactions of x-rays with matter

For the purposes of this course, we care most about the interactions of $x$-rays with matter.

There are four basic types of such interactions:
(1) Elastic scattering

## Interactions of x-rays with matter

For the purposes of this course, we care most about the interactions of $x$-rays with matter.

There are four basic types of such interactions:
(1) Elastic scattering
(2) Inelastic scattering

## Interactions of x-rays with matter

For the purposes of this course, we care most about the interactions of $x$-rays with matter.

There are four basic types of such interactions:
(1) Elastic scattering
(2) Inelastic scattering
(3) Absorption

## Interactions of x-rays with matter

For the purposes of this course, we care most about the interactions of $x$-rays with matter.

There are four basic types of such interactions:
(1) Elastic scattering
(2) Inelastic scattering
(3) Absorption
(4) Pair production

## Interactions of x-rays with matter

For the purposes of this course, we care most about the interactions of $x$-rays with matter.

There are four basic types of such interactions:
(1) Elastic scattering
(2) Inelastic scattering
(3) Absorption

4 Pair production
We will only discuss the first three.

## Elastic scattering

Most of the phenomena we will discuss can be treated classically as elastic scattering of electromagnetic waves (x-rays)

## Elastic scattering

Most of the phenomena we will discuss can be treated classically as elastic scattering of electromagnetic waves (x-rays)

The typical scattering geometry is


## Elastic scattering

Most of the phenomena we will discuss can be treated classically as elastic scattering of electromagnetic waves (x-rays)

The typical scattering geometry is

where an incident x -ray of wave number k

## Elastic scattering

Most of the phenomena we will discuss can be treated classically as elastic scattering of electromagnetic waves (x-rays)

The typical scattering geometry is

where an incident $x$-ray of wave number $k$
scatters elastically from an electron to $\mathbf{k}^{\prime}$

## Elastic scattering

Most of the phenomena we will discuss can be treated classically as elastic scattering of electromagnetic waves (x-rays)

The typical scattering geometry is

where an incident x -ray of wave number k scatters elastically from an electron to $\mathbf{k}^{\prime}$ resulting in a scattering vector $\mathbf{Q}$

## Elastic scattering

Most of the phenomena we will discuss can be treated classically as elastic scattering of electromagnetic waves (x-rays)

The typical scattering geometry is

where an incident x -ray of wave number k
scatters elastically from an electron to $\mathbf{k}^{\prime}$
resulting in a scattering vector $\mathbf{Q}$
or in terms of momentum transfer: $\hbar \mathbf{Q}=\hbar \mathbf{k}-\hbar \mathbf{k}^{\prime}$

## Elastic scattering

Most of the phenomena we will discuss can be treated classically as elastic scattering of electromagnetic waves (x-rays)

The typical scattering geometry is

where an incident x -ray of wave number k
scatters elastically from an electron to $\mathbf{k}^{\prime}$
resulting in a scattering vector $\mathbf{Q}$
or in terms of momentum transfer: $\hbar \mathbf{Q}=\hbar \mathbf{k}-\hbar \mathbf{k}^{\prime}$
Start with the scattering from a single electron, then build up to more complexity

## Thomson scattering

Assumptions:


## Thomson scattering

Assumptions:
incident x-ray plane wave


## Thomson scattering

Assumptions:
incident x-ray plane wave electron is a point charge


## Thomson scattering

Assumptions:
incident x-ray plane wave electron is a point charge scattering is elastic


## Thomson scattering

Assumptions:
incident x-ray plane wave electron is a point charge scattering is elastic scattered intensity $\propto 1 / R^{2}$


## Thomson scattering

Assumptions:
incident x-ray plane wave electron is a point charge scattering is elastic scattered intensity $\propto 1 / R^{2}$

The electron is exposed to the incident electric field $E_{i n}\left(t^{\prime}\right)$ and is accelerated


## Thomson scattering

Assumptions:
incident x-ray plane wave electron is a point charge scattering is elastic scattered intensity $\propto 1 / R^{2}$


