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Small Angle Scattering

Recall that there was an additional term in the scattering intensity which
becomes important at small Q.

I SAXS( ~Q) = f 2
∑
n

∫
V
ρate

i ~Q·(~rn−~rm)dVm

= f 2
∑
n

e i
~Q·~rn
∫
V
ρate

−i ~Q·~rmdVm

= f 2
∫
V
ρate

i ~Q·~rndVn

∫
V
ρate

−i ~Q·~rmdVm

=

∣∣∣∣∫
V
ρsle

i ~Q·~rdV

∣∣∣∣2
Where we have assumed sufficient averaging and introduced ρsl = f ρat .
This final expression looks just like an atomic form factor but the charge
density that we consider here is on a much longer length scale than an
atom.
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The SAXS experiment
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Scattering from a dilute solution

The simplest case is for a dilute solution of non-interacting molecules.

Assume that the scattering length density of each identical particle
(molecule) is given by ρsl ,p and the scattering length density of the solvent
is ρsl ,0.

I SAXS( ~Q) =

∣∣∣∣∣
∫
Vp

ρsle
i ~Q·~rdVp

∣∣∣∣∣
2

= (ρsl ,p − ρsl ,0)2

∣∣∣∣∣
∫
Vp

e i
~Q·~rdVp

∣∣∣∣∣
2

If we introduce the single-particle
form factor F( ~Q):

F( ~Q) =
1

Vp

∫
Vp

e i
~Q·~rdVp

I SAXS( ~Q) = ∆ρ2V 2
p |F( ~Q)|2

Where ∆ρ = (ρsl ,p − ρsl ,0), and the form factor depends on the
morphology of the particle (size and shape).
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Scattering from a sphere

There are only a few morphologies which can be computed exactly and the
simplest is a constant density sphere of radius R.

F( ~Q) =
1

Vp

∫ R

0

∫ 2π

0

∫ π

0
e iQr cos θr2 sin θ dθ dφ dr

F( ~Q) =
1

Vp

∫ R

0
4π

sin(Qr)

Qr
r2 dr

= 3

[
sin(QR)− QR cos(QR)

Q3R3

]
≡ 3J1(QR)

QR

Where J1(x) is the Bessel function
of the first kind

0

0 5 10

j 1
(x

)

x
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Scattering from a sphere

I (vectQ) = ∆ρ2V 2
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QR
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Guinier analysis

In the long wavelength limit QR → 0 we can approximate the scattering
factor with the first terms of the sum

F(Q) ≈ 3

Q3R3

[
QR − Q3R3

6
+

Q5R5

120
− · · ·

− QR

(
1− Q2R2

2
+

Q4R4

24
− · · ·

)]
this simplifies to F(Q) ≈ 1− Q2R2

10
and

I SAXS(Q) ≈ ∆ρ2V 2
p

[
1− Q2R2

10

]2
≈ ∆ρ2V 2

p

[
1− Q2R2

5

]
≈ ∆ρ2V 2

p e
−Q2R2/5, QR � 1
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Calculation of Rg

R2
g =

1

Vp

∫
Vp

r2dVp

=

∫
Vp
ρsl ,p(~r)r2dVp∫

Vp
ρsl ,p(~r)dVp

In terms of the scattering length den-
sity, we have

after orientational averaging this ex-
pression can be used to extract Rg from
experimental data using

I SAXS1 (Q) ≈ ∆ρ2V 2
p e

−Q2R2
g/3

this expression holds for uniform and non-uniform densities
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Porod analysis

In the short wavelength limit
(QR � 1), the form factor for a
sphere can be approximated

F(Q) = 3

[
sin(QR)

Q3R3
− cos(QR)

Q2R2

]
≈ 3

[
−cos(QR)

Q2R2

]
I (Q) = 9∆ρ2V 2

p

[
−cos(QR)

Q2R2

]2
= 9∆ρ2V 2

p

〈
cos2(QR)

〉
Q4R4

=
9∆ρ2V 2

p

Q4R4

(
1

2

)
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2π∆ρ2
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Shape effect on scattering

The shape of the particle will have a
significant effect on the SAXS since
the form factor is derived from an
integral over the particle volume,
Vp.

