Today's Outline - March 24, 2015

Today's Outline - March 24, 2015

- Size exclusion chromatography SAXS

Today's Outline - March 24, 2015

- Size exclusion chromatography SAXS
- Modulated Structures

Today's Outline - March 24, 2015

- Size exclusion chromatography SAXS
- Modulated Structures
- Crystal Truncation Rods

Today's Outline - March 24, 2015

- Size exclusion chromatography SAXS
- Modulated Structures
- Crystal Truncation Rods

Today's Outline - March 24, 2015

- Size exclusion chromatography SAXS
- Modulated Structures
- Crystal Truncation Rods
- Diffuse Scattering

Today's Outline - March 24, 2015

- Size exclusion chromatography SAXS
- Modulated Structures
- Crystal Truncation Rods
- Diffuse Scattering
- Debye-Waller factor

Today's Outline - March 24, 2015

- Size exclusion chromatography SAXS
- Modulated Structures
- Crystal Truncation Rods
- Diffuse Scattering
- Debye-Waller factor

Homework Assignment \#05:
Chapter 5: 1, 3, 7, 9, 10
due Thursday, April 2, 2015

Today's Outline - March 24, 2015

- Size exclusion chromatography SAXS
- Modulated Structures
- Crystal Truncation Rods
- Diffuse Scattering
- Debye-Waller factor

Homework Assignment \#05:
Chapter 5: 1, 3, 7, 9, 10
due Thursday, April 2, 2015

No class on Thursday, March 26, 2015

Size exclusion chromatography SAXS

Size exclusion chromatography SAXS

SAXS of biological molecules is an excellent way of getting some information about the molecules as they exist in solution.

Size exclusion chromatography SAXS

SAXS of biological molecules is an excellent way of getting some information about the molecules as they exist in solution.

Obtaining information about R_{g} and the Porod region, combined with modeling and the known crystallographic structures can give a more complete picture of how these molecules function.

Size exclusion chromatography SAXS

SAXS of biological molecules is an excellent way of getting some information about the molecules as they exist in solution.

Obtaining information about R_{g} and the Porod region, combined with modeling and the known crystallographic structures can give a more complete picture of how these molecules function.

A major problem in these systems is aggregation and impurities.
Pre-purification of samples is important but if they are left for some time before the SAXS mefasurement is performed, there can be decomposition.

Size exclusion chromatography SAXS

SAXS of biological molecules is an excellent way of getting some information about the molecules as they exist in solution.

Obtaining information about R_{g} and the Porod region, combined with modeling and the known crystallographic structures can give a more complete picture of how these molecules function.
A major problem in these systems is aggregation and impurities. Pre-purification of samples is important but if they are left for some time before the SAXS mefasurement is performed, there can be decomposition.

Even without any aggregation or decomposition, separation into a monodisperse molecule size is challenging.

Size exclusion chromatography SAXS

SAXS of biological molecules is an excellent way of getting some information about the molecules as they exist in solution.

Obtaining information about R_{g} and the Porod region, combined with modeling and the known crystallographic structures can give a more complete picture of how these molecules function.
A major problem in these systems is aggregation and impurities.
Pre-purification of samples is important but if they are left for some time before the SAXS mefasurement is performed, there can be decomposition.

Even without any aggregation or decomposition, separation into a monodisperse molecule size is challenging.

Matthew, Mirza \& Menhart, "liquid-chromatography-coupled SAXS for accurate sizing of aggregating proteins," J. Synchrotron Rad. 11, 314-318 (2004) developed a technique which is now being used routinely in biological SAXS, called Size Exclusion Chromatography SAXS.

Size exclusion chromatography SAXS

Size exclusion chromatography SAXS

2 m SAXS camera, $1.03 \AA \AA(12 \mathrm{keV})$ x-rays were used

Size exclusion chromatography SAXS

2 m SAXS camera, $1.03 \AA \AA(12 \mathrm{keV})$ x-rays were used
2 s exposure times every 20 s , with $0.25 \mathrm{ml} / \mathrm{min}$ flow rate

Size exclusion chromatography SAXS

2 m SAXS camera, $1.03 \AA \AA(12 \mathrm{keV})$ x-rays were used
2 s exposure times every 20 s , with $0.25 \mathrm{ml} / \mathrm{min}$ flow rate
samples of (1) cytochrome c, (2) plasminogen, (3) mixture of cytochrome c bovine serum albumin, and blue dextran

SEC-SAXS experimental setup

Matthew, Mirza \& Menhart, "liquid-chromatography-coupled SAXS for accurate sizing of aggregating proteins," J. Synchrotron Rad. 11, 314-318 (2004).

Cytochrome c

Matthew, Mirza \& Menhart, "liquid-chromatography-coupled SAXS for accurate sizing of aggregating proteins," J. Synchrotron Rad. 11, 314-318 (2004).

Cytochrome c - Guinier plots

Matthew, Mirza \& Menhart, "liquid-chromatography-coupled SAXS for accurate sizing of aggregating proteins," J. Synchrotron

Plasminogen

Matthew, Mirza \& Menhart, "liquid-chromatography-coupled SAXS for accurate sizing of aggregating proteins," J. Synchrotron Rad. 11, 314-318 (2004).

Plasminogen - Guinier plots

Matthew, Mirza \& Menhart, "liquid-chromatography-coupled SAXS for accurate sizing of aggregating proteins," J. Synchrotron Rad. 11, 314-318 (2004).

Three component mixture

Matthew, Mirza \& Menhart, "liquid-chromatography-coupled SAXS for accurate sizing of aggregating proteins," J. Synchrotron Rad. 11, 314-318 (2004).

Periodic Lattice

$\odot \odot \odot \odot \odot \odot \odot \odot \odot \odot \odot$

Commensurate Modulation

$\bigcirc \bigcirc \odot \odot \odot \odot \odot \odot \bigcirc \odot$
$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Incommensurate Modulation

\bigcirc

\bigcirc
\bigcirc
©

\bigcirc
$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Quasiperiodic Scattering

Fibonacci Sequence Intensity

Diffraction from a Truncated Surface

For an infinite sample, the diffraction spots are infinitesimally sharp.