The electron is exposed to the incident electric field $E_{i n}\left(t^{\prime}\right)$ and is accelerated

The acceleration of the electron, $a_{x}\left(t^{\prime}\right)$, results in the radiation of a spherical wave with the same frequency

## Thomson scattering

Assumptions:
incident x-ray plane wave electron is a point charge
scattering is elastic
scattered intensity $\propto 1 / R^{2}$


The electron is exposed to the incident electric field $E_{i n}\left(t^{\prime}\right)$ and is accelerated

The acceleration of the electron, $a_{x}\left(t^{\prime}\right)$, results in the radiation of a spherical wave with the same frequency

The observer at $R$ "sees" a scattered electric field $E_{r a d}(R, t)$ at a later time $t=t^{\prime}+R / c$

## Thomson scattering

Assumptions:
incident x-ray plane wave electron is a point charge scattering is elastic scattered intensity $\propto 1 / R^{2}$


The electron is exposed to the incident electric field $E_{i n}\left(t^{\prime}\right)$ and is accelerated

The acceleration of the electron, $a_{x}\left(t^{\prime}\right)$, results in the radiation of a spherical wave with the same frequency

The observer at $R$ "sees" a scattered electric field $E_{r a d}(R, t)$ at a later time $t=t^{\prime}+R / c$

Using this, calculate the elastic scattering cross-section

## Thomson scattering



$$
E_{r a d}(R, t)=-\frac{-e}{4 \pi \epsilon_{0} c^{2} R} a_{x}\left(t^{\prime}\right) \sin \Psi
$$

## Thomson scattering



$$
E_{r a d}(R, t)=-\frac{-e}{4 \pi \epsilon_{0} c^{2} R} a_{x}\left(t^{\prime}\right) \sin \psi \quad \text { where } \quad t^{\prime}=t-R / c
$$

## Thomson scattering



$$
\begin{aligned}
E_{r a d}(R, t) & =-\frac{-e}{4 \pi \epsilon_{0} c^{2} R} a_{x}\left(t^{\prime}\right) \sin \psi \quad \text { where } \quad t^{\prime}=t-R / c \\
a_{x}\left(t^{\prime}\right) & =-\frac{e}{m} E_{\times 0} e^{-i \omega t^{\prime}}
\end{aligned}
$$

## Thomson scattering



$$
\begin{aligned}
E_{r a d}(R, t) & =-\frac{-e}{4 \pi \epsilon_{0} c^{2} R} a_{x}\left(t^{\prime}\right) \sin \psi \quad \text { where } \quad t^{\prime}=t-R / c \\
a_{x}\left(t^{\prime}\right) & =-\frac{e}{m} E_{x 0} e^{-i \omega t^{\prime}}=-\frac{e}{m} E_{x 0} e^{-i \omega t} e^{i \omega R / c}
\end{aligned}
$$

## Thomson scattering



$$
\begin{aligned}
E_{r a d}(R, t) & =-\frac{-e}{4 \pi \epsilon_{0} c^{2} R} a_{x}\left(t^{\prime}\right) \sin \psi \quad \text { where } \quad t^{\prime}=t-R / c \\
a_{x}\left(t^{\prime}\right) & =-\frac{e}{m} E_{x 0} e^{-i \omega t^{\prime}}=-\frac{e}{m} E_{x 0} e^{-i \omega t} e^{i \omega R / c} \\
a_{x}\left(t^{\prime}\right) & =-\frac{e}{m} E_{i n} e^{i \omega R / c}
\end{aligned}
$$

## Thomson scattering



$$
E_{r a d}(R, t)=-\frac{-e}{4 \pi \epsilon_{0} c^{2} R} \frac{-e}{m} E_{i n} e^{i \omega R / c} \sin \psi
$$

