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Problem 5.9

Consider a simple model of the surface roughness of a crystal in which all
of the lattice sites of the z = 0 layer are fully occupied by atoms, but the
next layer out (z = −1) has a site occupancy of η, with η ≤ 1, the z = −2
layer an occupancy of η2, etc. Show that midway between the Bragg
points, the so-called anti-Bragg points, the intensity of the crystal
truncation rods is given by

ICTR =
(1− η)2

4(1 + η)2

What effect does a small, but finite, value of the roughness parameter η
have on ICTR?
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Problem 5.9

The general expression for the scattering factor of the crystal truncation
rod in the a3 direction of the crystal, excluding absorption effects is

The rougness model adds
terms with j < 0 of the
form ηje−iQza3j so a sec-
ond sum is added

evaluating these geometric
sums in the usual way

at the anti-Bragg points,
l = 0.5, and the exponen-
tials all become -1

putting over a common
denominator and dropping
the A(~Q) gives

FCTR = A(~Q)
∞∑
j=0

e iQza3j

= A(~Q)

 ∞∑
j=0

e iQza3j +
∞∑
j=0

ηje−iQza3j


= A(~Q)

[
1

1− e i2πl
+

ηe−i2πl

1− ηe−i2πl

]
= A(~Q)

[
1

2
− η

1 + η

]
= A(~Q)

(1 + η)− 2η

2(1 + η)
= A(~Q)

(1− η)

2(1 + η)
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Problem 5.9

The scattering factor thus
has a dependence on the cov-
erage factor, η, of

and the observed intensity
has a dependence of

if the coverage is very low,
this can be approximated us-
ing the first term of a bino-
mial expansion

FCTR = A(~Q)
(1− η)

2(1 + η)

ICTR = |A|2 (1− η)2

4(1 + η)2

≈ 1

4
|A|2

(
1− 2η

1 + 2η

)
≤ 1

4
|A|2

Thus any small value of the roughness parameter will dampen the intensity
of the peaks
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Phase difference in scattering

All imaging can be broken into a
three step process

1 x-ray interaction with sample

2 scattered x-ray propagation

3 interaction with detector

The spherical waves scattered off
the two points will travel different
distances

In the far field, the phase difference
is ~Q ·~r with ~Q = ~k − ~k ′
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Franuhofer, Fresnel, and contact regimes

In the far field (Fraunhofer) regime, the phase difference is ≈ ~k ′ ·~r
The error in difference computed
with the far field approximation is

∆ = R − R cosψ

≈ R(1− (1− ψ2/2))

= a2/(2R)

R � a2/λ Fraunhofer

R ≈ a2/λ Fresnel

R � a2/λ Contact
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Contact to far-field imaging

C. Segre (IIT) PHYS 570 - Spring 2015 April 23, 2015 7 / 22



Fourier slice theorem

I = I0e
−

∫
µ(x ,y)dy ′

log10

(
I0
I

)
=

∫
µ(x , y)dy ′

p(x) =

∫
f (x , y)dy

P(qx) =

∫
p(x)e iqxxdx

F (qx , qy ) =

∫ ∫
f (x , y)e iqxx+qyydxdy

F (qx , qy = 0) =

∫ [∫
f (x , y)dy

]
e iqxxdx =

∫
p(x)e iqxxdx = P(qx)
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Fourier transform reconstruction
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Sinograms
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Medical tomography
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Microscopy
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Microscopy
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Microscopy
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Angular deviation from refraction

When x-rays cross an inter-
face that is not normal to
their direction, there is re-
fraction

The angle of refraction α can
be calculated

λn =
λ

n
=

λ

1− δ
≈ λ(1 + δ)

α =
λ(1 + δ)− λ

∆x

= δ
λ

∆x
≈ δ tanω
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Angular deviation from graded density

In a similar way, there is
an angular deviation when
the material density varies
normal to the propagation
direction

The angle of refraction α
can be calculated

α =
λ(1 + δ(x + ∆x))− λ(1 + δ(x))

∆x
=
λ∆x ∂δ(x)∂x

∆x

δ(x + ∆x) ≈ δ(x) + ∆x
∂δ(x)

∂x

αgradient = λ
∂δ(x)

∂x
compare to αrefrac = λ

δ

∆x
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Phase shift from angular deviation

This deviation of the x-ray beam, leads to a phase shift φ(~r) = ~k ′ ·~r at a
specific position along the original propagation direction z

n̂ =
~k ′

k ′
=

λ

2π
∇φ(~r)

αx =
λ

2π

∂φ(x , y)

∂x

αy =
λ

2π

∂φ(x , y)

∂y

Thus the angular deviation, in each
of the x and y directions in the
plane perpendicular to the original
propagation direction becomes

By measuring the angular deviation
as a function of position in a sam-
ple, one can reconstruct the phase
shift φ(x , y) due to the sample by
integration.
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Phase contrast experiment
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Phase contrast experiment
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Imaging a silicon trough
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Imaging blood cells
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