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Types of lattice vectors

—

Rn = mai + may
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Types of lattice vectors
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Types of lattice vectors

—

Ry = nia1 + mas

primitive

non-primitive

C. Segre (lIT) PHYS 570 - Spring 2015 March 05, 2015 2/22



Types of lattice vectors
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More about lattice vectors

sometimes conventional axes...
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More about lattice vectors
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Miller indices
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Miller indices

.
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planes designated (hk), intercept the

® unit cell axes at
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tors
1 Kk
T 2T 2
° A a1 3

PHYS 570 - Spring 2015 March 05, 2015 4 /22



Reciprocal lattice
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Reciprocal lattice
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Reciprocal lattice
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The Lattice and Basis Functions

If the basis of a one-dimensional system is described by the function B(x)
then the crystal is described by the function
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The Lattice and Basis Functions

If the basis of a one-dimensional system is described by the function B(x)

then the crystal is described by the function
C(x) = ZB(X — na)
n
the lattice, which is a collection of points in space, can be written
L(x) = Z(S(x — na)
n
convoluting the lattice and basis function we write

£(x) % B(x) = / T L) B(x — X)dx’
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The Lattice and Basis Functions

If the basis of a one-dimensional system is described by the function B(x)
then the crystal is described by the function

C(x) = ZB(X — na)
n
the lattice, which is a collection of points in space, can be written
L(x) = Z d(x — na)
n
convoluting the lattice and basis function we write
L(x) *B(x) = /OO L(xX)B(x — x")dx' = /OO Zé(x’ —na)B(x — x")dx’
=> /_ b S(x' = na)B(x — x")dx' =Y " B(x — na) = C(x)
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Scattering Amplitude
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Scattering Amplitude

N N
Fcrystal(Q’) Z (Q’)eiQ.7 _ Z f}(@’)e,‘Q.(Rn_;,_fj)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 7/22



Scattering Amplitude

N N
Fcrystal(Q’) Z (Q’)eiQ.7 _ Z f}(@’)e,‘Q.(Rn_;,_fj)
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Scattering Amplitude

N

Fcrystal Z f/ Q’ iQ-r Z i nt17)
_ Z f /Q rJZ el @ﬁn — Fumt ceIIF/attice
n

Since F”ysra'((j) is 5|mp|y the Fourier Transform of the crystal function,
C(x) = L(x) * B(x), it must be the product of the Fourier Transforms of
L(x) and B(x).

:m
'.“l
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Scattering Amplitude

N N
Feretal( @) =3 (@)l = 37 £(Q)e @ Ret)
! Rot+7

_ Z 6(@)61662 ei@ﬁn _ Funit ceIIF/attice

Since F”ysra'((j) is simpjly the Fourier Transform of the crystal function,
C(x) = L(x) * B(x), it must be the product of the Fourier Transforms of
L(x) and B(x). F’3ttie is a very large sum (~ 10'?) so the only time it
gives values appreciably greater than 1 is when:
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Scattering Amplitude

N N
Feretal( @) =3 (@)l = 37 £(Q)e @ Ret)
! Rot+7

_ Z 6(0_’)61(562 ei@ﬁn _ Funit ceIIF/attice

Since F”ysra'((j) is simpjly the Fourier Transform of the crystal function,
C(x) = L(x) * B(x), it must be the product of the Fourier Transforms of
L(x) and B(x). F’3ttie is a very large sum (~ 10'?) so the only time it
gives values appreciably greater than 1 is when:

Q-R,= 2mrm, m = integer

Ghit = hat + kas + 135
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Scattering Amplitude
R N . -
Fcrystal Z f/ Q iQ-r Z f}(Q)e,Q.(R,,-i—rj)

- Z f /Q rjz e/Q R’,7 _ Funit ceIIF/attice

Since F”ysra'((j) is S|mp|y the Fourier Transform of the crystal function,
C(x) = L(x) * B(x), it must be the product of the Fourier Transforms of
L(x) and B(x). F’3ttie is a very large sum (~ 10'?) so the only time it
gives values appreciably greater than 1 is when:

