## Today's Outline - March 31, 2015

## Today's Outline - March 31, 2015

- Powder Diffraction


## Today's Outline - March 31, 2015

- Powder Diffraction
- Bragg \& Laue Geometries


## Today's Outline - March 31, 2015

- Powder Diffraction
- Bragg \& Laue Geometries
- Reflection for a Single Layer


## Today's Outline - March 31, 2015

- Powder Diffraction
- Bragg \& Laue Geometries
- Reflection for a Single Layer
- Kinematical Approach for Many Layers


## Today's Outline - March 31, 2015

- Powder Diffraction
- Bragg \& Laue Geometries
- Reflection for a Single Layer
- Kinematical Approach for Many Layers
- Darwin Curve


## Today's Outline - March 31, 2015

- Powder Diffraction
- Bragg \& Laue Geometries
- Reflection for a Single Layer
- Kinematical Approach for Many Layers
- Darwin Curve
- Dynamical Diffraction Theory


## Today's Outline - March 31, 2015

- Powder Diffraction
- Bragg \& Laue Geometries
- Reflection for a Single Layer
- Kinematical Approach for Many Layers
- Darwin Curve
- Dynamical Diffraction Theory

Homework Assignment \#05:
Chapter 5: 1, 3, 7, 9, 10
due Thursday, April 02, 2015

## Powder diffraction

(a) Ambient pressure

(b) 4.9 GPa ( 49 kbar )


## $\mathrm{CaO}-\mathrm{CaO}_{2}$ reaction kinetics

CaO is a possible material to be used for carbon sequestration

## $\mathrm{CaO}-\mathrm{CaO}_{2}$ reaction kinetics

CaO is a possible material to be used for carbon sequestration
CaO will absorb $\mathrm{CO}_{2}$ at temperatures as low as $450^{\circ} \mathrm{C}$ forming $\mathrm{CaCO}_{3}$ and can be regenerated by calcination at temperatures above $700^{\circ} \mathrm{C}$

## $\mathrm{CaO}-\mathrm{CaO}_{2}$ reaction kinetics

CaO is a possible material to be used for carbon sequestration
CaO will absorb $\mathrm{CO}_{2}$ at temperatures as low as $450^{\circ} \mathrm{C}$ forming $\mathrm{CaCO}_{3}$ and can be regenerated by calcination at temperatures above $700^{\circ} \mathrm{C}$

It is important to understand the fundamental reaction kinetics of thse processes in order to be able to design carbon sequestration procedures.

## $\mathrm{CaO}-\mathrm{CaO}_{2}$ reaction kinetics

CaO is a possible material to be used for carbon sequestration
CaO will absorb $\mathrm{CO}_{2}$ at temperatures as low as $450^{\circ} \mathrm{C}$ forming $\mathrm{CaCO}_{3}$ and can be regenerated by calcination at temperatures above $700^{\circ} \mathrm{C}$
It is important to understand the fundamental reaction kinetics of thse processes in order to be able to design carbon sequestration procedures.

Measurements heretofore have been performed in TGA systems which have fundamental mass flow limitations. These experiments were performed at Sector $17-$ BM of the APS. Samples were loaded in quartz capillaries and a 2D area detector was used to take snaps at up to $0.25 \mathrm{~s} /$ frame.

## $\mathrm{CaO}-\mathrm{CaO}_{2}$ reaction kinetics

CaO is a possible material to be used for carbon sequestration
CaO will absorb $\mathrm{CO}_{2}$ at temperatures as low as $450^{\circ} \mathrm{C}$ forming $\mathrm{CaCO}_{3}$ and can be regenerated by calcination at temperatures above $700^{\circ} \mathrm{C}$

It is important to understand the fundamental reaction kinetics of thse processes in order to be able to design carbon sequestration procedures.

Measurements heretofore have been performed in TGA systems which have fundamental mass flow limitations. These experiments were performed at Sector 17-BM of the APS. Samples were loaded in quartz capillaries and a 2D area detector was used to take snaps at up to $0.25 \mathrm{~s} /$ frame.

Rietveld refinement was used to measure the lattice parameters, crystallite sizes and phase fractions during carbonation and calcination cycles

## $\mathrm{CaO}-\mathrm{CaO}_{2}$ reaction kinetics

CaO is a possible material to be used for carbon sequestration
CaO will absorb $\mathrm{CO}_{2}$ at temperatures as low as $450^{\circ} \mathrm{C}$ forming $\mathrm{CaCO}_{3}$ and can be regenerated by calcination at temperatures above $700^{\circ} \mathrm{C}$

It is important to understand the fundamental reaction kinetics of thse processes in order to be able to design carbon sequestration procedures.

Measurements heretofore have been performed in TGA systems which have fundamental mass flow limitations. These experiments were performed at Sector 17-BM of the APS. Samples were loaded in quartz capillaries and a 2 D area detector was used to take snaps at up to $0.25 \mathrm{~s} /$ frame.

Rietveld refinement was used to measure the lattice parameters, crystallite sizes and phase fractions during carbonation and calcination cycles
A. Biasin, C.U. Segre, G. Salviulo, F. Zorzi, and M. Strumendo, Chemical Eng. Sci. 127, 13-24 (2015)

## $\mathrm{CaO}-\mathrm{CaO}_{2}$ reaction kinetics



## $\mathrm{CaO}-\mathrm{CaO}_{2}$ reaction kinetics



Final conversion fraction depends on temperature but also some other parameter (what?)

