Today's Outline - March 05, 2015

Today's Outline - March 05, 2015

- Lattice \& Basis Functions

Today's Outline - March 05, 2015

- Lattice \& Basis Functions
- Reciprocal Lattice for FCC

Today's Outline - March 05, 2015

- Lattice \& Basis Functions
- Reciprocal Lattice for FCC
- Crystal structure factor

Today's Outline - March 05, 2015

- Lattice \& Basis Functions
- Reciprocal Lattice for FCC
- Crystal structure factor
- Laue vs. Bragg

Today's Outline - March 05, 2015

- Lattice \& Basis Functions
- Reciprocal Lattice for FCC
- Crystal structure factor
- Laue vs. Bragg

Reading assignment: Chapter 5.2

Today's Outline - March 05, 2015

- Lattice \& Basis Functions
- Reciprocal Lattice for FCC
- Crystal structure factor
- Laue vs. Bragg

Reading assignment: Chapter 5.2

Homework Assignment \#04:
Chapter 4: 2, 4, 6, 7, 10
due Tuesday, March 10, 2015

Types of lattice vectors

$$
\vec{R}_{n}=n_{1} \vec{a}_{1}+n_{2} \vec{a}_{2}
$$

Types of lattice vectors

$$
\vec{R}_{n}=n_{1} \vec{a}_{1}+n_{2} \vec{a}_{2}
$$

primitive

Types of lattice vectors

Types of lattice vectors

$$
\vec{R}_{n}=n_{1} \vec{a}_{1}+n_{2} \vec{a}_{2}
$$

primitive

non-primitive
non-conventional

More about lattice vectors

sometimes conventional axes...

More about lattice vectors

sometimes conventional axes...

> ...are not primitive

Miller indices

planes designated (hk), intercept the unit cell axes at

$$
\frac{a_{1}}{h}, \quad \frac{a_{2}}{k}
$$

Miller indices

Miller indices

planes designated (hk), intercept the unit cell axes at

$$
\frac{a_{1}}{h}, \quad \frac{a_{2}}{k}
$$

for a lattice with orthogonal unit vectors

$$
\frac{1}{d_{h k}^{2}}=\frac{h^{2}}{a_{1}^{2}}+\frac{k^{2}}{a_{2}^{2}}
$$

Reciprocal lattice

Reciprocal lattice

$a_{2} \xrightarrow[a_{1}]{ } \bullet$

$$
\vec{a}_{1}^{*}=\frac{2 \pi}{V_{c}} \vec{a}_{2} \times \vec{a}_{3} \quad \vec{a}_{2}^{*}=\frac{2 \pi}{V_{c}} \vec{a}_{3} \times \vec{a}_{1} \quad \vec{a}_{3}^{*}=\frac{2 \pi}{V_{c}} \vec{a}_{1} \times \vec{a}_{2}
$$

Reciprocal lattice

The Lattice and Basis Functions

If the basis of a one-dimensional system is described by the function $\mathcal{B}(x)$ then the crystal is described by the function

The Lattice and Basis Functions

If the basis of a one-dimensional system is described by the function $\mathcal{B}(x)$ then the crystal is described by the function

$$
\mathcal{C}(x)=\sum_{n} \mathcal{B}(x-n a)
$$

The Lattice and Basis Functions

If the basis of a one-dimensional system is described by the function $\mathcal{B}(x)$ then the crystal is described by the function

$$
\mathcal{C}(x)=\sum_{n} \mathcal{B}(x-n a)
$$

the lattice, which is a collection of points in space, can be written

The Lattice and Basis Functions

If the basis of a one-dimensional system is described by the function $\mathcal{B}(x)$ then the crystal is described by the function

$$
\mathcal{C}(x)=\sum_{n} \mathcal{B}(x-n a)
$$

the lattice, which is a collection of points in space, can be written

$$
\mathcal{L}(x)=\sum_{n} \delta(x-n a)
$$

The Lattice and Basis Functions

If the basis of a one-dimensional system is described by the function $\mathcal{B}(x)$ then the crystal is described by the function

$$
\mathcal{C}(x)=\sum_{n} \mathcal{B}(x-n a)
$$

the lattice, which is a collection of points in space, can be written

$$
\mathcal{L}(x)=\sum_{n} \delta(x-n a)
$$

convoluting the lattice and basis function we write

The Lattice and Basis Functions

If the basis of a one-dimensional system is described by the function $\mathcal{B}(x)$ then the crystal is described by the function

$$
\mathcal{C}(x)=\sum_{n} \mathcal{B}(x-n a)
$$

the lattice, which is a collection of points in space, can be written

$$
\mathcal{L}(x)=\sum_{n} \delta(x-n a)
$$

convoluting the lattice and basis function we write

$$
\mathcal{L}(x) \star \mathcal{B}(x)=\int_{-\infty}^{\infty} \mathcal{L}\left(x^{\prime}\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime}
$$

The Lattice and Basis Functions

If the basis of a one-dimensional system is described by the function $\mathcal{B}(x)$ then the crystal is described by the function

$$
\mathcal{C}(x)=\sum_{n} \mathcal{B}(x-n a)
$$

the lattice, which is a collection of points in space, can be written

$$
\mathcal{L}(x)=\sum_{n} \delta(x-n a)
$$

convoluting the lattice and basis function we write

$$
\mathcal{L}(x) \star \mathcal{B}(x)=\int_{-\infty}^{\infty} \mathcal{L}\left(x^{\prime}\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime}=\int_{-\infty}^{\infty} \sum_{n} \delta\left(x^{\prime}-n a\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime}
$$

The Lattice and Basis Functions

If the basis of a one-dimensional system is described by the function $\mathcal{B}(x)$ then the crystal is described by the function

$$
\mathcal{C}(x)=\sum_{n} \mathcal{B}(x-n a)
$$

the lattice, which is a collection of points in space, can be written

$$
\mathcal{L}(x)=\sum_{n} \delta(x-n a)
$$

convoluting the lattice and basis function we write

$$
\begin{aligned}
\mathcal{L}(x) \star \mathcal{B}(x) & =\int_{-\infty}^{\infty} \mathcal{L}\left(x^{\prime}\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime}=\int_{-\infty}^{\infty} \sum_{n} \delta\left(x^{\prime}-n a\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime} \\
& =\sum_{n} \int_{-\infty}^{\infty} \delta\left(x^{\prime}-n a\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime}
\end{aligned}
$$

The Lattice and Basis Functions

If the basis of a one-dimensional system is described by the function $\mathcal{B}(x)$ then the crystal is described by the function

$$
\mathcal{C}(x)=\sum_{n} \mathcal{B}(x-n a)
$$

the lattice, which is a collection of points in space, can be written

$$
\mathcal{L}(x)=\sum_{n} \delta(x-n a)
$$

convoluting the lattice and basis function we write

$$
\begin{aligned}
\mathcal{L}(x) \star \mathcal{B}(x) & =\int_{-\infty}^{\infty} \mathcal{L}\left(x^{\prime}\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime}=\int_{-\infty}^{\infty} \sum_{n} \delta\left(x^{\prime}-n a\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime} \\
& =\sum_{n} \int_{-\infty}^{\infty} \delta\left(x^{\prime}-n a\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime}=\sum_{n} \mathcal{B}(x-n a)
\end{aligned}
$$

The Lattice and Basis Functions

If the basis of a one-dimensional system is described by the function $\mathcal{B}(x)$ then the crystal is described by the function

$$
\mathcal{C}(x)=\sum_{n} \mathcal{B}(x-n a)
$$

the lattice, which is a collection of points in space, can be written

$$
\mathcal{L}(x)=\sum_{n} \delta(x-n a)
$$

convoluting the lattice and basis function we write

$$
\begin{aligned}
\mathcal{L}(x) \star \mathcal{B}(x) & =\int_{-\infty}^{\infty} \mathcal{L}\left(x^{\prime}\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime}=\int_{-\infty}^{\infty} \sum_{n} \delta\left(x^{\prime}-n a\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime} \\
& =\sum_{n} \int_{-\infty}^{\infty} \delta\left(x^{\prime}-n a\right) \mathcal{B}\left(x-x^{\prime}\right) d x^{\prime}=\sum_{n} \mathcal{B}(x-n a)=\mathcal{C}(x)
\end{aligned}
$$

Scattering Amplitude

$$
F^{\text {crystal }}(\vec{Q})=\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}
$$

Scattering Amplitude

$$
F^{c r y s t a l}(\vec{Q})=\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}=\sum_{\vec{R}_{n}+\vec{r}_{j}}^{N} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{r}_{j}\right)}
$$

Scattering Amplitude

$$
\begin{aligned}
F^{\text {crystal }}(\vec{Q}) & =\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}=\sum_{\vec{R}_{n}+\vec{r}_{j}}^{N} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{r}_{j}\right)} \\
& =\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{j}} \sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}}
\end{aligned}
$$

Scattering Amplitude

$$
\begin{aligned}
F^{\text {crystal }}(\vec{Q}) & =\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}=\sum_{\vec{R}_{n}+\vec{r}_{j}}^{N} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{r}_{j}\right)} \\
& =\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{j}} \sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}}=F^{\text {unit cell }} F^{\text {lattice }}
\end{aligned}
$$

Scattering Amplitude

$$
\begin{aligned}
F^{\text {crystal }}(\vec{Q}) & =\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}=\sum_{\vec{R}_{n}+\vec{r}_{j}}^{N} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{r}_{j}\right)} \\
& =\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{j}} \sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}}=F^{\text {unit cell }} F^{\text {lattice }}
\end{aligned}
$$

Since $F^{\text {crystal }}(\vec{Q})$ is simply the Fourier Transform of the crystal function, $\mathcal{C}(x)=\mathcal{L}(x) \star \mathcal{B}(x)$, it must be the product of the Fourier Transforms of $\mathcal{L}(x)$ and $\mathcal{B}(x)$.

