
Today’s Outline - March 05, 2015

• Lattice & Basis Functions

• Reciprocal Lattice for FCC

• Crystal structure factor

• Laue vs. Bragg

Reading assignment: Chapter 5.2

Homework Assignment #04:
Chapter 4: 2, 4, 6, 7, 10
due Tuesday, March 10, 2015

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 1 / 22



Today’s Outline - March 05, 2015

• Lattice & Basis Functions

• Reciprocal Lattice for FCC

• Crystal structure factor

• Laue vs. Bragg

Reading assignment: Chapter 5.2

Homework Assignment #04:
Chapter 4: 2, 4, 6, 7, 10
due Tuesday, March 10, 2015

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 1 / 22



Today’s Outline - March 05, 2015

• Lattice & Basis Functions

• Reciprocal Lattice for FCC

• Crystal structure factor

• Laue vs. Bragg

Reading assignment: Chapter 5.2

Homework Assignment #04:
Chapter 4: 2, 4, 6, 7, 10
due Tuesday, March 10, 2015

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 1 / 22



Today’s Outline - March 05, 2015

• Lattice & Basis Functions

• Reciprocal Lattice for FCC

• Crystal structure factor

• Laue vs. Bragg

Reading assignment: Chapter 5.2

Homework Assignment #04:
Chapter 4: 2, 4, 6, 7, 10
due Tuesday, March 10, 2015

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 1 / 22



Today’s Outline - March 05, 2015

• Lattice & Basis Functions

• Reciprocal Lattice for FCC

• Crystal structure factor

• Laue vs. Bragg

Reading assignment: Chapter 5.2

Homework Assignment #04:
Chapter 4: 2, 4, 6, 7, 10
due Tuesday, March 10, 2015

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 1 / 22



Today’s Outline - March 05, 2015

• Lattice & Basis Functions

• Reciprocal Lattice for FCC

• Crystal structure factor

• Laue vs. Bragg

Reading assignment: Chapter 5.2

Homework Assignment #04:
Chapter 4: 2, 4, 6, 7, 10
due Tuesday, March 10, 2015

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 1 / 22



Today’s Outline - March 05, 2015

• Lattice & Basis Functions

• Reciprocal Lattice for FCC

• Crystal structure factor

• Laue vs. Bragg

Reading assignment: Chapter 5.2

Homework Assignment #04:
Chapter 4: 2, 4, 6, 7, 10
due Tuesday, March 10, 2015

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 1 / 22



Types of lattice vectors
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~Rn = n1~a1 + n2~a2
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More about lattice vectors
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a1

sometimes conventional axes...

...are not primitive

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 3 / 22



More about lattice vectors

a2

a1

a2

a1

sometimes conventional axes...

...are not primitive

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 3 / 22



Miller indices

a2

a1

(10)(20)

(11)

planes designated (hk), intercept the
unit cell axes at

a1
h
,

a2
k

for a lattice with orthogonal unit vec-
tors

1

d2
hk

=
h2

a21
+

k2

a22

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 4 / 22



Miller indices

a2

a1

(10)(20)

(11)

planes designated (hk), intercept the
unit cell axes at

a1
h
,

a2
k

for a lattice with orthogonal unit vec-
tors

1

d2
hk

=
h2

a21
+

k2

a22

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 4 / 22



Miller indices

a2

a1

(10)(20)

(11)

planes designated (hk), intercept the
unit cell axes at

a1
h
,

a2
k

for a lattice with orthogonal unit vec-
tors

1

d2
hk

=
h2

a21
+

k2

a22

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 4 / 22



Reciprocal lattice

a2

a1

a* = 2π/a1 1

a* = 2π/a2 2

~a∗1 =
2π

Vc
~a2 × ~a3 ~a∗2 =

2π

Vc
~a3 × ~a1 ~a∗3 =

2π

Vc
~a1 × ~a2

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 5 / 22



Reciprocal lattice

a2

a1

a* = 2π/a1 1

a* = 2π/a2 2

~a∗1 =
2π

Vc
~a2 × ~a3 ~a∗2 =

2π

Vc
~a3 × ~a1 ~a∗3 =

2π

Vc
~a1 × ~a2

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 5 / 22



Reciprocal lattice

a2

a1

a* = 2π/a1 1

a* = 2π/a2 2

~a∗1 =
2π

Vc
~a2 × ~a3 ~a∗2 =

2π

Vc
~a3 × ~a1 ~a∗3 =

2π

Vc
~a1 × ~a2

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 5 / 22



The Lattice and Basis Functions

If the basis of a one-dimensional system is described by the function B(x)
then the crystal is described by the function

C(x) =
∑
n

B(x − na)

the lattice, which is a collection of points in space, can be written

L(x) =
∑
n

δ(x − na)

convoluting the lattice and basis function we write

L(x) ? B(x) =

∫ ∞
−∞
L(x ′)B(x − x ′)dx ′ =

∫ ∞
−∞

∑
n

δ(x ′ − na)B(x − x ′)dx ′

=
∑
n

∫ ∞
−∞

δ(x ′ − na)B(x − x ′)dx ′ =
∑
n

B(x − na) = C(x)
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Scattering Amplitude