## $\mathrm{CaO}-\mathrm{CaO}_{2}$ reaction kinetics



Reaction kinetics much faster than previously observed (0.28/s)

## $\mathrm{CaO}-\mathrm{CaO}_{2}$ reaction kinetics



## $\mathrm{CaO}-\mathrm{CaO}_{2}$ reaction kinetics



Initial crystallite size is one of the determining factors in inital rate of conversion and fraction converted.

CaO crystallite size can be related to porosity which is key to the conversion process.

## Mosaic crystals

Mosaic blocks of small perfect crystals


The kinematic approximation we have discussed so far applies to mosaic crystals. The size of the crystal is small enough that the wave field of the x-rays does not vary appreciably over the crystal.

For a perfect crystal, things are very different and we have to treat them specially using dynamical diffraction theory.

## Bragg \& Laue Geometries

## Bragg

## Bragg \& Laue Geometries

## Bragg



## symmetric

## Bragg \& Laue Geometries

## Bragg


symmetric
asymmetric

## Bragg \& Laue Geometries

Bragg


Laue
symmetric
asymmetric

## Bragg \& Laue Geometries


asymmetric

## Bragg \& Laue Geometries



## Scattering Geometry

## Consider symmetric Bragg geometry

## Scattering Geometry

Consider symmetric Bragg geometry


## Scattering Geometry

Consider symmetric Bragg geometry

We expect the crystal to diffract in an energy bandwidth defined by $\Delta k$


## Scattering Geometry

Consider symmetric Bragg geometry

We expect the crystal to diffract in an energy bandwidth defined by $\Delta k$

This defines a spread of scattering vectors such that

$$
\zeta=\frac{\Delta Q}{Q}=\frac{\Delta k}{k}
$$

called the relative energy or wavelength bandwidth


## Dynamical Diffraction - Darwin Approach

The Darwin approach treats a perfect crystal as an infinite stack of atomic planes. This is fundamentally equivalent to the Ewald and von Laue approaches.

## Dynamical Diffraction - Darwin Approach

The Darwin approach treats a perfect crystal as an infinite stack of atomic planes. This is fundamentally equivalent to the Ewald and von Laue approaches.


## Dynamical Diffraction - Darwin Approach

The Darwin approach treats a perfect crystal as an infinite stack of atomic planes. This is fundamentally equivalent to the Ewald and von Laue approaches.

For a single thin slab of density $\rho$ and thickness $d \ll \lambda$, the reflected and transmitted waves are


## Dynamical Diffraction - Darwin Approach

The Darwin approach treats a perfect crystal as an infinite stack of atomic planes. This is fundamentally equivalent to the Ewald and von Laue approaches.

For a single thin slab of density $\rho$ and thickness $d \ll \lambda$, the reflected and transmitted waves are


$$
S=-i g T
$$

## Dynamical Diffraction - Darwin Approach

The Darwin approach treats a perfect crystal as an infinite stack of atomic planes. This is fundamentally equivalent to the Ewald and von Laue approaches.

For a single thin slab of density $\rho$ and thickness $d \ll \lambda$, the reflected and transmitted waves are


$$
\begin{aligned}
S & =-i g T \\
\left(1-i g_{\circ}\right) T & \approx e^{-i g_{o} T}
\end{aligned}
$$

## Dynamical Diffraction - Darwin Approach

The Darwin approach treats a perfect crystal as an infinite stack of atomic planes. This is fundamentally equivalent to the Ewald and von Laue approaches.

For a single thin slab of density $\rho$ and thickness $d \ll \lambda$, the reflected and transmitted waves are
where

$$
g=\frac{\lambda r_{0} \rho d}{\sin \theta}
$$



$$
\begin{aligned}
S & =-i g T \\
\left(1-i g_{o}\right) T & \approx e^{-i g_{o} T}
\end{aligned}
$$

## Dynamical Diffraction - Darwin Approach

The Darwin approach treats a perfect crystal as an infinite stack of atomic planes. This is fundamentally equivalent to the Ewald and von Laue approaches.

For a single thin slab of density $\rho$ and thickness $d \ll \lambda$, the reflected and transmitted waves are
where

$$
g=\frac{\lambda r_{o} \rho d}{\sin \theta}
$$



$$
\begin{aligned}
S & =-i g T \\
\left(1-i g_{o}\right) T & \approx e^{-i g_{o} T}
\end{aligned}
$$

for a layer of unit cells $\rho=|F| / v_{c}$ and

## Dynamical Diffraction - Darwin Approach

The Darwin approach treats a perfect crystal as an infinite stack of atomic planes. This is fundamentally equivalent to the Ewald and von Laue approaches.

For a single thin slab of density $\rho$ and thickness $d \ll \lambda$, the reflected and transmitted waves are
where

$$
g=\frac{\lambda r_{0} \rho d}{\sin \theta}
$$



$$
\begin{aligned}
S & =-i g T \\
\left(1-i g_{o}\right) T & \approx e^{-i g_{o} T}
\end{aligned}
$$

for a layer of unit cells $\rho=|F| / v_{c}$ and

$$
g=\frac{[2 d \sin \theta / m] r_{o}\left(|F| / v_{c}\right) d}{\sin \theta}
$$

## Dynamical Diffraction - Darwin Approach

The Darwin approach treats a perfect crystal as an infinite stack of atomic planes. This is fundamentally equivalent to the Ewald and von Laue approaches.