Scattering Amplitude

$$
\begin{aligned}
F^{\text {crystal }}(\vec{Q}) & =\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}=\sum_{\vec{R}_{n}+\vec{r}_{j}}^{N} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{r}_{j}\right)} \\
& =\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{j}} \sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}}=F^{\text {unit cell }} F^{\text {lattice }}
\end{aligned}
$$

Since $F^{\text {crystal }}(\vec{Q})$ is simply the Fourier Transform of the crystal function, $\mathcal{C}(x)=\mathcal{L}(x) \star \mathcal{B}(x)$, it must be the product of the Fourier Transforms of $\mathcal{L}(x)$ and $\mathcal{B}(x)$. $F^{\text {lattice }}$ is a very large sum $\left(\sim 10^{12}\right)$ so the only time it gives values appreciably greater than 1 is when:

Scattering Amplitude

$$
\begin{aligned}
F^{c r y s t a l}(\vec{Q}) & =\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}=\sum_{\vec{R}_{n}+\vec{r}_{j}}^{N} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{r}_{j}\right)} \\
& =\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{j}} \sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}}=F^{\text {unit cell }} F^{\text {lattice }}
\end{aligned}
$$

Since $F^{\text {crystal }}(\vec{Q})$ is simply the Fourier Transform of the crystal function, $\mathcal{C}(x)=\mathcal{L}(x) \star \mathcal{B}(x)$, it must be the product of the Fourier Transforms of $\mathcal{L}(x)$ and $\mathcal{B}(x)$. $F^{\text {lattice }}$ is a very large sum $\left(\sim 10^{12}\right)$ so the only time it gives values appreciably greater than 1 is when:

$$
\vec{Q} \cdot \vec{R}_{n}=2 \pi m, \quad m=\text { integer }
$$

Scattering Amplitude

$$
\begin{aligned}
F^{c r y s t a l}(\vec{Q}) & =\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}=\sum_{\vec{R}_{n}+\vec{r}_{j}}^{N} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{r}_{j}\right)} \\
& =\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{j}} \sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}}=F^{\text {unit cell }} F^{\text {lattice }}
\end{aligned}
$$

Since $F^{\text {crystal }}(\vec{Q})$ is simply the Fourier Transform of the crystal function, $\mathcal{C}(x)=\mathcal{L}(x) \star \mathcal{B}(x)$, it must be the product of the Fourier Transforms of $\mathcal{L}(x)$ and $\mathcal{B}(x)$. $F^{\text {lattice }}$ is a very large sum $\left(\sim 10^{12}\right)$ so the only time it gives values appreciably greater than 1 is when:

$$
\begin{aligned}
\vec{Q} \cdot \vec{R}_{n} & =2 \pi m, \quad m=\text { integer } \\
\vec{G}_{h k l} & =h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+l \vec{a}_{3}^{*}
\end{aligned}
$$

Scattering Amplitude

$$
\begin{aligned}
F^{\text {crystal }}(\vec{Q}) & =\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}=\sum_{\vec{R}_{n}+\vec{r}_{j}}^{N} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{r}_{j}\right)} \\
& =\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{j}} \sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}}=F^{\text {unit cell }} F^{\text {lattice }}
\end{aligned}
$$

Since $F^{\text {crystal }}(\vec{Q})$ is simply the Fourier Transform of the crystal function, $\mathcal{C}(x)=\mathcal{L}(x) \star \mathcal{B}(x)$, it must be the product of the Fourier Transforms of $\mathcal{L}(x)$ and $\mathcal{B}(x)$. $F^{\text {lattice }}$ is a very large sum $\left(\sim 10^{12}\right)$ so the only time it gives values appreciably greater than 1 is when:

$$
\begin{aligned}
\vec{Q} \cdot \vec{R}_{n} & =2 \pi m, \quad m=\text { integer } \\
\vec{G}_{h k l} & =h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+l \vec{a}_{3}^{*} \\
\vec{G}_{h k l} \cdot \vec{R}_{n} & =\left(n_{1} \vec{a}_{1}+n_{2} \overrightarrow{a_{2}}+n_{3} \vec{a}_{3}\right) \cdot\left(h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+l \vec{a}_{3}^{*}\right)
\end{aligned}
$$

Scattering Amplitude

$$
\begin{aligned}
F^{\text {crystal }}(\vec{Q}) & =\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}=\sum_{\vec{R}_{n}+\vec{r}_{j}}^{N} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{r}_{j}\right)} \\
& =\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{j}} \sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}}=F^{\text {unit cell }} F^{\text {lattice }}
\end{aligned}
$$

Since $F^{\text {crystal }}(\vec{Q})$ is simply the Fourier Transform of the crystal function, $\mathcal{C}(x)=\mathcal{L}(x) \star \mathcal{B}(x)$, it must be the product of the Fourier Transforms of $\mathcal{L}(x)$ and $\mathcal{B}(x)$. $F^{\text {lattice }}$ is a very large sum $\left(\sim 10^{12}\right)$ so the only time it gives values appreciably greater than 1 is when:

$$
\begin{aligned}
\vec{Q} \cdot \vec{R}_{n} & =2 \pi m, \quad m=\text { integer } \\
\vec{G}_{h k l} & =h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+l \vec{a}_{3}^{*} \\
\vec{G}_{h k l} \cdot \vec{R}_{n} & =\left(n_{1} \vec{a}_{1}+n_{2} \vec{a}_{2}+n_{3} \vec{a}_{3}\right) \cdot\left(h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+l \vec{a}_{3}^{*}\right) \\
& =2 \pi\left(h n_{1}+k n_{2}+l n_{3}\right)=2 \pi m
\end{aligned}
$$

Scattering Amplitude

$$
\begin{aligned}
F^{\text {crystal }}(\vec{Q}) & =\sum_{l}^{N} f_{l}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{l}}=\sum_{\vec{R}_{n}+\vec{r}_{j}}^{N} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot\left(\vec{R}_{n}+\vec{r}_{j}\right)} \\
& =\sum_{j} f_{j}(\vec{Q}) e^{i \vec{Q} \cdot \vec{r}_{j}} \sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}}=F^{\text {unit cell }} F^{\text {lattice }}
\end{aligned}
$$

Since $F^{\text {crystal }}(\vec{Q})$ is simply the Fourier Transform of the crystal function, $\mathcal{C}(x)=\mathcal{L}(x) \star \mathcal{B}(x)$, it must be the product of the Fourier Transforms of $\mathcal{L}(x)$ and $\mathcal{B}(x)$. $F^{\text {lattice }}$ is a very large sum $\left(\sim 10^{12}\right)$ so the only time it gives values appreciably greater than 1 is when:

$$
\begin{aligned}
\vec{Q} \cdot \vec{R}_{n} & =2 \pi m, \quad m=\text { integer } \\
\vec{G}_{h k l} & =h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+l \vec{a}_{3}^{*} \\
\vec{G}_{h k l} \cdot \vec{R}_{n} & =\left(n_{1} \vec{a}_{1}+n_{2} \vec{a}_{2}+n_{3} \vec{a}_{3}\right) \cdot\left(h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+l \vec{a}_{3}^{*}\right) \\
& =2 \pi\left(h n_{1}+k n_{2}+l n_{3}\right)=2 \pi m \\
& \therefore \vec{Q}=\vec{G}_{h k l}
\end{aligned}
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}),
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}),
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}), \quad \vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y})
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}), \quad \vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y})
$$

The volume of the unit cell is

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}), \quad \vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y})
$$

The volume of the unit cell is

$$
v_{c}=\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}), \quad \vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y})
$$

The volume of the unit cell is

$$
v_{c}=\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}=\vec{a}_{1} \cdot \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x})
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}), \quad \vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y})
$$

The volume of the unit cell is

$$
v_{c}=\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}=\vec{a}_{1} \cdot \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x})=\frac{a^{3}}{4}
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}), \quad \vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y})
$$

The volume of the unit cell is

$$
\begin{aligned}
& v_{c}=\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}=\vec{a}_{1} \cdot \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x})=\frac{a^{3}}{4} \\
& \vec{a}_{1}^{*}=\frac{2 \pi}{v_{c}} \vec{a}_{2} \times \vec{a}_{3}
\end{aligned}
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}), \quad \vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y})
$$

