Today's Outline - February 24, 2015

Today's Outline - February 24, 2015

- Reflectivity papers

Today's Outline - February 24, 2015

- Reflectivity papers
- Kinematical diffraction

Today's Outline - February 24, 2015

- Reflectivity papers
- Kinematical diffraction

Homework Assignment \#03:
Chapter 3: 1, 3, 4, 6, 8 due Thursday, February 26, 2015

Layering in liquid films

THEOS, tetrakis(2ethylhexoxy)silane, a nonpolar, roughly spherical molecule, was deposited on $\mathrm{Si}(111)$ single crystals

Layering in liquid films

THEOS, tetrakis(2ethylhexoxy)silane, a nonpolar, roughly spherical molecule, was deposited on $\mathrm{Si}(111)$ single crystals

Specular reflection measurements were made at MRCAT (Sector 10 at APS)and at X18A (at NSLS).

Layering in liquid films

THEOS, tetrakis(2ethylhexoxy)silane, a nonpolar, roughly spherical molecule, was deposited on $\mathrm{Si}(111)$ single crystals

Specular reflection measurements were made at MRCAT (Sector 10 at APS)and at X18A (at NSLS).
C.-J. Yu et al., "Observation of molecular layering in thin liquid films using x-ray reflectivity", Phys. Rev. Lett. 82, 2326-2329 (1999).

Layering in liquid films

THEOS, tetrakis(2ethylhexoxy)silane, a nonpolar, roughly spherical molecule, was deposited on $\mathrm{Si}(111)$ single crystals

Specular reflection measurements were made at MRCAT (Sector 10 at APS)and at X18A (at NSLS).

C.-J. Yu et al., "Observation of molecular layering in thin liquid films using x-ray reflectivity", Phys. Rev. Lett. 82, 2326-2329 (1999).

Layering in liquid films

THEOS, tetrakis(2ethylhexoxy)silane, a nonpolar, roughly spherical molecule, was deposited on $\mathrm{Si}(111)$ single crystals

Specular reflection measurements were made at MRCAT (Sector 10 at APS)and at X18A (at NSLS).

Deviations from uniform density are used to fit experimental reflectivity
C.-J. Yu et al., "Observation of molecular layering in thin liquid films using x-ray reflectivity", Phys. Rev. Lett. 82, 2326-2329 (1999).

Layering in liquid films

Layering in liquid films

The peak below $10 \AA$ appears in all but the thickest film and depends on the interactions between film and substrate.

Layering in liquid films

The peak below $10 \AA$ appears in all but the thickest film and depends on the interactions between film and substrate.

There are always peaks between $10-20 \AA$ and $20-30 \AA$

Layering in liquid films

The peak below $10 \AA$ appears in all but the thickest film and depends on the interactions between film and substrate.

There are always peaks between $10-20 \AA$ and $20-30 \AA$

A broad peak appears at free surface indicating that ordering requires a hard smooth surface.

Film growth kinetics

Gaussian roughness profile with a "roughness" exponent $0<h<1$.

Film growth kinetics

Gaussian roughness profile with a "roughness" exponent $0<h<1$.
$g(r) \propto r^{2 h}$

Film growth kinetics

Gaussian roughness profile with a "roughness" exponent $0<h<1$. As the film is grown by vapor deposition, the rms width σ, grows with a "growth exponent" β
$g(r) \propto r^{2 h}$

Film growth kinetics

Gaussian roughness profile with a "roughness" exponent $0<h<1$. As the film is grown by vapor deposition, the rms width σ, grows with a "growth exponent" β

$$
g(r) \propto r^{2 h} \quad \sigma \propto t^{\beta}
$$

Film growth kinetics

Gaussian roughness profile with a "roughness" exponent $0<h<1$. As the film is grown by vapor deposition, the rms width σ, grows with a "growth exponent" β and the correlation length in the plane of the surface, ξ evolves with the "dynamic" scaling exponent, $z_{s}=h / \beta$.
$g(r) \propto r^{2 h} \quad \sigma \propto t^{\beta}$

Film growth kinetics

Gaussian roughness profile with a "roughness" exponent $0<h<1$. As the film is grown by vapor deposition, the rms width σ, grows with a "growth exponent" β and the correlation length in the plane of the surface, ξ evolves with the "dynamic" scaling exponent, $z_{s}=h / \beta$.
$g(r) \propto r^{2 h} \quad \sigma \propto t^{\beta}$
$\quad \xi \propto t^{1 / z_{s}}$
$h \approx 0.33, \beta \approx 0.25$ for no
diffusion.

