Today's Outline - April 23, 2015

Today's Outline - April 23, 2015

- Imaging

Today's Outline - April 23, 2015

- Imaging
- Radiography and Tomography

Today's Outline - April 23, 2015

- Imaging
- Radiography and Tomography
- Microscopy

Today's Outline - April 23, 2015

- Imaging
- Radiography and Tomography
- Microscopy
- Phase Contrast Imaging

Today's Outline - April 23, 2015

- Imaging
- Radiography and Tomography
- Microscopy
- Phase Contrast Imaging
- Grating Interferometry

Today's Outline - April 23, 2015

- Imaging
- Radiography and Tomography
- Microscopy
- Phase Contrast Imaging
- Grating Interferometry
- Coherent Diffraction Imaging

Today's Outline - April 23, 2015

- Imaging
- Radiography and Tomography
- Microscopy
- Phase Contrast Imaging
- Grating Interferometry
- Coherent Diffraction Imaging
- Holography

Today's Outline - April 23, 2015

- Imaging
- Radiography and Tomography
- Microscopy
- Phase Contrast Imaging
- Grating Interferometry
- Coherent Diffraction Imaging
- Holography

Final Exam, Tuesday, May 5, 2015, Life Sciences 240
4 sessions: 09:00-11:00; 11:00-13:00; 14:00-16:00; 16:00-18:00

Today's Outline - April 23, 2015

- Imaging
- Radiography and Tomography
- Microscopy
- Phase Contrast Imaging
- Grating Interferometry
- Coherent Diffraction Imaging
- Holography

Final Exam, Tuesday, May 5, 2015, Life Sciences 240
4 sessions: 09:00-11:00; 11:00-13:00; 14:00-16:00; 16:00-18:00
Provide me with the paper you intend to present and a preferred session for the exam

Today's Outline - April 23, 2015

- Imaging
- Radiography and Tomography
- Microscopy
- Phase Contrast Imaging
- Grating Interferometry
- Coherent Diffraction Imaging
- Holography

Final Exam, Tuesday, May 5, 2015, Life Sciences 240
4 sessions: 09:00-11:00; 11:00-13:00; 14:00-16:00; 16:00-18:00
Provide me with the paper you intend to present and a preferred session for the exam
Send me your presentation in Powerpoint or PDF format before before your session

Problem 5.9

Consider a simple model of the surface roughness of a crystal in which all of the lattice sites of the $z=0$ layer are fully occupied by atoms, but the next layer out $(z=-1)$ has a site occupancy of η, with $\eta \leq 1$, the $z=-2$ layer an occupancy of η^{2}, etc. Show that midway between the Bragg points, the so-called anti-Bragg points, the intensity of the crystal truncation rods is given by

$$
I^{C T R}=\frac{(1-\eta)^{2}}{4(1+\eta)^{2}}
$$

What effect does a small, but finite, value of the roughness parameter η have on I ${ }^{C T R}$?

Problem 5.9

The general expression for the scattering factor of the crystal truncation rod in the a_{3} direction of the crystal, excluding absorption effects is

Problem 5.9

The general expression for the scattering factor of the crystal truncation rod in the a_{3} direction of the crystal, excluding absorption effects is

$$
F^{C T R}=A(\vec{Q}) \sum_{j=0}^{\infty} e^{i Q_{z} a_{3} j}
$$

Problem 5.9

The general expression for the scattering factor of the crystal truncation rod in the a_{3} direction of the crystal, excluding absorption effects is

The rougness model adds terms with $j<0$ of the form $\eta^{j} e^{-i Q_{z} a_{3} j}$ so a second sum is added

$$
F^{C T R}=A(\vec{Q}) \sum_{j=0}^{\infty} e^{i Q_{z} a_{3} j}
$$

Problem 5.9

The general expression for the scattering factor of the crystal truncation rod in the a_{3} direction of the crystal, excluding absorption effects is

