
Today’s Outline - April 14, 2015

• In situ EXAFS studies

• Angle Resolved Photoemission

• Resonant Scattering

• Friedel’s Law

• Bijvoet (Bay-voot) Pairs

• MAD Phasing

• Quantum Origin of Resonant Scattering

Homework Assignment #7:
Chapter 7: 2, 3, 9, 10, 11
due Tuesday, April 23, 2015
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Mark I operando fuel cell

R. Viswanathan et al., “In-situ XANES study of
carbon supported Pt-Ru anode electrocatalysts for
reformate-air polymer electrolyte fuel cells”, J. Phys.
Chem. B 106, 3458 (2002).

• Transmission mode

• <1 mm of graphite

• Pt/Ru on anode

• Pd on cathode

• 35◦C operating temp

• 1-2 min scan time
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Mark II operando fuel cell

E.A. Lewis et al., “Operando x-ray absorption
and infrared fuel cell spectroscopy”, Electrochim.
Acta. 56, 8827 (2011).

• Air-breathing cathode

• Pd on anode

• 1.2 mg/cm2 loading

• 50◦C operating temp

• Pt L3 and Ni K edges

• Continuous scan mode @
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Oxygen reduction at a PtNi cathode

U.S. Department of Defense (DoD) Fuel Cell
Test and Evaluation Center (FCTec)

Anode: 0 V vs. SHE

2 H2 −−→ 4 H+ + 4 e–

Cathode: 1.23 V s. SHE

O2 + 4 H+ + 4 e– −−→ 2 H2O

breaking O−O bond is the rate
limiting step
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Fuel cell performance and open questions
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cuit voltage, similar perfor-
mance to Pt/Pd.

Pt: How do reactants adsorb on platinum
surface?

• Do all faces of Pt adsorb equally
well?

• Is there a change in location with
coverage?

PtNi: Why is ORR improved with
bimetallic catalyst?

• Pt electronic structure modified

• Pt catalyst geometric structure
modified

• Static oxygen adsorbates inhibited

• Overpotential reduced

How do real catalysts differ from model
systems?
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Pt/C and PtNi/C comparison
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PtNi Structural model

Attempt to get global information about the oxygen

Fit all potentials with same metal core parameters for
each catalyst

Simultaneous fit of Pt and Ni edges in PtNi/C with con-
straint on Pt-Ni distance

Fit in k, k2, and k3 weighting simultaneously

M-O path constraints

• length common across potentials

• σ2fixed to 0.01

• Pt-O in PtNi/C are refined with a single
occupation #

C. Segre (IIT) PHYS 570 - Spring 2015 April 14, 2015 7 / 39



Example fits
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Fit results

Pt/C PtNi/C

Pt Ni

NPt 8.7± 0.2 NPt 6.1± 0.3 NNi 3.7± 0.2

RPt-Pt 2.749± 0.001 RPt-Pt 2.692± 0.003 RNi-Ni 2.572± 0.006

NNi 3.4± 0.1 NPt 8.9± 0.5

RPt-Ni 2.635± 0.004

NTotal 9.5± 0.4 NTotal 12.6± 0.7

RPt-O 2.02± 0.01 RPt-O 2.09± 0.03 RNi-O 1.90± 0.01

Note the Pt-Pt and Pt-O bond lengths as well as total metal near
neighbors

Q. Jia et al, “In Situ XAFS studies of the oxygen reduction reaction on carbon
supported Pt and PtNi(1:1) catalysts”, J. Phys. Conf. Series 190, 012157
(2009).
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What does Ni really do?

Resides predominantly in metal core of nanoparticle

Eliminates static Pt-O bonds at all potentials

Number of O near neighbors “increases” with potential

Lengthens Pt-O and shortens Pt-Pt bond

Reduces Pt white line in most reduced state (0 mV)

Open circuit voltage is increased (reduction in overpotential)

Can we use modeling to establish specific mechanism?

• Pt-Pt bond reduction (weakening of Pt-O bond)?

• Electron donation to Pt d-band (weakening of Pt-O
bond)?