Diffraction from a Truncated Surface

For an infinite sample, the diffraction spots are infinitesimally sharp.

With finite sample size, these spots grow in extent and become more diffuse.

Diffraction from a Truncated Surface

For an infinite sample, the diffraction spots are infinitesimally sharp.

With finite sample size, these spots grow in extent and become more diffuse.

If the sample is cleaved and left with flat surface, the diffraction will spread into rods perpendicular to the surface.

Diffraction from a Truncated Surface

For an infinite sample, the diffraction spots are infinitesimally sharp.

With finite sample size, these spots grow in extent and become more diffuse.

If the sample is cleaved and left with flat surface, the diffraction will spread into rods perpendicular to the surface.

The scattering intensity can be obtained by treating the charge distribution as a convolution of an infinite sample with a step function in the zdirection.

CTR Scattering Factor

The scattering amplitude $F^{C T R}$ along a crystal truncation rod is given by summing an infinite stack of atomic layers, each with scattering amplitude $A(\vec{Q})$.

CTR Scattering Factor

The scattering amplitude $F^{C T R}$ along a crystal truncation rod is given by summing an infinite stack of atomic layers, each with scattering amplitude $A(\vec{Q})$.

$$
F^{C T R}=A(\vec{Q}) \sum_{j=0}^{\infty} e^{i Q_{z} a_{3} j}
$$

CTR Scattering Factor

The scattering amplitude $F^{C T R}$ along a crystal truncation rod is given by summing an infinite stack of atomic layers, each with scattering amplitude $A(\vec{Q})$.

$$
F^{C T R}=A(\vec{Q}) \sum_{j=0}^{\infty} e^{i Q_{z} a_{3} j}
$$

this sum has been discussed previously and gives

CTR Scattering Factor

The scattering amplitude $F^{C T R}$ along a crystal truncation rod is given by summing an infinite stack of atomic layers, each with scattering amplitude $A(\vec{Q})$.

$$
\begin{aligned}
F^{C T R} & =A(\vec{Q}) \sum_{j=0}^{\infty} e^{i Q_{z} a_{3} j} \\
& =\frac{A(\vec{Q})}{1-e^{i Q_{z} a_{3}}}
\end{aligned}
$$

this sum has been discussed previously and gives

CTR Scattering Factor

The scattering amplitude $F^{C T R}$ along a crystal truncation rod is given by summing an infinite stack of atomic layers, each with scattering amplitude $A(\vec{Q})$.

$$
\begin{aligned}
F^{C T R} & =A(\vec{Q}) \sum_{j=0}^{\infty} e^{i Q_{z} a_{3} j} \\
& =\frac{A(\vec{Q})}{1-e^{i Q_{z} a_{3}}}=\frac{A(\vec{Q})}{1-e^{i 2 \pi l}}
\end{aligned}
$$

this sum has been discussed previously and gives
or, in terms of the momentum transfer along the z-axis,

$$
Q_{z}=2 \pi I / a_{3}
$$

CTR Scattering Factor

The scattering amplitude $F^{C T R}$ along a crystal truncation rod is given by summing an infinite stack of atomic layers, each with scattering amplitude $A(\vec{Q})$.

$$
\begin{aligned}
F^{C T R} & =A(\vec{Q}) \sum_{j=0}^{\infty} e^{i Q_{z} a_{3} j} \\
& =\frac{A(\vec{Q})}{1-e^{i Q_{z} a_{3}}}=\frac{A(\vec{Q})}{1-e^{i 2 \pi l}}
\end{aligned}
$$

this sum has been discussed previously and gives
or, in terms of the momentum transfer along the z-axis,

$$
Q_{z}=2 \pi I / a_{3}
$$

since the intensity is the square of the scattering factor

CTR Scattering Factor

The scattering amplitude $F^{C T R}$ along a crystal truncation rod is given by summing an infinite stack of atomic layers, each with scattering amplitude $A(\vec{Q})$.

$$
\begin{aligned}
F^{C T R} & =A(\vec{Q}) \sum_{j=0}^{\infty} e^{i Q_{z} a_{3} j} \\
& =\frac{A(\vec{Q})}{1-e^{i Q_{z} a_{3}}}=\frac{A(\vec{Q})}{1-e^{i 2 \pi l}}
\end{aligned}
$$

this sum has been discussed previously and gives
or, in terms of the momentum transfer along the z-axis,

$$
Q_{z}=2 \pi I / a_{3}
$$

since the intensity is the square of the scattering factor

$$
I^{C T R}=\left|F^{C T R}\right|^{2}=\frac{|A(\vec{Q})|^{2}}{\left(1-e^{i 2 \pi I}\right)\left(1-e^{-i 2 \pi I}\right)}
$$

CTR Scattering Factor

The scattering amplitude $F^{C T R}$ along a crystal truncation rod is given by summing an infinite stack of atomic layers, each with scattering amplitude $A(\vec{Q})$.

$$
\begin{aligned}
F^{C T R} & =A(\vec{Q}) \sum_{j=0}^{\infty} e^{i Q_{z} a_{3} j} \\
& =\frac{A(\vec{Q})}{1-e^{i Q_{z} a_{3}}}=\frac{A(\vec{Q})}{1-e^{i 2 \pi l}}
\end{aligned}
$$

this sum has been discussed previously and gives
or, in terms of the momentum transfer along the z-axis,

$$
Q_{z}=2 \pi I / a_{3}
$$

since the intensity is the square of the scattering factor

$$
I^{C T R}=\left|F^{C T R}\right|^{2}=\frac{|A(\vec{Q})|^{2}}{\left(1-e^{i 2 \pi I}\right)\left(1-e^{-i 2 \pi I}\right)}=\frac{|A(\vec{Q})|^{2}}{4 \sin ^{2}(\pi I)}
$$

Dependence on Q

When I is an integer (meeting the Laue condition), the scattering factor is infinite but just off this value, the scattering factor can be computed by letting $Q_{z}=q_{z}+2 \pi / a_{3}$, with q_{z} small.

