PHYS 570 @ 10-ID – final call!

- PHYS 570 @ 10-ID final call!
- Resonant Scattering

- PHYS 570 @ 10-ID final call!
- Resonant Scattering
- Friedel's Law

- PHYS 570 @ 10-ID final call!
- Resonant Scattering
- Friedel's Law
- Bijvoet (Bay-voot) Pairs

- PHYS 570 @ 10-ID final call!
- Resonant Scattering
- Friedel's Law
- Bijvoet (Bay-voot) Pairs
- MAD Phasing

- PHYS 570 @ 10-ID final call!
- Resonant Scattering
- Friedel's Law
- Bijvoet (Bay-voot) Pairs
- MAD Phasing
- Quantum Origin of Resonant Scattering

- PHYS 570 @ 10-ID final call!
- Resonant Scattering
- Friedel's Law
- Bijvoet (Bay-voot) Pairs
- MAD Phasing
- Quantum Origin of Resonant Scattering

Homework Assignment #7: Chapter 7: 2, 3, 9, 10, 11 due Thursday, April 23, 2015

1 April 24, 2015, 09:00 – 16:00

- **1** April 24, 2015, 09:00 16:00
- Activities
 - Absolute flux measurement
 - Reflectivity measurement
 - EXAFS measurement
 - Rocking curve measurement (possibly)

- **1** April 24, 2015, 09:00 16:00
- Activities
 - Absolute flux measurement
 - Reflectivity measurement
 - EXAFS measurement
 - Rocking curve measurement (possibly)
- 3 Make sure your badge is ready

- **1** April 24, 2015, 09:00 16:00
- Activities
 - Absolute flux measurement
 - Reflectivity measurement
 - EXAFS measurement
 - Rocking curve measurement (possibly)
- 3 Make sure your badge is ready
- 4 Leave plenty of time to get the badge

- **1** April 24, 2015, 09:00 16:00
- Activities
 - Absolute flux measurement
 - Reflectivity measurement
 - EXAFS measurement
 - Rocking curve measurement (possibly)
- **3** Make sure your badge is ready
- 4 Leave plenty of time to get the badge
- **5** Let me know when you plan to come!

$$f(\vec{Q},\omega) = f^0(\vec{Q}) + \chi(\omega)$$

$$f(\vec{Q},\omega)=f^0(\vec{Q})+\chi(\omega)$$

$$\chi(\omega) = f_s' + if_s''$$

$$f(\vec{Q}, \omega) = f^{0}(\vec{Q}) + \chi(\omega)$$

$$\chi(\omega) = f'_{s} + if''_{s}$$

$$f'_{s} = \frac{\omega_{s}^{2}(\omega^{2} + \omega_{s}^{2})}{(\omega^{2} + \omega_{s}^{2})^{2} + (\omega\Gamma)^{2}}$$

$$f(\vec{Q}, \omega) = f^{0}(\vec{Q}) + \chi(\omega)$$

$$\chi(\omega) = f'_{s} + if''_{s}$$

$$f'_{s} = \frac{\omega_{s}^{2}(\omega^{2} + \omega_{s}^{2})}{(\omega^{2} + \omega_{s}^{2})^{2} + (\omega\Gamma)^{2}}$$

$$f_s'' = \frac{\omega_s^2 \omega \Gamma}{(\omega^2 + \omega_s^2)^2 + (\omega \Gamma)^2}$$

$$f(\vec{Q}, \omega) = f^{0}(\vec{Q}) + \chi(\omega)$$

$$\chi(\omega) = f'_{s} + if''_{s}$$

$$f'_{s} = \frac{\omega_{s}^{2}(\omega^{2} + \omega_{s}^{2})}{(\omega^{2} + \omega_{s}^{2})^{2} + (\omega\Gamma)^{2}}$$

$$f_s'' = \frac{\omega_s^2 \omega \Gamma}{(\omega^2 + \omega_s^2)^2 + (\omega \Gamma)^2}$$

Total cross-section

Refractive index

Refractive index

Imaginary part of refractive index, *n*

Calculated Cross Sections

Calculated Cross Sections

Two unlike atoms with scattering factors f_1 and f_2 are oriented by a vector pointing from the larger to the smaller.