Q-R,= 2mrm, m = integer
Ghit = hat + kas + 135
Gt - Ro = (M1 + ma> + mas) - (hay + kas + 135)
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Scattering Amplitude
R N . -
Fcrystal Z f/ Q iQ-r Z fj-,(Q)e,Q.(R,,-i—rj)

- Z f /Q rjz e/Q R’,7 _ Funit ceIIF/attice

Since F”ysra'((j) is S|mp|y the Fourier Transform of the crystal function,
C(x) = L(x) * B(x), it must be the product of the Fourier Transforms of
L(x) and B(x). F’3ttie is a very large sum (~ 10'?) so the only time it
gives values appreciably greater than 1 is when:

Q-R,= 2mrm, m = integer
Ghit = hat + kas + 135
Gt - Ro = (M1 + ma> + mas) - (hay + kas + 135)
= 2mw(hny + knp + In3) = 2tm
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Scattering Amplitude
R N . -
Fcrystal Z f/ Q iQ-r Z fj-,(Q)e,Q.(R,,-i—rj)

- Z f /Q rjz e/Q R’,7 _ Funit ceIIF/attice

Since F”ysra'((j) is S|mp|y the Fourier Transform of the crystal function,
C(x) = L(x) * B(x), it must be the product of the Fourier Transforms of
L(x) and B(x). F’3ttie is a very large sum (~ 10'?) so the only time it
gives values appreciably greater than 1 is when:

Cj- f?,, =2mm, m = integer
Ghit = hat + kas + 135
Gt - Ro = (M1 + ma> + mas) - (hay + kas + 135)
= 2mw(hny + knp + In3) = 2tm
Q= Gpu
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The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are
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The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are
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The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

§(2+)“<),

—»

(y+z) a =

T2
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The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

2(E+R), B=2(%+9)

—»

(y+z) a =

T2
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The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

2(E+R), B=2(%+9)

—»

(y+z) a =

T2

The volume of the unit cell is
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The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

a1 2(y+2)

C. Segre (IIT)

a a

aH = 5(2‘*‘)?), a3 = §(>A<+}A/)

The volume of the unit cell is
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The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

a1 2(y+2)

C. Segre (IIT)

o a, . . - a . A
2=5(2+%), @&=5(X+))

The volume of the unit cell is
22

Ve =231 -a>) X 83 =41 - f(y—l-Z—X)
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The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

a

A 7.2
(Z+X)’ 3 5
The volume of the unit cell is

3

vC:al 32><a3
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The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

A=2(+2), &H=3(2+8), H=2(%+7)

The volume of the unit cell is

32 33
Ve = a1 52)(53:51 f(y—l-Z—X)—f
4 4
2T,
5{:*32X33
Ve

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 8 /22



The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

A=2(+2), &H=3(2+8), H=2(%+7)

The volume of the unit cell is

a2 a’
Ve=a1-dxaH=a-—F+2-K8) =—
=adi-axXaz=a - =
¢ 4 4

27 27 a2
- o - A A A
a; = —a Xaz=—— +z—X
1 Ve VC4(}’ )
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The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

a a
al 2()’+Z) 5225(2‘1‘)?), 53:§(>A<+)7)
The volume of the unit cell is
oL LA,
Ve =a1-ay X 3:al-z(y+z—x):Z
27 27 a2
I =—HxPB=——({F+2-2%
1= 2 X a3 VC4()’+Z X)
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The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

5 o a,. . R a,. .
=20+2), B=50+8, B=2(3+7)
The volume of the unit cell is
L . . 32 R R R a3
Ve = a1 -az X az = ai Z(y%—z—x):z
27 27 a2
I =—HxPB=——({F+2-2%
1 ch 3 VC4()’+Z X)
4t [y 2 X
) (2 T2 2>
A4t (Z2 X ¢
Gd=—|+=—-=
27 2 (2 3 2)
5 4 (R n y Zz
37 a\2"2 2
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The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

2(E+R), B=2(%+9)

—»

(y+z) a =

T2

The volume of the unit cell is

a° a3
Ve =31 -3 X &3 gl-z(y—l-f—)?)zz
. 27T_’><_' 27ra2(A+A ,\)
3 =—3 = —— 2-X
1 Ve 2 3 ve 4 Y
ar [y 2 %
-a<2+2‘2>
L An(E R
H=—|z+=-—-%
4r/a 2 a<2+2 2)
which is a body-centered 5*_41 %_}_X_g
cubic lattice 37 a\2 2 2

C. Segre (lIT) PHYS 570 - Spring 2015 March 05, 2015 8 /22



Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, we
consider the lattice sum
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Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, we
consider the lattice sum

Su(@) = O

First evaluate this sum in 1D.