Dependence on Q

When I is an integer (meeting the Laue condition), the scattering factor is infinite but just off this value, the scattering factor can be computed by letting $Q_{z}=q_{z}+2 \pi / a_{3}$, with q_{z} small.
$I^{C T R}=\frac{|A(\vec{Q})|^{2}}{4 \sin ^{2}\left(Q_{z} a_{3} / 2\right)}$

Dependence on Q

When I is an integer (meeting the Laue condition), the scattering factor is infinite but just off this value, the scattering factor can be computed by letting $Q_{z}=q_{z}+2 \pi / a_{3}$, with q_{z} small.
$\begin{aligned} I^{C T R} & =\frac{|A(\vec{Q})|^{2}}{4 \sin ^{2}\left(Q_{z} a_{3} / 2\right)} \\ & =\frac{|A(\vec{Q})|^{2}}{4 \sin ^{2}\left(\pi I+q_{z} a_{3} / 2\right)}\end{aligned}$

Dependence on Q

When I is an integer (meeting the Laue condition), the scattering factor is infinite but just off this value, the scattering factor can be computed by letting $Q_{z}=q_{z}+2 \pi / a_{3}$, with q_{z} small.

$$
\begin{aligned}
I^{C T R} & =\frac{|A(\vec{Q})|^{2}}{4 \sin ^{2}\left(Q_{z} a_{3} / 2\right)} \\
& =\frac{|A(\vec{Q})|^{2}}{4 \sin ^{2}\left(\pi I+q_{z} a_{3} / 2\right)} \\
& =\frac{|A(\vec{Q})|^{2}}{4 \sin ^{2}\left(q_{z} a_{3} / 2\right)}
\end{aligned}
$$

Dependence on Q

When I is an integer (meeting the Laue condition), the scattering factor is infinite but just off this value, the scattering factor can be computed by letting $Q_{z}=q_{z}+2 \pi / a_{3}$, with q_{z} small.

$$
\begin{aligned}
I^{C T R} & =\frac{|A(\vec{Q})|^{2}}{4 \sin ^{2}\left(Q_{z} a_{3} / 2\right)} \\
& =\frac{|A(\vec{Q})|^{2}}{4 \sin ^{2}\left(\pi I+q_{z} a_{3} / 2\right)} \\
& =\frac{|A(\vec{Q})|^{2}}{4 \sin ^{2}\left(q_{z} a_{3} / 2\right)} \\
& \approx \frac{|A(\vec{Q})|^{2}}{4\left(q_{z} a_{3} / 2\right)^{2}}
\end{aligned}
$$

Dependence on Q

When I is an integer (meeting the Laue condition), the scattering factor is infinite but just off this value, the scattering factor can be computed by letting $Q_{z}=q_{z}+2 \pi / a_{3}$, with q_{z} small.

$$
\begin{aligned}
I^{C T R} & =\frac{|A(\vec{Q})|^{2}}{4 \sin ^{2}\left(Q_{z} a_{3} / 2\right)} \\
& =\frac{|A(\vec{Q})|^{2}}{4 \sin ^{2}\left(\pi I+q_{z} a_{3} / 2\right)} \\
& =\frac{|A(\vec{Q})|^{2}}{4 \sin ^{2}\left(q_{z} a_{3} / 2\right)} \\
& \approx \frac{|A(\vec{Q})|^{2}}{4\left(q_{z} a_{3} / 2\right)^{2}}=\frac{|A(\vec{Q})|^{2}}{q_{z}^{2} a_{3}^{2}}
\end{aligned}
$$

Dependence on Q

When I is an integer (meeting the Laue condition), the scattering factor is infinite but just off this value, the scattering factor can be computed by letting $Q_{z}=q_{z}+2 \pi / a_{3}$, with q_{z} small.

$$
\begin{aligned}
I^{C T R} & =\frac{|A(\vec{Q})|^{2}}{4 \sin ^{2}\left(Q_{z} a_{3} / 2\right)} \\
& =\frac{|A(\vec{Q})|^{2}}{4 \sin ^{2}\left(\pi I+q_{z} a_{3} / 2\right)} \\
& =\frac{|A(\vec{Q})|^{2}}{4 \sin ^{2}\left(q_{z} a_{3} / 2\right)} \\
& \approx \frac{|A(\vec{Q})|^{2}}{4\left(q_{z} a_{3} / 2\right)^{2}}=\frac{|A(\vec{Q})|^{2}}{q_{z}^{2} a_{3}^{2}}
\end{aligned}
$$

Absorption Effect

Absorption effects can be included as well

Absorption Effect

Absorption effects can be included as well

$$
F^{C T R}=A(\vec{Q}) \sum_{j=0}^{\infty} e^{i Q_{z} a_{3} j}
$$

Absorption Effect

Absorption effects can be included as well

$$
F^{C T R}=A(\vec{Q}) \sum_{j=0}^{\infty} e^{i Q_{z} a_{3} j} e^{-\beta j}
$$

Absorption Effect

Absorption effects can be included as well

$$
\begin{aligned}
F^{C T R} & =A(\vec{Q}) \sum_{j=0}^{\infty} e^{i Q_{z} a_{3} j} e^{-\beta j} \\
& =\frac{A(\vec{Q})}{1-e^{i Q_{z} a_{3}} e^{-\beta j}}
\end{aligned}
$$

Absorption Effect

Absorption effects can be included as well

$$
\begin{aligned}
F^{C T R} & =A(\vec{Q}) \sum_{j=0}^{\infty} e^{i Q_{z} a_{3} j} e^{-\beta j} \\
& =\frac{A(\vec{Q})}{1-e^{i Q_{z} a_{3}} e^{-\beta j}}
\end{aligned}
$$

This removes the infinity and increases the scattering profile of the crystal truncation rod

Density Effect

The CTR profile is sensitive to the termination of the surface. This makes it an ideal probe of electron density of adsorbed species or single atom overlayers.

