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Size exclusion chromatography SAXS

SAXS of biological molecules is an excellent way of getting some
information about the molecules as they exist in solution.

Obtaining information about Rg and the Porod region, combined with
modeling and the known crystallographic structures can give a more
complete picture of how these molecules function.

A major problem in these systems is aggregation and impurities.
Pre-purification of samples is important but if they are left for some time
before the SAXS mefasurement is performed, there can be decomposition.

Even without any aggregation or decomposition, separation into a
monodisperse molecule size is challenging.

Matthew, Mirza & Menhart, “liquid-chromatography-coupled SAXS for
accurate sizing of aggregating proteins,” J. Synchrotron Rad. 11, 314-318
(2004) developed a technique which is now being used routinely in
biological SAXS, called Size Exclusion Chromatography SAXS.
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Size exclusion chromatography SAXS

2m SAXS camera, 1.03Å(12 keV) x-rays were used

2s exposure times every 20s, with 0.25 ml/min flow rate

samples of (1) cytochrome c, (2) plasminogen, (3) mixture of cytochrome
c bovine serum albumin, and blue dextran

C. Segre (IIT) PHYS 570 - Spring 2015 March 24, 2015 3 / 25



Size exclusion chromatography SAXS
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SEC-SAXS experimental setup

Matthew, Mirza & Menhart, “liquid-chromatography-coupled SAXS for accurate sizing of aggregating proteins,” J. Synchrotron

Rad. 11, 314-318 (2004).
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Cytochrome c

Matthew, Mirza & Menhart, “liquid-chromatography-coupled SAXS for accurate sizing of aggregating proteins,” J. Synchrotron

Rad. 11, 314-318 (2004).
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Cytochrome c - Guinier plots

Matthew, Mirza & Menhart, “liquid-chromatography-coupled SAXS for accurate sizing of aggregating proteins,” J. Synchrotron

Rad. 11, 314-318 (2004).
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Plasminogen

Matthew, Mirza & Menhart, “liquid-chromatography-coupled SAXS for accurate sizing of aggregating proteins,” J. Synchrotron

Rad. 11, 314-318 (2004).
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Plasminogen - Guinier plots

Matthew, Mirza & Menhart, “liquid-chromatography-coupled SAXS for accurate sizing of aggregating proteins,” J. Synchrotron

Rad. 11, 314-318 (2004).
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Three component mixture

Matthew, Mirza & Menhart, “liquid-chromatography-coupled SAXS for accurate sizing of aggregating proteins,” J. Synchrotron

Rad. 11, 314-318 (2004).

C. Segre (IIT) PHYS 570 - Spring 2015 March 24, 2015 9 / 25



Periodic Lattice
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Commensurate Modulation

C. Segre (IIT) PHYS 570 - Spring 2015 March 24, 2015 11 / 25



Incommensurate Modulation
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Quasiperiodic Scattering
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Fibonacci Sequence Intensity
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Diffraction from a Truncated Surface

For an infinite sample, the diffraction
spots are infinitesimally sharp.

With finite sample size, these spots
grow in extent and become more dif-
fuse.

If the sample is cleaved and left with
flat surface, the diffraction will spread
into rods perpendicular to the surface.

The scattering intensity can be ob-
tained by treating the charge distri-
bution as a convolution of an infinite
sample with a step function in the z-
direction.
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CTR Scattering Factor

The scattering amplitude FCTR along a crystal truncation rod is given by
summing an infinite stack of atomic layers, each with scattering amplitude
A( ~Q).

FCTR = A( ~Q)
∞∑
j=0

e iQza3j

=
A( ~Q)

1− e iQza3
=

A( ~Q)

1− e i2πl

this sum has been discussed previ-
ously and gives

or, in terms of the momentum
transfer along the z-axis,
Qz = 2πl/a3

since the intensity is the square of the scattering factor

ICTR =
∣∣∣FCTR

∣∣∣2 =

∣∣∣A( ~Q)
∣∣∣2

(1− e i2πl) (1− e−i2πl)
=

∣∣∣A( ~Q)
∣∣∣2

4 sin2 (πl)
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Dependence on Q

When l is an integer (meeting the Laue condition), the scattering factor is
infinite but just off this value, the scattering factor can be computed by
letting Qz = qz + 2π/a3, with qz small.

ICTR =

∣∣∣A( ~Q)
∣∣∣2

4 sin2 (Qza3/2)

=

∣∣∣A( ~Q)
∣∣∣2

4 sin2 (πl + qza3/2)

=

∣∣∣A( ~Q)
∣∣∣2

4 sin2 (qza3/2)

≈

∣∣∣A( ~Q)
∣∣∣2

4(qza3/2)2
=

∣∣∣A( ~Q)
∣∣∣2

q2
za

2
3
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∣∣∣A( ~Q)
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q2
za
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3

C. Segre (IIT) PHYS 570 - Spring 2015 March 24, 2015 17 / 25



Absorption Effect

Absorption effects can be in-
cluded as well

FCTR = A( ~Q)
∞∑
j=0

e iQza3je−βj

=
A( ~Q)

1− e iQza3e−βj

This removes the infinity and
increases the scattering pro-
file of the crystal truncation
rod
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Density Effect

The CTR profile is sensitive to the termination of the surface. This makes
it an ideal probe of electron density of adsorbed species or single atom
overlayers.