For a single thin slab of density $\rho$ and thickness $d \ll \lambda$, the reflected and transmitted waves are
where

$$
g=\frac{\lambda r_{o} \rho d}{\sin \theta} \quad \begin{aligned}
S & =-i g T \\
\left(1-i g_{o}\right) T & \approx e^{-i g_{o} T}
\end{aligned}
$$

for a layer of unit cells $\rho=|F| / v_{c}$ and

$$
g=\frac{[2 d \sin \theta / m] r_{o}\left(|F| / v_{c}\right) d}{\sin \theta}=\frac{1}{m} \frac{2 d^{2} r_{o}}{v_{c}}|F|
$$

## Dynamical Diffraction - Darwin Approach

$$
g=\frac{1}{m} \frac{2 d^{2} r_{o}}{v_{c}}|F|
$$



$$
\begin{aligned}
S & =-i g T \\
\left(1-i g_{\circ}\right) T & \approx e^{-i g_{\circ} T}
\end{aligned}
$$

## Dynamical Diffraction - Darwin Approach

$$
g=\frac{1}{m} \frac{2 d^{2} r_{o}}{v_{c}}|F|
$$

since $v_{c} \sim d^{3}$ then $g \sim r_{o} / d \approx 10^{-5}$


$$
\begin{aligned}
S & =-i g T \\
\left(1-i g_{\circ}\right) T & \approx e^{-i g_{\circ} T}
\end{aligned}
$$

## Dynamical Diffraction - Darwin Approach

$$
g=\frac{1}{m} \frac{2 d^{2} r_{o}}{v_{c}}|F|
$$

since $v_{c} \sim d^{3}$ then $g \sim r_{o} / d \approx 10^{-5}$
the transmitted beam depends on

$$
g_{o}=\frac{\lambda \rho_{a t} f^{0}(0) r_{o} \Delta}{\sin \theta}
$$



$$
\begin{aligned}
S & =-i g T \\
\left(1-i g_{\circ}\right) T & \approx e^{-i g_{\circ} T}
\end{aligned}
$$

## Dynamical Diffraction - Darwin Approach

$$
g=\frac{1}{m} \frac{2 d^{2} r_{o}}{v_{c}}|F|
$$

since $v_{c} \sim d^{3}$ then $g \sim r_{o} / d \approx 10^{-5}$
the transmitted beam depends on

$$
g_{o}=\frac{\lambda \rho_{a t} f^{0}(0) r_{o} \Delta}{\sin \theta}
$$

which can be rewritten

$$
g_{o}=\frac{\left|F_{o}\right|}{|F|} g
$$



$$
\begin{aligned}
S & =-i g T \\
\left(1-i g_{\circ}\right) T & \approx e^{-i g_{\circ} T}
\end{aligned}
$$

## Dynamical Diffraction - Darwin Approach

$$
g=\frac{1}{m} \frac{2 d^{2} r_{o}}{v_{c}}|F|
$$

since $v_{c} \sim d^{3}$ then $g \sim r_{o} / d \approx 10^{-5}$
the transmitted beam depends on

$$
g_{o}=\frac{\lambda \rho_{a t} f^{0}(0) r_{o} \Delta}{\sin \theta}
$$

which can be rewritten

$$
g_{o}=\frac{\left|F_{o}\right|}{|F|} g
$$



$$
\begin{aligned}
S & =-i g T \\
\left(1-i g_{\circ}\right) T & \approx e^{-i g_{o} T}
\end{aligned}
$$

where $F_{o}$ is the forward scattering factor at $Q=\theta=0$

## Kinematical Reflection

If we now extend this model to $N$ layers we can use this kinematical approximation if $N g \ll 1$.

## Kinematical Reflection

If we now extend this model to $N$ layers we can use this kinematical approximation if $N g \ll 1$.

Proceed by adding reflectivity from each layer with the usual phase factor

## Kinematical Reflection

If we now extend this model to $N$ layers we can use this kinematical approximation if $N g \ll 1$.

Proceed by adding reflectivity from each layer with the usual phase factor

$$
r N(Q)=-i g \sum_{j=0}^{N-1} e^{i Q d j} e^{-i g_{o j} j} e^{-i g_{o j} j}
$$

## Kinematical Reflection

If we now extend this model to $N$ layers we can use this kinematical approximation if $N g \ll 1$.

Proceed by adding reflectivity from each layer with the usual phase factor

$$
r N(Q)=-i g \sum_{j=0}^{N-1} e^{i Q d j} e^{-i g_{o j} j} e^{-i g_{o j} j}
$$

where the x -rays pass through each layer twice

## Kinematical Reflection

If we now extend this model to $N$ layers we can use this kinematical approximation if $N g \ll 1$.

Proceed by adding reflectivity from each layer with the usual phase factor

$$
r N(Q)=-i g \sum_{j=0}^{N-1} e^{i Q d j} e^{-i g_{o} j} e^{-i g_{o} j}=-i g \sum_{j=0}^{N-1} e^{i\left(Q d-2 g_{o}\right) j}
$$

where the x-rays pass through each layer twice

## Kinematical Reflection

If we now extend this model to $N$ layers we can use this kinematical approximation if $N g \ll 1$.

Proceed by adding reflectivity from each layer with the usual phase factor

$$
r N(Q)=-i g \sum_{j=0}^{N-1} e^{i Q d j} e^{-i g_{o} j} e^{-i g_{o} j}=-i g \sum_{j=0}^{N-1} e^{i\left(Q d-2 g_{o}\right) j}
$$

where the x-rays pass through each layer twice these $N$ unit cell layers will give a reciprocal lattice with points at multiples of $G=2 \pi / d$

## Kinematical Reflection

If we now extend this model to $N$ layers we can use this kinematical approximation if $N g \ll 1$.