The volume of the unit cell is

$$
\begin{aligned}
& v_{c}=\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}=\vec{a}_{1} \cdot \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x})=\frac{a^{3}}{4} \\
& \vec{a}_{1}^{*}=\frac{2 \pi}{v_{c}} \vec{a}_{2} \times \vec{a}_{3}=\frac{2 \pi}{v_{c}} \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x})
\end{aligned}
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}), \quad \vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y})
$$

The volume of the unit cell is

$$
\begin{aligned}
v_{c} & =\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}=\vec{a}_{1} \cdot \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x})=\frac{a^{3}}{4} \\
\vec{a}_{1}^{*} & =\frac{2 \pi}{v_{c}} \vec{a}_{2} \times \vec{a}_{3}=\frac{2 \pi}{v_{c}} \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x}) \\
& =\frac{4 \pi}{a}\left(\frac{\hat{y}}{2}+\frac{\hat{z}}{2}-\frac{\hat{x}}{2}\right)
\end{aligned}
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}), \quad \vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y})
$$

The volume of the unit cell is

$$
\begin{aligned}
v_{c} & =\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}=\vec{a}_{1} \cdot \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x})=\frac{a^{3}}{4} \\
\vec{a}_{1}^{*} & =\frac{2 \pi}{v_{c}} \vec{a}_{2} \times \vec{a}_{3}=\frac{2 \pi}{v_{c}} \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x}) \\
& =\frac{4 \pi}{a}\left(\frac{\hat{y}}{2}+\frac{\hat{z}}{2}-\frac{\hat{x}}{2}\right) \\
\vec{a}_{2}^{*} & =\frac{4 \pi}{a}\left(\frac{\hat{z}}{2}+\frac{\hat{x}}{2}-\frac{\hat{y}}{2}\right) \\
\vec{a}_{3}^{*} & =\frac{4 \pi}{a}\left(\frac{\hat{x}}{2}+\frac{\hat{y}}{2}-\frac{\hat{z}}{2}\right)
\end{aligned}
$$

The FCC reciprocal lattice

The primitive lattice vectors of the face-centered cubic lattice are

$$
\vec{a}_{1}=\frac{a}{2}(\hat{y}+\hat{z}), \quad \vec{a}_{2}=\frac{a}{2}(\hat{z}+\hat{x}), \quad \vec{a}_{3}=\frac{a}{2}(\hat{x}+\hat{y})
$$

which is a body-centered cubic lattice

The volume of the unit cell is
$v_{c}=\vec{a}_{1} \cdot \vec{a}_{2} \times \vec{a}_{3}=\vec{a}_{1} \cdot \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x})=\frac{a^{3}}{4}$
$\vec{a}_{1}^{*}=\frac{2 \pi}{v_{c}} \vec{a}_{2} \times \vec{a}_{3}=\frac{2 \pi}{v_{c}} \frac{a^{2}}{4}(\hat{y}+\hat{z}-\hat{x})$
$=\frac{4 \pi}{a}\left(\frac{\hat{y}}{2}+\frac{\hat{z}}{2}-\frac{\hat{x}}{2}\right)$
$\vec{a}_{2}^{*}=\frac{4 \pi}{a}\left(\frac{\hat{z}}{2}+\frac{\hat{x}}{2}-\frac{\hat{y}}{2}\right)$
$\vec{a}_{3}^{*}=\frac{4 \pi}{a}\left(\frac{\hat{x}}{2}+\frac{\hat{y}}{2}-\frac{\hat{z}}{2}\right)$

Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, we consider the lattice sum

Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, we consider the lattice sum

$$
S_{N}(\vec{Q})=\sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}}
$$

Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, we consider the lattice sum

First evaluate this sum in 1D.

$$
S_{N}(\vec{Q})=\sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}}
$$

Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, we consider the lattice sum

First evaluate this sum in 1D.

$$
\begin{aligned}
S_{N}(\vec{Q}) & =\sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}} \\
& =\sum_{n=0}^{N-1} e^{i Q n a}
\end{aligned}
$$

Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, we consider the lattice sum

First evaluate this sum in 1D.

$$
\begin{aligned}
S_{N}(\vec{Q}) & =\sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}} \\
& =\sum_{n=0}^{N-1} e^{i Q n a}
\end{aligned}
$$

Which has been evaluated previously as

Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, we consider the lattice sum

First evaluate this sum in 1D.

$$
\begin{aligned}
S_{N}(\vec{Q}) & =\sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}} \\
& =\sum_{n=0}^{N-1} e^{i Q n a} \\
\left|S_{N}(Q)\right| & =\frac{\sin (N Q a / 2)}{\sin (Q a / 2)}
\end{aligned}
$$

Which has been evaluated previously as

Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, we consider the lattice sum

First evaluate this sum in 1D.

$$
\begin{aligned}
S_{N}(\vec{Q}) & =\sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}} \\
& =\sum_{n=0}^{N-1} e^{i Q n a} \\
\left|S_{N}(Q)\right| & =\frac{\sin (N Q a / 2)}{\sin (Q a / 2)}
\end{aligned}
$$

$$
\vec{R}_{n}=n a, \text { thus for } N \text { unit cells }
$$

Which has been evaluated previously as and leads to the Laue condition for diffraction. Looking at the regime where the Laue condidion is not exactly fulfilled

$$
Q=(h+\xi) a^{*}
$$

Lattice sum in 1D

In order to compute the intensity of a specific Bragg reflection, we consider the lattice sum

First evaluate this sum in 1D.

$$
\begin{aligned}
S_{N}(\vec{Q}) & =\sum_{n} e^{i \vec{Q} \cdot \vec{R}_{n}} \\
& =\sum_{n=0}^{N-1} e^{i Q n a} \\
\left|S_{N}(Q)\right| & =\frac{\sin (N Q a / 2)}{\sin (Q a / 2)}
\end{aligned}
$$

$$
\vec{R}_{n}=n a, \text { thus for } N \text { unit cells }
$$

Which has been evaluated previously as and leads to the Laue condition for diffraction. Looking at the regime where the Laue condidion is not exactly fulfilled

$$
\left|S_{N}(Q)\right|=\frac{\sin \left(N[h+\xi] a^{*} a / 2\right)}{\sin \left([h+\xi] a^{*} a / 2\right)}
$$

$$
Q=(h+\xi) a^{*}
$$

Lattice sum in 1D

$$
\left|S_{N}(Q)\right|=\frac{\sin \left(N[h+\xi] a^{*} a / 2\right)}{\sin \left([h+\xi] a^{*} a / 2\right)}
$$

Lattice sum in 1D

$$
\left|S_{N}(Q)\right|=\frac{\sin \left(N[h+\xi] a^{*} a / 2\right)}{\sin \left([h+\xi] a^{*} a / 2\right)}=\frac{\sin (N[h+\xi] \pi)}{\sin ([h+\xi] \pi)}
$$

Lattice sum in 1D

$$
\left|S_{N}(Q)\right|=\frac{\sin \left(N[h+\xi] a^{*} a / 2\right)}{\sin \left([h+\xi] a^{*} a / 2\right)}=\frac{\sin (N[h+\xi] \pi)}{\sin ([h+\xi] \pi)}
$$

but

$$
\sin (N \pi[h+\xi])=\sin (N \pi h) \cos (N \pi \xi)+\cos (N \pi h) \sin (N \pi \xi)
$$

Lattice sum in 1D

$$
\left|S_{N}(Q)\right|=\frac{\sin \left(N[h+\xi] a^{*} a / 2\right)}{\sin \left([h+\xi] a^{*} a / 2\right)}=\frac{\sin (N[h+\xi] \pi)}{\sin ([h+\xi] \pi)}
$$

but

$$
\begin{aligned}
\sin (N \pi[h+\xi]) & =\sin (N \pi h) \cos (N \pi \xi)+\cos (N \pi h) \sin (N \pi \xi) \\
& = \pm \sin (N \pi \xi)
\end{aligned}
$$

Lattice sum in 1D

$$
\left|S_{N}(Q)\right|=\frac{\sin \left(N[h+\xi] a^{*} a / 2\right)}{\sin \left([h+\xi] a^{*} a / 2\right)}=\frac{\sin (N[h+\xi] \pi)}{\sin ([h+\xi] \pi)}
$$

but

$$
\begin{aligned}
\sin (N \pi[h+\xi]) & =\sin (N \pi h) \cos (N \pi \xi)+\cos (N \pi h) \sin (N \pi \xi) \\
& = \pm \sin (N \pi \xi)
\end{aligned}
$$

leading to peak height

$$
\left|S_{N}(Q)\right|=\frac{\sin (N \pi \xi)}{\sin (\pi \xi)}
$$

Lattice sum in 1D

$$
\left|S_{N}(Q)\right|=\frac{\sin \left(N[h+\xi] a^{*} a / 2\right)}{\sin \left([h+\xi] a^{*} a / 2\right)}=\frac{\sin (N[h+\xi] \pi)}{\sin ([h+\xi] \pi)}
$$

but

$$
\begin{aligned}
\sin (N \pi[h+\xi]) & =\sin (N \pi h) \cos (N \pi \xi)+\cos (N \pi h) \sin (N \pi \xi) \\
& = \pm \sin (N \pi \xi)
\end{aligned}
$$

leading to peak height

$$
\left|S_{N}(Q)\right|=\frac{\sin (N \pi \xi)}{\sin (\pi \xi)} \approx \frac{N \pi \xi}{\pi \xi}
$$