Density Effect

The CTR profile is sensitive to the termination of the surface. This makes it an ideal probe of electron density of adsorbed species or single atom overlayers.

$$
F^{\text {total }}=F^{C T R}+F^{\text {top layer }}
$$

Density Effect

The CTR profile is sensitive to the termination of the surface. This makes it an ideal probe of electron density of adsorbed species or single atom overlayers.

$$
F^{\text {total }}=F^{C T R}+F^{\text {top layer }}
$$

$$
=\frac{A(\vec{Q})}{1-e^{i 2 \pi l}}
$$

Density Effect

The CTR profile is sensitive to the termination of the surface. This makes it an ideal probe of electron density of adsorbed species or single atom overlayers.

$$
\begin{aligned}
F^{\text {total }} & =F^{C T R}+F^{\text {top layer }} \\
& =\frac{A(\vec{Q})}{1-e^{i 2 \pi l}} \\
& +A(\vec{Q}) e^{-i 2 \pi\left(1+z_{0}\right) /}
\end{aligned}
$$

Density Effect

The CTR profile is sensitive to the termination of the surface. This makes it an ideal probe of electron density of adsorbed species or single atom overlayers.

$$
\begin{aligned}
F^{\text {total }} & =F^{C T R}+F^{\text {top layer }} \\
& =\frac{A(\vec{Q})}{1-e^{i 2 \pi l}} \\
& +A(\vec{Q}) e^{-i 2 \pi\left(1+z_{0}\right) /}
\end{aligned}
$$

where z_{0} is the relative displacement of the top layer from the bulk lattice spacing a_{3}

Density Effect

The CTR profile is sensitive to the termination of the surface. This makes it an ideal probe of electron density of adsorbed species or single atom overlayers.

$$
\begin{aligned}
F^{\text {total }} & =F^{C T R}+F^{\text {top layer }} \\
& =\frac{A(\vec{Q})}{1-e^{i 2 \pi l}} \\
& +A(\vec{Q}) e^{-i 2 \pi\left(1+z_{0}\right) /}
\end{aligned}
$$

where z_{0} is the relative displacement of the top layer from the bulk lattice spacing a_{3}
This effect gets larger for
 larger momentum transfers

Lattice Vibrations

Atoms on a lattice are not rigid but vibrate. There is zero-point motion as well as thermal motion. These vibrations influence the x-ray scattering.

Lattice Vibrations

Atoms on a lattice are not rigid but vibrate. There is zero-point motion as well as thermal motion. These vibrations influence the x-ray scattering. For a 1D lattice, we replace the position of the atom with its instantaneous position, $\vec{R}_{n}+\vec{u}_{n}$ where \vec{u}_{n} is the displacement from the equilibrium position, \vec{R}_{n}.

Lattice Vibrations

Atoms on a lattice are not rigid but vibrate. There is zero-point motion as well as thermal motion. These vibrations influence the x-ray scattering. For a 1D lattice, we replace the position of the atom with its instantaneous position, $\vec{R}_{n}+\vec{u}_{n}$ where \vec{u}_{n} is the displacement from the equilibrium position, \vec{R}_{n}. Computing the intensity:

Lattice Vibrations

Atoms on a lattice are not rigid but vibrate. There is zero-point motion as well as thermal motion. These vibrations influence the x-ray scattering.

For a 1D lattice, we replace the position of the atom with its instantaneous position, $\vec{R}_{n}+\vec{u}_{n}$ where \vec{u}_{n} is the displacement from the equilibrium position, \vec{R}_{n}. Computing the intensity:

$$
I=\left\langle\sum_{m} f(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{m}+\vec{u}_{m}\right)} \sum_{n} f^{*}(\vec{Q}) e^{-i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{u}_{n}\right)}\right\rangle
$$

Lattice Vibrations

Atoms on a lattice are not rigid but vibrate. There is zero-point motion as well as thermal motion. These vibrations influence the x-ray scattering.

For a 1D lattice, we replace the position of the atom with its instantaneous position, $\vec{R}_{n}+\vec{u}_{n}$ where \vec{u}_{n} is the displacement from the equilibrium position, \vec{R}_{n}. Computing the intensity:

$$
\begin{aligned}
I & =\left\langle\sum_{m} f(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{m}+\vec{u}_{m}\right)} \sum_{n} f^{*}(\vec{Q}) e^{-i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{u}_{n}\right)}\right\rangle \\
& =\sum_{m} \sum_{n} f(\vec{Q}) f^{*}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{m}-\vec{R}_{n}\right)}\left\langle e^{i \vec{Q} \cdot\left(\vec{u}_{m}-\vec{u}_{n}\right)}\right\rangle
\end{aligned}
$$

Lattice Vibrations

Atoms on a lattice are not rigid but vibrate. There is zero-point motion as well as thermal motion. These vibrations influence the x-ray scattering.

For a 1D lattice, we replace the position of the atom with its instantaneous position, $\vec{R}_{n}+\vec{u}_{n}$ where \vec{u}_{n} is the displacement from the equilibrium position, \vec{R}_{n}. Computing the intensity:

$$
\begin{aligned}
I & =\left\langle\sum_{m} f(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{m}+\vec{u}_{m}\right)} \sum_{n} f^{*}(\vec{Q}) e^{-i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{u}_{n}\right)}\right\rangle \\
& =\sum_{m} \sum_{n} f(\vec{Q}) f^{*}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{m}-\vec{R}_{n}\right)}\left\langle e^{i \vec{Q} \cdot\left(\vec{u}_{m}-\vec{u}_{n}\right)}\right\rangle
\end{aligned}
$$

The last term is a time average which can be simplified using the Baker-Hausdorff theorem, $\left\langle e^{i x}\right\rangle=e^{-\left\langle x^{2}\right\rangle / 2}$

Lattice Vibrations

Atoms on a lattice are not rigid but vibrate. There is zero-point motion as well as thermal motion. These vibrations influence the x-ray scattering.