The rougness model adds terms with $j<0$ of the form $\eta^{j} e^{-i Q_{z} a_{3} j}$ so a second sum is added

$$
\begin{aligned}
F^{C T R} & =A(\vec{Q}) \sum_{j=0}^{\infty} e^{i Q_{z} a_{3} j} \\
& =A(\vec{Q})\left[\sum_{j=0}^{\infty} e^{i Q_{z} a_{3} j}+\sum_{j=0}^{\infty} \eta^{j} e^{-i Q_{z} a_{3} j}\right]
\end{aligned}
$$

Problem 5.9

The general expression for the scattering factor of the crystal truncation rod in the a_{3} direction of the crystal, excluding absorption effects is

The rougness model adds terms with $j<0$ of the form $\eta^{j} e^{-i Q_{z} a_{3} j}$ so a second sum is added
evaluating these geometric sums in the usual way

$$
\begin{aligned}
F^{C T R} & =A(\vec{Q}) \sum_{j=0}^{\infty} e^{i Q_{z} a_{3} j} \\
& =A(\vec{Q})\left[\sum_{j=0}^{\infty} e^{i Q_{z} a_{3} j}+\sum_{j=0}^{\infty} \eta^{j} e^{-i Q_{z} a_{3} j}\right]
\end{aligned}
$$

Problem 5.9

The general expression for the scattering factor of the crystal truncation rod in the a_{3} direction of the crystal, excluding absorption effects is

The rougness model adds terms with $j<0$ of the form $\eta^{j} e^{-i Q_{z} a_{3} j}$ so a second sum is added
evaluating these geometric sums in the usual way

$$
\begin{aligned}
F^{C T R} & =A(\vec{Q}) \sum_{j=0}^{\infty} e^{i Q_{z} a_{3} j} \\
& =A(\vec{Q})\left[\sum_{j=0}^{\infty} e^{i Q_{z} a_{3} j}+\sum_{j=0}^{\infty} \eta^{j} e^{-i Q_{z} a_{3} j}\right] \\
& =A(\vec{Q})\left[\frac{1}{1-e^{i 2 \pi l}}+\frac{\eta e^{-i 2 \pi l}}{1-\eta e^{-i 2 \pi l}}\right]
\end{aligned}
$$

Problem 5.9

The general expression for the scattering factor of the crystal truncation rod in the a_{3} direction of the crystal, excluding absorption effects is

The rougness model adds terms with $j<0$ of the form $\eta^{j} e^{-i Q_{z} a_{3} j}$ so a second sum is added
evaluating these geometric sums in the usual way

$$
\begin{aligned}
F^{C T R} & =A(\vec{Q}) \sum_{j=0}^{\infty} e^{i Q_{z} a_{3} j} \\
& =A(\vec{Q})\left[\sum_{j=0}^{\infty} e^{i Q_{z} a_{3} j}+\sum_{j=0}^{\infty} \eta^{j} e^{-i Q_{z} a_{3} j}\right] \\
& =A(\vec{Q})\left[\frac{1}{1-e^{i 2 \pi l}}+\frac{\eta e^{-i 2 \pi l}}{1-\eta e^{-i 2 \pi l}}\right]
\end{aligned}
$$

at the anti-Bragg points, $I=0.5$, and the exponentials all become -1

Problem 5.9

The general expression for the scattering factor of the crystal truncation rod in the a_{3} direction of the crystal, excluding absorption effects is

The rougness model adds terms with $j<0$ of the form $\eta^{j} e^{-i Q_{z} a_{3} j}$ so a second sum is added
evaluating these geometric sums in the usual way

$$
\begin{aligned}
F^{C T R} & =A(\vec{Q}) \sum_{j=0}^{\infty} e^{i Q_{z} a_{3} j} \\
& =A(\vec{Q})\left[\sum_{j=0}^{\infty} e^{i Q_{z} a_{3} j}+\sum_{j=0}^{\infty} \eta^{j} e^{-i Q_{z} a_{3} j}\right] \\
& =A(\vec{Q})\left[\frac{1}{1-e^{i 2 \pi l}}+\frac{\eta e^{-i 2 \pi l}}{1-\eta e^{-i 2 \pi l}}\right] \\
& =A(\vec{Q})\left[\frac{1}{2}-\frac{\eta}{1+\eta}\right]
\end{aligned}
$$