F total = FCTR + F top layer

=
A( ~Q)

1− e i2πl

+ A( ~Q)e−i2π(1+z0)l

where z0 is the relative dis-
placement of the top layer
from the bulk lattice spacing
a3

This effect gets larger for
larger momentum transfers
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Lattice Vibrations

Atoms on a lattice are not rigid but vibrate. There is zero-point motion as
well as thermal motion. These vibrations influence the x-ray scattering.

For a 1D lattice, we replace the position of the atom with its
instantaneous position, ~Rn + ~un where ~un is the displacement from the
equilibrium position, ~Rn. Computing the intensity:

I =

〈∑
m

f ( ~Q)e i
~Q·(~Rm+~um)

∑
n

f ∗( ~Q)e−i
~Q·(~Rn+~un)

〉
=
∑
m

∑
n

f ( ~Q)f ∗( ~Q)e i
~Q·(~Rm−~Rn)

〈
e i
~Q·(~um−~un)

〉
The last term is a time average which can be simplified using the
Baker-Hausdorff theorem,

〈
e ix
〉

= e−〈x
2〉/2〈

e i
~Q·(~um−~un)

〉
=
〈
e iQ(uQm−uQn)

〉
= e−〈Q

2(uQm−uQn)2〉/2
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Lattice Vibrations

〈
e iQ(uQm−uQn)

〉
= e−Q

2〈u2
Qm〉/2e−Q

2〈u2
Qn〉/2eQ

2〈uQmuQn〉

= e−Q
2〈u2

Q〉eQ
2〈uQmuQn〉 = e−MeQ

2〈uQmuQn〉

= e−M
[
1 + eQ

2〈uQmuQn〉 − 1
]

Substituting into the expression for intensity

I =
∑
m

∑
n

f ( ~Q)e−Me i
~Q·~Rm f ∗( ~Q)e−Me−i

~Q·~Rn

+
∑
m

∑
n

f ( ~Q)e−Me i
~Q·~Rm f ∗( ~Q)e−Me−i

~Q·~Rn

[
eQ

2〈uQmuQn〉 − 1
]

The first term is just the elastic scattering from the lattice with the

addition of the term e−M = e−Q
2〈u2

Q〉/2, called the Debye-Waller factor.

The second term is the Thermal Diffuse Scattering and actually increases
with mean squared displacement.
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Thermal Diffuse Scattering

ITDS =
∑
m

∑
n

f ( ~Q)e−Me i
~Q·~Rm f ∗( ~Q)e−Me−i

~Q·~Rn

[
eQ

2〈uQmuQn〉 − 1
]

The TDS has a width deter-
mined by the correlated dis-
placement of atoms which is
much broader than a Bragg
peak.

These correlated motions are
just phonons.

A 0.5mm Si wafer illumi-
nated by 28keV x-rays from
an APS undulator were used
to measure the phonon dis-
persion curves of silicon

M. Holt, et al. Phys. Rev. Lett. 83, 3317 (1999).
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Properties of the Debye-Waller Factor

For crystals with several different
types of atoms, we generalize the
unit cell scattering factor.

B j
T = 8π2〈u2

Qj〉

for isotropic atomic vibrations

〈u2〉 = 〈u2
x + u2

y + u2
z 〉

= 3〈u2
x 〉 = 3〈u2

Q〉

F u.c. =
∑
j

fj( ~Q)e−Mj e i
~Q·~rj

Mj =
1

2
Q2〈u2

Qj〉

=
1

2

(
4π

λ

)2

sin2 θ〈u2
Qj〉

Mj = B j
T

(
sin θ

λ

)2

B iso
T =

8π2

3
〈u2〉

In general, Debye-Waller factors can be anisotropic
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The Debye Model

The Debye model can be used to
compute BT by integrating a lin-
ear phonon dispersion relation up
to a cutoff frequency, ωD , called
the Debye frequency.

BT is given as a function of the
Debye temperature Θ.

BT =
6h2

mAkBΘ

[
φ(Θ/T )

Θ/T
+

1

4

]
φ(x) =

1

x

∫ Θ/T

0

ξ

eξ − 1
dξ

BT [Å
2
] =

11492T[K]

AΘ2[K2]
φ(Θ/T) +

2873

AΘ[K]
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Debye Temperatures

BT =
11492T

AΘ2
φ(Θ/T )

+
2873

AΘ

diamond is very stiff and Θ
does not vary much with
temperature

copper has a much lower
Debye temperature and a
wider variation of thermal
factor with temperature

A Θ B4.2 B77 B293

(K) (Å2)

C∗ 12 2230 0.11 0.11 0.12
Al 27 428 0.25 0.30 0.72
Cu 63.5 343 0.13 0.17 0.47
∗diamond
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