For a 1D lattice, we replace the position of the atom with its instantaneous position, $\vec{R}_{n}+\vec{u}_{n}$ where \vec{u}_{n} is the displacement from the equilibrium position, \vec{R}_{n}. Computing the intensity:

$$
\begin{aligned}
I & =\left\langle\sum_{m} f(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{m}+\vec{u}_{m}\right)} \sum_{n} f^{*}(\vec{Q}) e^{-i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{u}_{n}\right)}\right\rangle \\
& =\sum_{m} \sum_{n} f(\vec{Q}) f^{*}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{m}-\vec{R}_{n}\right)}\left\langle e^{i \vec{Q} \cdot\left(\vec{u}_{m}-\vec{u}_{n}\right)}\right\rangle
\end{aligned}
$$

The last term is a time average which can be simplified using the Baker-Hausdorff theorem, $\left\langle e^{i x}\right\rangle=e^{-\left\langle x^{2}\right\rangle / 2}$

$$
\left\langle e^{i \vec{Q} \cdot\left(\vec{u}_{m}-\vec{u}_{n}\right)}\right\rangle=\left\langle e^{i Q\left(u_{Q m}-u_{Q n}\right)}\right\rangle
$$

Lattice Vibrations

Atoms on a lattice are not rigid but vibrate. There is zero-point motion as well as thermal motion. These vibrations influence the x-ray scattering.

For a 1D lattice, we replace the position of the atom with its instantaneous position, $\vec{R}_{n}+\vec{u}_{n}$ where \vec{u}_{n} is the displacement from the equilibrium position, \vec{R}_{n}. Computing the intensity:

$$
\begin{aligned}
I & =\left\langle\sum_{m} f(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{m}+\vec{u}_{m}\right)} \sum_{n} f^{*}(\vec{Q}) e^{-i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{u}_{n}\right)}\right\rangle \\
& =\sum_{m} \sum_{n} f(\vec{Q}) f^{*}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{m}-\vec{R}_{n}\right)}\left\langle e^{i \vec{Q} \cdot\left(\vec{u}_{m}-\vec{u}_{n}\right)}\right\rangle
\end{aligned}
$$

The last term is a time average which can be simplified using the Baker-Hausdorff theorem, $\left\langle e^{i x}\right\rangle=e^{-\left\langle x^{2}\right\rangle / 2}$

$$
\left\langle e^{i \vec{Q} \cdot\left(\vec{u}_{m}-\vec{u}_{n}\right)}\right\rangle=\left\langle e^{i Q\left(u_{Q m}-u_{Q n}\right)}\right\rangle=e^{-\left\langle Q^{2}\left(u_{Q m}-u_{Q n}\right)^{2}\right\rangle / 2}
$$

Lattice Vibrations

$$
\left\langle e^{i Q\left(u_{Q m}-u_{Q n}\right)}\right\rangle=e^{-Q^{2}\left\langle u_{Q m}^{2}\right\rangle / 2} e^{-Q^{2}\left\langle u_{Q_{n}}^{2}\right\rangle / 2} e^{Q^{2}\left\langle u_{Q m} u_{Q_{n}}\right\rangle}
$$

Lattice Vibrations

$$
\begin{aligned}
\left\langle e^{i Q\left(u_{Q m}-u_{Q n}\right)}\right\rangle & =e^{-Q^{2}\left\langle u_{Q m}^{2}\right\rangle / 2} e^{-Q^{2}\left\langle u_{Q n}^{2}\right\rangle / 2} e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle} \\
& =e^{-Q^{2}\left\langle u_{Q}^{2}\right\rangle} e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle}
\end{aligned}
$$

Lattice Vibrations

$$
\begin{aligned}
\left\langle e^{i Q\left(u_{Q m}-u_{Q n}\right)}\right\rangle & =e^{-Q^{2}\left\langle u_{Q m}^{2}\right\rangle / 2} e^{-Q^{2}\left\langle u_{Q n}^{2}\right\rangle / 2} e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle} \\
& =e^{-Q^{2}\left\langle u_{Q}^{2}\right\rangle} e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle}=e^{-M} e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle}
\end{aligned}
$$

Lattice Vibrations

$$
\begin{aligned}
\left\langle e^{i Q\left(u_{Q m}-u_{Q n}\right)}\right\rangle & =e^{-Q^{2}\left\langle u_{Q m}^{2}\right\rangle / 2} e^{-Q^{2}\left\langle u_{Q n}^{2}\right\rangle / 2} e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle} \\
& =e^{-Q^{2}\left\langle u_{Q}^{2}\right\rangle} e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle}=e^{-M} e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle} \\
& =e^{-M}\left[1+e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle}-1\right]
\end{aligned}
$$

Lattice Vibrations

$$
\begin{aligned}
\left\langle e^{i Q\left(u_{Q m}-u_{Q n}\right)}\right\rangle & =e^{-Q^{2}\left\langle u_{Q m}^{2}\right\rangle / 2} e^{-Q^{2}\left\langle u_{Q_{n}}^{2}\right\rangle / 2} e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle} \\
& =e^{-Q^{2}\left\langle u_{Q}^{2}\right\rangle} e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle}=e^{-M} e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle} \\
& =e^{-M}\left[1+e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle}-1\right]
\end{aligned}
$$

Substituting into the expression for intensity

Lattice Vibrations

$$
\begin{aligned}
\left\langle e^{i Q\left(u_{Q m}-u_{Q n}\right)}\right\rangle & =e^{-Q^{2}\left\langle u_{Q m}^{2}\right\rangle / 2} e^{-Q^{2}\left\langle u_{Q n}^{2}\right\rangle / 2} e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle} \\
& =e^{-Q^{2}\left\langle u_{Q}^{2}\right\rangle} e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle}=e^{-M} e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle} \\
& =e^{-M}\left[1+e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle}-1\right]
\end{aligned}
$$