Problem 5.9

The general expression for the scattering factor of the crystal truncation rod in the a_{3} direction of the crystal, excluding absorption effects is

The rougness model adds terms with $j<0$ of the form $\eta^{j} e^{-i Q_{z} a_{3} j}$ so a second sum is added
evaluating these geometric sums in the usual way
at the anti-Bragg points, $I=0.5$, and the exponentials all become - 1
putting over a common

$$
\begin{aligned}
F^{C T R} & =A(\vec{Q}) \sum_{j=0}^{\infty} e^{i Q_{z} a_{3} j} \\
& =A(\vec{Q})\left[\sum_{j=0}^{\infty} e^{i Q_{z} a_{3} j}+\sum_{j=0}^{\infty} \eta^{j} e^{-i Q_{z} a_{3} j}\right] \\
& =A(\vec{Q})\left[\frac{1}{1-e^{i 2 \pi l}}+\frac{\eta e^{-i 2 \pi l}}{1-\eta e^{-i 2 \pi l}}\right] \\
& =A(\vec{Q})\left[\frac{1}{2}-\frac{\eta}{1+\eta}\right]
\end{aligned}
$$ denominator and dropping the $A(\vec{Q})$ gives

Problem 5.9

The general expression for the scattering factor of the crystal truncation rod in the a_{3} direction of the crystal, excluding absorption effects is

The rougness model adds terms with $j<0$ of the form $\eta^{j} e^{-i Q_{z} a_{3} j}$ so a second sum is added
evaluating these geometric sums in the usual way

$$
\begin{aligned}
F^{C T R} & =A(\vec{Q}) \sum_{j=0}^{\infty} e^{i Q_{z} a_{3} j} \\
& =A(\vec{Q})\left[\sum_{j=0}^{\infty} e^{i Q_{z} a_{3} j}+\sum_{j=0}^{\infty} \eta^{j} e^{-i Q_{z} a_{3} j}\right] \\
& =A(\vec{Q})\left[\frac{1}{1-e^{i 2 \pi l}}+\frac{\eta e^{-i 2 \pi I}}{1-\eta e^{-i 2 \pi l}}\right] \\
& =A(\vec{Q})\left[\frac{1}{2}-\frac{\eta}{1+\eta}\right] \\
& =A(\vec{Q}) \frac{(1+\eta)-2 \eta}{2(1+\eta)}
\end{aligned}
$$

Problem 5.9

The general expression for the scattering factor of the crystal truncation rod in the a_{3} direction of the crystal, excluding absorption effects is

The rougness model adds terms with $j<0$ of the form $\eta^{j} e^{-i Q_{z} a_{3} j}$ so a second sum is added
evaluating these geometric sums in the usual way
at the anti-Bragg points, $I=0.5$, and the exponentials all become - 1
putting over a common denominator and dropping the $A(\vec{Q})$ gives

$$
\begin{aligned}
F^{C T R} & =A(\vec{Q}) \sum_{j=0}^{\infty} e^{i Q_{z} a_{3} j} \\
& =A(\vec{Q})\left[\sum_{j=0}^{\infty} e^{i Q_{z} a_{3} j}+\sum_{j=0}^{\infty} \eta^{j} e^{-i Q_{z} z_{3} j}\right] \\
& =A(\vec{Q})\left[\frac{1}{1-e^{i 2 \pi l}}+\frac{\eta e^{-i 2 \pi I}}{1-\eta e^{-i 2 \pi l}}\right] \\
& =A(\vec{Q})\left[\frac{1}{2}-\frac{\eta}{1+\eta}\right] \\
& =A(\vec{Q}) \frac{(1+\eta)-2 \eta}{2(1+\eta)}=A(\vec{Q}) \frac{(1-\eta)}{2(1+\eta)}
\end{aligned}
$$