—

R, = na, thus for N unit cells
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Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, we
consider the lattice sum

SN(é) _ Z eié-,‘i"n
N-1

— Z eiQna

n=0

First evaluate this sum in 1D.

—

R, = na, thus for N unit cells
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Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, we
consider the lattice sum

Su(@) = O

First evaluate this sum in 1D.

—

R, = na, thus for N unit cells

Nfl . .
_ ZeiQna Which has been evaluated previ-
pr ously as
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Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, we
consider the lattice sum

Su(@) = O

First evaluate this sum in 1D.

—

R, = na, thus for N unit cells

_ Nz:leiQna Which has been evaluated previ-
= ously as
sin(NQa/2)
S = ———
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Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, we
consider the lattice sum

Su(@) = O

First evaluate this sum in 1D.

—

R, = na, thus for N unit cells

_ Nz:le,-Qna Which has been evaluated previ-

= ously as and leads to the Laue con-

54(Q)] = sin(NQa/2) dri]tion for dif}iractic;n. I_Lookingd.jt
N = 7sin(Qa/2) the regime where the Laue condid-

ion is not exactly fulfilled

Q=(h+0)
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Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, we
consider the lattice sum

Su(@) = O

First evaluate this sum in 1D.

—

R, = na, thus for N unit cells

_ Nz:l o/Qna Which has been evaluated previ-
N = ously as and leads to the Laue con-
sin(NQa/2) dition for diffraction. Looking .at
ISn(Q)| = W the regime where the Laue condid-
ion is not exactly fulfilled
sin(N[h + €]a*a/2) Q=(h+¢)a
1Sn(Q) = — p
sin([h + {]a*a/2)
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Lattice sum in 1D

_sin(N[h +¢]a*a/2)
B = "G th+ ga/2)
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Lattice sum in 1D

Su(Q) = sin(N[h+ €]a*a/2)  sin(N[h+ €]n)

sin([h +€£]a*a/2)  sin([h + €&]n)
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Lattice sum in 1D

Su(Q) = sin(N[h+ €]a*a/2)  sin(N[h+ €]n)

sin([h +€£]a*a/2)  sin([h + €&]n)

but sin(Nw[h + &]) = sin(N7h) cos(N7&) + cos(Nmh) sin(Nw&)
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Lattice sum in 1D
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Lattice sum in 1D

_sin(N[h+¢]a*a/2)  sin(N[h+ &]m)

Sw(@)] = sin([h + la*a/2)  sin([h + &]n)
but sin(Nw[h + &]) = sin(N7h) cos(N7&) + cos(Nmh) sin(Nw&)
= +sin(Nn¢)
leading to in(N€)
peak height _ sin(Vm
5w (@)l sin(m¢)
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Lattice sum in 1D
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Sw(@)] = sin([h + la*a/2)  sin([h + &]n)
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Lattice sum in 1D

_sin(N[h+¢]a*a/2)  sin(N[h+ &]m)

S = G th T gara/2) — sin(lh+ €7)
but sin(Nw[h + &]) = sin(N7h) cos(N7&) + cos(Nmh) sin(Nw&)
= +sin(N7¢)

leading to in(Nm€) Nt
k height o sin{ VT - U
peak heig ISn(Q)| = sin(r) ©~ nE — N a §—0
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Lattice sum in 1D

_sin(N[h+¢]a*a/2)  sin(N[h+ &]m)

Sw(@)] = sin([h + la*a/2)  sin([h + &]n)
but sin(Nw[h + &]) = sin(N7h) cos(N7&) + cos(Nmh) sin(Nw&)
= +sin(Nn¢)

leading to n(Nxe) N

k height _sin(N7§)  Nm
peak heig ISn(Q)| = sin(r) ©~ nE — N a §—0
with
half-width

