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e Structure factors
e Ewald construction
o SAXS papers
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Chapter 4: 2, 4,6, 7, 10
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BCC structure factor

In the body centered cubic structure, there are 2 atoms in the
conventional, cubic unit cell. These are located at
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FCC structure factor

In the face centered cubic structure, there are 4 atoms in the conventional,
cubic unit cell. These are located at
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FCC structure factor

In the face centered cubic structure, there are 4 atoms in the conventional,
cubic unit cell. These are located at

—

. 1., R . -
n=0 5 5(31 +a), nB= 5(32 +a3), m=-(a1+a&H)

C. Segre (IIT) PHYS 570 - Spring 2015 March 12, 2015 3 /20



FCC structure factor
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In the face centered cubic structure, there are 4 atoms in the conventional,
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Diamond structure

This is a face centered cubic structure with two atoms in the basis which
leads to 8 atoms in the conventional unit cell. These are located at
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Diamond structure

This is a face centered cubic structure with two atoms in the basis which
leads to 8 atoms in the conventional unit cell. These are located at
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Diamond structure

This is a face centered cubic structure with two atoms in the basis which
leads to 8 atoms in the conventional unit cell. These are located at

. I R . - o
n=0n= 5(31 +a&), nB= 5(32 +a3) n= 5(81 + a3)
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This is non-zero when h,k,/ all even and h +
k+1=4nor hk,l all odd
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Heteroatomic structures

< bcc
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The Ewald Sphere

The Ewald sphere is a construct which permits the enumeration of
reflections which fulfill the Laue diffraction condition.
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The Ewald Sphere

The Ewald sphere is a construct which permits the enumeration of
reflections which fulfill the Laue diffraction condition.

The sphere radius is set by the length of the k and k' vectors which
characterize the incident and scattered x-rays.

The xrayview program can be used to gain a more intuitive understanding
of the Ewald sphere.

http://phillips-lab.biochem.wisc.edu/software.html
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Ewald Construction
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Ewald Construction
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Ewald Construction

The scattering vector, Q,
terminates on the origin
of the reciprocal lattice,
as does k.

C. Segre (IIT) PHYS 570 - Spring 2015 March 12, 2015 8 /20



Ewald Construction

The scattering vector, (j
terminates on the origin
of the reciprocal lattice,
as does k.

If the Ewald sphere (cir-
cle) lies on a reciprocal
lattice point, a reflection
can occur for that spe-
cific orientation of k to
the reciprocal lattice (the
physical crystal).
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Ewald Construction

In directions of K’ (detec-
tor position) where there
is no reciprocal lattice
point, there can be no
diffraction peak.
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Ewald Construction

C. Segre (IIT)

PHYS 570 - Spring 2015

If the crystal is rotated
slightly with respect to
the incident beam, Kk,
there may be no Bragg
reflections possible at all.
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Polychromatic Radiation

If Ak is large enough,
there may be more than
one reflection lying on
the Ewald sphere.
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Polychromatic Radiation

If Ak is large enough,
there may be more than
one reflection lying on
the Ewald sphere.

With an area detector,
there may then be multi-
ple reflections appear for
a particular orientation
(very common with pro-
tein crystals where the
unit cell is very large).
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Multiple Scattering

Alternatively, scattering
can occur internal to the
crystal along l?;,,t and
then along another recip-
rocal lattice vector G to
the detector at k.
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Multiple Scattering

C. Segre (IIT)

PHYS 570 - Spring 2015

Alternatively, scattering
can occur internal to the
crystal along l?;,,t and
then along another recip-
rocal lattice vector G to
the detector at k.

This is the cause of
monochromator glitches
which sometimes remove
intensity but can also add
intensity.
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Laue Diffraction

C. Segre (IIT)

PHYS 570 - Spring 2015

The Laue diffraction
technique uses a wide
range oi radiation from
kmin to kmax

These define two Ewald
spheres and a volume
between them such that
any reciprocal lattice
point  which lies in
the volume will meet
the Laue condition for
reflection.

March 12, 2015 13 /20



P23 P23 23 No. 195

i i i N
NN Y N 2x’y’z
R IS
4 X,5,z
4 N
oA 5
b ' ¢ Oony
e v 7Z,X,y
AR 8 2,1,y
9 vy,zx

MUK % 10 v,z, x
ATK AR 11 y,zx
12 v,z7,x

C. Segre (IIT) PHYS 570 - Spring 2015 March 12, 2015 14 /20



Fd3m F4,/d32Im m3m No. 227

25 §-x,4
26% > .%+
X, 27 jHxi-vitz
4 % exdn g
52, 29 3-z4-x3-p
6z 30 j+zgtri-y
7z, 3l j-zdtri+y
8z 32%+z.zl.fx.%+y
9y 3B i-yi-ni-x
10 y. 34 d+yd -t
11 y. 35%+y,:‘,+:.%7x
12 y,2,2 36 -v.ita ity
1B3i+xni-o4+y 37 55y
14 4y, i-v 38yzy
15 %—x.% %—y 39 x,zy
16 4-x4 ity 40 xzy
17 42,4 P-x 4l vy
18 %—‘,.% %+x 42 7y, X
19 §-24 P-x 43 yx
20 45,4y it+x 4y
21 %—y.% .%+; 45 v, %, 2
22 f4y,i-x itz 46 vxz
2B i-pi-vi-z 47 yxz
74%+y.% .%7; 48 v, X, 2

+(0.5.4). (3.0.3). (3.4.0)

C. Segre (IIT) PHYS 570 - Spring 2015 March 12, 2015 15 /20



Wyckoff Positions of Group 195 (P23)

Multiplicity “’;i:tl::ﬁ syrﬁri:leetryl Coordinates

12 j 1

6 2.