Problem 5.9

The scattering factor thus has a dependence on the coverage factor, η, of

Problem 5.9

The scattering factor thus has a dependence on the coverage factor, η, of

$$
F^{C T R}=A(\vec{Q}) \frac{(1-\eta)}{2(1+\eta)}
$$

Problem 5.9

The scattering factor thus has a dependence on the coverage factor, η, of and the observed intensity

$$
F^{C T R}=A(\vec{Q}) \frac{(1-\eta)}{2(1+\eta)}
$$

has a dependence of

Problem 5.9

The scattering factor thus has a dependence on the coverage factor, η, of
and the observed intensity has a dependence of
if the coverage is very low, this can be approximated using the first term of a binomial expansion

Problem 5.9

The scattering factor thus has a dependence on the coverage factor, η, of
and the observed intensity has a dependence of
if the coverage is very low, this can be approximated using the first term of a binomial expansion

Problem 5.9

The scattering factor thus has a dependence on the coverage factor, η, of
and the observed intensity has a dependence of
if the coverage is very low, this can be approximated using the first term of a binomial expansion

$$
\begin{aligned}
F^{C T R} & =A(\vec{Q}) \frac{(1-\eta)}{2(1+\eta)} \\
I^{C T R} & =|A|^{2} \frac{(1-\eta)^{2}}{4(1+\eta)^{2}} \\
& \approx \frac{1}{4}|A|^{2}\left(\frac{1-2 \eta}{1+2 \eta}\right)
\end{aligned}
$$

Problem 5.9

The scattering factor thus has a dependence on the coverage factor, η, of
and the observed intensity has a dependence of
if the coverage is very low, this can be approximated using the first term of a binomial expansion

$$
\begin{aligned}
F^{C T R} & =A(\vec{Q}) \frac{(1-\eta)}{2(1+\eta)} \\
I^{C T R} & =|A|^{2} \frac{(1-\eta)^{2}}{4(1+\eta)^{2}} \\
& \approx \frac{1}{4}|A|^{2}\left(\frac{1-2 \eta}{1+2 \eta}\right) \leq \frac{1}{4}|A|^{2}
\end{aligned}
$$

Problem 5.9

The scattering factor thus has a dependence on the coverage factor, η, of
and the observed intensity has a dependence of
if the coverage is very low, this can be approximated using the first term of a bino-

$$
\begin{aligned}
F^{C T R} & =A(\vec{Q}) \frac{(1-\eta)}{2(1+\eta)} \\
I^{C T R} & =|A|^{2} \frac{(1-\eta)^{2}}{4(1+\eta)^{2}} \\
& \approx \frac{1}{4}|A|^{2}\left(\frac{1-2 \eta}{1+2 \eta}\right) \leq \frac{1}{4}|A|^{2}
\end{aligned}
$$ mial expansion

Thus any small value of the roughness parameter will dampen the intensity of the peaks

Phase difference in scattering

Phase difference in scattering

All imaging can be broken into a three step process

Phase difference in scattering

All imaging can be broken into a three step process
(1) x-ray interaction with sample

Phase difference in scattering

All imaging can be broken into a three step process
(1) x-ray interaction with sample
(2) scattered x-ray propagation

Phase difference in scattering

All imaging can be broken into a three step process
(1) x-ray interaction with sample
(2) scattered x-ray propagation
(3) interaction with detector

Phase difference in scattering

All imaging can be broken into a three step process
(1) x-ray interaction with sample
(2) scattered x-ray propagation
(3) interaction with detector

The spherical waves scattered off the two points will travel different distances

Phase difference in scattering

All imaging can be broken into a three step process
(1) x-ray interaction with sample
(2) scattered x-ray propagation
(3) interaction with detector

The spherical waves scattered off the two points will travel different distances

In the far field, the phase difference is $\vec{Q} \cdot \vec{r}$ with $\vec{Q}=\vec{k}-\overrightarrow{k^{\prime}}$

Franuhofer, Fresnel, and contact regimes

Franuhofer, Fresnel, and contact regimes

In the far field (Fraunhofer) regime, the phase difference is $\approx \overrightarrow{k^{\prime}} \cdot \vec{r}$