## Thomson scattering



$$
\begin{aligned}
E_{r a d}(R, t) & =-\frac{-e}{4 \pi \epsilon_{0} c^{2} R} \frac{-e}{m} E_{i n} e^{i \omega R / c} \sin \psi \\
\frac{E_{r a d}(R, t)}{E_{i n}} & =-\frac{e^{2}}{4 \pi \epsilon_{0} m c^{2}} \frac{e^{i \omega R / c}}{R} \sin \psi
\end{aligned}
$$

## Thomson scattering



$$
\begin{aligned}
& E_{r a d}(R, t)=-\frac{-e}{4 \pi \epsilon_{0} c^{2} R} \frac{-e}{m} E_{i n} e^{i \omega R / c} \sin \psi \\
& \frac{E_{r a d}(R, t)}{E_{i n}}=-\frac{e^{2}}{4 \pi \epsilon_{0} m c^{2}} \frac{e^{i \omega R / c}}{R} \sin \psi \quad \text { but } k=\omega / c
\end{aligned}
$$

## Thomson scattering



$$
\frac{E_{r a d}(R, t)}{E_{i n}}=-\frac{e^{2}}{4 \pi \epsilon_{0} m c^{2}} \frac{e^{i k R}}{R} \sin \psi=-r_{0} \frac{e^{i k R}}{R} \sin \psi
$$

## Thomson scattering



$$
\begin{aligned}
\frac{E_{r a d}(R, t)}{E_{i n}} & =-\frac{e^{2}}{4 \pi \epsilon_{0} m c^{2}} \frac{e^{i k R}}{R} \sin \psi=-r_{0} \frac{e^{i k R}}{R} \sin \psi \\
r_{0} & =\frac{e^{2}}{4 \pi \epsilon_{0} m c^{2}}=2.82 \times 10^{-5} \AA
\end{aligned}
$$

## Scattering cross-section



## Scattering cross-section



Detector of solid angle $\Delta \Omega$ at a distance $R$ from electron

## Scattering cross-section



Detector of solid angle $\Delta \Omega$ at a distance $R$ from electron Cross-section of incoming beam is $A_{0}$

## Scattering cross-section



Detector of solid angle $\Delta \Omega$ at a distance $R$ from electron Cross-section of incoming beam is

$$
\Phi_{0} \equiv \frac{l_{0}}{A_{0}}=c \frac{\left|E_{i n}\right|^{2}}{\hbar \omega}
$$

$A_{0}$

## Scattering cross-section



Detector of solid angle $\Delta \Omega$ at a distance $R$ from electron Cross-section of incoming beam is $A_{0}$

$$
\begin{aligned}
& \Phi_{0} \equiv \frac{I_{0}}{A_{0}}=c \frac{\left|E_{i n}\right|^{2}}{\hbar \omega} \\
& I_{s c} \propto c\left(R^{2} \Delta \Omega\right) \frac{\left|E_{r a d}\right|^{2}}{\hbar \omega}
\end{aligned}
$$

## Scattering cross-section



Detector of solid angle $\Delta \Omega$ at a distance $R$ from electron Cross-section of incoming beam is $A_{0}$
Cross section of scattered beam

$$
\Phi_{0} \equiv \frac{I_{0}}{A_{0}}=c \frac{\left|E_{i n}\right|^{2}}{\hbar \omega}
$$

$$
I_{s c} \propto c\left(R^{2} \Delta \Omega\right) \frac{\left|E_{r a d}\right|^{2}}{\hbar \omega}
$$ (into detector) is $R^{2} \Delta \Omega$

## Scattering cross-section



Detector of solid angle $\Delta \Omega$ at a distance $R$ from electron Cross-section of incoming beam is $A_{0}$
Cross section of scattered beam (into detector) is $R^{2} \Delta \Omega$

$$
\begin{aligned}
& \Phi_{0} \equiv \frac{I_{0}}{A_{0}}=c \frac{\left|E_{i n}\right|^{2}}{\hbar \omega} \\
& I_{s c} \propto c\left(R^{2} \Delta \Omega\right) \frac{\left|E_{r a d}\right|^{2}}{\hbar \omega} \\
& \frac{I_{s c}}{I_{0}}=\frac{\left|E_{r a d}\right|^{2}}{\left|E_{i n}\right|^{2}} R^{2} \Delta \Omega
\end{aligned}
$$