Two unlike atoms with scattering factors f_1 and f_2 are oriented by a vector pointing from the larger to the smaller.

Consider two cases, with the scattering vector Q

Two unlike atoms with scattering factors f_1 and f_2 are oriented by a vector pointing from the larger to the smaller.

Consider two cases, with the scattering vector Q in the same direction as the orientation vector

Two unlike atoms with scattering factors f_1 and f_2 are oriented by a vector pointing from the larger to the smaller.

Consider two cases, with the scattering vector Q in the same direction as the orientation vector and opposite to the orientation vector.

Two unlike atoms with scattering factors f_1 and f_2 are oriented by a vector pointing from the larger to the smaller.

Consider two cases, with the scattering vector Q in the same direction as the orientation vector and opposite to the orientation vector.

Now compute the scattered intensity in each case, assuming scattering factors are purely real.

$$A(+Q) = f_1 + f_2 e^{+iQx}$$

$$I(+Q) = (f_1 + f_2 e^{+iQx})(f_1 + f_2 e^{-iQx})$$

= $f_1^2 + f_2^2 + 2f_1 f_2 \cos(Qx)$

$$I(+Q) = I(-Q)$$
 Friedel's Law

$$A(-Q) = f_1 + f_2 e^{-iQx}$$

$$I(-Q) = (f_1 + f_2 e^{-iQx})(f_1 + f_2 e^{+iQx})$$

= $f_1^2 + f_2^2 + 2f_1f_2\cos(Qx)$

Breakdown of Friedel's Law

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

Breakdown of Friedel's Law

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

$$f_j = f_j^0 + f_j' + if_j''$$
 $j = 1, 2$

Breakdown of Friedel's Law

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

$$f_j = f_j^0 + f_j' + if_j'' = r_j e^{i\phi_j}$$
 $j = 1, 2$ $r_j = |f_j|$

$$f_j = f_j^0 + f_j' + if_j'' = r_j e^{i\phi_j}$$
 $j = 1, 2$ $r_j = |f_j|$
 $A(Q) = r_1 e^{i\phi_1} + r_2 e^{i\phi_2} e^{iQx}$

$$f_j = f_j^0 + f_j' + if_j'' = r_j e^{i\phi_j}$$
 $j = 1, 2$ $r_j = |f_j|$
 $A(Q) = r_1 e^{i\phi_1} + r_2 e^{i\phi_2} e^{iQ_X}$
 $I(Q) = (r_1 e^{i\phi_1} + r_2 e^{i\phi_2} e^{iQ_X})(r_1 e^{-i\phi_1} + r_2 e^{-i\phi_2} e^{-iQ_X})$

$$f_{j} = f_{j}^{0} + f_{j}' + if_{j}'' = r_{j}e^{i\phi_{j}} j = 1, 2 r_{j} = |f_{j}|$$

$$A(Q) = r_{1}e^{i\phi_{1}} + r_{2}e^{i\phi_{2}}e^{iQx}$$

$$I(Q) = (r_{1}e^{i\phi_{1}} + r_{2}e^{i\phi_{2}}e^{iQx})(r_{1}e^{-i\phi_{1}} + r_{2}e^{-i\phi_{2}}e^{-iQx})$$

$$= r_{1}^{2} + r_{2}^{2} + r_{1}r_{2}e^{i\phi_{1}}e^{-i\phi_{2}}e^{-iQx} + r_{1}r_{2}e^{-i\phi_{1}}e^{i\phi_{2}}e^{iQx}$$

$$f_{j} = f_{j}^{0} + f_{j}' + if_{j}'' = r_{j}e^{i\phi_{j}} \qquad j = 1, 2 \qquad r_{j} = |f_{j}|$$

$$A(Q) = r_{1}e^{i\phi_{1}} + r_{2}e^{i\phi_{2}}e^{iQx}$$

$$I(Q) = (r_{1}e^{i\phi_{1}} + r_{2}e^{i\phi_{2}}e^{iQx})(r_{1}e^{-i\phi_{1}} + r_{2}e^{-i\phi_{2}}e^{-iQx})$$

