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Homework Assignment #06:
Chapter 6: 1,6,7,8,9
due Tuesday, April 14, 2015
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PHYS 570 days at 10-1D

@ April 10, 2015, 09:00 — 16:00
® April 24, 2015, 09:00 — 16:00
© Activities

Absolute flux measurement
Reflectivity measurement

EXAFS measurement
Rocking curve measurement (possibly)

O Make sure your badge is ready
@ Leave plenty of time to get the badge
® Let me know when you plan to come!
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Darwin widths

KSWHM X 10()

(111) (220) (400)
Diamond 61.0 20.9 8.5
a=3.5670 A | .03 | 0.018 | -0.01 | 1.96 | 0.018 | 001 | 1.59 | 0,018 | -0.01
Silicon 139.8 61.1 26.3
a=54309A | 1054 | 0.25 | 033 | 872 | 0.25 | 033 | 751 | 0.25 | -0.33
Germanium 347.2 160.0 68.8
a=5.6578 A | 2736 | 11 | 0.89 | 2379 | -L1 | -0.89 | 2046 | -L.1 | -0.89
the quantities below the widths are fO(Q), ', and " (for
A = 1.5405A). For an angular width, multiply times tan 6
and for 7 polarization, multiply by cos(26).
PHYS 570 - Spring 2015 April 02, 2015
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Asymmetric Geometry

In general the diffracting planes are not precisely aligned with the surface
of the crystal.
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Asymmetric Geometry

In general the diffracting planes are not precisely aligned with the surface
of the crystal.

Parameterized by the asymmetry
angle 0 < a < Opagg

This leads to a beam compression

sinf;  sin(0 + )
sinfe  sin(d — a)
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He = —
b
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Asymmetric Geometry

In general the diffracting planes are not precisely aligned with the surface
of the crystal.

Parameterized by the asymmetry
angle 0 < a < Opagg

This leads to a beam compression

sinf;  sin(0 + )
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He = — |
b |
according to Liouville's theorem
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Asymmetric Geometry

In general the diffracting planes are not precisely aligned with the surface
of the crystal.

Parameterized by the asymmetry
angle 0 < a < Opagg

This leads to a beam compression

sinf;  sin(0 + )

sinfe  sin(f — «) ‘
H; !
He = — |
b |
according to Liouville's theorem
' 00e = Vb({ptanb
the divergence of the beam must ° {(CD an?)
also change 00; = —({ptand
80;H; = %(gD tan)bHe = Vb((p tan§) = 50, H.
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Rocking Curve Measurements

The measured “rocking” curve from a two crystal system is a convolution
of the Darwin curves of both crystals.
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Rocking Curve Measurements
The measured “rocking” curve from a two crystal system is a convolution

of the Darwin curves of both crystals. When the two crystals have a
matched asymmetry, we get a triangle.
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Rocking Curve Measurements

The measured “rocking” curve from a two crystal system is a convolution
of the Darwin curves of both crystals. When the two crystals have a
matched asymmetry, we get a triangle. When one asymmetry is much
higher, then we can measure the Darwin curve of a single crystal.

Si(111)b=4.3-Si(111)b=0.23 Si(111)b=0.23 - Si(111) b=0.23
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Dumond diagram: no Darwin width
Transfer function of an optical element parameterized by angle and

wavelength.
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Dumond diagram: no Darwin width
Transfer function of an optical element parameterized by angle and

wavelength. Here Darwin width is ignored.
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Dumond diagram: symmetric Bragg

Including the Darwin width, we have a bandpass in wavelength.
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Dumond diagram: symmetric Bragg

Including the Darwin width, we have a bandpass in wavelength. If input
beam is perfectly collimated, so is output (vertical black line).
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Dumond diagram: asymmetric Bragg
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Double Crystal Monochromators
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Total Cross Section
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Total Cross Section

Absorption cross-section [barn]
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Total Cross Section
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The total cross-section for
photon “absorption” in-
cludes elastic (or coher-
ent) scattering, Compton
(inelastic) scattering, and
photoelectric absorption.

Characteristic absorption
jumps depend on the ele-
ment

These quantities vary significantly over many decades but can easily put
on an equal footing.
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Scaled Absorption
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Scaled Absorption
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Scaled Absorption

Continuum
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Calculation of o,

From first-order perturbation theory, the absorption cross section is given
by
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Calculation of o,

From first-order perturbation theory, the absorption cross section is given

by
21 V2
Mie|?5(E % sin 0dqd0d
72 = 1 s | IMeP6(E7 — £)q? sinddadody
) = (i|H,|f
where the matrix element M;r be- {ifrilf)
tween the initial, (i|, and final, |f), .
ep-A  e2A?
states is given by M, = P2
I —_—
. . . . m 2m
The interaction Hamiltonian is ex-
pressed in terms of the electromag-
netic vector potential
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Calculation of o,
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by
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Calculation of o,