## Scattering cross-section



Differential cross-section is obtained by normalizing

## Scattering cross-section



Differential cross-section is obtained by normalizing

$$
\frac{d \sigma}{d \Omega}
$$

## Scattering cross-section



Differential cross-section is obtained by normalizing

$$
\frac{d \sigma}{d \Omega}=\frac{I_{s c}}{\Phi_{0} \Delta \Omega}
$$

## Scattering cross-section



Differential cross-section is obtained by normalizing

$$
\frac{d \sigma}{d \Omega}=\frac{I_{s c}}{\Phi_{0} \Delta \Omega}=\frac{I_{s c}}{\left(I_{0} / A_{0}\right) \Delta \Omega}
$$

## Scattering cross-section



Differential cross-section is obtained by normalizing

$$
\frac{d \sigma}{d \Omega}=\frac{I_{s c}}{\Phi_{0} \Delta \Omega}=\frac{I_{s c}}{\left(I_{0} / A_{0}\right) \Delta \Omega}=\frac{\left|E_{r a d}\right|^{2}}{\left|E_{i n}\right|^{2}} R^{2}
$$

## Scattering cross-section



Differential cross-section is obtained by normalizing

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} & =\frac{I_{s c}}{\Phi_{0} \Delta \Omega}=\frac{I_{s c}}{\left(I_{0} / A_{0}\right) \Delta \Omega}=\frac{\left|E_{r a d}\right|^{2}}{\left|E_{i n}\right|^{2}} R^{2} \\
\frac{E_{r a d}}{E_{i n}} & =-r_{0} \frac{e^{i k R}}{R}\left|\hat{\epsilon} \cdot \hat{\epsilon}^{\prime}\right|
\end{aligned}
$$

## Scattering cross-section



Differential cross-section is obtained by normalizing

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} & =\frac{I_{s c}}{\Phi_{0} \Delta \Omega}=\frac{I_{s c}}{\left(I_{0} / A_{0}\right) \Delta \Omega}=\frac{\left|E_{r a d}\right|^{2}}{\left|E_{i n}\right|^{2}} R^{2} \\
\frac{E_{r a d}}{E_{i n}} & =-r_{0} \frac{e^{i k R}}{R}\left|\hat{\epsilon} \cdot \hat{\epsilon}^{\prime}\right|=-r_{0} \frac{e^{i k R}}{R}\left|\cos \left(\frac{\pi}{2}-\Psi\right)\right|
\end{aligned}
$$

## Scattering cross-section



Differential cross-section is obtained by normalizing

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} & =\frac{I_{s c}}{\Phi_{0} \Delta \Omega}=\frac{I_{s c}}{\left(I_{0} / A_{0}\right) \Delta \Omega}=\frac{\left|E_{r a d}\right|^{2}}{\left|E_{i n}\right|^{2}} R^{2} \\
\frac{E_{r a d}}{E_{i n}} & =-r_{0} \frac{e^{i k R}}{R}\left|\hat{\epsilon} \cdot \hat{\epsilon}^{\prime}\right|=-r_{0} \frac{e^{i k R}}{R}\left|\cos \left(\frac{\pi}{2}-\Psi\right)\right|=-r_{0} \frac{e^{i k R}}{R} \sin \psi
\end{aligned}
$$