Lattice sum in 1D

$$
\left|S_{N}(Q)\right|=\frac{\sin \left(N[h+\xi] a^{*} a / 2\right)}{\sin \left([h+\xi] a^{*} a / 2\right)}=\frac{\sin (N[h+\xi] \pi)}{\sin ([h+\xi] \pi)}
$$

but

$$
\begin{aligned}
\sin (N \pi[h+\xi]) & =\sin (N \pi h) \cos (N \pi \xi)+\cos (N \pi h) \sin (N \pi \xi) \\
& = \pm \sin (N \pi \xi)
\end{aligned}
$$

leading to peak height

$$
\left|S_{N}(Q)\right|=\frac{\sin (N \pi \xi)}{\sin (\pi \xi)} \approx \frac{N \pi \xi}{\pi \xi} \rightarrow N \text { as } \xi \rightarrow 0
$$

Lattice sum in 1D

$$
\left|S_{N}(Q)\right|=\frac{\sin \left(N[h+\xi] a^{*} a / 2\right)}{\sin \left([h+\xi] a^{*} a / 2\right)}=\frac{\sin (N[h+\xi] \pi)}{\sin ([h+\xi] \pi)}
$$

but

$$
\begin{aligned}
\sin (N \pi[h+\xi]) & =\sin (N \pi h) \cos (N \pi \xi)+\cos (N \pi h) \sin (N \pi \xi) \\
& = \pm \sin (N \pi \xi)
\end{aligned}
$$

leading to peak height

$$
\left|S_{N}(Q)\right|=\frac{\sin (N \pi \xi)}{\sin (\pi \xi)} \approx \frac{N \pi \xi}{\pi \xi} \rightarrow N \text { as } \xi \rightarrow 0
$$

with
half-width

Lattice sum in 1D

$$
\left|S_{N}(Q)\right|=\frac{\sin \left(N[h+\xi] a^{*} a / 2\right)}{\sin \left([h+\xi] a^{*} a / 2\right)}=\frac{\sin (N[h+\xi] \pi)}{\sin ([h+\xi] \pi)}
$$

but

$$
\begin{aligned}
\sin (N \pi[h+\xi]) & =\sin (N \pi h) \cos (N \pi \xi)+\cos (N \pi h) \sin (N \pi \xi) \\
& = \pm \sin (N \pi \xi)
\end{aligned}
$$

leading to peak height

$$
\left|S_{N}(Q)\right|=\frac{\sin (N \pi \xi)}{\sin (\pi \xi)} \approx \frac{N \pi \xi}{\pi \xi} \rightarrow N \text { as } \xi \rightarrow 0
$$

with
half-width
$\left|S_{N}(\xi)\right| \rightarrow 0$

Lattice sum in 1D

$$
\left|S_{N}(Q)\right|=\frac{\sin \left(N[h+\xi] a^{*} a / 2\right)}{\sin \left([h+\xi] a^{*} a / 2\right)}=\frac{\sin (N[h+\xi] \pi)}{\sin ([h+\xi] \pi)}
$$

but

$$
\begin{aligned}
\sin (N \pi[h+\xi]) & =\sin (N \pi h) \cos (N \pi \xi)+\cos (N \pi h) \sin (N \pi \xi) \\
& = \pm \sin (N \pi \xi)
\end{aligned}
$$

leading to peak height

$$
\left|S_{N}(Q)\right|=\frac{\sin (N \pi \xi)}{\sin (\pi \xi)} \approx \frac{N \pi \xi}{\pi \xi} \rightarrow N \text { as } \xi \rightarrow 0
$$

with
half-width

$$
\left|S_{N}(\xi)\right| \rightarrow 0, \quad N \pi \xi=\pi, \quad \xi_{1 / 2} \approx \frac{1}{2 N}
$$

Lattice sum in 1D

the peak area can be obtained by integration

Lattice sum in 1D

the peak area can be obtained by integration

$$
\int_{-1 / 2 N}^{+1 / 2 N}\left|S_{N}(\xi)\right| d \xi=\int_{-1 / 2 N}^{+1 / 2 N} \frac{\sin (N \pi \xi)}{\sin (\pi \xi)} d \xi
$$

Lattice sum in 1D

the peak area can be obtained by integration

$$
\int_{-1 / 2 N}^{+1 / 2 N}\left|S_{N}(\xi)\right| d \xi=\int_{-1 / 2 N}^{+1 / 2 N} \frac{\sin (N \pi \xi)}{\sin (\pi \xi)} d \xi \approx \int_{-1 / 2 N}^{+1 / 2 N} \frac{N \pi \xi}{\pi \xi} d \xi
$$

Lattice sum in 1D

the peak area can be obtained by integration

$$
\begin{aligned}
\int_{-1 / 2 N}^{+1 / 2 N}\left|S_{N}(\xi)\right| d \xi & =\int_{-1 / 2 N}^{+1 / 2 N} \frac{\sin (N \pi \xi)}{\sin (\pi \xi)} d \xi \approx \int_{-1 / 2 N}^{+1 / 2 N} \frac{N \pi \xi}{\pi \xi} d \xi \\
& =N \int_{-1 / 2 N}^{+1 / 2 N} d \xi=N\left[\left.\xi\right|_{-1 / 2 N} ^{+1 / 2 N}\right.
\end{aligned}
$$

Lattice sum in 1D

the peak area can be obtained by integration

$$
\begin{aligned}
\int_{-1 / 2 N}^{+1 / 2 N}\left|S_{N}(\xi)\right| d \xi & =\int_{-1 / 2 N}^{+1 / 2 N} \frac{\sin (N \pi \xi)}{\sin (\pi \xi)} d \xi \approx \int_{-1 / 2 N}^{+1 / 2 N} \frac{N \pi \xi}{\pi \xi} d \xi \\
& =N \int_{-1 / 2 N}^{+1 / 2 N} d \xi=N\left[\left.\xi\right|_{-1 / 2 N} ^{+1 / 2 N}=1\right.
\end{aligned}
$$

Lattice sum in 1D

the peak area can be obtained by integration

$$
\begin{aligned}
\int_{-1 / 2 N}^{+1 / 2 N}\left|S_{N}(\xi)\right| d \xi & =\int_{-1 / 2 N}^{+1 / 2 N} \frac{\sin (N \pi \xi)}{\sin (\pi \xi)} d \xi \approx \int_{-1 / 2 N}^{+1 / 2 N} \frac{N \pi \xi}{\pi \xi} d \xi \\
& =N \int_{-1 / 2 N}^{+1 / 2 N} d \xi=N\left[\left.\xi\right|_{-1 / 2 N} ^{+1 / 2 N}=1\right.
\end{aligned}
$$

consequently, the lattice sum can be written

Lattice sum in 1D

the peak area can be obtained by integration

$$
\begin{aligned}
\int_{-1 / 2 N}^{+1 / 2 N}\left|S_{N}(\xi)\right| d \xi & =\int_{-1 / 2 N}^{+1 / 2 N} \frac{\sin (N \pi \xi)}{\sin (\pi \xi)} d \xi \approx \int_{-1 / 2 N}^{+1 / 2 N} \frac{N \pi \xi}{\pi \xi} d \xi \\
& =N \int_{-1 / 2 N}^{+1 / 2 N} d \xi=N\left[\left.\xi\right|_{-1 / 2 N} ^{+1 / 2 N}=1\right.
\end{aligned}
$$

consequently, the lattice sum can be written

$$
\left|S_{N}(\xi)\right| \rightarrow \delta(\xi)
$$

Lattice sum in 1D

the peak area can be obtained by integration

$$
\begin{aligned}
\int_{-1 / 2 N}^{+1 / 2 N}\left|S_{N}(\xi)\right| d \xi & =\int_{-1 / 2 N}^{+1 / 2 N} \frac{\sin (N \pi \xi)}{\sin (\pi \xi)} d \xi \approx \int_{-1 / 2 N}^{+1 / 2 N} \frac{N \pi \xi}{\pi \xi} d \xi \\
& =N \int_{-1 / 2 N}^{+1 / 2 N} d \xi=N\left[\left.\xi\right|_{-1 / 2 N} ^{+1 / 2 N}=1\right.
\end{aligned}
$$

consequently, the lattice sum can be written

$$
\left|S_{N}(\xi)\right| \rightarrow \delta(\xi) \quad \xi=\frac{Q-h a^{*}}{a^{*}}=\frac{Q-G_{h}}{a^{*}}
$$

