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Wavefield propagation

In order to understand many of these imaging techniques, it is important
to have a good model for wave propagation in an optical system
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Fresnel zone plates
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Grating interferometry

Full field phase imaging can be achieved using an interferometric technique
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Talbot Interferometer

Use a second grating to measure distortion of phase field due to the sample

B ———
sample
Q
_—

incident wave

C. Segre (lIT)

Gl G2
phase grating absorption grating
[ —
_—

— [

e A ) e ———

— [0

e D ————

e N B R —
]

distorted wave

d

PHYS 570 - Spring 2015 April 28, 2015

asd

6 /19



Talbot interferometer setup
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Talbot interferometer

shift second grating to three positions to obtain all the information to
produce absorption, dark field and phase contract
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Grating interferometry

Plastic containers filled with water (left) and powdered sugar (right).

4 5
Image number

(a) absorption image, (b) phase contrast image, (d) dark field image.
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Grating interferometry

10 mm

absorption image (left)
dark field image (center)
phase contrast image (right)
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SAXS from a sphere

For incoherent beam, illuminating a small particle (a sphere), we have the
typical small angle pattern which shows broad features described in a
previous chapter
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Coherent Scattering from Multiple Spheres

If the beam has coherence at least on the order of the size of the
arrangement of the seven spheres shown, one obtains
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Coherent Scattering from Multiple Spheres

If the beam has coherence at least on the order of the size of the
arrangement of the seven spheres shown, one obtains
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on the left is the “speckle” pattern given by the interference of the
coherent beam with the seven spheres

on the right is the full pattern including the SAXS from individual spheres
the speckle changes with a different arrangement of spheres
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Oversampling and image

1"iteration:

A(Q=I(Q) explin(Q)]
Random phase ¢(Q)

A

p'(r) A'(Q)

Constraints:
Q Space

Constraints:
Real Space

Positive?
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FT
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lterative Reconstruction

start with experimental data and a randomly generated phase
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lterative Reconstruction

start with experimental data and a randomly generated phase

intermediate step shows partial phase retrieval but distorted scattering
pattern

C. Segre (IIT) PHYS 570 - Spring 2015 April 28, 2015

14 /19



lterative Reconstruction

start with experimental data and a randomly generated phase

intermediate step shows partial phase retrieval but distorted scattering
pattern

convergence to reonstructed phase, scattering and real space image

»
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Gold nanoparticle imaging by CXI

Reciprocal Space

Real Space
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Gold nanoparticle imaging by CXI

+30 nm 0 nm +0.05° 0.0°

-30 nm SEM -0.05° -0.10°
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Holography

20 pm pinhole

mask and sample
SEM
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Holography

Left Circular Polarization Right Circular Polarization
(a) Holograms
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Holography

&s.

(c) Comparison of line profiles
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