## Scattering cross-section



Differential cross-section is obtained by normalizing

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} & =\frac{I_{s c}}{\Phi_{0} \Delta \Omega}=\frac{I_{s c}}{\left(I_{0} / A_{0}\right) \Delta \Omega}=\frac{\left|E_{r a d}\right|^{2}}{\left|E_{i n}\right|^{2}} R^{2}=r_{0}^{2} \sin ^{2} \psi \\
\frac{E_{r a d}}{E_{i n}} & =-r_{0} \frac{e^{i k R}}{R}\left|\hat{\epsilon} \cdot \hat{\epsilon}^{\prime}\right|=-r_{0} \frac{e^{i k R}}{R}\left|\cos \left(\frac{\pi}{2}-\Psi\right)\right|=-r_{0} \frac{e^{i k R}}{R} \sin \psi
\end{aligned}
$$

## Total cross-section



Integrate to obtain the total Thomson scattering cross-section from an electron.

## Total cross-section



Integrate to obtain the total Thomson scattering cross-section from an electron.

$$
\sigma=\frac{8 \pi}{3} r_{0}^{2}
$$

## Total cross-section



Integrate to obtain the total Thomson scattering cross-section from an electron.

$$
\begin{aligned}
\sigma & =\frac{8 \pi}{3} r_{0}^{2} \\
& =0.665 \times 10^{-24} \mathrm{~cm}^{2} \\
& =0.665 \text { barn }
\end{aligned}
$$

## Total cross-section



Integrate to obtain the total Thomson scattering cross-section from an electron. If displacement is in vertical direction, $\sin \psi$ term is replaced by unity and if the source is unpolarized, it is a combination.

$$
\begin{aligned}
\sigma & =\frac{8 \pi}{3} r_{0}^{2} \\
& =0.665 \times 10^{-24} \mathrm{~cm}^{2} \\
& =0.665 \mathrm{barn}
\end{aligned}
$$

$$
\text { Polarization factor }=\left\{\begin{array}{l}
1 \\
\sin ^{2} \psi \\
\frac{1}{2}\left(1+\sin ^{2} \psi\right)
\end{array}\right.
$$

## Atomic scattering

If we have a charge distribution instead of a single electron, the scattering is more complex


## Atomic scattering

If we have a charge distribution instead of a single electron, the scattering is more complex

A phase shift arises because of scattering from different portions of extended electron distribution


## Atomic scattering

If we have a charge distribution instead of a single electron, the scattering is more complex

A phase shift arises because of scattering from different portions of extended electron distribution

$$
\Delta \phi(\mathbf{r})=\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \mathbf{r}=\mathbf{Q} \cdot \mathbf{r}
$$

## Atomic scattering

If we have a charge distribution instead of a single electron, the scattering is more complex

A phase shift arises because of scattering from different portions of extended electron distribution

$$
\Delta \phi(\mathbf{r})=\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \mathbf{r}=\mathbf{Q} \cdot \mathbf{r}
$$



## Atomic scattering

If we have a charge distribution instead of a single electron, the scattering is more complex

A phase shift arises because of scattering from different portions of extended electron distribution


$$
\Delta \phi(\mathbf{r})=\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \mathbf{r}=\mathbf{Q} \cdot \mathbf{r}
$$


where the scattering vector, $\mathbf{Q}$ is given by

## Atomic scattering

If we have a charge distribution instead of a single electron, the scattering is more complex

A phase shift arises because of scattering from different portions of extended electron distribution


$$
\Delta \phi(\mathbf{r})=\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \mathbf{r}=\mathbf{Q} \cdot \mathbf{r}
$$

 where the scattering vector, $\mathbf{Q}$ is given by

$$
|\mathbf{Q}|=2|\mathbf{k}| \sin \theta=\frac{4 \pi}{\lambda} \sin \theta
$$

## Atomic form factor

The volume element at $\mathbf{r}$ contributes $-r_{0} \rho(\mathbf{r}) d^{3} r$ with phase factor $e^{i \mathbf{Q} \cdot \mathbf{r}}$

## Atomic form factor

The volume element at $\mathbf{r}$ contributes $-r_{0} \rho(\mathbf{r}) d^{3} r$ with phase factor $e^{i \mathbf{Q} \cdot \mathbf{r}}$ for an entire atom, integrate to get the atomic form factor $f^{0}(\mathbf{Q})$ :