• Stronger affinity for oxygen?
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Pt cluster modeling

By using FEFF8.4, which performs full multiple-scattering
self-consistent calculations, we can explore the implications
of the “ligand effect” and the “strain effect” on the elec-
tronic state of Pt.

Separate the effects of

(a) Shorter Pt-Pt distance

(b) charge transfer from subsurface Ni

Use experimentally determined dis-
tances

Calculate local density of states

Calculate XANES spectrum

Q. Jia, et al., “Structure-property-activity correlations of Pt-bimetallic
nanoparticles: a theoretical study” Electrochimica Acta bf 88, 604 (2013).
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Cluster calculation results

Strain effect: shorter Pt-Pt bond → broader and lower Pt d-band

• serves to weaken the Pt-O bond

• White line at absorption edge is reduced

• In agreement with DFT calculations (Nørskov et al.)

Ligand effect: subsurface Ni → sharpens and raises Pt d-band

• Raises chemisorption energy

• Increases white line

Net effect dominated by strain effect

Predictive ability

• Moving down periodic table (Ru, Ag)

• Moving left across periodic table (towards Mn)
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Methanol oxidation by a PtRu anode

U.S. Department of Defense (DoD) Fuel Cell
Test and Evaluation Center (FCTec)

Anode: 0.02 V vs. SHE

CH3OH + H2O −−→ 6 H +
CO2 + 6 e–

Cathode: 1.23 V s. SHE
3
2 O2 + 6 H+ + 6 e– −−→

3 H2O

Pt surface poisoned by CO

The presence of Ru promotes CO oxidation through a
“bi-functional mechanism”

Pt−(CO)ads + Ru−OH −−→ Pt + RuCO2 + H+ + 2 e–
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Ru EXAFS fitting

• Addition of Ru-O/C neighbors improves the EXAFS fit

• The peak at about 1.3 Å is ascribed to oxygen bound
to Ru

• The asymmetric distribution of the Ru-O/C peak is
consistent with disorder
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Metal nanoparticle structure

• First shell analysis

• Fit Pt and Ru EXAFS simultaneously at each potential.
No potential dependence observed

• Simultaneously fit Pt and Ru data at all potentials.
Identical overall average coordination was observed

• Use fractional coordination numbers, x (Pt around Ru)
and y (Ru around Pt) and total coordination number
about each atom, N

• Bond lengths and Debye-Waller factors are consistent
with literature values for C supported Pt-Ru catalyst
(Russel 2001, Camara 2002)

N 8.2± 0.2
x 0.54± 0.02
y 0.27± 0.02

[Ru]

[Pt]
=

y

x
= 0.50
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Metal core restucturing

As-received catalyst

Ru oxidation ∼ 58 %

N = 5.6

[Ru]

[Pt]
=

y

x
= 0.44

Pt-O bonds present

# Ru-O bonds ∼2.8

In-situ catalyst

Ru oxidation ∼ 15 %

N = 8.2

[Ru]

[Pt]
=

y

x
= 0.50

No Pt-O bonds

# Ru-O/C bonds
∼0.24

• Inner core has more Pt than Ru

• Ru on surface and outside of metallic nanoparticle

S. Stoupin, et al., “Pt and Ru X-ray absorption spectroscopy of PtRu anode
catalysts in operating direct methanol fuel cells” J. Phys. Chem. 110, 9932
(2006).

S. Stoupin, et al., “Structural analysis of sonochemically prepared PtRu versus
Johnson Matthey PtRu in operating direct methanol fuel cells” Phys. Chem.
Chem. Phys. 10, 6430 (2008).
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Role of Ru in CO oxidation?

• PtRu bifunctional catalyst improves performance

• In commercial PtRu catalysts there is always a lot of
inactive Ru-oxide (?)

• Ru signal dominated by metallic Ru environment

• How does Ru behave in the presence of reactants
adsorbed on platinum surface?