Substituting into the expression for intensity

$$
\begin{aligned}
I & =\sum_{m} \sum_{n} f(\vec{Q}) e^{-M} e^{i \vec{Q} \cdot \vec{R}_{m}} f^{*}(\vec{Q}) e^{-M} e^{-i \vec{Q} \cdot \vec{R}_{n}} \\
& +\sum_{m} \sum_{n} f(\vec{Q}) e^{-M} e^{i \vec{Q} \cdot \vec{R}_{m}} f^{*}(\vec{Q}) e^{-M} e^{-i \vec{Q} \cdot \vec{R}_{n}}\left[e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle}-1\right]
\end{aligned}
$$

Lattice Vibrations

$$
\begin{aligned}
\left\langle e^{i Q\left(u_{Q m}-u_{Q n}\right)}\right\rangle & =e^{-Q^{2}\left\langle u_{Q m}^{2}\right\rangle / 2} e^{-Q^{2}\left\langle u_{Q n}^{2}\right\rangle / 2} e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle} \\
& =e^{-Q^{2}\left\langle u_{Q}^{2}\right\rangle} e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle}=e^{-M} e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle} \\
& =e^{-M}\left[1+e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle}-1\right]
\end{aligned}
$$

Substituting into the expression for intensity

$$
\begin{aligned}
I & =\sum_{m} \sum_{n} f(\vec{Q}) e^{-M} e^{i \vec{Q} \cdot \vec{R}_{m}} f^{*}(\vec{Q}) e^{-M} e^{-i \vec{Q} \cdot \vec{R}_{n}} \\
& +\sum_{m} \sum_{n} f(\vec{Q}) e^{-M} e^{i \vec{Q} \cdot \vec{R}_{m}} f^{*}(\vec{Q}) e^{-M} e^{-i \vec{Q} \cdot \vec{R}_{n}}\left[e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle}-1\right]
\end{aligned}
$$

The first term is just the elastic scattering from the lattice with the addition of the term $e^{-M}=e^{-Q^{2}\left\langle u_{Q}^{2}\right\rangle / 2}$, called the Debye-Waller factor.

Lattice Vibrations

$$
\begin{aligned}
\left\langle e^{i Q\left(u_{Q m}-u_{Q n}\right)}\right\rangle & =e^{-Q^{2}\left\langle u_{Q m}^{2}\right\rangle / 2} e^{-Q^{2}\left\langle u_{Q n}^{2}\right\rangle / 2} e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle} \\
& =e^{-Q^{2}\left\langle u_{Q}^{2}\right\rangle} e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle}=e^{-M} e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle} \\
& =e^{-M}\left[1+e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle}-1\right]
\end{aligned}
$$

Substituting into the expression for intensity

$$
\begin{aligned}
I & =\sum_{m} \sum_{n} f(\vec{Q}) e^{-M} e^{i \vec{Q} \cdot \vec{R}_{m}} f^{*}(\vec{Q}) e^{-M} e^{-i \vec{Q} \cdot \vec{R}_{n}} \\
& +\sum_{m} \sum_{n} f(\vec{Q}) e^{-M} e^{i \vec{Q} \cdot \vec{R}_{m}} f^{*}(\vec{Q}) e^{-M} e^{-i \vec{Q} \cdot \vec{R}_{n}}\left[e^{Q^{2}\left\langle u_{Q m} U_{Q n}\right\rangle}-1\right]
\end{aligned}
$$

The first term is just the elastic scattering from the lattice with the addition of the term $e^{-M}=e^{-Q^{2}\left\langle u_{Q}^{2}\right\rangle / 2}$, called the Debye-Waller factor.

The second term is the Thermal Diffuse Scattering and actually increases with mean squared displacement.

Thermal Diffuse Scattering

$$
I^{T D S}=\sum_{m} \sum_{n} f(\vec{Q}) e^{-M} e^{i \vec{Q} \cdot \vec{R}_{m}} f^{*}(\vec{Q}) e^{-M} e^{-i \vec{Q} \cdot \vec{R}_{n}}\left[e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle}-1\right]
$$

Thermal Diffuse Scattering

$$
I^{T D S}=\sum_{m} \sum_{n} f(\vec{Q}) e^{-M} e^{i \vec{Q} \cdot \vec{R}_{m}} f^{*}(\vec{Q}) e^{-M} e^{-i \vec{Q} \cdot \vec{R}_{n}}\left[e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle}-1\right]
$$

The TDS has a width determined by the correlated displacement of atoms which is much broader than a Bragg peak.

Thermal Diffuse Scattering

$$
I^{T D S}=\sum_{m} \sum_{n} f(\vec{Q}) e^{-M} e^{i \vec{Q} \cdot \vec{R}_{m}} f^{*}(\vec{Q}) e^{-M} e^{-i \vec{Q} \cdot \vec{R}_{n}}\left[e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle}-1\right]
$$

The TDS has a width determined by the correlated displacement of atoms which is much broader than a Bragg peak.

These correlated motions are just phonons.

Thermal Diffuse Scattering

$$
I^{T D S}=\sum_{m} \sum_{n} f(\vec{Q}) e^{-M} e^{i \vec{Q} \cdot \vec{R}_{m}} f^{*}(\vec{Q}) e^{-M} e^{-i \vec{Q} \cdot \vec{R}_{n}}\left[e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle}-1\right]
$$

The TDS has a width determined by the correlated displacement of atoms which is much broader than a Bragg peak.

These correlated motions are just phonons.
A 0.5 mm Si wafer illuminated by 28 keV x-rays from an APS undulator were used to measure the phonon dispersion curves of silicon

Thermal Diffuse Scattering

$$
I^{T D S}=\sum_{m} \sum_{n} f(\vec{Q}) e^{-M} e^{i \vec{Q} \cdot \vec{R}_{m}} f^{*}(\vec{Q}) e^{-M} e^{-i \vec{Q} \cdot \vec{R}_{n}}\left[e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle}-1\right]
$$

The TDS has a width determined by the correlated displacement of atoms which is much broader than a Bragg peak.

These correlated motions are just phonons.