Lattice sum in 1D

the peak area can be obtained by integration

$$
\begin{aligned}
\int_{-1 / 2 N}^{+1 / 2 N}\left|S_{N}(\xi)\right| d \xi & =\int_{-1 / 2 N}^{+1 / 2 N} \frac{\sin (N \pi \xi)}{\sin (\pi \xi)} d \xi \approx \int_{-1 / 2 N}^{+1 / 2 N} \frac{N \pi \xi}{\pi \xi} d \xi \\
& =N \int_{-1 / 2 N}^{+1 / 2 N} d \xi=N\left[\left.\xi\right|_{-1 / 2 N} ^{+1 / 2 N}=1\right.
\end{aligned}
$$

consequently, the lattice sum can be written

$$
\begin{aligned}
& \left|S_{N}(\xi)\right| \rightarrow \delta(\xi) \quad \xi=\frac{Q-h a^{*}}{a^{*}}=\frac{Q-G_{h}}{a^{*}} \\
& \left|S_{N}(Q)\right| \rightarrow a^{*} \sum_{G_{h}} \delta\left(Q-G_{h}\right)
\end{aligned}
$$

Lattice sum in 1D

the peak area can be obtained by integration

$$
\begin{aligned}
\int_{-1 / 2 N}^{+1 / 2 N}\left|S_{N}(\xi)\right| d \xi & =\int_{-1 / 2 N}^{+1 / 2 N} \frac{\sin (N \pi \xi)}{\sin (\pi \xi)} d \xi \approx \int_{-1 / 2 N}^{+1 / 2 N} \frac{N \pi \xi}{\pi \xi} d \xi \\
& =N \int_{-1 / 2 N}^{+1 / 2 N} d \xi=N\left[\left.\xi\right|_{-1 / 2 N} ^{+1 / 2 N}=1\right.
\end{aligned}
$$

consequently, the lattice sum can be written

$$
\begin{aligned}
& \left|S_{N}(\xi)\right| \rightarrow \delta(\xi) \quad \xi=\frac{Q-h a^{*}}{a^{*}}=\frac{Q-G_{h}}{a^{*}} \\
& \left|S_{N}(Q)\right| \rightarrow a^{*} \sum_{G_{h}} \delta\left(Q-G_{h}\right)=\sum_{n=0}^{N-1} e^{i Q n a}
\end{aligned}
$$

Lattice sum in 1D

the peak area can be obtained by integration

$$
\begin{aligned}
\int_{-1 / 2 N}^{+1 / 2 N}\left|S_{N}(\xi)\right| d \xi & =\int_{-1 / 2 N}^{+1 / 2 N} \frac{\sin (N \pi \xi)}{\sin (\pi \xi)} d \xi \approx \int_{-1 / 2 N}^{+1 / 2 N} \frac{N \pi \xi}{\pi \xi} d \xi \\
& =N \int_{-1 / 2 N}^{+1 / 2 N} d \xi=N\left[\left.\xi\right|_{-1 / 2 N} ^{+1 / 2 N}=1\right.
\end{aligned}
$$

consequently, the lattice sum can be written

$$
\begin{aligned}
& \left|S_{N}(\xi)\right| \rightarrow \delta(\xi) \quad \xi=\frac{Q-h a^{*}}{a^{*}}=\frac{Q-G_{h}}{a^{*}} \\
& \left|S_{N}(Q)\right| \rightarrow a^{*} \sum_{G_{h}} \delta\left(Q-G_{h}\right)=\sum_{n=0}^{N-1} e^{i Q n a}
\end{aligned}
$$

That is, the lattice sum (scattering factor) is simply proportional to the reciprocal space lattice

Lattice sum Modulus

the 1 D modulus squared

Lattice sum Modulus

the 1 D modulus squared

$$
\left|S_{N}(Q)\right|^{2} \rightarrow N a^{*} \sum_{G_{h}} \delta\left(Q-G_{h}\right)
$$

Lattice sum Modulus

the 1 D modulus squared

$$
\left|S_{N}(Q)\right|^{2} \rightarrow N a^{*} \sum_{G_{h}} \delta\left(Q-G_{h}\right)
$$

in 2 D , with $N_{1} \times N_{2}=N$ unit cells

Lattice sum Modulus

the 1 D modulus squared

$$
\begin{aligned}
& \left|S_{N}(Q)\right|^{2} \rightarrow N a^{*} \sum_{G_{h}} \delta\left(Q-G_{h}\right) \\
& \left|S_{N}(\vec{Q})\right|^{2} \rightarrow\left(N_{1} a_{1}^{*}\right)\left(N_{2} a_{2}^{*}\right) \sum_{\vec{G}} \delta\left(\vec{Q}-\vec{G}_{h}\right)
\end{aligned}
$$

in 2 D , with $N_{1} \times N_{2}=N$ unit cells

Lattice sum Modulus

the 1 D modulus squared

$$
\begin{aligned}
\left|S_{N}(Q)\right|^{2} & \rightarrow N a^{*} \sum_{G_{h}} \delta\left(Q-G_{h}\right) \\
\left|S_{N}(\vec{Q})\right|^{2} & \rightarrow\left(N_{1} a_{1}^{*}\right)\left(N_{2} a_{2}^{*}\right) \sum_{\vec{G}} \delta\left(\vec{Q}-\vec{G}_{h}\right) \\
& =N A^{*} \sum_{\vec{G}} \delta\left(\vec{Q}-\vec{G}_{h}\right)
\end{aligned}
$$

in 2 D , with $N_{1} \times N_{2}=N$ unit cells

Lattice sum Modulus

the 1 D modulus squared

$$
\begin{aligned}
\left|S_{N}(Q)\right|^{2} & \rightarrow N a^{*} \sum_{G_{h}} \delta\left(Q-G_{h}\right) \\
\left|S_{N}(\vec{Q})\right|^{2} & \rightarrow\left(N_{1} a_{1}^{*}\right)\left(N_{2} a_{2}^{*}\right) \sum_{\vec{G}} \delta\left(\vec{Q}-\vec{G}_{h}\right) \\
& =N A^{*} \sum_{\vec{G}} \delta\left(\vec{Q}-\vec{G}_{h}\right)
\end{aligned}
$$

in 2 D , with $N_{1} \times N_{2}=N$ unit cells
and similarly in 3D

Lattice sum Modulus

the 1 D modulus squared

$$
\begin{aligned}
\left|S_{N}(Q)\right|^{2} & \rightarrow N a^{*} \sum_{G_{h}} \delta\left(Q-G_{h}\right) \\
\left|S_{N}(\vec{Q})\right|^{2} & \rightarrow\left(N_{1} a_{1}^{*}\right)\left(N_{2} a_{2}^{*}\right) \sum_{\vec{G}} \delta\left(\vec{Q}-\vec{G}_{h}\right) \\
& =N A^{*} \sum_{\vec{G}} \delta\left(\vec{Q}-\vec{G}_{h}\right)
\end{aligned}
$$

and similarly in 3D

$$
\left|S_{N}(\vec{Q})\right|^{2} \rightarrow N V_{c}^{*} \sum_{\vec{G}} \delta\left(\vec{Q}-\vec{G}_{h}\right)
$$

in 2 D , with $N_{1} \times N_{2}=N$ unit cells

Fourier transform of lattice function

Consider the Fourier transform of the lattice function, $\mathcal{L}(x)$, (in 1-D for simplicity)

Fourier transform of lattice function

Consider the Fourier transform of the lattice function, $\mathcal{L}(x)$, (in 1-D for simplicity)

$$
\int_{-\infty}^{\infty} \mathcal{L}(x) e^{i Q x} d x=\int_{-\infty}^{\infty} \sum_{n} \delta(x-n a) e^{i Q x} d x
$$

Fourier transform of lattice function

Consider the Fourier transform of the lattice function, $\mathcal{L}(x)$, (in 1-D for simplicity)

$$
\int_{-\infty}^{\infty} \mathcal{L}(x) e^{i Q x} d x=\int_{-\infty}^{\infty} \sum_{n} \delta(x-n a) e^{i Q x} d x=\sum_{n} \int_{-\infty}^{\infty} \delta(x-n a) e^{i Q x} d x
$$

Fourier transform of lattice function

Consider the Fourier transform of the lattice function, $\mathcal{L}(x)$, (in 1-D for simplicity)

$$
\begin{aligned}
\int_{-\infty}^{\infty} \mathcal{L}(x) e^{i Q x} d x & =\int_{-\infty}^{\infty} \sum_{n} \delta(x-n a) e^{i Q x} d x=\sum_{n} \int_{-\infty}^{\infty} \delta(x-n a) e^{i Q x} d x \\
& =\sum_{n} e^{i Q n a}
\end{aligned}
$$

Fourier transform of lattice function

Consider the Fourier transform of the lattice function, $\mathcal{L}(x)$, (in 1-D for simplicity)

$$
\begin{aligned}
\int_{-\infty}^{\infty} \mathcal{L}(x) e^{i Q x} d x & =\int_{-\infty}^{\infty} \sum_{n} \delta(x-n a) e^{i Q x} d x=\sum_{n} \int_{-\infty}^{\infty} \delta(x-n a) e^{i Q x} d x \\
& =\sum_{n} e^{i Q n a}=a^{*} \sum_{h} \delta\left(Q-h a^{*}\right)
\end{aligned}
$$