Core-shell nanoparticles can resolve these questions
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Ru-decorated Pt nanoparticles
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Electrochemical performance
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methanol oxidation
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the CO which blocks active sites
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Ru EXAFS
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0 1 2 3 4 5

R [Å]

0

0.2

0.4

0.6

0.8

1

|χ
(R

)|
 [Å

-3
]

-225 mV

+175 mV

+375 mV

+575 mV

+675 mV

With methanol

0 1 2 3 4 5

R [Å]

0

0.2

0.4

0.6

0.8

1

|χ
(R

)|
 [Å

-3
]

-225 mV

+375 mV

+675 mV

C. Segre (IIT) PHYS 570 - Spring 2015 April 14, 2015 20 / 39



Ru EXAFS

No methanol

0 1 2 3 4 5

R [Å]

0

0.2

0.4

0.6

0.8

1

|χ
(R

)|
 [Å

-3
]

-225 mV

+175 mV

+375 mV

+575 mV

+675 mV

With methanol

0 1 2 3 4 5

R [Å]

0

0.2

0.4

0.6

0.8

1

|χ
(R

)|
 [Å

-3
]

-225 mV

+375 mV

+675 mV

C. Segre (IIT) PHYS 570 - Spring 2015 April 14, 2015 20 / 39



Ru-M paths
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Ru-O/C paths
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Bi-functional mechanism
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C. Pelliccione et al., “In situ Ru K-Edge x-ray absorption spectroscopy study of methanol
oxidation mechanisms on model submonolayer Ru on Pt nanoparticle electrocatalyst” J.
Phys. Chem. C 117, 18904 (2013).
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Synthesis of Sn-graphite nanocomposites

One-pot synthesis
produces evenly dis-
tributed Sn3O2(OH)2
nanoparticles on graphite
nanoplatelets

XRD shows a small
amount of Sn metal in
addition to Sn3O2(OH)2
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In situ XAS studies of lithiation
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In situ battery box

Pouch cell clamped against front window in helium environment
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In situ battery box

Suitable for both transmission and fluorescence measurements
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In situ XAS studies of lithiation
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In situ XAS studies of lithiation
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In situ XAS studies of lithiation
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In situ XAS studies of lithiation
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In situ XAS studies of lithiation
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In situ XAS studies of lithiation

C. Pelliccione, E.V. Timofeeva, and C.U. Segre, “In situ XAS study of the capacity fading
mechanism in hybrid Sn3O2(OH)2/graphite battery anode nanomaterials” Chem. Mater.
27, 574-580 (2015).
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The Photoemission Process

Photoemission is the comple-
ment to XAFS. It probes the
filled states below the Fermi level

The dispersion relation of elec-
trons in a solid, E(~q) can be
probed by angle resolved photoe-
mission

Ekin, θ −→ E(~q)

Ekin =
~2q2v
2m

= ~ω − φ− EB

EB = EF − Ei

C. Segre (IIT) PHYS 570 - Spring 2015 April 14, 2015 33 / 39



The Photoemission Process

Photoemission is the comple-
ment to XAFS. It probes the
filled states below the Fermi level

The dispersion relation of elec-
trons in a solid, E(~q) can be
probed by angle resolved photoe-
mission

Ekin, θ −→ E(~q)

Ekin =
~2q2v
2m

= ~ω − φ− EB

EB = EF − Ei

C. Segre (IIT) PHYS 570 - Spring 2015 April 14, 2015 33 / 39



The Photoemission Process

Photoemission is the comple-
ment to XAFS. It probes the
filled states below the Fermi level

The dispersion relation of elec-
trons in a solid, E(~q) can be
probed by angle resolved photoe-
mission

Ekin, θ −→ E(~q)

Ekin =
~2q2v
2m

= ~ω − φ− EB

EB = EF − Ei

C. Segre (IIT) PHYS 570 - Spring 2015 April 14, 2015 33 / 39



The Photoemission Process

Photoemission is the comple-
ment to XAFS. It probes the
filled states below the Fermi level

The dispersion relation of elec-
trons in a solid, E(~q) can be
probed by angle resolved photoe-
mission

Ekin, θ −→ E(~q)

Ekin =
~2q2v
2m

= ~ω − φ− EB

EB = EF − Ei

C. Segre (IIT) PHYS 570 - Spring 2015 April 14, 2015 33 / 39



Hemispherical Mirror Analyzer

The electric field between the
two hemispheres has a R2 de-
pendence from the center of the
hemispheres

Electrons with E0, called the
“pass energy”, will follow a cir-
cular path of radius
R0 = (R1 + R2)/2

Electrons with lower energy will
fall inside this circular path while
those with higher enegy will fall
outside
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A better scattering model

Up to now, scattering has been treated classically and the result of
radiation interaction with “free” electrons.