Franuhofer, Fresnel, and contact regimes

In the far field (Fraunhofer) regime, the phase difference is $\approx \overrightarrow{k^{\prime}} \cdot \vec{r}$ The error in difference computed with the far field approximation is

$$
\Delta=R-R \cos \psi
$$

Franuhofer, Fresnel, and contact regimes

In the far field (Fraunhofer) regime, the phase difference is $\approx \overrightarrow{k^{\prime}} \cdot \vec{r}$
The error in difference computed with the far field approximation is

$$
\begin{aligned}
\Delta & =R-R \cos \psi \\
& \approx R\left(1-\left(1-\psi^{2} / 2\right)\right)
\end{aligned}
$$

Franuhofer, Fresnel, and contact regimes

In the far field (Fraunhofer) regime, the phase difference is $\approx \overrightarrow{k^{\prime}} \cdot \vec{r}$ The error in difference computed with the far field approximation is

$$
\begin{aligned}
\Delta & =R-R \cos \psi \\
& \approx R\left(1-\left(1-\psi^{2} / 2\right)\right) \\
& =a^{2} /(2 R)
\end{aligned}
$$

Franuhofer, Fresnel, and contact regimes

In the far field (Fraunhofer) regime, the phase difference is $\approx \overrightarrow{k^{\prime}} \cdot \vec{r}$ The error in difference computed with the far field approximation is $\quad R \gg a^{2} / \lambda \quad$ Fraunhofer

$$
\begin{aligned}
\Delta & =R-R \cos \psi \\
& \approx R\left(1-\left(1-\psi^{2} / 2\right)\right) \\
& =a^{2} /(2 R)
\end{aligned}
$$

Franuhofer, Fresnel, and contact regimes

In the far field (Fraunhofer) regime, the phase difference is $\approx \overrightarrow{k^{\prime}} \cdot \vec{r}$ The error in difference computed with the far field approximation is

$$
\begin{aligned}
\Delta & =R-R \cos \psi \\
& \approx R\left(1-\left(1-\psi^{2} / 2\right)\right) \\
& =a^{2} /(2 R)
\end{aligned}
$$

Franuhofer, Fresnel, and contact regimes

In the far field (Fraunhofer) regime, the phase difference is $\approx \overrightarrow{k^{\prime}} \cdot \vec{r}$ The error in difference computed with the far field approximation is

$$
\begin{array}{rlrr}
\Delta & =R-R \cos \psi & & R \approx a^{2} / \lambda \\
& \approx R\left(1-\left(1-\psi^{2} / 2\right)\right) & & R \ll a^{2} / \lambda \\
& & \text { Fontact } \\
& =a^{2} /(2 R) & &
\end{array}
$$

$$
R \gg a^{2} / \lambda \quad \text { Fraunhofer }
$$

Contact to far-field imaging

Fourier slice theorem

$$
I=I_{0} e^{-\int \mu(x, y) d y^{\prime}}
$$

Fourier slice theorem

$$
\begin{aligned}
I & =I_{0} e^{-\int \mu(x, y) d y^{\prime}} \\
\log _{10}\left(\frac{I_{0}}{I}\right) & =\int \mu(x, y) d y^{\prime}
\end{aligned}
$$

Fourier slice theorem

$$
\begin{aligned}
I & =I_{0} e^{-\int \mu(x, y) d y^{\prime}} \\
\log _{10}\left(\frac{I_{0}}{I}\right) & =\int \mu(x, y) d y^{\prime} \\
p(x) & =\int f(x, y) d y
\end{aligned}
$$

Fourier slice theorem

$$
\begin{aligned}
I & =I_{0} e^{-\int \mu(x, y) d y^{\prime}} \\
\log _{10}\left(\frac{I_{0}}{I}\right) & =\int \mu(x, y) d y^{\prime} \\
p(x) & =\int f(x, y) d y \\
P\left(q_{x}\right) & =\int p(x) e^{i q_{x} x} d x
\end{aligned}
$$