Proceed by adding reflectivity from each layer with the usual phase factor

$$
r N(Q)=-i g \sum_{j=0}^{N-1} e^{i Q d j} e^{-i g_{o} j} e^{-i g_{o} j}=-i g \sum_{j=0}^{N-1} e^{i\left(Q d-2 g_{o}\right) j}
$$



## Multiple Layer Reflection

$$
r_{N}(Q)=-i g \sum_{j=0}^{N-1} e^{i\left(Q d-2 g_{o}\right) j}
$$



## Multiple Layer Reflection

$$
\begin{array}{ll}
r_{N}(Q)=-i g \sum_{j=0}^{N-1} e^{i\left(Q d-2 g_{0}\right) j} \quad \text { comes } \\
\text { Qd }-2 g_{o}
\end{array}
$$

The term in the phase factor now be-

## Multiple Layer Reflection

$$
r_{N}(Q)=-i g \sum_{j=0}^{N-1} e^{i\left(Q d-2 g_{o}\right) j}
$$

The term in the phase factor now becomes

$$
Q d-2 g_{o}=m G(1+\zeta) \frac{2 \pi}{G}-2 g_{o}
$$



## Multiple Layer Reflection

$r_{N}(Q)=-i g \sum_{j=0}^{N-1} e^{i\left(Q d-2 g_{o}\right) j}$


The term in the phase factor now becomes

$$
\begin{aligned}
Q d-2 g_{o} & =m G(1+\zeta) \frac{2 \pi}{G}-2 g_{o} \\
& =2 \pi\left(m+m \zeta-\frac{g_{o}}{\pi}\right)
\end{aligned}
$$

## Multiple Layer Reflection

$r_{N}(Q)=-i g \sum_{j=0}^{N-1} e^{i\left(Q d-2 g_{o}\right) j}$


The term in the phase factor now becomes

$$
\begin{aligned}
Q d-2 g_{o} & =m G(1+\zeta) \frac{2 \pi}{G}-2 g_{o} \\
& =2 \pi\left(m+m \zeta-\frac{g_{o}}{\pi}\right) \\
r_{N}(Q) & =-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m+m \zeta-g_{o} / \pi\right.}
\end{aligned}
$$

## Multiple Layer Reflection

$r_{N}(Q)=-i g \sum_{j=0}^{N-1} e^{i\left(Q d-2 g_{o}\right) j}$


The term in the phase factor now becomes

$$
\begin{aligned}
Q d-2 g_{o} & =m G(1+\zeta) \frac{2 \pi}{G}-2 g_{o} \\
& =2 \pi\left(m+m \zeta-\frac{g_{o}}{\pi}\right) \\
r_{N}(Q) & =-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m+m \zeta-g_{o} / \pi\right.} \\
& =-i g \sum_{j=0}^{N-1} e^{i 2 \pi m j} e^{i 2 \pi\left(m \zeta-g_{o} / \pi\right)}
\end{aligned}
$$

## Multiple Layer Reflection

$$
r_{N}(Q)=-i g \sum_{j=0}^{N-1} e^{i\left(Q d-2 g_{o}\right) j}
$$



The term in the phase factor now becomes

$$
\begin{aligned}
Q d-2 g_{o} & =m G(1+\zeta) \frac{2 \pi}{G}-2 g_{o} \\
& =2 \pi\left(m+m \zeta-\frac{g_{o}}{\pi}\right) \\
r_{N}(Q) & =-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m+m \zeta-g_{o} / \pi\right.} \\
& =-i g \sum_{j=0}^{N-1} e^{i 2 \pi m j} e^{i 2 \pi\left(m \zeta-g_{o} / \pi\right)} \\
& =-i g \sum_{j=0}^{N-1} 1 \cdot e^{i 2 \pi\left(m \zeta-g_{o} / \pi\right)}
\end{aligned}
$$

## Multiple Layer Reflection

This geometric series can be summed as usual

$$
r_{N}(Q)=-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m \zeta-g_{o} / \pi\right)}
$$

## Multiple Layer Reflection

This geometric series can be summed as usual

$$
\begin{aligned}
r_{N}(Q) & =-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m \zeta-g_{o} / \pi\right)} \\
\left|r_{N}(\zeta)\right| & =\left[\frac{\sin \left(\pi N\left[m \zeta-\zeta_{o}\right]\right)}{\sin \left(\pi\left[m \zeta-\zeta_{o}\right]\right)}\right]
\end{aligned}
$$

## Multiple Layer Reflection

This geometric series can be summed as usual
where

$$
\begin{aligned}
\zeta_{o} & =\frac{g_{o}}{\pi} \\
& =\frac{2 d^{2}\left|F_{o}\right|}{\pi m v_{c}} r_{0}
\end{aligned}
$$

## Multiple Layer Reflection

This geometric series can be summed as usual
where

$$
\begin{aligned}
\zeta_{0} & =\frac{g_{o}}{\pi} \\
& =\frac{2 d^{2}\left|F_{o}\right|}{\pi m v_{c}} r_{0}
\end{aligned}
$$

$$
\begin{aligned}
r_{N}(Q) & =-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m \zeta-g_{o} / \pi\right)} \\
\left|r_{N}(\zeta)\right| & =\left[\frac{\sin \left(\pi N\left[m \zeta-\zeta_{o}\right]\right)}{\sin \left(\pi\left[m \zeta-\zeta_{o}\right]\right)}\right]
\end{aligned}
$$