This is not a good approximation since we know:

f ( ~Q, ω) = f 0( ~Q) + f ′(ω) + if ′′(ω)

The absorption cross section can be
modeled as a sum of forced, dissi-
pative oscillators with distribution
g(ωs).

This will produce the resonant scat-
tering term but not the XANES and
EXAFS, which are purely quantum
effects.
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Forced charged oscillator

Consider an electron under the in-
fluence of an oscillating electric
field ~Ein = x̂E0e

−iωt .

where Γ is the damping constant,
ωs is the resonant frequency of the
oscillator, and Γ� ωs .

assuming a solution of the form

ẍ + Γẋ + ω2
s x = −

(
eE0

m

)
e−iωt

x = x0e
−iωt

ẋ = −iωx0e−iωt

ẍ = −ω2x0e
−iωt

(−ω2 − iωΓ + ω2
s )x0e

−iωt = −
(
eE0

m

)
e−iωt

x0 = −
(
eE0

m

)
1

(ω2
s − ω2 − iωΓ)

The amplitude of the response has a resonance and dissipation
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ẍ + Γẋ + ω2
s x = −

(
eE0

m

)
e−iωt

x = x0e
−iωt
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ẍ + Γẋ + ω2
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ẋ = −iωx0e−iωt
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Radiated field

The radiated (scattered) electric field at a distance R from the electron is
directly proportional to the electron’s acceleration with a retarded time
t ′ = t − R/c (allowing for the travel time to the detector).

Erad(R, t) =

(
e

4πε0Rc2

)
ẍ(t − R/c) =

(
e

4πε0Rc2

)
(−ω2)x0e

−iωte iωR/c

=
ω2

(ω2
s − ω2 − iωΓ)

(
e2

4πε0mc2

)
E0e
−iωt

(
e ikR

R

)
Erad(R, t)

Ein
= −r0

ω2

(ω2 − ω2
s + iωΓ)

(
e ikR

R

)
= −r0fs

(
e ikR

R

)

which is an outgoing spherical wave
with scattering amplitude fs =

ω2

(ω2 + ω2
s + iωΓ)
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t ′ = t − R/c (allowing for the travel time to the detector).

Erad(R, t) =

(
e

4πε0Rc2

)
ẍ(t − R/c) =

(
e

4πε0Rc2

)
(−ω2)x0e

−iωte iωR/c

=
ω2

(ω2
s − ω2 − iωΓ)

(
e2

4πε0mc2

)
E0e
−iωt

(
e ikR

R

)
Erad(R, t)

Ein
= −r0

ω2

(ω2 − ω2
s + iωΓ)

(
e ikR

R

)
= −r0fs

(
e ikR

R

)

which is an outgoing spherical wave
with scattering amplitude fs =

ω2

(ω2 + ω2
s + iωΓ)
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Dispersion corrections

The scattering factor can be
rewritten

and since Γ� ωs

the second term being the
dispersion correction whose
real and imaginary compo-
nents can be extracted

fs =
ω2

(ω2 + ω2
s + iωΓ)

= 1 +
ω2
s − iωΓ
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s
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s + iωΓ)
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ω2
s
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s
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ω2
s (ω2 + ω2
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(ω2 + ω2
s )2 + (ωΓ)2

f ′s =
ω2
s (ω2 + ω2

s )

(ω2 + ω2
s )2 + (ωΓ)2

f ′′s =
ω2
sωΓ

(ω2 + ω2
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Single oscillator dispersion terms

These dispersion terms give
resonant corrections to the
scattering factor

f ′s =
ω2
s (ω2 + ω2

s )

(ω2 + ω2
s )2 + (ωΓ)2

f ′′s =
ω2
sωΓ

(ω2 + ω2
s )2 + (ωΓ)2
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