Fourier transform of lattice function

Consider the Fourier transform of the lattice function, $\mathcal{L}(x)$, (in 1-D for simplicity)

$$
\begin{aligned}
\int_{-\infty}^{\infty} \mathcal{L}(x) e^{i Q x} d x & =\int_{-\infty}^{\infty} \sum_{n} \delta(x-n a) e^{i Q x} d x=\sum_{n} \int_{-\infty}^{\infty} \delta(x-n a) e^{i Q x} d x \\
& =\sum_{n} e^{i Q n a}=a^{*} \sum_{h} \delta\left(Q-h a^{*}\right)=a^{*} \sum_{h} \delta\left(Q-G_{h}\right)
\end{aligned}
$$

Fourier transform of lattice function

Consider the Fourier transform of the lattice function, $\mathcal{L}(x)$, (in 1-D for simplicity)

$$
\begin{aligned}
\int_{-\infty}^{\infty} \mathcal{L}(x) e^{i Q x} d x & =\int_{-\infty}^{\infty} \sum_{n} \delta(x-n a) e^{i Q x} d x=\sum_{n} \int_{-\infty}^{\infty} \delta(x-n a) e^{i Q x} d x \\
& =\sum_{n} e^{i Q n a}=a^{*} \sum_{h} \delta\left(Q-h a^{*}\right)=a^{*} \sum_{h} \delta\left(Q-G_{h}\right)
\end{aligned}
$$

in general

$$
\int_{-\infty}^{\infty} \mathcal{L}(\vec{r}) e^{i \vec{Q} \cdot \vec{r} d} d V=V_{c}^{*} \sum_{h, k, l} \delta\left(\vec{Q}-\vec{G}_{h k l}\right)
$$

Bragg condition

Bragg condition

The Bragg condition for diffraction is derived by assuming specular reflection from parallel planes separated by a distance d.

Bragg condition

The Bragg condition for diffraction is derived by assuming specular reflection from parallel planes separated by a distance d.

The ray reflecting from the deeper plane travels an extra distance $2 d \sin \theta$

Bragg condition

The Bragg condition for diffraction is derived by assuming specular reflection from parallel planes separated by a distance d.

The ray reflecting from the deeper plane travels an extra distance $2 d \sin \theta$

If there is to be constructive interference, this additional distance must corresponde to an integern number of wavelengths and we get the Bragg condition

Bragg condition

$$
2 d \sin \theta=\lambda
$$

The Bragg condition for diffraction is derived by assuming specular reflection from parallel planes separated by a distance d.

The ray reflecting from the deeper plane travels an extra distance $2 d \sin \theta$

If there is to be constructive interference, this additional distance must corresponde to an integern number of wavelengths and we get the Bragg condition

Laue condition

The Laue condition states that the scattering vector must be equal to a reciprocal lattice vector

Laue condition

The Laue condition states that the scattering vector must be equal to a reciprocal lattice vector

Laue condition

The Laue condition states that the scattering vector must be equal to a reciprocal lattice vector

$$
\vec{Q}=\overrightarrow{G_{n k}}
$$

Laue condition

The Laue condition states that the scattering vector must be equal to a reciprocal lattice vector

$$
\begin{aligned}
& \vec{Q}=\overrightarrow{G_{h k}} \\
& Q=2 k \sin \theta
\end{aligned}
$$

Laue condition

The Laue condition states that the scattering vector must be equal to a reciprocal lattice vector

$$
\begin{aligned}
& \vec{Q}=\overrightarrow{G_{h k}} \\
& Q=2 k \sin \theta=\frac{2 \pi}{d}
\end{aligned}
$$

Laue condition

The Laue condition states that the scattering vector must be equal to a reciprocal lattice vector

$$
\begin{aligned}
& \vec{Q}=\overrightarrow{G_{h k}} \\
& Q=2 k \sin \theta=\frac{2 \pi}{d}
\end{aligned}
$$

$$
2 d \sin \theta=\frac{2 \pi}{k}
$$

Laue condition

The Laue condition states that the scattering vector must be equal to a reciprocal lattice vector

$$
\begin{aligned}
& \vec{Q}=\overrightarrow{G_{h k}} \\
& Q=2 k \sin \theta=\frac{2 \pi}{d}
\end{aligned}
$$

$$
2 d \sin \theta=\frac{2 \pi}{k}=\lambda
$$

Laue condition

The Laue condition states that the scattering vector must be equal to a reciprocal lattice vector

$$
\begin{aligned}
& \vec{Q}=\overrightarrow{G_{h k}} \\
& Q=2 k \sin \theta=\frac{2 \pi}{d}
\end{aligned}
$$

$$
2 d \sin \theta=\frac{2 \pi}{k}=\lambda
$$

Thus the Bragg and Laue conditions are equivalent

General proof of Bragg-Laue equivalence

General proof of Bragg-Laue equivalence

Must show that for each point in reciprocal space, there exists a set of planes in the real space lattice such that:

General proof of Bragg-Laue equivalence

Must show that for each point in reciprocal space, there exists a set of planes in the real space lattice such that:
$\vec{G}_{h k l}$ is perpendicular to the planes with Miller indices (hkl)

General proof of Bragg-Laue equivalence

Must show that for each point in reciprocal space, there exists a set of planes in the real space lattice such that:
$\vec{G}_{h k l}$ is perpendicular to the planes with Miller indices (hkl) and

General proof of Bragg-Laue equivalence

Must show that for each point in reciprocal space, there exists a set of planes in the real space lattice such that:
$\vec{G}_{h k l}$ is perpendicular to the planes with Miller indices (hkl) and

$$
\left|\vec{G}_{h k l}\right|=\frac{2 \pi}{d_{h k l}}
$$

General proof of Bragg-Laue equivalence

General proof of Bragg-Laue equivalence

The plane with Miller indices (hkl) intersects the three basis vectors of the lattice at $a_{1} / h, a_{2} / k$, and a_{3} / l

General proof of Bragg-Laue equivalence

The plane with Miller indices (hkl) intersects the three basis vectors of the lattice at $a_{1} / h, a_{2} / k$, and a_{3} / l Any vector, \vec{v}, in this plane can be expressed as a linear combination of two non-parallel vectors, \vec{v}_{1} and \vec{v}_{2}

General proof of Bragg-Laue equivalence

The plane with Miller indices (hkl) intersects the three basis vectors of the lattice at $a_{1} / h, a_{2} / k$, and a_{3} / l Any vector, \vec{v}, in this plane can be expressed as a linear combination of two non-parallel vectors, \vec{v}_{1} and \vec{v}_{2}

$$
\vec{v}_{1}=\frac{\vec{a}_{3}}{l}+\frac{\vec{a}_{1}}{h}
$$

General proof of Bragg-Laue equivalence

The plane with Miller indices (hkl) intersects the three basis vectors of the lattice at $a_{1} / h, a_{2} / k$, and a_{3} / l Any vector, \vec{v}, in this plane can be expressed as a linear combination of two non-parallel vectors, \vec{v}_{1} and \vec{v}_{2}

$$
\vec{v}_{1}=\frac{\vec{a}_{3}}{l}+\frac{\overrightarrow{a_{1}}}{h}, \quad \overrightarrow{v_{1}}=\frac{\overrightarrow{a_{1}}}{h}+\frac{\vec{a}_{2}}{k}
$$

General proof of Bragg-Laue equivalence

The plane with Miller indices (hkl) intersects the three basis vectors of the lattice at $a_{1} / h, a_{2} / k$, and a_{3} / l Any vector, \vec{v}, in this plane can be expressed as a linear combination of two non-parallel vectors, \vec{v}_{1} and \vec{v}_{2}

$$
\begin{aligned}
\vec{v}_{1} & =\frac{\overrightarrow{a_{3}}}{l}+\frac{\overrightarrow{a_{1}}}{h}, \quad \overrightarrow{v_{1}}=\frac{\overrightarrow{a_{1}}}{h}+\frac{\overrightarrow{a_{2}}}{k} \\
\vec{v} & =\epsilon_{1} \vec{v}_{1}+\epsilon_{2} \vec{v}_{2}
\end{aligned}
$$

General proof of Bragg-Laue equivalence

The plane with Miller indices (hkl) intersects the three basis vectors of the lattice at $a_{1} / h, a_{2} / k$, and a_{3} / l

Any vector, \vec{v}, in this plane can be expressed as a linear combination of two non-parallel vectors, \vec{v}_{1} and \vec{v}_{2}

$$
\begin{aligned}
\overrightarrow{v_{1}} & =\frac{\vec{a}_{3}}{l}+\frac{\overrightarrow{a_{1}}}{h}, \quad \overrightarrow{v_{1}}=\frac{\overrightarrow{a_{1}}}{h}+\frac{\overrightarrow{a_{2}}}{k} \\
\vec{v} & =\epsilon_{1} \vec{v}_{1}+\epsilon_{2} \vec{v}_{2}
\end{aligned}
$$

$$
\vec{G}_{h k l} \cdot \vec{v}=\left(h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+l \vec{a}_{3}^{*}\right) \cdot\left(\left(\epsilon_{2}-\epsilon_{1}\right) \frac{\vec{a}_{1}}{h}-\epsilon_{2} \frac{\vec{a}_{2}}{k}+\epsilon_{1} \frac{\vec{a}_{3}}{l}\right)
$$

