

New insight into the working mechanism of lithiumsulfur batteries: in situ and operando x-ray diffraction characterization

Lin Chen

Wanger Institute for Sustainable Energy Research, Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Illinois, USA

Rechargeable Batteries

Background

The theoretical energy density of different systems

Y. Yang, G. Zheng and Y. Cui, Chem. Soc. Rev., 2013, 42, 3018-3032.

Li-S Batteries

Schematic presentation of a lithium-sulfur battery with the anode (metallic lithium) and cathode (sulfur-containing material), separated by a non-aqueous liquid electrolyte. A) discharging process and B) charging process.

L. Chen and L. Shaw, J. Power Sources, 2014, 267, 770-783.

Electrochemical Reactions

Schematic presentation of reactions in lithium sulfur batteries

L. Nazar, M. Cuisinier and Q. Pang, MRS Bulletin, 2014, 39, 436-442.

Cells for In-situ XRD

In situ XRD pouch cell (a); schematic illustration (b) of the cell components, with indicated beam positions at which XRD of the total cell [2], the sulfur electrode [3] and metallic Li^o [1] were recorded.

In-situ XRD for Discharge

In situ XRD patterns evolution (zoomed image) indicating disappearance of solid sulfur during initial discharge. Peaks attribution according to orthorhombic a-Sulfur, PDF-2 no. 00-008-0247. * marks peaks coming from packaging.

In-situ XRD for Discharge

Li₂S is formed not successively but rather simultaneously

In situ XRD patterns of the complete cell (position [2]) during 1st discharge (a); corresponding electrochemical plots c. Peaks associated with packaging are marked by *. Bold lines indicate moments of solid phase appearance–disappearance.

In-situ XRD for Charge

β-sulfur (PDF-2; no. 01-071-0137) is formed during recrystallization

In situ XRD patterns of the complete cell (position [2]) during charge (b); corresponding electrochemical plots d. Peaks associated with packaging are marked by *. Bold lines indicate moments of solid phase appearance–disappearance.

High Resolution XRD Data

The formation of β-sulfur (PDF-2; no. 01-071-0137) is confirmed

XRD patterns of the complete cell recorded before cycling (1), where α-S is present and at the end of 1st and 2nd charge (2 and 3), where peaks of β-S can be identified (a); the zoomed image of the region marked by the red box (b).

Ex-situ XRD for Charge

Not X-ray radiation, but energy liberated in the electrochemical reaction may induce the formation of β-S

 $2\theta/^{\circ}$ (Cu K α_1)

Ex situ XRD data of charged sulfur electrodes on different collectors: a nonwoven carbon tissue (NwC) and Al foil. Peaks were attributed to coexisting α - and β -S phases.

Conclusion

- Crystalline Li₂S on cathodes are formed at the very beginning of the lower discharge plateau and its complete consumption during following charge.
- After recrystallization, sulfur does not come back to its pristine structure, but it appears to be another allotrope: monoclinic β-sulfur.
- 3. In-situ XRD study is one of the most accurate methods for the analysis of structural changes, bringing new information for the working mechanism of Li–S batteries.

Thanks for your attention!