F crystal( ~Q) =
N∑
l

fl( ~Q)e i
~Q·~rl

=
N∑

~Rn+~rj

fj( ~Q)e i
~Q·(~Rn+~rj )

=
∑
j

fj( ~Q)e i
~Q·~rj
∑
n

e i
~Q·~Rn = F unit cellF lattice

Since F crystal( ~Q) is simply the Fourier Transform of the crystal function,
C(x) = L(x) ? B(x), it must be the product of the Fourier Transforms of
L(x) and B(x). F lattice is a very large sum (∼ 1012) so the only time it
gives values appreciably greater than 1 is when:

~Q · ~Rn = 2πm, m = integer

~Ghkl = h~a∗1 + k~a∗2 + l~a∗3
~Ghkl · ~Rn = (n1~a1 + n2~a2 + n3~a3) · (h~a∗1 + k~a∗2 + l~a∗3)

= 2π(hn1 + kn2 + ln3) = 2πm

∴ ~Q = ~Ghkl
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ẑ

2
+

x̂

2
− ŷ
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ẑ

2
− x̂

2

)
~a∗2 =

4π

a

(
ẑ
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ẑ

2
+

x̂

2
− ŷ

2

)
~a∗3 =

4π

a

(
x̂

2
+

ŷ
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2

)

C. Segre (IIT) PHYS 570 - Spring 2015 March 05, 2015 8 / 22



The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

~a1 =
a

2
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(ŷ + ẑ − x̂) =

a3

4

~a∗1 =
2π

vc
~a2 × ~a3 =

2π

vc

a2

4
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ẑ

2
− x̂

2

)
~a∗2 =

4π

a

(
ẑ
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2

)
~a∗3 =

4π

a

(
x̂

2
+

ŷ

2
− ẑ
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which is a body-centered
cubic lattice

The volume of the unit cell is

vc = ~a1 · ~a2 × ~a3 = ~a1 ·
a2

4
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Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, we
consider the lattice sum

SN( ~Q) =
∑
n

e i
~Q·~Rn

=
N−1∑
n=0

e iQna

|SN(Q)| =
sin(NQa/2)

sin(Qa/2)

|SN(Q)| =
sin(N[h + ξ]a∗a/2)

sin([h + ξ]a∗a/2)

First evaluate this sum in 1D.
~Rn = na, thus for N unit cells

Which has been evaluated previ-
ously as and leads to the Laue con-
dition for diffraction. Looking at
the regime where the Laue condid-
ion is not exactly fulfilled

Q = (h + ξ)a∗
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Lattice sum in 1D

but

leading to
peak height

with
half-width

|SN(Q)| =
sin(N[h + ξ]a∗a/2)

sin([h + ξ]a∗a/2)

=
sin(N[h + ξ]π)

sin([h + ξ]π)

sin(Nπ[h + ξ]) = sin(Nπh) cos(Nπξ) + cos(Nπh) sin(Nπξ)

= ± sin(Nπξ)

|SN(Q)| =
sin(Nπξ)

sin(πξ)
≈ Nπξ

πξ
→ N as ξ → 0

|SN(ξ)| → 0, Nπξ = π, ξ1/2 ≈
1

2N
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Lattice sum in 1D

the peak area can be obtained by integration

∫ +1/2N

−1/2N
|SN(ξ)| dξ =

∫ +1/2N

−1/2N

sin(Nπξ)

sin(πξ)
dξ ≈

∫ +1/2N

−1/2N

Nπξ

πξ
dξ

= N

∫ +1/2N

−1/2N
dξ = N

[
ξ
∣∣∣+1/2N

−1/2N
= 1

consequently, the lattice sum can be written

|SN(ξ)| → δ(ξ)

ξ =
Q − ha∗

a∗
=

Q − Gh

a∗

|SN(Q)| → a∗
∑
Gh

δ(Q − Gh)

=
N−1∑
n=0

e iQna

That is, the lattice sum (scattering factor) is simply proportional to the
reciprocal space lattice
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Lattice sum Modulus

the 1D modulus squared

in 2D, with N1×N2 = N unit
cells

and similarly in 3D

|SN(Q)|2 → Na∗
∑
Gh

δ(Q − Gh)

∣∣∣SN( ~Q)
∣∣∣2 → (N1a

∗
1)(N2a

∗
2)
∑
~G

δ( ~Q − ~Gh)

= NA∗
∑
~G

δ( ~Q − ~Gh)

∣∣∣SN( ~Q)
∣∣∣2 → NV ∗c

∑
~G

δ( ~Q − ~Gh)
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Fourier transform of lattice function

Consider the Fourier transform of the lattice function, L(x), (in 1-D for
simplicity)

∫ ∞
−∞
L(x)e iQxdx =

∫ ∞
−∞

∑
n

δ(x − na)e iQxdx =
∑
n

∫ ∞
−∞

δ(x − na)e iQxdx

=
∑
n

e iQna = a∗
∑
h

δ(Q − ha∗) = a∗
∑
h

δ(Q − Gh)

in general ∫ ∞
−∞
L(~r)e i

~Q·~rdV = V ∗c
∑
h,k,l

δ( ~Q − ~Ghkl)
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Bragg condition

θθ
d

k k’

2d sin θ = λ

The Bragg condition for diffraction
is derived by assuming specular re-
flection from parallel planes sepa-
rated by a distance d .