If the particle is not spherical, then
its “dimensionality” is not 3 and
this will affect the form factor and
introduce a different power law in
the Porod regime.

dVp = 4πr2dr sphere

α = 4

dAp = 2πrdr disk

α = 2

dLp = dr rod

α = 1

C. Segre (IIT) PHYS 570 - Spring 2015 March 03, 2015 11 / 15



Shape effect on scattering

The shape of the particle will have a
significant effect on the SAXS since
the form factor is derived from an
integral over the particle volume,
Vp.

If the particle is not spherical, then
its “dimensionality” is not 3 and
this will affect the form factor and
introduce a different power law in
the Porod regime.

dVp = 4πr2dr sphere

α = 4

dAp = 2πrdr disk

α = 2

dLp = dr rod

α = 1

C. Segre (IIT) PHYS 570 - Spring 2015 March 03, 2015 11 / 15



Shape effect on scattering

The shape of the particle will have a
significant effect on the SAXS since
the form factor is derived from an
integral over the particle volume,
Vp.

If the particle is not spherical, then
its “dimensionality” is not 3 and
this will affect the form factor and
introduce a different power law in
the Porod regime.

dVp = 4πr2dr sphere

α = 4

dAp = 2πrdr disk

α = 2

dLp = dr rod

α = 1

C. Segre (IIT) PHYS 570 - Spring 2015 March 03, 2015 11 / 15



Shape effect on scattering

The shape of the particle will have a
significant effect on the SAXS since
the form factor is derived from an
integral over the particle volume,
Vp.

If the particle is not spherical, then
its “dimensionality” is not 3 and
this will affect the form factor and
introduce a different power law in
the Porod regime.

dVp = 4πr2dr sphere

α = 4

dAp = 2πrdr disk

α = 2

dLp = dr rod

α = 1

C. Segre (IIT) PHYS 570 - Spring 2015 March 03, 2015 11 / 15



Shape effect on scattering

The shape of the particle will have a
significant effect on the SAXS since
the form factor is derived from an
integral over the particle volume,
Vp.

If the particle is not spherical, then
its “dimensionality” is not 3 and
this will affect the form factor and
introduce a different power law in
the Porod regime.

dVp = 4πr2dr sphere

α = 4

dAp = 2πrdr disk

α = 2

dLp = dr rod

α = 1

C. Segre (IIT) PHYS 570 - Spring 2015 March 03, 2015 11 / 15



Shape effect on scattering

The shape of the particle will have a
significant effect on the SAXS since
the form factor is derived from an
integral over the particle volume,
Vp.

If the particle is not spherical, then
its “dimensionality” is not 3 and
this will affect the form factor and
introduce a different power law in
the Porod regime.

dVp = 4πr2dr sphere α = 4

dAp = 2πrdr disk

α = 2

dLp = dr rod

α = 1

C. Segre (IIT) PHYS 570 - Spring 2015 March 03, 2015 11 / 15



Shape effect on scattering

The shape of the particle will have a
significant effect on the SAXS since
the form factor is derived from an
integral over the particle volume,
Vp.

If the particle is not spherical, then
its “dimensionality” is not 3 and
this will affect the form factor and
introduce a different power law in
the Porod regime.

dVp = 4πr2dr sphere α = 4

dAp = 2πrdr disk α = 2

dLp = dr rod α = 1

C. Segre (IIT) PHYS 570 - Spring 2015 March 03, 2015 11 / 15



Polydispersivity
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Nucleation & growth of glycine

Can SAXS help us understand the nucleation and growth of a simple
molecule which is the prototype for pharmaceutical compounds?

initial studies at 12 keV show change but no crystallization
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Glycine nucleation
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Glycine nucleation
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Glycine Rg
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in aqueous solution, Rg implies
dimerization and increases due to
aggregation until crystallization

in acidic solution, Rg remains small
and implies that no dimerization
or aggregation occurs before nucle-
ation

“Relationship between Self-Association of Glycine Molecules in Supersaturated Solution and Solid State Outcome”,
D. Erdemir et al. Phys. Rev. Lett. 99, 115702 (2007)
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