This describes a shift of the Bragg peak away from the reciprocal lattice point, the maximum being at $\zeta=\zeta_{0} / m$

## Multiple Layer Reflection

This geometric series can be summed as usual
where

$$
\begin{aligned}
\zeta_{0} & =\frac{g_{o}}{\pi} \\
& =\frac{2 d^{2}\left|F_{o}\right|}{\pi m v_{c}} r_{0}
\end{aligned}
$$

$$
\begin{aligned}
& r_{N}(Q)=-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m \zeta-g_{o} / \pi\right)} \\
& \left|r_{N}(\zeta)\right|=\left[\frac{\sin \left(\pi N\left[m \zeta-\zeta_{o}\right]\right)}{\sin \left(\pi\left[m \zeta-\zeta_{o}\right]\right)}\right]
\end{aligned}
$$

This describes a shift of the Bragg peak away from the reciprocal lattice point, the maximum being at $\zeta=\zeta_{0} / \mathrm{m}$

The kinematical approach now breaks down and we need to develop a new theory for dynamical diffraction.

## Multiple Layer Reflection

This geometric series can be summed as usual
where

$$
\begin{aligned}
\zeta_{0} & =\frac{g_{o}}{\pi} \\
& =\frac{2 d^{2}\left|F_{o}\right|}{\pi m v_{c}} r_{0}
\end{aligned}
$$

$$
\begin{aligned}
& r_{N}(Q)=-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m \zeta-g_{o} / \pi\right)} \\
& \left|r_{N}(\zeta)\right|=\left[\frac{\sin \left(\pi N\left[m \zeta-\zeta_{o}\right]\right)}{\sin \left(\pi\left[m \zeta-\zeta_{o}\right]\right)}\right]
\end{aligned}
$$

This describes a shift of the Bragg peak away from the reciprocal lattice point, the maximum being at $\zeta=\zeta_{0} / \mathrm{m}$

The kinematical approach now breaks down and we need to develop a new theory for dynamical diffraction.

First, let's explore how the intensity would vary using the kinematical expression

## Multiple Layer Reflection

This geometric series can be summed as usual
where

$$
\zeta_{o}=\frac{g_{0}}{\pi}
$$

$$
=\frac{2 d^{2}\left|F_{o}\right|}{\pi m v_{c}} r_{o}
$$

$$
\begin{aligned}
r_{N}(Q) & =-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m \zeta-g_{o} / \pi\right)} \\
\left|r_{N}(\zeta)\right| & =\left[\frac{\sin \left(\pi N\left[m \zeta-\zeta_{o}\right]\right)}{\sin \left(\pi\left[m \zeta-\zeta_{o}\right]\right)}\right] \\
\left|r_{N}(\zeta)\right|^{2} & \rightarrow \frac{g^{2}}{2 \sin ^{2}\left(\pi\left[m \zeta-\zeta_{o}\right]\right)}
\end{aligned}
$$

This describes a shift of the Bragg peak away from the reciprocal lattice point, the maximum being at $\zeta=\zeta_{0} / \mathrm{m}$

The kinematical approach now breaks down and we need to develop a new theory for dynamical diffraction.

First, let's explore how the intensity would vary using the kinematical expression

## Multiple Layer Reflection

This geometric series can be summed as usual
where

$$
\zeta_{o}=\frac{g_{0}}{\pi}
$$

$$
=\frac{2 d^{2}\left|F_{o}\right|}{\pi m v_{c}} r_{o}
$$

$$
\begin{aligned}
r_{N}(Q) & =-i g \sum_{j=0}^{N-1} e^{i 2 \pi\left(m \zeta-g_{o} / \pi\right)} \\
\left|r_{N}(\zeta)\right| & =\left[\frac{\sin \left(\pi N\left[m \zeta-\zeta_{o}\right]\right)}{\sin \left(\pi\left[m \zeta-\zeta_{o}\right]\right)}\right] \\
\left|r_{N}(\zeta)\right|^{2} & \rightarrow \frac{g^{2}}{2\left(\pi\left[m \zeta-\zeta_{o}\right]\right)^{2}}
\end{aligned}
$$

This describes a shift of the Bragg peak away from the reciprocal lattice point, the maximum being at $\zeta=\zeta_{0} / \mathrm{m}$

The kinematical approach now breaks down and we need to develop a new theory for dynamical diffraction.

First, let's explore how the intensity would vary using the kinematical expression

## Diffraction in the kinematical limit

Recall that in the kinematical lime, the diffraction from many atomic layers is given by

## Diffraction in the kinematical limit

Recall that in the kinematical lime, the diffraction from many atomic layers is given by

$$
\left|r_{N}(\zeta)\right|^{2} \rightarrow \frac{g^{2}}{2\left(\pi\left[m \zeta-\zeta_{O}\right]\right)^{2}}
$$

## Diffraction in the kinematical limit

Recall that in the kinematical lime, the diffraction from many atomic layers is given by

$$
\left|r_{N}(\zeta)\right|^{2} \rightarrow \frac{g^{2}}{2\left(\pi\left[m \zeta-\zeta_{0}\right]\right)^{2}}
$$



Relative offset in wavevector $\zeta$

## Difference Equation Review



## Difference Equation Review



$$
\begin{aligned}
& g=\frac{\lambda r_{0} \rho d}{\sin \theta}, \quad g_{0}=\frac{\left|F_{0}\right|}{|F|} g \\
& \Delta=m \pi \zeta, \quad \zeta=\frac{\Delta \lambda}{\lambda}
\end{aligned}
$$

## Difference Equation Review



$$
\begin{aligned}
& g=\frac{\lambda r_{0} \rho d}{\sin \theta}, \quad g_{0}=\frac{\left|F_{0}\right|}{|F|} g \\
& \Delta=m \pi \zeta, \quad \zeta=\frac{\Delta \lambda}{\lambda}
\end{aligned}
$$

Where $g_{0}$ is the absorption due to a single atomic layer, $g$ is the reflection coefficient from a single atomic layer, and $\Delta$ is the small deviation from the Bragg condition of the phase angle $\phi=m \pi+\Delta$.