6 h 2

51 g 2

6 f 2.
[ 4 | e | = |
[ 2 | o [ 222,
[ 2 | ¢ [ 222
[ v | o | 22 |
[ 1 | a | 22 |
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Wyckoff Positions of Group 227 (Fd-3m) [origin choice 1]

. Wyckoff|  Site Coordinates
Multiplici
plicity letter |symmetry (0,00) +(0,1/2,142) + (1/2,0,1/2) + (1/2,112,0) +
(xye12z+12) (e l2y+1122) (erl2oyz+102)
(12 xy+12) (o 12y+112) (12102 )
) (y1RzH125) W 2zxE2)
(Y30 X+ 1A Z+318)  (y+ 11 1 Z+18) (y+ 144 X434 Z430)  (y+304 4304 7+1/4)
(x+204 Z+ 14 y+304)  (+ 304 Z+34y+14) (414 2+ 1A -+ 114) (k104 -2+ 214 y+314)
192 I (Z+3/4 y+ 114 x4+ 304)  (Z+ 104, y+314 x4 314)  (-2+304 y+ 340 104)  (-z+ 104 -y + 114 e 104)
114 -y 1A -z 14) (e 114 y+ 304,24 304) (6204 -y+314 2+ 104)  (-x+3/4 y+ 114 z+3/4)
(ZH 14 1A 2y 1A) (24204 x4 y+314) (24104 x+ 34 y+304)  (2+304 x+3/4 y+1/4)
Y+ 1A 2414 xH1A) (4304 Z+3M4 3+ 14)  (y+34 2+ 14 x+304)  (y+1/4 74304 -x+3/4)
y+112, X Z+142) (yxz (yx+112,2+112) (y+112x+112,2)
-x+1/2 -2 y+112) (#+ 112 -2+112 -y) (xzy) (-%Z+142 y+112)
(-Z+ 172 yx+1/2) (-zy+ 112 x+112) (z M/L A+12-%) (zyx)
B YYH1A] (118 4112, y4304) (I8 112 y+3H) (518 yy+114)
Y34, 108 y+112) (y+344 318 y+1U2) (y+1/4.5/8 -y)
9 h 2 (-y+1/2,2y+344 7/8) (y+ 142 y+3/4 318)  (+yy+1/4 5/8)
( ) (38 y+23M4y+112) (T8 y+304 y+112) (318 y+14 -y)
(B 144) [y /2 318w 3H) (g 12, /8 -y 3/) (5B y+114)
(y+ 114y 18) (y+304y+1/2,308)  (y+3/4 y+1/2,Ti8) (y+1/4 -5/8)
[ (% 122+112) (1234112 (x+112,x,7+1/2)
( (212 xx+112) (2 12x+112) 2+1/2x+112,%)
% o (x+1022+112 (e 122x0102) (2 1U2+112)
g ( “Z+314) (-x+ 1A x+ 1A -2+ 14) (x+14 4304 Z+3/4)  (-x+3/4 x+3/4 7+1/4)
(4204 24114, x4 3/4) (-x+ 304 Z+IA X+ 1/4) - (-X+ 1A -2+ 114 5+ 14) (x+1/4 -2+304 x+314)
(Z+34 x+114, %+ 3/4) (Z+ 1A 0+ 34 x+304)  (-2+304 x+34 3+ 14) (-z+1/4, %+ 114 -x+1/4)
x00) (%12,12)  (0x0) (112.%,112)
48 f 2mm [(00x) (112,142 %) (34 x+1/4,314) (114 -x+1/4,114)
(e+304,1/4,304) (-x+314,304 1/4) (314,114 -x+314) (1/4 214 %+ 3/4)
2 R am || (XAHU2XH112) (U2 112%)  (cH1/2 X 102)
(k304 14,04 B1A) (5 1A x4 1A -6 1) (414, 0 304 5 BJA) (1204 X+ 304 0+ 1/4)
16 d -3m  |[(5/8 5/85/8) (3/8,7/8,1/8) (118,118 3/8) (1/8,2/8 7/8)
16 c 3m  |[(1/8,1/8,1/8) (7/8 218 5/8) (3/8 518, 7/6) (518, 7/8 318)
g b -43m | (162,172,172 (174 314,1/4)
] a 43m - [[(0,0,0) (2/4,1/4,3/4)
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SAXS of irradiated Zn nanoparticles

Zn nanoparticles formed by ion implantation. SAXS measured after
irradiation with high energy Xet# ions using 18 keV x-rays