C. Segre (lIT) PHYS 570 - Spring 2015 March 05, 2015 10 / 22



Lattice sum in 1D

but

leading to
peak height

with
half-width

C. Segre (lIT)

_sin(N[h+¢]a*a/2)  sin(N[h+ &]m)
[SQ) = sin([h + €]la*a/2)  sin([h+ &)

sin(N7[h + &]) = sin(N7h) cos(N7€) + cos(Nmh) sin(N7&)
= +sin(N7¢)

_sin(Nw€)  Nn¢
[Sn(@) = sin(nf) 7€

— N as £ -0

1Sn() =0
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Lattice sum in 1D

but

leading to
peak height

with
half-width

C. Segre (lIT)

_sin(N[h+¢]a*a/2)  sin(N[h+ &]m)
[SQ) = sin([h + €]la*a/2)  sin([h+ &)

sin(N7[h + &]) = sin(N7h) cos(N7€) + cos(Nmh) sin(N7&)
= +sin(N7¢)

_sin(Nw€)  Nn¢
[Sn(@) = sin(nf) 7€

— N as £ -0

1
|SN(£)| — 0, Nmg§=m, ‘51/2 ~ ﬂ
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Lattice sum in 1D

the peak area can be obtained by integration
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Lattice sum in 1D

the peak area can be obtained by integration

+1/2N F1/2N iy +1/2N
/ 1Su(©)] de = / ”stz/ Ve e

1/2N sin(7¢) 1/2N 7T§

_ N/+1/2/V ot — N[€‘+1/2N 9

—1/2N —-1/2N

~1/2N

consequently, the lattice sum can be written

Q—ha* Q-G

a* a*

[Sn(€)] = 4() £ =

C. Segre (lIT) PHYS 570 - Spring 2015 March 05, 2015

11/ 22



Lattice sum in 1D

the peak area can be obtained by integration

+1/2N F1/2N iy +1/2N
/ 1Su(©)] de = / ”5d§z/ Ve e

1/2N sin(7¢) 1/2N s

_ N/+1/2/V ot — N[€‘+1/2N 9

—1/2N —-1/2N

~1/2N

consequently, the lattice sum can be written

Q—ha* Q-G

a* a*

[Sn(€)] = 4() £ =

Sn(Q) = a* > 4(Q — Gp)

Gy

C. Segre (lIT) PHYS 570 - Spring 2015 March 05, 2015

11/ 22



Lattice sum in 1D

the peak area can be obtained by integration

+1/2N F1/2N iy +1/2N
/ 1Su(©)] de = / ”Qdéz/ Ve e

1/2N sin(7¢) 1/2N 7T§

+1/2N +1/2N
- /v/ de = N[f‘ —1
—1/2N —-1/2N

~1/2N

consequently, the lattice sum can be written

Q—ha* Q-G

[Sn(&)] = 6(¢) £=— pe
N—-1 )
ISH(Q)| = a* > 5(Q— Gp) =D _ e
Gy n=0

C. Segre (lIT) PHYS 570 - Spring 2015 March 05, 2015

11/ 22



Lattice sum in 1D

the peak area can be obtained by integration

+1/2N F1/2N iy +1/2N
/ 1Su(©)] de = / ”Qdéz/ Ve e

1/2N sin(7¢) 1/2N 7T5

+1/2N +1/2N
- /v/ de = N[f‘ —1
—1/2N —-1/2N

~1/2N

consequently, the lattice sum can be written

Q—ha* Q-G

[Sn(&)] = 6(¢) £=— pe
N—-1 )
ISH(Q)| = a* > 5(Q— Gp) =D _ e
Gy n=0

That is, the lattice sum (scattering factor) is simply proportional to the

reciprocal space lattice
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Lattice sum Modulus

the 1D modulus squared
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Fourier transform of lattice function

Consider the Fourier transform of the lattice function, £(x), (in 1-D for
simplicity)
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Fourier transform of lattice function

Consider the Fourier transform of the lattice function, £(x), (in 1-D for
simplicity)