## Difference Equation Review



$$
T_{j+1}=e^{-\eta} e^{i m \pi} T_{j}
$$

$$
\begin{aligned}
& g=\frac{\lambda r_{0} \rho d}{\sin \theta}, \quad g_{0}=\frac{\left|F_{0}\right|}{|F|} g \\
& \Delta=m \pi \zeta, \quad \zeta=\frac{\Delta \lambda}{\lambda}
\end{aligned}
$$

Where $g_{0}$ is the absorption due to a single atomic layer, $g$ is the reflection coefficient from a single atomic layer, and $\Delta$ is the small deviation from the Bragg condition of the phase angle $\phi=m \pi+\Delta$.

## Difference Equation Review



$$
\begin{aligned}
& T_{j+1}=e^{-\eta} e^{i m \pi} T_{j} \\
& S_{j+1}=e^{-\eta} e^{i m \pi} S_{j}
\end{aligned}
$$

$$
g=\frac{\lambda r_{0} \rho d}{\sin \theta}, \quad g_{0}=\frac{\left|F_{0}\right|}{|F|} g
$$

$$
\Delta=m \pi \zeta, \quad \zeta=\frac{\Delta \lambda}{\lambda}
$$

Where $g_{0}$ is the absorption due to a single atomic layer, $g$ is the reflection coefficient from a single atomic layer, and $\Delta$ is the small deviation from the Bragg condition of the phase angle $\phi=m \pi+\Delta$.

## Difference Equation Review



$$
\begin{aligned}
T_{j+1} & =e^{-\eta} e^{i m \pi} T_{j} \\
S_{j+1} & =e^{-\eta} e^{i m \pi} S_{j} \\
i \eta & = \pm \sqrt{\left(\Delta-g_{0}\right)^{2}-g^{2}} \\
g & =\frac{\lambda r_{0} \rho d}{\sin \theta}, \quad g_{0}=\frac{\left|F_{0}\right|}{|F|} g \\
\Delta & =m \pi \zeta, \quad \zeta=\frac{\Delta \lambda}{\lambda}
\end{aligned}
$$

Where $g_{0}$ is the absorption due to a single atomic layer, $g$ is the reflection coefficient from a single atomic layer, and $\Delta$ is the small deviation from the Bragg condition of the phase angle $\phi=m \pi+\Delta$.

## Reflectivity of a Perfect Crystal

In order to calculate the absolute reflectivity curve, solve for $S_{0}$ and $T_{0}$ using the solution and the recursive relations.


## Reflectivity of a Perfect Crystal

In order to calculate the absolute reflectivity curve, solve for $S_{0}$ and $T_{0}$ using the solution and the recursive relations.


$$
\begin{aligned}
S_{j+1} & =e^{-\eta} e^{i m \pi} S_{j} \\
S_{j} & =-i g T_{j}+\left(1-g_{0}\right) S_{j+1} e^{i \phi}
\end{aligned}
$$

## Reflectivity of a Perfect Crystal

In order to calculate the absolute reflectivity curve, solve for $S_{0}$ and $T_{0}$ using the solution and the recursive relations.


$$
\begin{aligned}
S_{1} & =e^{-\eta} e^{i m \pi} S_{0} \\
S_{j} & =-i g T_{j}+\left(1-g_{0}\right) S_{j+1} e^{i \phi}
\end{aligned}
$$

## Reflectivity of a Perfect Crystal

In order to calculate the absolute reflectivity curve, solve for $S_{0}$ and $T_{0}$ using the solution and the recursive relations.


$$
\begin{aligned}
& S_{1}=e^{-\eta} e^{i m \pi} S_{0} \\
& S_{0}=-i g T_{0}+\left(1-g_{0}\right) S_{1} e^{i \phi}
\end{aligned}
$$

$$
S_{0}=-i g T_{0}
$$

$$
+\left(1-g_{0}\right) S_{0} e^{-\eta} e^{i m \pi} e^{i m \pi} e^{i \Delta}
$$

## Reflectivity of a Perfect Crystal

In order to calculate the absolute reflectivity curve, solve for $S_{0}$ and $T_{0}$ using the solution and the recursive relations.


$$
\begin{aligned}
& S_{1}=e^{-\eta} e^{i m \pi} S_{0} \\
& S_{0}=-i g T_{0}+\left(1-g_{0}\right) S_{1} e^{i \phi}
\end{aligned}
$$

$$
S_{0}=-i g T_{0}
$$

$$
+\left(1-g_{0}\right) S_{0} e^{-\eta} e^{i m \pi} e^{i m \pi} e^{i \Delta}
$$

$$
S_{0}\left[1-\left(1-g_{0}\right) e^{-\eta} e^{i 2 m \pi} e^{i \Delta}\right]=-i g T_{0}
$$

