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PHYS 570 days at 10-ID

1 April 10, 2015, 09:00 – 16:00

2 April 24, 2015, 09:00 – 16:00

3 Activities

• Absolute flux measurement
• Reflectivity measurement
• EXAFS measurement
• Rocking curve measurement (possibly)

4 Make sure your badge is ready

5 Leave plenty of time to get the badge

6 Let me know when you plan to come!
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Darwin widths

the quantities below the widths are f 0(Q), f ′, and f ′′ (for
λ = 1.5405 Å). For an angular width, multiply times tan θ
and for π polarization, multiply by cos(2θ).
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Asymmetric Geometry

In general the diffracting planes are not precisely aligned with the surface
of the crystal.

Parameterized by the asymmetry
angle 0 < α < θBragg

This leads to a beam compression

b =
sin θi
sin θe

=
sin(θ + α)

sin(θ − α)

He =
Hi

b

according to Liouville’s theorem,
the divergence of the beam must
also change

δθe =
√
b(ζD tan θ)

δθi =
1√
b

(ζD tan θ)

δθiHi

=
1√
b

(ζD tan θ)bHe =
√
b(ζD tan θ)

= δθeHe
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Rocking Curve Measurements

The measured “rocking” curve from a two crystal system is a convolution
of the Darwin curves of both crystals.

When the two crystals have a
matched asymmetry, we get a triangle. When one asymmetry is much
higher, then we can measure the Darwin curve of a single crystal.

output divergence on left, input divergence on right
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Dumond diagram: no Darwin width

Transfer function of an optical element parameterized by angle and
wavelength.

Here Darwin width is ignored.
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Dumond diagram: symmetric Bragg

Including the Darwin width, we have a bandpass in wavelength.

If input
beam is perfectly collimated, so is output (vertical black line).
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Dumond diagram: asymmetric Bragg
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Double Crystal Monochromators
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Double Crystal Monochromators
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Double Crystal Monochromators
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Total Cross Section

The total cross-section for
photon “absorption” in-
cludes elastic (or coher-
ent) scattering, Compton
(inelastic) scattering, and
photoelectric absorption.

Characteristic absorption
jumps depend on the ele-
ment

These quantities vary significantly over many decades but can easily put
on an equal footing.
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Scaled Absorption

T =
I

Io
= e−µz

µ =
ρmNA

M
σa

σa ∼
Z 4

E 3

scale σa for different ele-
ments by E 3/Z 4 and plot
together

remarkably, all values lie on a common curve above the K edge and
between the L and K edges and below the L edge
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Calculation of σa

From first-order perturbation theory, the absorption cross section is given
by

σa =
2π

~c
V 2

4π3

∫
|Mif |2δ(Ef − Ei )q2 sin θdqdθdϕ

where the matrix element Mif be-
tween the initial, 〈i |, and final, |f 〉,
states is given by

The interaction Hamiltonian is ex-
pressed in terms of the electromag-
netic vector potential

Mif = 〈i |HI |f 〉

HI =
e~p · ~A
m

+
e2A2

2m

~A = ε̂

√
~

2ε0Vω

[
ake

i~k·~r + a†ke
−i~k·~r

]
The first term gives absorption while the second produces Thomson
scattering so we take only the first into consideration now.
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From first-order perturbation theory, the absorption cross section is given
by

σa =
2π

~c
V 2

4π3

∫
|Mif |2δ(Ef − Ei )q2 sin θdqdθdϕ

where the matrix element Mif be-
tween the initial, 〈i |, and final, |f 〉,
states is given by

The interaction Hamiltonian is ex-
pressed in terms of the electromag-
netic vector potential
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Free electron approximation

In order to evaluate the Mif matrix element we define the initial and final
states

the initial state has a photon and a K electron
(no free electron)

similarly, the final state has no photon and an
ejected free electron (ignoring the core hole
and charged ion)

|i〉 = |1〉γ |0〉e

〈f | = e〈1|γ〈0|

Thus

Mif =
e

m

√
~

2ε0Vω

[
e〈1|γ〈0|(~p · ε̂)ae i

~k·~r + (~p · ε̂)a†e−i
~k·~r |1〉γ |0〉e

]
The calculation is simplified if the interaction Hamiltonian is applied to the
left since the final state has only a free electron and no photon
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Free electron approximation

e〈1|~p = (~~q)e〈1|

γ〈n|a = (
√
n + 1)γ〈n + 1|a

γ〈n|a† = (
√
n)γ〈n − 1|a

The free electron state is an eigen-
function of the electron momentum
operator

The annihilation operator applied
to the left creates a photon while
the creation operator annihilates a
photon when applied to the left.

e〈1|γ〈0|(~p · ε̂)a = ~(~q · ε̂)e〈1|γ〈1|

e〈1|γ〈0|(~p · ε̂)a† = 0

Mif =
e

m

√
~

2ε0Vω

[
~(~q · ε̂)e〈1|γ〈1|e i

~k·~r |1〉γ |0〉e + 0
]

=
e~
m

√
~

2ε0Vω
(~q · ε̂)e〈1|e i

~k·~r |0〉e =
e~
m

√
~

2ε0Vω
(~q · ε̂)

∫
ψ∗f e

i~k·~rψid~r
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Photoelectron integral

Mif =
e~
m

√
~

2ε0Vω
(~q · ε̂)

∫
ψ∗f e

i~k·~rψid~r

=
e~
m

√
~

2ε0Vω
(~q · ε̂)φ(~Q)

ψi = ψ1s(~r) ψf =

√
1

V
e i~q·~r

φ(~Q) =

√
1

V

∫
e−i~q·~re i

~k·~rψ1s(~r)d~r

=

√
1

V

∫
ψ1s(~r)e i(

~k−~q)·~rd~r

=

√
1

V

∫
ψ1s(~r)e i

~Q·~rd~r

The initial electron wavefunction is
simply that of a 1s atomic state
while the final state is approxi-
mated as a plane wave

The integral thus becomes

which is the Fourier transform of
the initial state 1s electron wave
function
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Photoelectron cross-section

the overall matrix element squared for a particular photoelectron final
direction (ϕ, θ) is

|Mif |2 =

(
e~
m

)2 ~
2ε0V 2ω

(q2 sin2 θ cos2 ϕ)φ2(~Q)

and the final cross-section per K electron can now be computed as

σa =
2π

~c
V 2

4π3

(
e~
m

)2 ~
2ε0V 2ω

I3 =

(
e~
m

)2 1

4π2ε0cω
I3

where the integral I3 is given by

I3 =

∫
φ2(~Q)q2 sin2 θ cos2 ϕδ(Ef − Ei )q2 sin θdqdθdφ
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