
Today’s Outline - April 28, 2015

• Phase Contrast Imaging

• Grating Interferometry

• Coherent Diffraction Imaging

• Holography

Final Exam information
Tuesday, May 5, 2015, room 240 Life Sciences

C. Segre (IIT) PHYS 570 - Spring 2015 April 28, 2015 1 / 19



Today’s Outline - April 28, 2015

• Phase Contrast Imaging

• Grating Interferometry

• Coherent Diffraction Imaging

• Holography

Final Exam information
Tuesday, May 5, 2015, room 240 Life Sciences

C. Segre (IIT) PHYS 570 - Spring 2015 April 28, 2015 1 / 19



Today’s Outline - April 28, 2015

• Phase Contrast Imaging

• Grating Interferometry

• Coherent Diffraction Imaging

• Holography

Final Exam information
Tuesday, May 5, 2015, room 240 Life Sciences

C. Segre (IIT) PHYS 570 - Spring 2015 April 28, 2015 1 / 19



Today’s Outline - April 28, 2015

• Phase Contrast Imaging

• Grating Interferometry

• Coherent Diffraction Imaging

• Holography

Final Exam information
Tuesday, May 5, 2015, room 240 Life Sciences

C. Segre (IIT) PHYS 570 - Spring 2015 April 28, 2015 1 / 19



Today’s Outline - April 28, 2015

• Phase Contrast Imaging

• Grating Interferometry

• Coherent Diffraction Imaging

• Holography

Final Exam information
Tuesday, May 5, 2015, room 240 Life Sciences

C. Segre (IIT) PHYS 570 - Spring 2015 April 28, 2015 1 / 19



Today’s Outline - April 28, 2015

• Phase Contrast Imaging

• Grating Interferometry

• Coherent Diffraction Imaging

• Holography

Final Exam information
Tuesday, May 5, 2015, room 240 Life Sciences

C. Segre (IIT) PHYS 570 - Spring 2015 April 28, 2015 1 / 19



Wavefield propagation

In order to understand many of these imaging techniques, it is important
to have a good model for wave propagation in an optical system

start with a monochromatic plane wave propagating in the z direction,
described by the function e ikz with wavelength λ = 2π/k

when the wavefront passes through an optical element or a sample, it is
distorted such that the wavefield at z = 0 is now a function of the
transverse dimensions, x and y : ψ0(x , y)

our goal is to determine the wavefield at a distance z downstream and this
is done by constructing a propagation operator D̂z such that

ψz = D̂zψ0(x , y)

The Fourier transform is used to generate this propagation operator in the
following way (showing only the x dependence for simplicity)

ψ0(x) =
1

2π

∫
ψ̃0(kx)e−ikxxdkx
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Wavefield propagation

ψ0(x) =
1

2π

∫
ψ̃0(kx)e−ikxxdkx

in words, this says that at z = 0 the wavefield is a superposition of plane
waves each of which is a function of the total wavevector ~k = kx x̂ + kz ẑ

We can rewrite the relationships as follows but if kx � k we have

kz =
√

k2 − k2x ≈ k − k2x
2k

each of the plane waves ψ̃0e
−ikxx propagates to z by multiplication with a

phase factor

ψ̃0e
−ikxx → ψ̃0e

−ikxxe ikzz = ψ̃0e
−ikxxe ikze−ik2

x z/2k = ψ̃z(kx)

ψz(x) = FT −1[ψ̃z(kx)] =
1

2π

∫
ψ̃z(kx)e−ikxxdkx

ψz(x , y) = D̂zψ0(x , y) = e ikz FT −1
[
e−iz(k2

x+k2
y )/2k FT [ψ0(x , y)]

]
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We can rewrite the relationships as follows but if kx � k we have

kz =
√

k2 − k2x ≈ k − k2x
2k

each of the plane waves ψ̃0e
−ikxx propagates to z by multiplication with a

phase factor

ψ̃0e
−ikxx → ψ̃0e

−ikxxe ikzz = ψ̃0e
−ikxxe ikze−ik2

x z/2k = ψ̃z(kx)

ψz(x) = FT −1[ψ̃z(kx)] =
1

2π

∫
ψ̃z(kx)e−ikxxdkx

ψz(x , y) = D̂zψ0(x , y) = e ikz FT −1
[
e−iz(k2

x+k2
y )/2k FT [ψ0(x , y)]

]

C. Segre (IIT) PHYS 570 - Spring 2015 April 28, 2015 3 / 19



Wavefield propagation

ψ0(x) =
1

2π

∫
ψ̃0(kx)e−ikxxdkx

in words, this says that at z = 0 the wavefield is a superposition of plane
waves each of which is a function of the total wavevector ~k = kx x̂ + kz ẑ
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We can rewrite the relationships as follows but if kx � k we have

kz =
√
k2 − k2x ≈ k − k2x

2k

each of the plane waves ψ̃0e
−ikxx propagates to z by multiplication with a

phase factor

ψ̃0e
−ikxx → ψ̃0e

−ikxxe ikzz

= ψ̃0e
−ikxxe ikze−ik2

x z/2k = ψ̃z(kx)

ψz(x) = FT −1[ψ̃z(kx)] =
1

2π

∫
ψ̃z(kx)e−ikxxdkx

ψz(x , y) = D̂zψ0(x , y) = e ikz FT −1
[
e−iz(k2

x+k2
y )/2k FT [ψ0(x , y)]

]

C. Segre (IIT) PHYS 570 - Spring 2015 April 28, 2015 3 / 19



Wavefield propagation

ψ0(x) =
1

2π

∫
ψ̃0(kx)e−ikxxdkx

in words, this says that at z = 0 the wavefield is a superposition of plane
waves each of which is a function of the total wavevector ~k = kx x̂ + kz ẑ
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Grating interferometry

Full field phase imaging can be achieved using an interferometric technique

Talbot effect: vertical grating illuminated by a plane wave

for a vertical grating of period p1 illuminated by a wavelength λ

kx = 2π/p1, 4π/p1, 6π/p1, · · ·

ψ̃x ∼ eik
2
xz/(2k)

∼ e i(2π/p1)
2z/(2k)

∼ e i2πλz/(2p
2
1)

dT = 2p21/λ

for p1 = 1µm and λ = 1Å we have a repeat distance, dT = 20mm
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for p1 = 1µm and λ = 1Å we have a repeat distance, dT = 20mm
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Talbot Interferometer

Use a second grating to measure distortion of phase field due to the sample
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Talbot interferometer setup
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Talbot interferometer

shift second grating to three positions to obtain all the information to
produce absorption, dark field and phase contract
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Grating interferometry

Plastic containers filled with water (left) and powdered sugar (right).

(a) absorption image, (b) phase contrast image, (d) dark field image.
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Grating interferometry

absorption image (left)
dark field image (center)

phase contrast image (right)
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SAXS from a sphere

For incoherent beam, illuminating a small particle (a sphere), we have the
typical small angle pattern which shows broad features described in a
previous chapter
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Coherent Scattering from Multiple Spheres

If the beam has coherence at least on the order of the size of the
arrangement of the seven spheres shown, one obtains

on the left is the “speckle” pattern given by the interference of the
coherent beam with the seven spheres
on the right is the full pattern including the SAXS from individual spheres
the speckle changes with a different arrangement of spheres
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Oversampling and image
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Iterative Reconstruction

start with experimental data and a randomly generated phase

intermediate step shows partial phase retrieval but distorted scattering
pattern

convergence to reonstructed phase, scattering and real space image
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Gold nanoparticle imaging by CXI
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Gold nanoparticle imaging by CXI
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Holography
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Holography
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Holography
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