A 0.5 mm Si wafer illuminated by 28 keV x-rays from an APS undulator were used
 to measure the phonon dispersion curves of silicon

Thermal Diffuse Scattering

$$
I^{T D S}=\sum_{m} \sum_{n} f(\vec{Q}) e^{-M} e^{i \vec{Q} \cdot \vec{R}_{m}} f^{*}(\vec{Q}) e^{-M} e^{-i \vec{Q} \cdot \vec{R}_{n}}\left[e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle}-1\right]
$$

The TDS has a width determined by the correlated displacement of atoms which is much broader than a Bragg peak.

These correlated motions are just phonons.

A 0.5 mm Si wafer illuminated by 28 keV x-rays from an APS undulator were used
 to measure the phonon dispersion curves of silicon

Thermal Diffuse Scattering

$$
I^{T D S}=\sum_{m} \sum_{n} f(\vec{Q}) e^{-M} e^{i \vec{Q} \cdot \vec{R}_{m}} f^{*}(\vec{Q}) e^{-M} e^{-i \vec{Q} \cdot \vec{R}_{n}}\left[e^{Q^{2}\left\langle u_{Q m} u_{Q n}\right\rangle}-1\right]
$$

The TDS has a width determined by the correlated displacement of atoms which is much broader than a Bragg peak.
These correlated motions are just phonons.
A 0.5 mm Si wafer illuminated by 28 keV x-rays from an APS undulator were used to measure the phonon dis-
 persion curves of silicon

Properties of the Debye-Waller Factor

For crystals with several different types of atoms, we generalize the unit cell scattering factor.

Properties of the Debye-Waller Factor

For crystals with several different types of atoms, we generalize the unit cell scattering factor.

$$
F^{u . c .}=\sum_{j} f_{j}(\vec{Q}) e^{-M_{j}} e^{i \vec{Q} \cdot \vec{r}_{j}}
$$

Properties of the Debye-Waller Factor

For crystals with several different types of atoms, we generalize the unit cell scattering factor.

$$
\begin{aligned}
F^{u \cdot c .} & =\sum_{j} f_{j}(\vec{Q}) e^{-M_{j}} e^{i \vec{Q} \cdot \vec{r}_{j}} \\
M_{j} & =\frac{1}{2} Q^{2}\left\langle u_{Q j}^{2}\right\rangle
\end{aligned}
$$

Properties of the Debye-Waller Factor

For crystals with several different types of atoms, we generalize the unit cell scattering factor.

$$
\begin{aligned}
F^{u . c .} & =\sum_{j} f_{j}(\vec{Q}) e^{-M_{j}} e^{i \vec{Q} \cdot \vec{r}_{j}} \\
M_{j} & =\frac{1}{2} Q^{2}\left\langle u_{Q j}^{2}\right\rangle \\
& =\frac{1}{2}\left(\frac{4 \pi}{\lambda}\right)^{2} \sin ^{2} \theta\left\langle u_{Q j}^{2}\right\rangle
\end{aligned}
$$

Properties of the Debye-Waller Factor

For crystals with several different types of atoms, we generalize the unit cell scattering factor.

$$
\begin{aligned}
F^{u . c .} & =\sum_{j} f_{j}(\vec{Q}) e^{-M_{j}} e^{i \vec{Q} \cdot \vec{r}_{j}} \\
M_{j} & =\frac{1}{2} Q^{2}\left\langle u_{Q j}^{2}\right\rangle \\
& =\frac{1}{2}\left(\frac{4 \pi}{\lambda}\right)^{2} \sin ^{2} \theta\left\langle u_{Q j}^{2}\right\rangle \\
M_{j} & =B_{T}^{j}\left(\frac{\sin \theta}{\lambda}\right)^{2}
\end{aligned}
$$

Properties of the Debye-Waller Factor

For crystals with several different types of atoms, we generalize the unit cell scattering factor.

$$
B_{T}^{j}=8 \pi^{2}\left\langle u_{Q j}^{2}\right\rangle
$$

for isotropic atomic vibrations

$$
\begin{aligned}
\left\langle u^{2}\right\rangle & =\left\langle u_{x}^{2}+u_{y}^{2}+u_{z}^{2}\right\rangle \\
& =3\left\langle u_{x}^{2}\right\rangle=3\left\langle u_{Q}^{2}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
F^{u . c .} & =\sum_{j} f_{j}(\vec{Q}) e^{-M_{j}} e^{i \vec{Q} \cdot \vec{r}_{j}} \\
M_{j} & =\frac{1}{2} Q^{2}\left\langle u_{Q j}^{2}\right\rangle \\
& =\frac{1}{2}\left(\frac{4 \pi}{\lambda}\right)^{2} \sin ^{2} \theta\left\langle u_{Q j}^{2}\right\rangle \\
M_{j} & =B_{T}^{j}\left(\frac{\sin \theta}{\lambda}\right)^{2}
\end{aligned}
$$

Properties of the Debye-Waller Factor

For crystals with several different types of atoms, we generalize the unit cell scattering factor.

$$
B_{T}^{j}=8 \pi^{2}\left\langle u_{Q j}^{2}\right\rangle
$$

for isotropic atomic vibrations

$$
\begin{aligned}
\left\langle u^{2}\right\rangle & =\left\langle u_{x}^{2}+u_{y}^{2}+u_{z}^{2}\right\rangle \\
& =3\left\langle u_{x}^{2}\right\rangle=3\left\langle u_{Q}^{2}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
F^{u . c .} & =\sum_{j} f_{j}(\vec{Q}) e^{-M_{j}} e^{i \vec{Q} \cdot \vec{r}_{j}} \\
M_{j} & =\frac{1}{2} Q^{2}\left\langle u_{Q j}^{2}\right\rangle \\
& =\frac{1}{2}\left(\frac{4 \pi}{\lambda}\right)^{2} \sin ^{2} \theta\left\langle u_{Q j}^{2}\right\rangle \\
M_{j} & =B_{T}^{j}\left(\frac{\sin \theta}{\lambda}\right)^{2} \\
B_{T}^{i s o} & =\frac{8 \pi^{2}}{3}\left\langle u^{2}\right\rangle
\end{aligned}
$$

Properties of the Debye-Waller Factor

For crystals with several different types of atoms, we generalize the unit cell scattering factor.