“Shape elongation of embedded Zn nanoparticles induced by swift heavy ion irradiation:
A SAXS study”, H. Amekura, K. Kono, N. Okubo, and N. Ishikawa, Phys. Status Solidi
B 252, 165-169 (2015).
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irradiation with high energy Xet# ions using 18 keV x-rays
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“Shape elongation of embedded Zn nanoparticles induced by swift heavy ion irradiation:
A SAXS study”, H. Amekura, K. Kono, N. Okubo, and N. Ishikawa, Phys. Status Solidi
B 252, 165-169 (2015).
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SAXS of irradiated Zn nanoparticles

Zn nanoparticles formed by ion implantation. SAXS measured after
irradiation with high energy Xet# ions using 18 keV x-rays

(a) Xray(//) (b) unirrad.

X- ray( 1 )SH
k +450° o

NPIO\ Sio,
Y O\

Expt. geometry Unirradiated

“Shape elongation of embedded Zn nanoparticles induced by swift heavy ion irradiation:
A SAXS study”, H. Amekura, K. Kono, N. Okubo, and N. Ishikawa, Phys. Status Solidi

B 252, 165-169 (2015).
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SAXS of irradiated Zn nanoparticles

Zn nanoparticles formed by ion implantation. SAXS measured after
irradiation with high energy Xet# ions using 18 keV x-rays
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X- ray(_L)Sl_b
P +450
NP)O\ Sio, '
74 N ions L X-ray
Expt. geometry Irradiated || x-rays

“Shape elongation of embedded Zn nanoparticles induced by swift heavy ion irradiation:
A SAXS study”, H. Amekura, K. Kono, N. Okubo, and N. Ishikawa, Phys. Status Solidi

B 252, 165-169 (2015).
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SAXS of irradiated Zn nanoparticles

Zn nanoparticles formed by ion implantation. SAXS measured after
irradiation with high energy Xet# ions using 18 keV x-rays

(a) X- ray(//) (g) 5 x 10" cm2 (h) 5 x 10" cm2
X- ray(_L)
SH
[f?+45°
NPIO\ Sio,
Z N\ ions L X-ray ions // X-ray
Expt. geometry Irradiated || x-rays Irradiated L x-rays

“Shape elongation of embedded Zn nanoparticles induced by swift heavy ion irradiation:
A SAXS study”, H. Amekura, K. Kono, N. Okubo, and N. Ishikawa, Phys. Status Solidi
B 252, 165-169 (2015).
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SAXS of irradiated Zn nanoparticles

“Shape elongation of embedded Zn nanoparticles induced by swift heavy ion irradiation:
A SAXS study”, H. Amekura, K. Kono, N. Okubo, and N. Ishikawa, Phys. Status Solidi

B 252, 165-169 (2015).
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SAXS of irradiated Zn nanoparticles
10T T 200 Mev e

=>2Zn NPs in SiO,

Intensity (arb. units)

1 00 ! ions/cm?

_1E — X-ray // ion beam
10 F o X-ray | ion beam

K I
Wavenumber q(nm‘1)

SAXS intensity for || and L x-ray
incidence

“Shape elongation of embedded Zn nanoparticles induced by swift heavy ion irradiation:
A SAXS study”, H. Amekura, K. Kono, N. Okubo, and N. Ishikawa, Phys. Status Solidi

B 252, 165-169 (2015).
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SAXS of irradiated Zn nanoparticles

5 [T T
10 f\ 200 MeV Xe T T
2 E = =>2Zn NPs in SiO, £ 14+
= 10%L2x10™ £ 30} 200 MeVXe ™ -
S g =>7Zn NPs in SiO,
g 10° s
& E- @
b 102 X a 20+ { b
b~ E (]
o ; 2
c 10 L } {
8 107 PR -
- 100;r ions/cm? E‘ B ]
) [ Inter-particle distance
4f —— X-ray//ion beam c 1 SHI beam
10 F o X-ray | ion beam : =
E oo o a m e e 4 14 [ SO R W | L
0.1 1 102 10" 10"
Wavenumber g (nm) Fluence (ions/cm?)

SAXS intensity for || and L x-ray Interparticle distance as a function
incidence of irradiation fluence

“Shape elongation of embedded Zn nanoparticles induced by swift heavy ion irradiation:
A SAXS study”, H. Amekura, K. Kono, N. Okubo, and N. Ishikawa, Phys. Status Solidi

B 252, 165-169 (2015).
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SAXS of irradiated Zn nanoparticles

200 MeV Xel#*

LA | LT R | LRSS DL | S | ¢¢¢¢¢

" 200 MeV Xe ™
=>Zn NPs in SiO,

w
o

Inter-particle Distance (nm)
N
2

L SHI beam {
10- VIV 1 | 1 1
T107 0 10% 0 10%
Fluence (ions/cm?)

“Shape elongation of embedded Zn nanoparticles induced by swift heavy ion irradiation:
A SAXS study”, H. Amekura, K. Kono, N. Okubo, and N. Ishikawa, Phys. Status Solidi

B 252, 165-169 (2015).
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