/OO 'C(X)eiQXdX = /OO Z5(X — na)eiQde = Z/OO 5(x — na)eiQde
= ZeiQna _ 3*25(Q _ ha*) _ 3*25(0 _ Gh)
n h b

in general
o0 s — —
/ £(7e97dv = V2 3" 6(Q — Gua)
o h,k,1
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Bragg condition
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The Bragg condition for diffraction
is derived by assuming specular re-
flection from parallel planes sepa-
rated by a distance d.
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Bragg condition
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Laue condition

The Laue condition states that the
scattering vector must be equal to
a reciprocal lattice vector
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Laue condition

The Laue condition states that the
scattering vector must be equal to
a reciprocal lattice vector

Q = G
Q = 2ksinf = 27”
2d'sinf = 27” — A (0,0) (1,0)

Thus the Bragg and Laue condi-
tions are equivalent
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General proof of Bragg-Laue equivalence

a/l

G)a.h'

a,/k

a,/h
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General proof of Bragg-Laue equivalence

a,/l Must show that for each point in
reciprocal space, there exists a set
of planes in the real space lattice

G such that:
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General proof of Bragg-Laue equivalence

The plane with Miller indices (hkl)
intersects the three basis vectors of

the lattice at a;/h, a»/k, and a3/I

a 3:"?
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General proof of Bragg-Laue equivalence
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Thus @hk/ is indeed normal to the plane with Miller indices (hkl)
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General proof of Bragg-Laue equivalence

The spacing between planes (hkl) is
simply given by the distance from
the origin to the plane along a nor-
mal vector

a 3:"?
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BCC structure factor

In the body centered cubic structure, there are 2 atoms in the
conventional, cubic unit cell. These are located at
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FCC structure factor

In the face centered cubic structure, there are 4 atoms in the conventional,
cubic unit cell. These are located at
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. . o o R . R,
n=0, n=z@1+a), nr=z(H+a5h), n=z(a+a53)
2 2

the unit cell structure factor is thus
Fiss = £(6) ) e/
J

= f(G) (1 4 einlhk) | gim(k+1) e"’r(”“))

0 otherwise

c {4 h+k k41, h+1=2n
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Diamond structure

This is a face centered cubic structure with two atoms in the basis which
leads to 8 atoms in the conventional unit cell. These are located at
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Diamond structure

This is a face centered cubic structure with two atoms in the basis which
leads to 8 atoms in the conventional unit cell. These are located at

_ I L1 I
n =0, 2=§(al+az), r3=§(az+as) r4:§(31+33)
I . I -

5 = Z( 1+ 2+a3), re = 1(3314-3324—33)

I . . I U, -
7 — Z(al +33 +33), = 1(331 + a» + 333)
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Diamond structure

This is a face centered cubic structure with two atoms in the basis which
leads to 8 atoms in the conventional unit cell. These are located at

O S L1
n=0 n= 5(31 +a), n= 5(32 +&) = 5(31 + &3)
L1 1
=—(a1+a + a3) 1(331 + 33 + &)

F’c,ﬁamond _ f(é) (1 +el im(h+k) 4 e im(k+1)
+ ¢ im(h+1) + elTr(h+k+/)/2 + elw(3h+3k+/)/2

4 eim(h+3k+30)/2 i7r(3h+k+3/)/2)
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Diamond structure

This is a face centered cubic structure with two atoms in the basis which
leads to 8 atoms in the conventional unit cell. These are located at

. I R . - o
n=0n= 5(31 +a&), nB= 5(32 +a3) n= 5(81 + a3)
L 1., . L 1 _ oL

521( 1+ 2+33), r621(331+332+a3)

L 1, - - S . -
7 = Z(al +3a + 333), rg = 2(331 + a> + 333)

F,c,iﬁmond _ f(@)(l 1 ein(htk) 4 gim(k+])
1 eim(htl) o gin(htk+1)/2 4 gim(3h+3k+1)/2

4 eim(h+3k+30)/2 ei7r(3h+k+3/)/2)

This is non-zero when h,k,/ all even and h +
k+1=4nor hk,l all odd
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Heteroatomic structures

< bcc
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Heteroatomic structures
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Heteroatomic structures
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Heteroatomic structures
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