Fourier slice theorem

$$
\begin{aligned}
I & =I_{0} e^{-\int \mu(x, y) d y^{\prime}} \\
\log _{10}\left(\frac{I_{0}}{I}\right) & =\int \mu(x, y) d y^{\prime} \\
p(x) & =\int f(x, y) d y \\
P\left(q_{x}\right) & =\int p(x) e^{i q_{x} x} d x
\end{aligned}
$$

$$
F\left(q_{x}, q_{y}\right)=\iint f(x, y) e^{i q_{x} x+q_{y} y} d x d y
$$

Fourier slice theorem

$$
\begin{aligned}
I & =I_{0} e^{-\int \mu(x, y) d y^{\prime}} \\
\log _{10}\left(\frac{I_{0}}{I}\right) & =\int \mu(x, y) d y^{\prime} \\
p(x) & =\int f(x, y) d y \\
P\left(q_{x}\right) & =\int p(x) e^{i q_{x} x} d x
\end{aligned}
$$

$$
F\left(q_{x}, q_{y}\right)=\iint f(x, y) e^{i q_{x} x+q_{y} y} d x d y
$$

$$
F\left(q_{x}, q_{y}=0\right)=\int\left[\int f(x, y) d y\right] e^{i q_{x} x} d x
$$

Fourier slice theorem

$$
\begin{aligned}
I & =I_{0} e^{-\int \mu(x, y) d y^{\prime}} \\
\log _{10}\left(\frac{I_{0}}{I}\right) & =\int \mu(x, y) d y^{\prime} \\
p(x) & =\int f(x, y) d y \\
P\left(q_{x}\right) & =\int p(x) e^{i q_{x} x} d x
\end{aligned}
$$

$$
F\left(q_{x}, q_{y}\right)=\iint f(x, y) e^{i q_{x} x+q_{y} y} d x d y
$$

$$
F\left(q_{x}, q_{y}=0\right)=\int\left[\int f(x, y) d y\right] e^{i q_{x} x} d x=\int p(x) e^{i q_{x} x} d x
$$

Fourier slice theorem

$$
\begin{aligned}
I & =I_{0} e^{-\int \mu(x, y) d y^{\prime}} \\
\log _{10}\left(\frac{I_{0}}{I}\right) & =\int \mu(x, y) d y^{\prime} \\
p(x) & =\int f(x, y) d y \\
P\left(q_{x}\right) & =\int p(x) e^{i q_{x} x} d x
\end{aligned}
$$

$$
F\left(q_{x}, q_{y}\right)=\iint f(x, y) e^{i q_{x} x+q_{y} y} d x d y
$$

$$
F\left(q_{x}, q_{y}=0\right)=\int\left[\int f(x, y) d y\right] e^{i q_{x} x} d x=\int p(x) e^{i q_{x} x} d x=P\left(q_{x}\right)
$$

Fourier transform reconstruction

Sinograms

(c) Model $f(x, y)$

(d) Sinogram

(e) Reconstructed $f(x, y)$

Medical tomography

Microscopy

Microscopy

Zone Plate

 Lens

Sample

Translations \downarrow

Microscopy

Microscopy

Angular deviation from refraction

When x-rays cross an interface that is not normal to their direction, there is refraction

Angular deviation from refraction

When x-rays cross an interface that is not normal to their direction, there is refraction

The angle of refraction α can be calculated

Angular deviation from refraction

When x-rays cross an interface that is not normal to their direction, there is refraction

The angle of refraction α can be calculated

Angular deviation from refraction

When x-rays cross an interface that is not normal to their direction, there is refraction

The angle of refraction α can be calculated

$$
\lambda_{n}=\frac{\lambda}{n}
$$

Angular deviation from refraction

When x-rays cross an interface that is not normal to their direction, there is refraction

The angle of refraction α can be calculated

$$
\lambda_{n}=\frac{\lambda}{n}=\frac{\lambda}{1-\delta}
$$

Angular deviation from refraction

When x-rays cross an interface that is not normal to their direction, there is refraction

The angle of refraction α can be calculated

$$
\begin{aligned}
\lambda_{n} & =\frac{\lambda}{n}=\frac{\lambda}{1-\delta} \\
& \approx \lambda(1+\delta)
\end{aligned}
$$

Angular deviation from refraction

When x-rays cross an interface that is not normal to their direction, there is refraction