## Reflectivity of a Perfect Crystal

In order to calculate the absolute reflectivity curve, solve for $S_{0}$ and $T_{0}$ using the solution and the recursive relations.


$$
\begin{aligned}
& S_{1}=e^{-\eta} e^{i m \pi} S_{0} \\
& S_{0}=-i g T_{0}+\left(1-g_{0}\right) S_{1} e^{i \phi}
\end{aligned}
$$

$$
S_{0}=-i g T_{0}
$$

$$
+\left(1-g_{0}\right) S_{0} e^{-\eta} e^{i m \pi} e^{i m \pi} e^{i \Delta}
$$

$$
\begin{aligned}
& \quad S_{0}\left[1-\left(1-g_{0}\right) e^{-\eta} e^{i 2 m \pi} e^{i \Delta}\right]=-i g T_{0} \\
& \frac{S_{0}}{T_{0}}=\frac{-i g}{1-\left(1-g_{0}\right) e^{-\eta} e^{i 2 m \pi} e^{i \Delta}}
\end{aligned}
$$

## Reflectivity of a Perfect Crystal

In order to calculate the absolute reflectivity curve, solve for $S_{0}$ and $T_{0}$ using the solution and the recursive relations.


$$
\begin{aligned}
& S_{1}=e^{-\eta} e^{i m \pi} S_{0} \\
& S_{0}=-i g T_{0}+\left(1-g_{0}\right) S_{1} e^{i \phi}
\end{aligned}
$$

$$
S_{0}=-i g T_{0}
$$

$$
+\left(1-g_{0}\right) S_{0} e^{-\eta} e^{i m \pi} e^{i m \pi} e^{i \Delta}
$$

$$
\begin{aligned}
& S_{0}\left[1-\left(1-g_{0}\right) e^{-\eta} e^{i 2 m \pi} e^{i \Delta}\right]=-i g T_{0} \\
& \frac{S_{0}}{T_{0}} \approx \frac{-i g}{1-\left(1-i g_{0}\right)(1-\eta)(1+i \Delta)} \approx \frac{-i g}{i g_{0}+\eta-i \Delta}
\end{aligned}
$$

## Reflectivity of a Perfect Crystal

In order to calculate the absolute reflectivity curve, solve for $S_{0}$ and $T_{0}$ using the solution and the recursive relations.


$$
\begin{aligned}
& S_{1}=e^{-\eta} e^{i m \pi} S_{0} \\
& S_{0}=-i g T_{0}+\left(1-g_{0}\right) S_{1} e^{i \phi}
\end{aligned}
$$

$$
S_{0}=-i g T_{0}
$$

$$
+\left(1-g_{0}\right) S_{0} e^{-\eta} e^{i m \pi} e^{i m \pi} e^{i \Delta}
$$

$$
\begin{aligned}
& S_{0}\left[1-\left(1-g_{0}\right) e^{-\eta} e^{i 2 m \pi} e^{i \Delta}\right]=-i g T_{0} \\
& \frac{S_{0}}{T_{0}} \approx \frac{-i g}{1-\left(1-i g_{0}\right)(1-\eta)(1+i \Delta)} \approx \frac{-i g}{i g_{0}+\eta-i \Delta}=\frac{g}{i \eta+\left(\Delta-g_{0}\right)}
\end{aligned}
$$

## Darwin Reflectivity Curve

$$
r=\frac{S_{0}}{T_{0}}=\frac{g}{i \eta+\epsilon}=\frac{g}{\epsilon \pm \sqrt{\epsilon^{2}-g^{2}}}, \quad \epsilon=\Delta-\mathrm{g}_{0}=\mathrm{m} \pi \zeta-\pi \zeta_{0}
$$



## Darwin Reflectivity Curve

$$
r=\frac{S_{0}}{T_{0}}=\frac{g}{i \eta+\epsilon}=\frac{g}{\epsilon \pm \sqrt{\epsilon^{2}-g^{2}}}, \quad \epsilon=\Delta-\mathrm{g}_{0}=\mathrm{m} \pi \zeta-\pi \zeta_{0}
$$




## Standing Waves



$$
\begin{aligned}
& \leftarrow x=-1 \\
& \text { out of phase }
\end{aligned}
$$

## Standing Waves



$$
x=+1 \longrightarrow
$$


in phase

C. Segre (IIT)

## Absorption Effects



## Energy Dependence



## Polarization Dependence



## Harmonic Suppression

The displacement of the Darwin curve varies inversely as the order, $m$, of the reflection.


## Harmonic Suppression

The displacement of the Darwin curve varies inversely as the order, $m$, of the reflection.

$$
\zeta_{0}=\frac{g_{0}}{\pi}=\frac{2 d^{2}\left|F_{0}\right| r_{0}}{\pi m v_{c}}
$$



## Harmonic Suppression

The displacement of the Darwin curve varies inversely as the order, $m$, of the reflection. The width varies as the inverse squared.


$$
\begin{aligned}
\zeta_{0} & =\frac{g_{0}}{\pi}=\frac{2 d^{2}\left|F_{0}\right| r_{0}}{\pi m v_{c}} \\
\zeta_{D} & =\frac{2 g}{m \pi}=\frac{4 d^{2}|F| r_{0}}{\pi m^{2} v_{c}}
\end{aligned}
$$

## Harmonic Suppression

The displacement of the Darwin curve varies inversely as the order, $m$, of the reflection. The width varies as the inverse squared.


$$
\begin{aligned}
\zeta_{0} & =\frac{g_{0}}{\pi}=\frac{2 d^{2}\left|F_{0}\right| r_{0}}{\pi m v_{c}} \\
\zeta_{D} & =\frac{2 g}{m \pi}=\frac{4 d^{2}|F| r_{0}}{\pi m^{2} v_{c}}
\end{aligned}
$$

By tuning to the center of a lower order reflection, the high orders can be effectively suppressed.