The ray reflecting from the deeper
plane travels an extra distance
2d sin θ

If there is to be constructive in-
terference, this additional distance
must corresponde to an integern
number of wavelengths and we get
the Bragg condition
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Laue condition

The Laue condition states that the
scattering vector must be equal to
a reciprocal lattice vector

~Q = ~Ghk

Q = 2k sin θ

=
2π

d
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General proof of Bragg-Laue equivalence

Must show that for each point in
reciprocal space, there exists a set
of planes in the real space lattice
such that:

~Ghkl is perpendicular to the planes
with Miller indices (hkl) and

| ~Ghkl | =
2π

dhkl
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General proof of Bragg-Laue equivalence

The plane with Miller indices (hkl)
intersects the three basis vectors of
the lattice at a1/h, a2/k, and a3/l

Any vector, ~v , in this plane can be
expressed as a linear combination of
two non-parallel vectors, ~v1 and ~v2

~v1 =
~a3
l

+
~a1
h

, ~v1 =
~a1
h

+
~a2
k

~v = ε1~v1 + ε2~v2

~Ghkl · ~v = (h~a∗1 + k~a∗2 + l~a∗3) ·
(

(ε2 − ε1)
~a1
h
− ε2

~a2
k

+ ε1
~a3
l

)
= 2π(ε2 − ε1 − ε2 + ε1) = 0

Thus ~Ghkl is indeed normal to the plane with Miller indices (hkl)
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General proof of Bragg-Laue equivalence

The spacing between planes (hkl) is
simply given by the distance from
the origin to the plane along a nor-
mal vector

This can be computed as the pro-
jection of any vector which con-
nects the origin to the plane onto
the unit vector in the ~Ghkl direc-
tion. In this case, we choose, ~a1/h

Ĝhkl =
~Ghkl

| ~Ghkl |

Ĝhkl ·
~a1
h

=
(h~a∗1 + k~a∗2 + l~a∗3)

| ~Ghkl |
·
~a1
h

=
2π

| ~Ghkl |
= dhkl
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BCC structure factor

In the body centered cubic structure, there are 2 atoms in the
conventional, cubic unit cell. These are located at

~r1 = 0, ~r2 =
1

2
(~a1 + ~a2 + ~a3)

the unit cell structure factor is thus

F bcc
hkl = f ( ~G )

∑
j

e i
~G ·~rj

= f ( ~G )
(

1 + e iπ(h+k+l)
)

= f ( ~G )×

{
2 h + k + l = 2n

0 otherwise
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FCC structure factor

In the face centered cubic structure, there are 4 atoms in the conventional,
cubic unit cell. These are located at

~r1 = 0, ~r2 =
1

2
(~a1 + ~a2), ~r3 =

1

2
(~a2 + ~a3), ~r4 =

1

2
(~a1 + ~a3)

the unit cell structure factor is thus

F fcc
hkl = f ( ~G )

∑
j

e i
~G ·~rj

= f ( ~G )
(

1 + e iπ(h+k) + e iπ(k+l) + e iπ(h+l)
)

= f ( ~G )×

{
4 h + k , k + l , h + l = 2n

0 otherwise
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Diamond structure

This is a face centered cubic structure with two atoms in the basis which
leads to 8 atoms in the conventional unit cell. These are located at

~r1 = 0, ~r2 =
1

2
(~a1 + ~a2), ~r3 =

1

2
(~a2 + ~a3) ~r4 =

1

2
(~a1 + ~a3)

~r5 =
1

4
(~a1 + ~a2 + ~a3), ~r6 =

1

4
(3~a1 + 3~a2 + ~a3)

~r7 =
1

4
(~a1 + 3~a2 + 3~a3), ~r8 =

1

4
(3~a1 + ~a2 + 3~a3)

F diamond
hkl = f ( ~G )

(
1 + e iπ(h+k) + e iπ(k+l)

+ e iπ(h+l) + e iπ(h+k+l)/2 + e iπ(3h+3k+l)/2

+ e iπ(h+3k+3l)/2 + e iπ(3h+k+3l)/2
)

This is non-zero when h,k,l all even and h +
k + l = 4n or h,k ,l all odd
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Heteroatomic structures

← bcc

sc →

← diamond
fcc →
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