$$= r_{1}^{2} + r_{2}^{2} + r_{1}r_{2}e^{i\phi_{1}}e^{-i\phi_{2}}e^{-iQx} + r_{1}r_{2}e^{-i\phi_{1}}e^{i\phi_{2}}e^{iQx}$$

$$= |f_{1}|^{2} + |f_{2}|^{2} + r_{1}r_{2}(e^{-(Qx + \phi_{1} - \phi_{2})} + e^{+(Qx + \phi_{1} - \phi_{2})})$$

$$f_{j} = f_{j}^{0} + f_{j}' + if_{j}'' = r_{j}e^{i\phi_{j}} \qquad j = 1, 2 \qquad r_{j} = |f_{j}|$$

$$A(Q) = r_{1}e^{i\phi_{1}} + r_{2}e^{i\phi_{2}}e^{iQx}$$

$$I(Q) = (r_{1}e^{i\phi_{1}} + r_{2}e^{i\phi_{2}}e^{iQx})(r_{1}e^{-i\phi_{1}} + r_{2}e^{-i\phi_{2}}e^{-iQx})$$

$$= r_{1}^{2} + r_{2}^{2} + r_{1}r_{2}e^{i\phi_{1}}e^{-i\phi_{2}}e^{-iQx} + r_{1}r_{2}e^{-i\phi_{1}}e^{i\phi_{2}}e^{iQx}$$

$$= |f_{1}|^{2} + |f_{2}|^{2} + r_{1}r_{2}(e^{-(Qx + \phi_{1} - \phi_{2})} + e^{+(Qx + \phi_{1} - \phi_{2})})$$

$$I(Q) = |f_{1}|^{2} + |f_{2}|^{2} + 2r_{1}r_{2}\cos(Qx + \phi_{1} - \phi_{2})$$

$$f_{j} = f_{j}^{0} + f_{j}' + if_{j}'' = r_{j}e^{i\phi_{j}} \qquad j = 1, 2 \qquad r_{j} = |f_{j}|$$

$$A(Q) = r_{1}e^{i\phi_{1}} + r_{2}e^{i\phi_{2}}e^{iQx}$$

$$I(Q) = (r_{1}e^{i\phi_{1}} + r_{2}e^{i\phi_{2}}e^{iQx})(r_{1}e^{-i\phi_{1}} + r_{2}e^{-i\phi_{2}}e^{-iQx})$$

$$= r_{1}^{2} + r_{2}^{2} + r_{1}r_{2}e^{i\phi_{1}}e^{-i\phi_{2}}e^{-iQx} + r_{1}r_{2}e^{-i\phi_{1}}e^{i\phi_{2}}e^{iQx}$$

$$= |f_{1}|^{2} + |f_{2}|^{2} + r_{1}r_{2}(e^{-(Qx + \phi_{1} - \phi_{2})} + e^{+(Qx + \phi_{1} - \phi_{2})})$$

$$I(Q) = |f_{1}|^{2} + |f_{2}|^{2} + 2r_{1}r_{2}\cos(Qx + \phi_{1} - \phi_{2}) \neq I(-Q)$$

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

$$f_{j} = f_{j}^{0} + f_{j}' + if_{j}'' = r_{j}e^{i\phi_{j}} \qquad j = 1, 2 \qquad r_{j} = |f_{j}|$$

$$A(Q) = r_{1}e^{i\phi_{1}} + r_{2}e^{i\phi_{2}}e^{iQx}$$

$$I(Q) = (r_{1}e^{i\phi_{1}} + r_{2}e^{i\phi_{2}}e^{iQx})(r_{1}e^{-i\phi_{1}} + r_{2}e^{-i\phi_{2}}e^{-iQx})$$

$$= r_{1}^{2} + r_{2}^{2} + r_{1}r_{2}e^{i\phi_{1}}e^{-i\phi_{2}}e^{-iQx} + r_{1}r_{2}e^{-i\phi_{1}}e^{i\phi_{2}}e^{iQx}$$

$$= |f_{1}|^{2} + |f_{2}|^{2} + r_{1}r_{2}(e^{-(Qx + \phi_{1} - \phi_{2})} + e^{+(Qx + \phi_{1} - \phi_{2})})$$

$$I(Q) = |f_{1}|^{2} + |f_{2}|^{2} + 2r_{1}r_{2}\cos(Qx + \phi_{1} - \phi_{2}) \neq I(-Q)$$