General proof of Bragg-Laue equivalence

The plane with Miller indices (hkl) intersects the three basis vectors of the lattice at $a_{1} / h, a_{2} / k$, and a_{3} / l

Any vector, \vec{v}, in this plane can be expressed as a linear combination of two non-parallel vectors, \vec{v}_{1} and \vec{v}_{2}

$$
\begin{aligned}
\vec{v}_{1} & =\frac{\vec{a}_{3}}{l}+\frac{\overrightarrow{a_{1}}}{h}, \quad \vec{v}_{1}=\frac{\overrightarrow{a_{1}}}{h}+\frac{\overrightarrow{a_{2}}}{k} \\
\vec{v} & =\epsilon_{1} \vec{v}_{1}+\epsilon_{2} \vec{v}_{2}
\end{aligned}
$$

$$
\begin{aligned}
\vec{G}_{h k l} \cdot \vec{v} & =\left(h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+l \vec{a}_{3}^{*}\right) \cdot\left(\left(\epsilon_{2}-\epsilon_{1}\right) \frac{\vec{a}_{1}}{h}-\epsilon_{2} \frac{\vec{a}_{2}}{k}+\epsilon_{1} \frac{\vec{a}_{3}}{l}\right) \\
& =2 \pi\left(\epsilon_{2}-\epsilon_{1}-\epsilon_{2}+\epsilon_{1}\right)=0
\end{aligned}
$$

General proof of Bragg-Laue equivalence

The plane with Miller indices (hkl) intersects the three basis vectors of the lattice at $a_{1} / h, a_{2} / k$, and a_{3} / l

Any vector, \vec{v}, in this plane can be expressed as a linear combination of two non-parallel vectors, \vec{v}_{1} and \vec{v}_{2}

$$
\begin{aligned}
\vec{v}_{1} & =\frac{\vec{a}_{3}}{l}+\frac{\overrightarrow{a_{1}}}{h}, \quad \vec{v}_{1}=\frac{\overrightarrow{a_{1}}}{h}+\frac{\overrightarrow{a_{2}}}{k} \\
\vec{v} & =\epsilon_{1} \vec{v}_{1}+\epsilon_{2} \vec{v}_{2}
\end{aligned}
$$

$$
\begin{aligned}
\vec{G}_{h k l} \cdot \vec{v} & =\left(h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+l \vec{a}_{3}^{*}\right) \cdot\left(\left(\epsilon_{2}-\epsilon_{1}\right) \frac{\vec{a}_{1}}{h}-\epsilon_{2} \frac{\vec{a}_{2}}{k}+\epsilon_{1} \frac{\vec{a}_{3}}{l}\right) \\
& =2 \pi\left(\epsilon_{2}-\epsilon_{1}-\epsilon_{2}+\epsilon_{1}\right)=0
\end{aligned}
$$

Thus $\vec{G}_{h k l}$ is indeed normal to the plane with Miller indices (hkl)

General proof of Bragg-Laue equivalence

General proof of Bragg-Laue equivalence

The spacing between planes (hkl) is simply given by the distance from the origin to the plane along a normal vector

General proof of Bragg-Laue equivalence

The spacing between planes (hkl) is simply given by the distance from the origin to the plane along a normal vector

This can be computed as the projection of any vector which connects the origin to the plane onto the unit vector in the $\vec{G}_{h k l}$ direction. In this case, we choose, \vec{a}_{1} / h

General proof of Bragg-Laue equivalence

The spacing between planes (hkl) is simply given by the distance from the origin to the plane along a normal vector

This can be computed as the projection of any vector which connects the origin to the plane onto the unit vector in the $\vec{G}_{h k l}$ direction. In this case, we choose, \vec{a}_{1} / h

$$
\hat{G}_{h k l}=\frac{\vec{G}_{h k l}}{\left|\vec{G}_{h k l}\right|}
$$

General proof of Bragg-Laue equivalence

The spacing between planes (hkl) is simply given by the distance from the origin to the plane along a normal vector

This can be computed as the projection of any vector which connects the origin to the plane onto the unit vector in the $\vec{G}_{h k l}$ direction. In this case, we choose, \vec{a}_{1} / h

$$
\hat{G}_{h k l}=\frac{\vec{G}_{h k l}}{\left|\vec{G}_{h k l}\right|}
$$

$$
\hat{G}_{h k l} \cdot \frac{\vec{a}_{1}}{h}=\frac{\left(h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+\mid \vec{a}_{3}^{*}\right)}{\left|\vec{G}_{h k l}\right|} \cdot \frac{\vec{a}_{1}}{h}
$$

General proof of Bragg-Laue equivalence

The spacing between planes (hkl) is simply given by the distance from the origin to the plane along a normal vector

This can be computed as the projection of any vector which connects the origin to the plane onto the unit vector in the $\vec{G}_{h k l}$ direction. In this case, we choose, \vec{a}_{1} / h

$$
\hat{G}_{h k l}=\frac{\vec{G}_{h k l}}{\left|\vec{G}_{h k l}\right|}
$$

$$
\hat{G}_{h k l} \cdot \frac{\vec{a}_{1}}{h}=\frac{\left(h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+\mid \vec{a}_{3}^{*}\right)}{\left|\vec{G}_{h k l}\right|} \cdot \frac{\vec{a}_{1}}{h}=\frac{2 \pi}{\left|\vec{G}_{h k l}\right|}
$$

General proof of Bragg-Laue equivalence

The spacing between planes (hkl) is simply given by the distance from the origin to the plane along a normal vector

This can be computed as the projection of any vector which connects the origin to the plane onto the unit vector in the $\vec{G}_{h k l}$ direction. In this case, we choose, \vec{a}_{1} / h

$$
\hat{G}_{h k l}=\frac{\vec{G}_{h k l}}{\left|\vec{G}_{h k l}\right|}
$$

$$
\hat{G}_{h k l} \cdot \frac{\vec{a}_{1}}{h}=\frac{\left(h \vec{a}_{1}^{*}+k \vec{a}_{2}^{*}+\mid \vec{a}_{3}^{*}\right)}{\left|\vec{G}_{h k l}\right|} \cdot \frac{\vec{a}_{1}}{h}=\frac{2 \pi}{\left|\vec{G}_{h k l}\right|}=d_{h k l}
$$

BCC structure factor

In the body centered cubic structure, there are 2 atoms in the conventional, cubic unit cell. These are located at

BCC structure factor

In the body centered cubic structure, there are 2 atoms in the conventional, cubic unit cell. These are located at

$$
\vec{r}_{1}=0, \quad \overrightarrow{r_{2}}=\frac{1}{2}\left(\vec{a}_{1}+\vec{a}_{2}+\vec{a}_{3}\right)
$$

BCC structure factor

In the body centered cubic structure, there are 2 atoms in the conventional, cubic unit cell. These are located at

$$
\vec{r}_{1}=0, \quad \overrightarrow{r_{2}}=\frac{1}{2}\left(\vec{a}_{1}+\vec{a}_{2}+\vec{a}_{3}\right)
$$

the unit cell structure factor is thus

BCC structure factor

In the body centered cubic structure, there are 2 atoms in the conventional, cubic unit cell. These are located at

$$
\vec{r}_{1}=0, \quad \overrightarrow{r_{2}}=\frac{1}{2}\left(\vec{a}_{1}+\overrightarrow{a_{2}}+\vec{a}_{3}\right)
$$

the unit cell structure factor is thus

$$
F_{h k l}^{b c c}=f(\vec{G}) \sum_{j} e^{i \vec{G} \cdot \vec{r}_{j}}
$$

BCC structure factor

In the body centered cubic structure, there are 2 atoms in the conventional, cubic unit cell. These are located at

$$
\overrightarrow{r_{1}}=0, \quad \overrightarrow{r_{2}}=\frac{1}{2}\left(\overrightarrow{a_{1}}+\overrightarrow{a_{2}}+\vec{a}_{3}\right)
$$

the unit cell structure factor is thus

$$
\begin{aligned}
F_{h k l}^{b c c} & =f(\vec{G}) \sum_{j} e^{i \vec{G} \cdot \vec{r}_{j}} \\
& =f(\vec{G})\left(1+e^{i \pi(h+k+l)}\right)
\end{aligned}
$$

BCC structure factor

In the body centered cubic structure, there are 2 atoms in the conventional, cubic unit cell. These are located at

$$
\overrightarrow{r_{1}}=0, \quad \overrightarrow{r_{2}}=\frac{1}{2}\left(\overrightarrow{a_{1}}+\overrightarrow{a_{2}}+\vec{a}_{3}\right)
$$

the unit cell structure factor is thus

$$
\begin{aligned}
F_{h k l}^{b c c} & =f(\vec{G}) \sum_{j} e^{i \vec{G} \cdot \vec{r}_{j}} \\
& =f(\vec{G})\left(1+e^{i \pi(h+k+I)}\right) \\
& =f(\vec{G}) \times \begin{cases}2 & h+k+I=2 n \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

FCC structure factor

In the face centered cubic structure, there are 4 atoms in the conventional, cubic unit cell. These are located at