$$
B_{T}^{j}=8 \pi^{2}\left\langle u_{Q j}^{2}\right\rangle
$$

for isotropic atomic vibrations

$$
\left\langle u^{2}\right\rangle=\left\langle u_{x}^{2}+u_{y}^{2}+u_{z}^{2}\right\rangle
$$

$$
=3\left\langle u_{x}^{2}\right\rangle=3\left\langle u_{Q}^{2}\right\rangle
$$

$$
\begin{aligned}
F^{u . c .} & =\sum_{j} f_{j}(\vec{Q}) e^{-M_{j}} e^{i \vec{Q} \cdot \vec{r}_{j}} \\
M_{j} & =\frac{1}{2} Q^{2}\left\langle u_{Q j}^{2}\right\rangle \\
& =\frac{1}{2}\left(\frac{4 \pi}{\lambda}\right)^{2} \sin ^{2} \theta\left\langle u_{Q j}^{2}\right\rangle \\
M_{j} & =B_{T}^{j}\left(\frac{\sin \theta}{\lambda}\right)^{2} \\
B_{T}^{i s o} & =\frac{8 \pi^{2}}{3}\left\langle u^{2}\right\rangle
\end{aligned}
$$

In general, Debye-Waller factors can be anisotropic

The Debye Model

The Debye model can be used to compute B_{T} by integrating a linear phonon dispersion relation up to a cutoff frequency, ω_{D}, called the Debye frequency.

The Debye Model

The Debye model can be used to compute B_{T} by integrating a linear phonon dispersion relation up to a cutoff frequency, ω_{D}, called the Debye frequency.
B_{T} is given as a function of the Debye temperature Θ.

The Debye Model

The Debye model can be used to compute B_{T} by integrating a linear phonon dispersion relation up to a cutoff frequency, ω_{D}, called the Debye frequency.
B_{T} is given as a function of the Debye temperature Θ.

$$
B_{T}=\frac{6 h^{2}}{m_{A} k_{B} \Theta}\left[\frac{\phi(\Theta / T)}{\Theta / T}+\frac{1}{4}\right]
$$

The Debye Model

The Debye model can be used to compute B_{T} by integrating a linear phonon dispersion relation up to a cutoff frequency, ω_{D}, called the Debye frequency.
B_{T} is given as a function of the Debye temperature Θ.
$B_{T}=\frac{6 h^{2}}{m_{A} k_{B} \Theta}\left[\frac{\phi(\Theta / T)}{\Theta / T}+\frac{1}{4}\right]$
$\phi(x)=\frac{1}{x} \int_{0}^{\Theta / T} \frac{\xi}{e^{\xi}-1} d \xi$

The Debye Model

The Debye model can be used to compute B_{T} by integrating a linear phonon dispersion relation up to a cutoff frequency, ω_{D}, called the Debye frequency.
B_{T} is given as a function of the Debye temperature Θ.

$$
\begin{aligned}
& B_{T}= \frac{6 h^{2}}{m_{A} k_{B} \Theta}\left[\frac{\phi(\Theta / T)}{\Theta / T}+\frac{1}{4}\right] \\
& \phi(x)=\frac{1}{x} \int_{0}^{\Theta / T} \frac{\xi}{e^{\xi}-1} d \xi 0 \\
& B_{T}\left[\AA^{2}\right]=\frac{11492 T[\mathrm{~K}]}{\mathrm{A} \Theta^{2}\left[\mathrm{~K}^{2}\right]} \phi(\Theta / \mathrm{T})+\frac{2873}{\mathrm{~A} \Theta[\mathrm{~K}]}
\end{aligned}
$$

Longitudinal

Debye Temperatures

$$
\begin{aligned}
B_{T} & =\frac{11492 T}{A \Theta^{2}} \phi(\Theta / T) \\
& +\frac{2873}{A \Theta}
\end{aligned}
$$

	A	Θ (K)	$B_{4.2}$	B_{77} $\left(\AA^{2}\right)$	B_{293}
C^{*}	12	2230	0.11	0.11	0.12
Al	27	428	0.25	0.30	0.72
Cu	63.5	343	0.13	0.17	0.47
*diamond					

Debye Temperatures

$$
\begin{aligned}
B_{T} & =\frac{11492 T}{A \Theta^{2}} \phi(\Theta / T) \\
& +\frac{2873}{A \Theta}
\end{aligned}
$$

	A	Θ (K)	$B_{4.2}$	B_{77} $\left(\AA^{2}\right)$	B_{293}
C^{*}	12	2230	0.11	0.11	0.12
Al	27	428	0.25	0.30	0.72
Cu	63.5	343	0.13	0.17	0.47
diamond					

diamond is very stiff and Θ does not vary much with temperature

Debye Temperatures

$$
\begin{aligned}
B_{T} & =\frac{11492 T}{A \Theta^{2}} \phi(\Theta / T) \\
& +\frac{2873}{A \Theta}
\end{aligned}
$$

	A	Θ (K)	$B_{4.2}$	B_{77} $\left(\AA^{2}\right)$	B_{293}
C^{*}	12	2230	0.11	0.11	0.12
Al	27	428	0.25	0.30	0.72
Cu	63.5	343	0.13	0.17	0.47
*diamond					

diamond is very stiff and Θ does not vary much with temperature
copper has a much lower Debye temperature and a wider variation of thermal factor with temperature

Debye Temperatures

$$
\begin{aligned}
B_{T} & =\frac{11492 T}{A \Theta^{2}} \phi(\Theta / T) \\
& +\frac{2873}{A \Theta}
\end{aligned}
$$

diamond is very stiff and Θ does not vary much with temperature
copper has a much lower Debye temperature and a wider variation of thermal factor with temperature

	A	Θ (K)	$B_{4.2}$	B_{77} $\left(\AA^{2}\right)$	B_{293}
C^{*}	12	2230	0.11	0.11	0.12
Al	27	428	0.25	0.30	0.72
Cu	63.5	343	0.13	0.17	0.47
*diamond					