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

$$f_{j} = f_{j}^{0} + f_{j}' + if_{j}'' = r_{j}e^{i\phi_{j}} \qquad j = 1, 2 \qquad r_{j} = |f_{j}|$$

$$A(Q) = r_{1}e^{i\phi_{1}} + r_{2}e^{i\phi_{2}}e^{iQx}$$

$$I(Q) = (r_{1}e^{i\phi_{1}} + r_{2}e^{i\phi_{2}}e^{iQx})(r_{1}e^{-i\phi_{1}} + r_{2}e^{-i\phi_{2}}e^{-iQx})$$

$$= r_{1}^{2} + r_{2}^{2} + r_{1}r_{2}e^{i\phi_{1}}e^{-i\phi_{2}}e^{-iQx} + r_{1}r_{2}e^{-i\phi_{1}}e^{i\phi_{2}}e^{iQx}$$

$$= |f_{1}|^{2} + |f_{2}|^{2} + r_{1}r_{2}(e^{-(Qx + \phi_{1} - \phi_{2})} + e^{+(Qx + \phi_{1} - \phi_{2})})$$

$$I(Q) = |f_{1}|^{2} + |f_{2}|^{2} + 2r_{1}r_{2}\cos(Qx + \phi_{1} - \phi_{2}) \neq I(-Q)$$

$$F = r_1 e^{-i(\phi_1 + Qx_1)} + r_1 e^{-i(\phi_1 - Qx_1)} + r_2 e^{-i(\phi_2 + Qx_2)} + r_2 e^{-i(\phi_2 - Qx_2)}$$

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

$$f_{j} = f_{j}^{0} + f_{j}' + if_{j}'' = r_{j}e^{i\phi_{j}} j = 1, 2 r_{j} = |f_{j}|$$

$$A(Q) = r_{1}e^{i\phi_{1}} + r_{2}e^{i\phi_{2}}e^{iQx}$$

$$I(Q) = (r_{1}e^{i\phi_{1}} + r_{2}e^{i\phi_{2}}e^{iQx})(r_{1}e^{-i\phi_{1}} + r_{2}e^{-i\phi_{2}}e^{-iQx})$$

$$= r_{1}^{2} + r_{2}^{2} + r_{1}r_{2}e^{i\phi_{1}}e^{-i\phi_{2}}e^{-iQx} + r_{1}r_{2}e^{-i\phi_{1}}e^{i\phi_{2}}e^{iQx}$$

$$= |f_{1}|^{2} + |f_{2}|^{2} + r_{1}r_{2}(e^{-(Qx + \phi_{1} - \phi_{2})} + e^{+(Qx + \phi_{1} - \phi_{2})})$$

$$I(Q) = |f_{1}|^{2} + |f_{2}|^{2} + 2r_{1}r_{2}\cos(Qx + \phi_{1} - \phi_{2}) \neq I(-Q)$$

$$F = r_1 e^{-i(\phi_1 + Qx_1)} + r_1 e^{-i(\phi_1 - Qx_1)} + r_2 e^{-i(\phi_2 + Qx_2)} + r_2 e^{-i(\phi_2 - Qx_2)}$$
$$= [2r_1 \cos(Qx_1)] e^{-i\phi_1} + [2r_2 \cos(Qx_2)] e^{-i\phi_2}$$