FCC structure factor

In the face centered cubic structure, there are 4 atoms in the conventional, cubic unit cell. These are located at

$$
\vec{r}_{1}=0, \quad \vec{r}_{2}=\frac{1}{2}\left(\vec{a}_{1}+\vec{a}_{2}\right), \quad \vec{r}_{3}=\frac{1}{2}\left(\vec{a}_{2}+\vec{a}_{3}\right), \quad \vec{r}_{4}=\frac{1}{2}\left(\vec{a}_{1}+\vec{a}_{3}\right)
$$

FCC structure factor

In the face centered cubic structure, there are 4 atoms in the conventional, cubic unit cell. These are located at

$$
\vec{r}_{1}=0, \quad \vec{r}_{2}=\frac{1}{2}\left(\vec{a}_{1}+\vec{a}_{2}\right), \quad \vec{r}_{3}=\frac{1}{2}\left(\vec{a}_{2}+\vec{a}_{3}\right), \quad \vec{r}_{4}=\frac{1}{2}\left(\vec{a}_{1}+\vec{a}_{3}\right)
$$

the unit cell structure factor is thus

FCC structure factor

In the face centered cubic structure, there are 4 atoms in the conventional, cubic unit cell. These are located at

$$
\vec{r}_{1}=0, \quad \vec{r}_{2}=\frac{1}{2}\left(\vec{a}_{1}+\vec{a}_{2}\right), \quad \vec{r}_{3}=\frac{1}{2}\left(\vec{a}_{2}+\vec{a}_{3}\right), \quad \vec{r}_{4}=\frac{1}{2}\left(\vec{a}_{1}+\vec{a}_{3}\right)
$$

the unit cell structure factor is thus

$$
F_{h k l}^{f c c}=f(\vec{G}) \sum_{j} e^{i \vec{G} \cdot \vec{r}_{j}}
$$

FCC structure factor

In the face centered cubic structure, there are 4 atoms in the conventional, cubic unit cell. These are located at

$$
\vec{r}_{1}=0, \quad \vec{r}_{2}=\frac{1}{2}\left(\vec{a}_{1}+\vec{a}_{2}\right), \quad \vec{r}_{3}=\frac{1}{2}\left(\vec{a}_{2}+\vec{a}_{3}\right), \quad \vec{r}_{4}=\frac{1}{2}\left(\vec{a}_{1}+\vec{a}_{3}\right)
$$

the unit cell structure factor is thus

$$
\begin{aligned}
F_{h k l}^{f c c} & =f(\vec{G}) \sum_{j} e^{i \vec{G} \cdot \vec{r}_{j}} \\
& =f(\vec{G})\left(1+e^{i \pi(h+k)}+e^{i \pi(k+1)}+e^{i \pi(h+l)}\right)
\end{aligned}
$$

FCC structure factor

In the face centered cubic structure, there are 4 atoms in the conventional, cubic unit cell. These are located at

$$
\vec{r}_{1}=0, \quad \vec{r}_{2}=\frac{1}{2}\left(\vec{a}_{1}+\vec{a}_{2}\right), \quad \vec{r}_{3}=\frac{1}{2}\left(\vec{a}_{2}+\vec{a}_{3}\right), \quad \vec{r}_{4}=\frac{1}{2}\left(\vec{a}_{1}+\vec{a}_{3}\right)
$$

the unit cell structure factor is thus

$$
\begin{aligned}
F_{h k l}^{f c c} & =f(\vec{G}) \sum_{j} e^{i \vec{G} \cdot \overrightarrow{r j}_{j}} \\
& =f(\vec{G})\left(1+e^{i \pi(h+k)}+e^{i \pi(k+\prime)}+e^{i \pi(h+l)}\right) \\
& =f(\vec{G}) \times \begin{cases}4 & h+k, k+I, h+I=2 n \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Diamond structure

This is a face centered cubic structure with two atoms in the basis which leads to 8 atoms in the conventional unit cell. These are located at

Diamond structure

This is a face centered cubic structure with two atoms in the basis which leads to 8 atoms in the conventional unit cell. These are located at

$$
\begin{aligned}
& \vec{r}_{1}=0, \quad \vec{r}_{2}=\frac{1}{2}\left(\vec{a}_{1}+\vec{a}_{2}\right), \quad \overrightarrow{r_{3}}=\frac{1}{2}\left(\vec{a}_{2}+\vec{a}_{3}\right) \quad \vec{r}_{4}=\frac{1}{2}\left(\vec{a}_{1}+\vec{a}_{3}\right) \\
& \vec{r}_{5}=\frac{1}{4}\left(\vec{a}_{1}+\vec{a}_{2}+\vec{a}_{3}\right), \quad \vec{r}_{6}=\frac{1}{4}\left(3 \vec{a}_{1}+3 \vec{a}_{2}+\vec{a}_{3}\right) \\
& \vec{r}_{7}=\frac{1}{4}\left(\vec{a}_{1}+3 \vec{a}_{2}+3 \vec{a}_{3}\right), \quad \vec{r}_{8}=\frac{1}{4}\left(3 \vec{a}_{1}+\vec{a}_{2}+3 \vec{a}_{3}\right)
\end{aligned}
$$

Diamond structure

This is a face centered cubic structure with two atoms in the basis which leads to 8 atoms in the conventional unit cell. These are located at

$$
\begin{aligned}
& \overrightarrow{r_{1}}=0, \quad \overrightarrow{r_{2}}=\frac{1}{2}\left(\vec{a}_{1}+\vec{a}_{2}\right), \quad \overrightarrow{r_{3}}=\frac{1}{2}\left(\vec{a}_{2}+\vec{a}_{3}\right) \quad \overrightarrow{r_{4}}=\frac{1}{2}\left(\vec{a}_{1}+\vec{a}_{3}\right) \\
& \vec{r}_{5}=\frac{1}{4}\left(\vec{a}_{1}+\vec{a}_{2}+\vec{a}_{3}\right), \quad \vec{r}_{6}=\frac{1}{4}\left(3 \vec{a}_{1}+3 \vec{a}_{2}+\vec{a}_{3}\right) \\
& \overrightarrow{r_{7}}=\frac{1}{4}\left(\vec{a}_{1}+3 \vec{a}_{2}+3 \vec{a}_{3}\right), \quad \overrightarrow{r_{8}}=\frac{1}{4}\left(3 \vec{a}_{1}+\vec{a}_{2}+3 \vec{a}_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& F_{h k l}^{\text {diamond }}=f(\vec{G})\left(1+e^{i \pi(h+k)}+e^{i \pi(k+l)}\right. \\
& +e^{i \pi(h+l)}+e^{i \pi(h+k+l) / 2}+e^{i \pi(3 h+3 k+l) / 2} \\
& \left.+e^{i \pi(h+3 k+3 l) / 2}+e^{i \pi(3 h+k+3 l) / 2}\right)
\end{aligned}
$$

Diamond structure

This is a face centered cubic structure with two atoms in the basis which leads to 8 atoms in the conventional unit cell. These are located at

$$
\begin{aligned}
& \overrightarrow{r_{1}}=0, \quad \overrightarrow{r_{2}}=\frac{1}{2}\left(\vec{a}_{1}+\vec{a}_{2}\right), \quad \overrightarrow{r_{3}}=\frac{1}{2}\left(\vec{a}_{2}+\vec{a}_{3}\right) \quad \vec{r}_{4}=\frac{1}{2}\left(\vec{a}_{1}+\vec{a}_{3}\right) \\
& \vec{r}_{5}=\frac{1}{4}\left(\vec{a}_{1}+\vec{a}_{2}+\vec{a}_{3}\right), \quad \vec{r}_{6}=\frac{1}{4}\left(3 \vec{a}_{1}+3 \vec{a}_{2}+\vec{a}_{3}\right) \\
& \vec{r}_{7}=\frac{1}{4}\left(\vec{a}_{1}+3 \vec{a}_{2}+3 \vec{a}_{3}\right), \quad \overrightarrow{r_{8}}=\frac{1}{4}\left(3 \vec{a}_{1}+\vec{a}_{2}+3 \vec{a}_{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& F_{h k l}^{\text {diamond }}=f(\vec{G})\left(1+e^{i \pi(h+k)}+e^{i \pi(k+l)}\right. \\
& +e^{i \pi(h+l)}+e^{i \pi(h+k+l) / 2}+e^{i \pi(3 h+3 k+l) / 2} \\
& \left.+e^{i \pi(h+3 k+3 l) / 2}+e^{i \pi(3 h+k+3 l) / 2}\right)
\end{aligned}
$$

This is non-zero when h, k, l all even and $h+$ $k+I=4 n$ or h, k, l all odd

Heteroatomic structures

$\leftarrow \mathrm{bcc}$

Heteroatomic structures

$\leftarrow \mathrm{bcc}$ sc \rightarrow

Heteroatomic structures

$\leftarrow \mathrm{bcc}$ $\mathrm{sc} \rightarrow$

\leftarrow diamond

Heteroatomic structures

$\leftarrow \mathrm{bcc}$ sc \rightarrow

\leftarrow diamond fcc \rightarrow