The angle of refraction α can be calculated

$$
\begin{aligned}
\lambda_{n} & =\frac{\lambda}{n}=\frac{\lambda}{1-\delta} \\
& \approx \lambda(1+\delta) \\
\alpha & =\frac{\lambda(1+\delta)-\lambda}{\Delta x}
\end{aligned}
$$

Angular deviation from refraction

When x-rays cross an interface that is not normal to their direction, there is refraction

The angle of refraction α can be calculated

$$
\begin{aligned}
\lambda_{n} & =\frac{\lambda}{n}=\frac{\lambda}{1-\delta} \\
& \approx \lambda(1+\delta) \\
\alpha & =\frac{\lambda(1+\delta)-\lambda}{\Delta x} \\
& =\delta \frac{\lambda}{\Delta x}
\end{aligned}
$$

Angular deviation from refraction

When x-rays cross an interface that is not normal to their direction, there is refraction

The angle of refraction α can be calculated

$$
\begin{aligned}
\lambda_{n} & =\frac{\lambda}{n}=\frac{\lambda}{1-\delta} \\
& \approx \lambda(1+\delta) \\
\alpha & =\frac{\lambda(1+\delta)-\lambda}{\Delta x} \\
& =\delta \frac{\lambda}{\Delta x} \approx \delta \tan \omega
\end{aligned}
$$

Angular deviation from graded density

In a similar way, there is an angular deviation when the material density varies normal to the propagation direction

Angular deviation from graded density

In a similar way, there is an angular deviation when the material density varies normal to the propagation direction

The angle of refraction α can be calculated

Angular deviation from graded density

In a similar way, there is an angular deviation when the material density varies normal to the propagation direction

The angle of refraction α can be calculated

$$
\alpha=\frac{\lambda(1+\delta(x+\Delta x))-\lambda(1+\delta(x))}{\Delta x}
$$

Angular deviation from graded density

In a similar way, there is an angular deviation when the material density varies normal to the propagation direction

The angle of refraction α can be calculated

$$
\begin{array}{r}
\alpha=\frac{\lambda(1+\delta(x+\Delta x))-\lambda(1+\delta(x))}{\Delta x} \\
\delta(x+\Delta x) \approx \delta(x)+\Delta x \frac{\partial \delta(x)}{\partial x}
\end{array}
$$

Angular deviation from graded density

In a similar way, there is an angular deviation when the material density varies normal to the propagation direction

The angle of refraction α can be calculated

$$
\begin{gathered}
\alpha=\frac{\lambda(1+\delta(x+\Delta x))-\lambda(1+\delta(x))}{\Delta x}=\frac{\lambda \Delta x \frac{\partial \delta(x)}{\partial x}}{\Delta x} \\
\delta(x+\Delta x) \approx \delta(x)+\Delta x \frac{\partial \delta(x)}{\partial x}
\end{gathered}
$$

Angular deviation from graded density

In a similar way, there is an angular deviation when the material density varies normal to the propagation direction

The angle of refraction α can be calculated

$$
\begin{aligned}
\alpha= & \frac{\lambda(1+\delta(x+\Delta x))-\lambda(1+\delta(x))}{\Delta x}=\frac{\lambda \Delta x \frac{\partial \delta(x)}{\partial x}}{\Delta x} \\
& \delta(x+\Delta x) \approx \delta(x)+\Delta x \frac{\partial \delta(x)}{\partial x} \\
\alpha_{\text {gradient }}= & \lambda \frac{\partial \delta(x)}{\partial x}
\end{aligned}
$$

Angular deviation from graded density

In a similar way, there is an angular deviation when the material density varies normal to the propagation direction

The angle of refraction α can be calculated

$$
\begin{gathered}
\alpha=\frac{\lambda(1+\delta(x+\Delta x))-\lambda(1+\delta(x))}{\Delta x}=\frac{\lambda \Delta x \frac{\partial \delta(x)}{\partial x}}{\Delta x} \\
\delta(x+\Delta x) \approx \delta(x)+\Delta x \frac{\partial \delta(x)}{\partial x} \\
\alpha_{\text {gradient }}=\lambda \frac{\partial \delta(x)}{\partial x} \quad \text { compare to } \quad \alpha_{\text {refrac }}=\lambda \frac{\delta}{\Delta x}
\end{gathered}
$$

