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BCC structure factor

In the body centered cubic structure, there are 2 atoms in the
conventional, cubic unit cell. These are located at

~r1 = 0, ~r2 =
1

2
(~a1 + ~a2 + ~a3)

the unit cell structure factor is thus

F bcc
hkl = f ( ~G )

∑
j

e i
~G ·~rj

= f ( ~G )
(

1 + e iπ(h+k+l)
)

= f ( ~G )×

{
2 h + k + l = 2n

0 otherwise
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FCC structure factor

In the face centered cubic structure, there are 4 atoms in the conventional,
cubic unit cell. These are located at

~r1 = 0, ~r2 =
1

2
(~a1 + ~a2), ~r3 =

1

2
(~a2 + ~a3), ~r4 =

1

2
(~a1 + ~a3)

the unit cell structure factor is thus

F fcc
hkl = f ( ~G )

∑
j

e i
~G ·~rj

= f ( ~G )
(

1 + e iπ(h+k) + e iπ(k+l) + e iπ(h+l)
)

= f ( ~G )×

{
4 h + k , k + l , h + l = 2n

0 otherwise
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Diamond structure

This is a face centered cubic structure with two atoms in the basis which
leads to 8 atoms in the conventional unit cell. These are located at

~r1 = 0, ~r2 =
1

2
(~a1 + ~a2), ~r3 =

1

2
(~a2 + ~a3) ~r4 =

1

2
(~a1 + ~a3)

~r5 =
1

4
(~a1 + ~a2 + ~a3), ~r6 =

1

4
(3~a1 + 3~a2 + ~a3)

~r7 =
1

4
(~a1 + 3~a2 + 3~a3), ~r8 =

1

4
(3~a1 + ~a2 + 3~a3)

F diamond
hkl = f ( ~G )

(
1 + e iπ(h+k) + e iπ(k+l)

+ e iπ(h+l) + e iπ(h+k+l)/2 + e iπ(3h+3k+l)/2

+ e iπ(h+3k+3l)/2 + e iπ(3h+k+3l)/2
)

This is non-zero when h,k,l all even and h +
k + l = 4n or h,k ,l all odd
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Heteroatomic structures

← bcc

sc →

← diamond
fcc →
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The Ewald Sphere

The Ewald sphere is a construct which permits the enumeration of
reflections which fulfill the Laue diffraction condition.

The sphere radius is set by the length of the ~k and ~k ′ vectors which
characterize the incident and scattered x-rays.

The xrayview program can be used to gain a more intuitive understanding
of the Ewald sphere.

http://phillips-lab.biochem.wisc.edu/software.html
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Ewald Construction

a*2

a*1

k’

k

Q

∆k
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Ewald Construction

The scattering vector, ~Q,
terminates on the origin
of the reciprocal lattice,
as does ~k .

If the Ewald sphere (cir-
cle) lies on a reciprocal
lattice point, a reflection
can occur for that spe-
cific orientation of ~k to
the reciprocal lattice (the
physical crystal).
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Ewald Construction

In directions of ~k ′ (detec-
tor position) where there
is no reciprocal lattice
point, there can be no
diffraction peak.
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Ewald Construction

If the crystal is rotated
slightly with respect to
the incident beam, ~k,
there may be no Bragg
reflections possible at all.
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Polychromatic Radiation

If ∆~k is large enough,
there may be more than
one reflection lying on
the Ewald sphere.

With an area detector,
there may then be multi-
ple reflections appear for
a particular orientation
(very common with pro-
tein crystals where the
unit cell is very large).
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Multiple Scattering

Alternatively, scattering
can occur internal to the
crystal along ~kint and
then along another recip-
rocal lattice vector ~G to
the detector at ~k ′.

This is the cause of
monochromator glitches
which sometimes remove
intensity but can also add
intensity.
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Laue Diffraction

The Laue diffraction
technique uses a wide
range of radiation from
~kmin to ~kmax

These define two Ewald
spheres and a volume
between them such that
any reciprocal lattice
point which lies in
the volume will meet
the Laue condition for
reflection.
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SAXS of irradiated Zn nanoparticles

Zn nanoparticles formed by ion implantation. SAXS measured after
irradiation with high energy Xe+14 ions using 18 keV x-rays

Expt. geometry Irradiated ‖ x-rays Irradiated ⊥ x-rays

“Shape elongation of embedded Zn nanoparticles induced by swift heavy ion irradiation:

A SAXS study”, H. Amekura, K. Kono, N. Okubo, and N. Ishikawa, Phys. Status Solidi

B 252, 165-169 (2015).
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SAXS of irradiated Zn nanoparticles

SAXS intensity for ‖ and ⊥ x-ray
incidence

Interparticle distance as a function
of irradiation fluence
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