## Atomic form factor

The volume element at $\mathbf{r}$ contributes $-r_{0} \rho(\mathbf{r}) d^{3} r$ with phase factor $e^{i \mathbf{Q} \cdot \mathbf{r}}$ for an entire atom, integrate to get the atomic form factor $f^{0}(\mathbf{Q})$ :

$$
-r_{0} f^{0}(\mathbf{Q})=-r_{0} \int \rho(\mathbf{r}) e^{i \mathbf{Q} \cdot \mathbf{r}} d^{3} r
$$

## Atomic form factor

The volume element at $\mathbf{r}$ contributes $-r_{0} \rho(\mathbf{r}) d^{3} r$ with phase factor $e^{i \mathbf{Q} \cdot \mathbf{r}}$ for an entire atom, integrate to get the atomic form factor $f^{0}(\mathbf{Q})$ :

$$
-r_{0} f^{0}(\mathbf{Q})=-r_{0} \int \rho(\mathbf{r}) e^{i \mathbf{Q} \cdot \mathbf{r}} d^{3} r
$$

Electrons which are tightly bound cannot respond like a free electron. This results in a depression of the atomic form factor, called $f^{\prime}$ and a lossy term near an ionization energy, called $f^{\prime \prime}$. Together these are the anomalous corrections to the atomic form factor.

## Atomic form factor

The volume element at $\mathbf{r}$ contributes $-r_{0} \rho(\mathbf{r}) d^{3} r$ with phase factor $e^{i \mathbf{Q} \cdot \mathbf{r}}$ for an entire atom, integrate to get the atomic form factor $f^{0}(\mathbf{Q})$ :

$$
-r_{0} f^{0}(\mathbf{Q})=-r_{0} \int \rho(\mathbf{r}) e^{i \mathbf{Q} \cdot \mathbf{r}} d^{3} r
$$

Electrons which are tightly bound cannot respond like a free electron. This results in a depression of the atomic form factor, called $f^{\prime}$ and a lossy term near an ionization energy, called $f^{\prime \prime}$. Together these are the anomalous corrections to the atomic form factor.


## Atomic form factor

The volume element at $\mathbf{r}$ contributes $-r_{0} \rho(\mathbf{r}) d^{3} r$ with phase factor $e^{i \mathbf{Q} \cdot \mathbf{r}}$ for an entire atom, integrate to get the atomic form factor $f^{0}(\mathbf{Q})$ :

$$
-r_{0} f^{0}(\mathbf{Q})=-r_{0} \int \rho(\mathbf{r}) e^{i \mathbf{Q} \cdot \mathbf{r}} d^{3} r
$$

Electrons which are tightly bound cannot respond like a free electron. This results in a depression of the atomic form factor, called $f^{\prime}$ and a lossy term near an ionization energy, called $f^{\prime \prime}$. Together these are the anomalous corrections to the atomic form factor.

the total atomic scattering factor is

## Atomic form factor

The volume element at $\mathbf{r}$ contributes $-r_{0} \rho(\mathbf{r}) d^{3} r$ with phase factor $e^{i \mathbf{Q} \cdot \mathbf{r}}$ for an entire atom, integrate to get the atomic form factor $f^{0}(\mathbf{Q})$ :

$$
-r_{0} f^{0}(\mathbf{Q})=-r_{0} \int \rho(\mathbf{r}) e^{i \mathbf{Q} \cdot \mathbf{r}} d^{3} r
$$

Electrons which are tightly bound cannot respond like a free electron. This results in a depression of the atomic form factor, called $f^{\prime}$ and a lossy term near an ionization energy, called $f^{\prime \prime}$. Together these are the anomalous corrections to the atomic form factor.

the total atomic scattering factor is

$$
f(\mathbf{Q}, \hbar \omega)=f^{0}(\mathbf{Q})+f^{\prime}(\hbar \omega)+i f^{\prime \prime}(\hbar \omega)
$$