From first-order perturbation theory, the absorption cross section is given

by
_2m v? 5(& 2 G Odadd
0a= 723 |Mie|26(Ef — £1)q? sin 0dqdOd
= (i|H,|f
where the matrix element M;r be- iy
tween the initial, (i|, and final, |f), L i
states is given by 4, = P~ €
m 2m

The interaction Hamiltonian is ex-

pressed in terms of the electromag- - i
. . A=2¢ { ik-¥ +ale
netic vector potential 20 Vw k€

The first term gives absorption while the second produces Thomson
scattering so we take only the first into consideration now.
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Free electron approximation

In order to evaluate the Mj;s matrix element we define the initial and final
states
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In order to evaluate the M;r matrix element we define the initial and final
states
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(no free electron) .
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similarly, the final state has no photon and an
ejected free electron (ignoring the core hole

and charged ion)
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Free electron approximation

In order to evaluate the M;r matrix element we define the initial and final
states

the initial state has a photon and a K electron
(no free electron) .
i) = [1)410)

similarly, the final state has no photon and an
ejected free electron (ignoring the core hole
and charged ion)

Thus
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Free electron approximation

In order to evaluate the M;r matrix element we define the initial and final

states

the initial state has a photon and a K electron
(no free electron)

similarly, the final state has no photon and an
ejected free electron (ignoring the core hole
and charged ion)

Thus

e h SR
Mir =\ ey LT 013 - €)a™7 + (B

1) = [1)710)e

(fl = e(1,(0]

e #7110}

The calculation is simplified if the interaction Hamiltonian is applied to the
left since the final state has only a free electron and no photon
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Free electron approximation

The free electron state is an eigen-
function of the electron momentum
operator
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(1P = (hG) (1] function of the electron momentum
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The annihilation operator applied

to the left creates a photon
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Free electron approximation

The free electron state is an eigen-
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operator
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Free electron approximation

The free electron state is an eigen-
(1P = (hG) (1] function of the electron momentum
operator
The annihilation operator applied
to the left creates a photon while
the creation operator annihilates a
photon when applied to the left.

Jnla = (VaF D)y (n+1]a
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Free electron approximation
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Free electron approximation
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Free electron approximation
e(1[p = (hg)(1|
y{nla=(vVn+1),(n+1a

7<”|3T = (Vn)y(n—1|a
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The free electron state is an eigen-
function of the electron momentum
operator

The annihilation operator applied
to the left creates a photon while
the creation operator annihilates a
photon when applied to the left.
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Free electron approximation
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Photoelectron integral
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Photoelectron integral
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Photoelectron integral

eh

h h
Mif—* ‘
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(G- /1/1 e w,dr— 20 Voo

. (@-2)0(Q)

The initial electron wavefunction is
simply that of a 1s atomic state
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Photoelectron integral
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Photoelectron integral
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C— o (7 The initial electron wavefunction is
Y = L/}ls(r) . .
simply that of a 1s atomic state
while the final state is approxi-
mated as a plane wave
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Photoelectron integral
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Photoelectron integral
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Photoelectron integral
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Photoelectron integral

lk? . —»_eih h = A A
@-9) [vie*udr =2 5 (@ 90(@)

M =
f 2¢€0 ch

Wi = U14(7) W = \/Tei?;-? The initial electron wavefun.ction is
v simply that of a 1s atomic state

while the final state is approxi-

3 |1 [ g7 ik, (> 4=
¥Q) = v)€ e rs(F)d7 mated as a plane wave

The integral thus becomes

C. Segre (IIT) PHYS 570 - Spring 2015 April 02, 2015 16 / 18



Photoelectron integral
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Photoelectron integral

eh h o eh h -
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Wi = U14(7) W = 1| — el The initial electron Wavefun.ctlon is
v simply that of a 1s atomic state
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_ - g-r  ik-F A\ 7
Q)= v /€ e us(r)dr mated as a plane wave
1 (T i
_ v /1/}15(?)e’(k_q)'rd? The integral thus becomes
which is the Fourier transform of
1 = Lo
_ /¢1s(7)e'Q'rd7 the |r.1|t|al state 1s electron wave
v function
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Photoelectron cross-section

the overall matrix element squared for a particular photoelectron final
direction (¢, ) is
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Photoelectron cross-section

the overall matrix element squared for a particular photoelectron final

direction (¢, ) is
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Calculated cross section

Ar

10’

Absorption cross-section [barn]

- g
—_—

: -~
Thomson+Compton —~ ~

2 5 10 20 50 100
Photon energy [keV]
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Calculated cross section

Absorption cross-section [barn]

C. Segre (lIT)

Thomson-irComptonf

5

10 20

Photon energy [keV]

PHYS 570 - Spring 2015

50 100

April 02, 2015

18 / 18



Calculated cross section

Absorption cross-section [barn]
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