If the scattering factor has resonant terms which are not negligible, we have to include them in the computation

$$f_{j} = f_{j}^{0} + f_{j}' + if_{j}'' = r_{j}e^{i\phi_{j}} j = 1, 2 r_{j} = |f_{j}|$$

$$A(Q) = r_{1}e^{i\phi_{1}} + r_{2}e^{i\phi_{2}}e^{iQx}$$

$$I(Q) = (r_{1}e^{i\phi_{1}} + r_{2}e^{i\phi_{2}}e^{iQx})(r_{1}e^{-i\phi_{1}} + r_{2}e^{-i\phi_{2}}e^{-iQx})$$

$$= r_{1}^{2} + r_{2}^{2} + r_{1}r_{2}e^{i\phi_{1}}e^{-i\phi_{2}}e^{-iQx} + r_{1}r_{2}e^{-i\phi_{1}}e^{i\phi_{2}}e^{iQx}$$

$$= |f_{1}|^{2} + |f_{2}|^{2} + r_{1}r_{2}(e^{-(Qx + \phi_{1} - \phi_{2})} + e^{+(Qx + \phi_{1} - \phi_{2})})$$

$$I(Q) = |f_{1}|^{2} + |f_{2}|^{2} + 2r_{1}r_{2}\cos(Qx + \phi_{1} - \phi_{2}) \neq I(-Q)$$

$$F = r_1 e^{-i(\phi_1 + Qx_1)} + r_1 e^{-i(\phi_1 - Qx_1)} + r_2 e^{-i(\phi_2 + Qx_2)} + r_2 e^{-i(\phi_2 - Qx_2)}$$

$$= [2r_1 \cos(Qx_1)] e^{-i\phi_1} + [2r_2 \cos(Qx_2)] e^{-i\phi_2}$$

$$I(Q) = 4|f_1|^2 + 4|f_2|^2 + 8|f_1||f_2|\cos(Qx_1)\cos(Qx_2)\cos(\phi_2 - \phi_1)$$

Argand Diagram

This can all be described graphically using an Argand diagram:

no resonant terms

Argand Diagram

This can all be described graphically using an Argand diagram:

no resonant terms

including resonant terms

ZnS Example

The ZnS structure is not centrosymmetric and when viewed along the $\langle 111 \rangle$ direction, it shows alternating stacked planes of Zn and S atoms.

ZnS Example

The ZnS structure is not centrosymmetric and when viewed along the $\langle 111 \rangle$ direction, it shows alternating stacked planes of Zn and S atoms.

Scattering from opposite faces of a single crystal of ZnS gives a different scattering factor and one can deduce the terminating surface atom.

Bijvoet Pairs - Chiral Molecules

Consider a tetrahedral molecule of carbon with four different species at each corner, oriented so the lightest is projected to the origin.

Bijvoet Pairs - Chiral Molecules

Consider a tetrahedral molecule of carbon with four different species at each corner, oriented so the lightest is projected to the origin.

Atomic Scattering Factors

Each of the three atoms not at the origin has a scattering factor for \vec{Q} as shown

Left Handed Scattering Factor

Left Handed Scattering Factor

$$F_S = |f_s| + |f_m|e^{-i\phi_m}e^{i\phi} + |f_I|e^{-i\phi_I}e^{-i\phi}$$

Right Handed Scattering Factor

Right Handed Scattering Factor

$$F_R = |f_s| + |f_m|e^{-i\phi_m}e^{-i\phi} + |f_I|e^{-i\phi_I}e^{i\phi}$$

Scattering Factor Comparison

It is thus possible to tell the difference in handedness of chiral molecule simply by x-ray scattering

Scattering Factor Comparison

It is thus possible to tell the difference in handedness of chiral molecule simply by x-ray scattering

$$\left| |f_{s}| + |f_{m}|e^{-i\phi_{m}}e^{i\phi} + |f_{l}|e^{-i\phi_{l}}e^{-i\phi} \right|^{2} \neq \left| |f_{s}| + |f_{m}|e^{-i\phi_{m}}e^{-i\phi} + |f_{l}|e^{-i\phi_{l}}e^{i\phi} \right|^{2}$$

Comparison of Matrix Elements

Absorption

$$\frac{e\vec{A}\cdot\vec{p}}{m}$$

Comparison of Matrix Elements

Thomson scattering

$$\frac{e\vec{A}\cdot\vec{p}}{m}$$

$$\frac{e^2A^2}{2m}$$

Comparison of Matrix Elements