Phase shift from angular deviation

This deviation of the x-ray beam, leads to a phase shift $\phi(\vec{r})=\vec{k}^{\prime} \cdot \vec{r}$ at a specific position along the original propagation direction z

Phase shift from angular deviation

This deviation of the x-ray beam, leads to a phase shift $\phi(\vec{r})=\vec{k}^{\prime} \cdot \vec{r}$ at a specific position along the original propagation direction z

$$
\hat{n}=\frac{\vec{k}^{\prime}}{k^{\prime}}
$$

Phase shift from angular deviation

This deviation of the x-ray beam, leads to a phase shift $\phi(\vec{r})=\vec{k}^{\prime} \cdot \vec{r}$ at a specific position along the original propagation direction z

$$
\hat{n}=\frac{\vec{k}^{\prime}}{k^{\prime}}=\frac{\lambda}{2 \pi} \nabla \phi(\vec{r})
$$

Phase shift from angular deviation

This deviation of the x-ray beam, leads to a phase shift $\phi(\vec{r})=\vec{k}^{\prime} \cdot \vec{r}$ at a specific position along the original propagation direction z

$$
\hat{n}=\frac{\vec{k}^{\prime}}{k^{\prime}}=\frac{\lambda}{2 \pi} \nabla \phi(\vec{r})
$$

Thus the angular deviation, in each of the x and y directions in the plane perpendicular to the original propagation direction becomes

Phase shift from angular deviation

This deviation of the x-ray beam, leads to a phase shift $\phi(\vec{r})=\vec{k}^{\prime} \cdot \vec{r}$ at a specific position along the original propagation direction z

$$
\hat{n}=\frac{\vec{k}^{\prime}}{k^{\prime}}=\frac{\lambda}{2 \pi} \nabla \phi(\vec{r})
$$

Thus the angular deviation, in each of the x and y directions in the plane perpendicular to the original propagation direction becomes

$$
\alpha_{x}=\frac{\lambda}{2 \pi} \frac{\partial \phi(x, y)}{\partial x}
$$

Phase shift from angular deviation

This deviation of the x-ray beam, leads to a phase shift $\phi(\vec{r})=\vec{k}^{\prime} \cdot \vec{r}$ at a specific position along the original propagation direction z

$$
\hat{n}=\frac{\vec{k}^{\prime}}{k^{\prime}}=\frac{\lambda}{2 \pi} \nabla \phi(\vec{r})
$$

Thus the angular deviation, in each of the x and y directions in the plane perpendicular to the original propagation direction becomes

$$
\begin{aligned}
& \alpha_{x}=\frac{\lambda}{2 \pi} \frac{\partial \phi(x, y)}{\partial x} \\
& \alpha_{y}=\frac{\lambda}{2 \pi} \frac{\partial \phi(x, y)}{\partial y}
\end{aligned}
$$

Phase shift from angular deviation

This deviation of the x-ray beam, leads to a phase shift $\phi(\vec{r})=\vec{k}^{\prime} \cdot \vec{r}$ at a specific position along the original propagation direction z

$$
\begin{aligned}
\hat{n} & =\frac{\vec{k}^{\prime}}{k^{\prime}}=\frac{\lambda}{2 \pi} \nabla \phi(\vec{r}) \\
\alpha_{x} & =\frac{\lambda}{2 \pi} \frac{\partial \phi(x, y)}{\partial x} \\
\alpha_{y} & =\frac{\lambda}{2 \pi} \frac{\partial \phi(x, y)}{\partial y}
\end{aligned}
$$

Thus the angular deviation, in each of the x and y directions in the plane perpendicular to the original propagation direction becomes
By measuring the angular deviation as a function of position in a sample, one can reconstruct the phase shift $\phi(x, y)$ due to the sample by integration.

Phase contrast experiment

Phase contrast experiment

Imaging a silicon trough

Imaging blood cells

