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Powder diffraction
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CaO-CaO2 reaction kinetics

CaO is a possible material to be used for carbon sequestration

CaO will absorb CO2 at temperatures as low as 450◦C forming CaCO3 and
can be regenerated by calcination at temperatures above 700◦C

It is important to understand the fundamental reaction kinetics of thse
processes in order to be able to design carbon sequestration procedures.

Measurements heretofore have been performed in TGA systems which have
fundamental mass flow limitations. These experiments were performed at
Sector 17-BM of the APS. Samples were loaded in quartz capillaries and a
2D area detector was used to take snaps at up to 0.25s/frame.

Rietveld refinement was used to measure the lattice parameters, crystallite
sizes and phase fractions during carbonation and calcination cycles

A. Biasin, C.U. Segre, G. Salviulo, F. Zorzi, and M. Strumendo, Chemical Eng. Sci.
127, 13-24 (2015)
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CaO-CaO2 reaction kinetics
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CaO-CaO2 reaction kinetics

Final conversion fraction de-
pends on temperature but
also some other parameter
(what?)
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CaO-CaO2 reaction kinetics

Reaction kinetics much
faster than previously
observed (0.28/s)
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CaO-CaO2 reaction kinetics
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CaO-CaO2 reaction kinetics

Initial crystallite size is one of the determining factors in inital rate
of conversion and fraction converted.

CaO crystallite size can be related to porosity which is key to the
conversion process.
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Mosaic crystals

The kinematic approximation we have discussed so far ap-
plies to mosaic crystals. The size of the crystal is small
enough that the wave field of the x-rays does not vary
appreciably over the crystal.

For a perfect crystal, things are very different and we have
to treat them specially using dynamical diffraction theory.

C. Segre (IIT) PHYS 570 - Spring 2015 March 31, 2015 9 / 26



Bragg & Laue Geometries

Bragg

symmetric

asymmetric

Laue
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Scattering Geometry

Consider symmetric Bragg geometry

We expect the crystal to diffract in an
energy bandwidth defined by ∆k

This defines a spread of scattering vec-
tors such that

ζ =
∆Q

Q
=

∆k

k

called the relative energy or wavelength
bandwidth

Q=mG

∆k

Q=mG(1+ζ)
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Dynamical Diffraction - Darwin Approach

The Darwin approach treats a perfect
crystal as an infinite stack of atomic
planes. This is fundamentally equivalent
to the Ewald and von Laue approaches.

For a single thin slab of density ρ and
thickness d � λ, the reflected and trans-
mitted waves are

where

g =
λroρd

sin θ

for a layer of unit cells ρ = |F |/vc and

d

T S

θ θ

S = −igT
(1− igo)T ≈ e−igo T

g =
[2d sin θ/m]ro(|F |/vc )d

sin θ
=

1

m

2d2ro
vc
|F |
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Dynamical Diffraction - Darwin Approach

g =
1

m

2d2ro
vc
|F |

since vc ∼ d3 then g ∼ ro/d ≈ 10−5

the transmitted beam depends on

go =
λρat f

0(0)ro∆

sin θ

which can be rewritten

go =
|Fo |
|F |

g

where Fo is the forward scattering factor
at Q = θ = 0

d

T S

θ θ

S = −igT
(1− igo)T ≈ e−igo T
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Kinematical Reflection

If we now extend this model to N layers we can use this kinematical
approximation if Ng � 1.

Proceed by adding reflectivity from each layer with the usual phase factor

rN(Q) = −ig
N−1∑
j=0

e iQdje−igo je−igo j = −ig
N−1∑
j=0

e i(Qd−2go )j

Q=mG

∆k

Q=mG(1+ζ)
where the x-rays pass through each layer
twice

these N unit cell layers will give a recip-
rocal lattice with points at multiples of
G = 2π/d we are interested in small de-
viations from the Bragg condition:

ζ =
∆Q

Q
=

∆k

k
=

∆E
E

=
∆λ

λ
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viations from the Bragg condition:

ζ =
∆Q

Q
=

∆k

k
=

∆E
E

=
∆λ

λ
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Multiple Layer Reflection

This geometric series can be
summed as usual

where

ζo =
go

π

=
2d2|Fo |
πmvc

ro

rN(Q) = −ig
N−1∑
j=0

e i2π(mζ−go/π)

|rN(ζ)| =

[
sin(πN[mζ − ζo ])

sin(π[mζ − ζo ])

]
|rN(ζ)|2 → g2

2(π[mζ − ζo ])2

This describes a shift of the Bragg peak away from the reciprocal lattice
point, the maximum being at ζ = ζo/m

The kinematical approach now breaks down and we need to develop a new
theory for dynamical diffraction.

First, let’s explore how the intensity would vary using the kinematical
expression
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Diffraction in the kinematical limit

Recall that in the
kinematical lime, the
diffraction from many
atomic layers is given
by

|rN(ζ)|2 → g2

2(π[mζ − ζo ])2
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Difference Equation Review

Tj Sj

M

A’A

T   ej+1
-iϕ S   ej+1

+iϕ

Tj+1 = e−ηe imπTj

Sj+1 = e−ηe imπSj

iη = ±
√

(∆− g0)2 − g2

g =
λr0ρd

sin θ
, g0 =

|F0|
|F |

g

∆ = mπζ, ζ =
∆λ

λ

Where g0 is the absorption due to a single atomic layer, g is the reflection
coefficient from a single atomic layer, and ∆ is the small deviation from
the Bragg condition of the phase angle φ = mπ + ∆.
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Reflectivity of a Perfect Crystal

In order to calculate the absolute reflectivity curve, solve for S0 and T0

using the solution and the recursive relations.

d

T0 S0

Tj Sj

Tj+1 Sj+1

j

j+1

S1 = e−ηe imπS0

S0 = −igT0 + (1− g0)S1e
iφ

S0 = −igT0

+ (1− g0)S0e
−ηe imπe imπe i∆

S0

[
1− (1− g0)e−ηe i2mπe i∆

]
= −igT0

S0

T0
≈ −ig

1− (1− ig0)(1− η)(1 + i∆)
≈ −ig

ig0 + η − i∆
=

g

iη + (∆− g0)
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Darwin Reflectivity Curve

r =
S0

T0
=

g

iη + ε
=

g

ε±
√
ε2 − g2

, ε = ∆− g0 = mπζ − πζ0
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Standing Waves

←− x = −1
out of phase

x = +1 −→
in phase
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Absorption Effects
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Energy Dependence
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Polarization Dependence
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Harmonic Suppression

The displacement of the Darwin curve varies inversely as the order, m, of
the reflection.

The width varies as the inverse squared.

ζ0 =
g0

π
=

2d2|F0|r0
πmvc

ζD =
2g

mπ
=

4d2|F |r0
πm2vc

By tuning to the center
of a lower order reflec-
tion, the high orders can
be effectively suppressed.

By tuning a bit off on the “high” side we get even more suppression. This
is called “detuning”.
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Angular Offset

We can calculate the angular offset by noting that the offset and width
have many common factors.

Converting this to an angular offset.

ζ0 =
2d2|F0|r0
πmvc

ζD =
4d2|F |r0
πm2vc

ζoff =
ζ0

m
=
ζD

2

|F |
|F0|

∆θoff =
ζD

2

|F |
|F0|

tan θ

For the Si(111) at λ = 1.54056Å

ωtotal
D = 0.0020◦ ∆θoff = 0.0018◦
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