## Atomic form factor



The atomic form factor has an angular dependence

## Atomic form factor



The atomic form factor has an angular dependence

$$
\mathbf{Q}=\frac{4 \pi}{\lambda} \sin \theta
$$

## Atomic form factor



The atomic form factor has an angular dependence

$$
\mathbf{Q}=\frac{4 \pi}{\lambda} \sin \theta
$$

lighter atoms have a broader form factor

## Atomic form factor



The atomic form factor has an angular dependence

$$
\mathbf{Q}=\frac{4 \pi}{\lambda} \sin \theta
$$

lighter atoms have a broader form factor
forward scattering counts electrons, $f(0)=Z$

## Atomic form factor



The atomic form factor has an angular dependence

$$
\mathbf{Q}=\frac{4 \pi}{\lambda} \sin \theta
$$

lighter atoms have a broader form factor
forward scattering counts electrons, $f(0)=Z$ $\mathrm{O}, \mathrm{Cl}, \mathrm{Cl}^{-}, \mathrm{Ar}$

## Scattering from atoms: all effects

Scattering from an atom is built up from component quantities:

## Scattering from atoms: all effects

Scattering from an atom is built up from component quantities:

Thomson scattering from a single electron

$$
-r_{0}=-\frac{e^{2}}{4 \pi \epsilon_{0} m c^{2}}
$$

$$
=-r_{0}
$$

## Scattering from atoms: all effects

Scattering from an atom is built up from component quantities:

Thomson scattering from a single electron

$$
-r_{0}=-\frac{e^{2}}{4 \pi \epsilon_{0} m c^{2}}
$$

atomic form factor

$$
f^{0}(\mathbf{Q})=\int \rho(\mathbf{r}) e^{i \mathbf{Q} \cdot \mathbf{r}} d^{3} r
$$

$$
-r_{0} f(\mathbf{Q}, \hbar \omega) \quad=-r_{0}\left[f^{0}(\mathbf{Q})\right.
$$



## Scattering from atoms: all effects

Scattering from an atom is built up from component quantities:

Thomson scattering from a single electron

$$
-r_{0}=-\frac{e^{2}}{4 \pi \epsilon_{0} m c^{2}}
$$

atomic form factor

$$
f^{0}(\mathbf{Q})=\int \rho(\mathbf{r}) e^{i \mathbf{Q} \cdot \mathbf{r}} d^{3} r
$$

anomalous scattering terms
$f^{\prime}(\hbar \omega)+i f^{\prime \prime}(\hbar \omega)$
$-r_{0} f(\mathbf{Q}, \hbar \omega) \quad=-r_{0}\left[f^{0}(\mathbf{Q})+f^{\prime}(\hbar \omega)+i f^{\prime \prime}(\hbar \omega)\right]$

## Scattering from atoms: all effects

Scattering from an atom is built up from component quantities:

Thomson scattering from a single electron

$$
-r_{0}=-\frac{e^{2}}{4 \pi \epsilon_{0} m c^{2}}
$$

atomic form factor

$$
f^{0}(\mathbf{Q})=\int \rho(\mathbf{r}) e^{i \mathbf{Q} \cdot \mathbf{r}} d^{3} r
$$

anomalous scattering terms
polarization factor

$$
f^{\prime}(\hbar \omega)+i f^{\prime \prime}(\hbar \omega)
$$

$$
P=\left\{\begin{array}{l}
1 \\
\sin ^{2} \psi \\
\frac{1}{2}\left(1+\sin ^{2} \psi\right)
\end{array}\right.
$$

$$
-r_{0} f(\mathbf{Q}, \hbar \omega) \sin ^{2} \psi=-r_{0}\left[f^{0}(\mathbf{Q})+f^{\prime}(\hbar \omega)+i f^{\prime \prime}(\hbar \omega)\right] \sin ^{2} \psi
$$