## Harmonic Suppression

The displacement of the Darwin curve varies inversely as the order, $m$, of the reflection. The width varies as the inverse squared.


$$
\begin{aligned}
\zeta_{0} & =\frac{g_{0}}{\pi}=\frac{2 d^{2}\left|F_{0}\right| r_{0}}{\pi m v_{c}} \\
\zeta_{D} & =\frac{2 g}{m \pi}=\frac{4 d^{2}|F| r_{0}}{\pi m^{2} v_{c}}
\end{aligned}
$$

By tuning to the center of a lower order reflection, the high orders can be effectively suppressed.

By tuning a bit off on the "high" side we get even more suppression. This is called "detuning".

## Angular Offset

We can calculate the angular offset by noting that the offset and width have many common factors.


$$
\begin{aligned}
\zeta_{0} & =\frac{2 d^{2}\left|F_{0}\right| r_{0}}{\pi m v_{c}} \\
\zeta_{D} & =\frac{4 d^{2}|F| r_{0}}{\pi m^{2} v_{c}}
\end{aligned}
$$

## Angular Offset

We can calculate the angular offset by noting that the offset and width have many common factors.


$$
\begin{aligned}
\zeta_{0} & =\frac{2 d^{2}\left|F_{0}\right| r_{0}}{\pi m v_{c}} \\
\zeta_{D} & =\frac{4 d^{2}|F| r_{0}}{\pi m^{2} v_{c}} \\
\zeta^{o f f} & =\frac{\zeta_{0}}{m}=\frac{\zeta_{D}}{2} \frac{|F|}{\left|F_{0}\right|}
\end{aligned}
$$

## Angular Offset

We can calculate the angular offset by noting that the offset and width have many common factors. Converting this to an angular offset.


$$
\begin{aligned}
\zeta_{0} & =\frac{2 d^{2}\left|F_{0}\right| r_{0}}{\pi m v_{c}} \\
\zeta_{D} & =\frac{4 d^{2}|F| r_{0}}{\pi m^{2} v_{c}} \\
\zeta^{\text {off }} & =\frac{\zeta_{0}}{m}=\frac{\zeta_{D}}{2} \frac{|F|}{\left|F_{0}\right|} \\
\Delta \theta^{\text {off }} & =\frac{\zeta_{D}}{2} \frac{|F|}{\left|F_{0}\right|} \tan \theta
\end{aligned}
$$

## Angular Offset

We can calculate the angular offset by noting that the offset and width have many common factors. Converting this to an angular offset.


$$
\begin{aligned}
\zeta_{0} & =\frac{2 d^{2}\left|F_{0}\right| r_{0}}{\pi m v_{c}} \\
\zeta_{D} & =\frac{4 d^{2}|F| r_{0}}{\pi m^{2} v_{c}} \\
\zeta^{\text {off }} & =\frac{\zeta_{0}}{m}=\frac{\zeta_{D}}{2} \frac{|F|}{\left|F_{0}\right|} \\
\Delta \theta^{\text {off }} & =\frac{\zeta_{D}}{2} \frac{|F|}{\left|F_{0}\right|} \tan \theta
\end{aligned}
$$

For the $\operatorname{Si}(111)$ at $\lambda=1.54056 \AA$

## Angular Offset

We can calculate the angular offset by noting that the offset and width have many common factors. Converting this to an angular offset.


$$
\begin{aligned}
\zeta_{0} & =\frac{2 d^{2}\left|F_{0}\right| r_{0}}{\pi m v_{c}} \\
\zeta_{D} & =\frac{4 d^{2}|F| r_{0}}{\pi m^{2} v_{c}} \\
\zeta^{\text {off }} & =\frac{\zeta_{0}}{m}=\frac{\zeta_{D}}{2} \frac{|F|}{\left|F_{0}\right|} \\
\Delta \theta^{\text {off }} & =\frac{\zeta_{D}}{2} \frac{|F|}{\left|F_{0}\right|} \tan \theta
\end{aligned}
$$

For the $\operatorname{Si}(111)$ at $\lambda=1.54056 \AA$

$$
\omega_{D}^{\text {total }}=0.0020^{\circ}
$$

## Angular Offset

We can calculate the angular offset by noting that the offset and width have many common factors. Converting this to an angular offset.


$$
\begin{aligned}
\zeta_{0} & =\frac{2 d^{2}\left|F_{0}\right| r_{0}}{\pi m v_{c}} \\
\zeta_{D} & =\frac{4 d^{2}|F| r_{0}}{\pi m^{2} v_{c}} \\
\zeta^{\text {off }} & =\frac{\zeta_{0}}{m}=\frac{\zeta_{D}}{2} \frac{|F|}{\left|F_{0}\right|} \\
\Delta \theta^{\text {off }} & =\frac{\zeta_{D}}{2} \frac{|F|}{\left|F_{0}\right|} \tan \theta
\end{aligned}
$$

For the $\mathrm{Si}(111)$ at $\lambda=1.54056 \AA$

$$
\omega_{D}^{\text {total }}=0.0020^{\circ} \quad \Delta \theta^{\text {off }}=0.0018^{\circ}
$$