Film growth kinetics

Gaussian roughness profile with a "roughness" exponent $0<h<1$. As the film is grown by vapor deposition, the rms width σ, grows with a "growth exponent" β and the correlation length in the plane of the surface, ξ evolves with the "dynamic" scaling exponent, $z_{s}=h / \beta$.

$$
\begin{aligned}
& g(r) \propto r^{2 h} \\
& \sigma \propto t^{\beta} \\
& \xi \propto t^{1 / z_{s}} \\
& \langle h\rangle \propto t \\
& h \approx 0.33, \beta \approx 0.25 \text { for no } \\
& \text { diffusion. }
\end{aligned}
$$

Film growth kinetics

Gaussian roughness profile with a "roughness" exponent $0<h<1$. As the film is grown by vapor deposition, the rms width σ, grows with a "growth exponent" β and the correlation length in the plane of the surface, ξ evolves with the "dynamic" scaling exponent, $z_{s}=h / \beta$.

$$
\begin{aligned}
& g(r) \propto r^{2 h} \quad \sigma \propto t^{\beta} \\
& \xi \propto t^{1 / z_{s}} \quad\langle h\rangle \propto t \\
& h \approx 0.33, \beta \approx 0.25 \text { for no } \\
& \text { diffusion. }
\end{aligned}
$$

Ag/Si films: 10 nm (A), 18nm (B), 37 nm (C), 73 nm (D), 150nm (E)

Film growth kinetics

Gaussian roughness profile with a "roughness" exponent $0<h<1$. As the film is grown by vapor deposition, the rms width σ, grows with a "growth exponent" β and the correlation length in the plane of the surface, ξ evolves with the "dynamic" scaling exponent, $z_{s}=h / \beta$.

```
\(g(r) \propto r^{2 h}\) \(\xi \propto t^{1 / z_{s}}\) \(\langle h\rangle \propto t\)
\(h \approx 0.33, \beta \approx 0.25\) for no diffusion.
```

$\mathrm{Ag} /$ Si films: $10 \mathrm{~nm}(\mathrm{~A}), 18 \mathrm{~nm}$ (B), $37 \mathrm{~nm}(\mathrm{C}), 73 \mathrm{~nm}(\mathrm{D}), 150 \mathrm{~nm}(\mathrm{E})$

C. Thompson et al., "X-ray-reflectivity study of the growth kinetics of vapordeposited silver films", Phys. Rev. B 49, 4902-4907 (1994).

Film growth kinetics

Gaussian roughness profile with a "roughness" exponent $0<h<1$. As the film is grown by vapor deposition, the rms width σ, grows with a "growth exponent" β and the correlation length in the plane of the surface, ξ evolves with the "dynamic" scaling exponent, $z_{s}=h / \beta$.
$\sigma \propto t^{\beta}$
$\xi \propto t^{1 / z_{s}}$
$\langle h\rangle \propto t$
$h \approx 0.33, \beta \approx 0.25$ for no diffusion.

Ag/Si films: 10 nm (A), 18nm (B), $37 \mathrm{~nm}(\mathrm{C}), 73 \mathrm{~nm}(\mathrm{D}), 150 \mathrm{~nm}$ (E)

C. Thompson et al., "X-ray-reflectivity study of the growth kinetics of vapordeposited silver films", Phys. Rev. B 49, 4902-4907 (1994).

Film growth kinetics

h can be obtained from the diffuse off-specular reflection which should vary as

Film growth kinetics

h can be obtained from the diffuse off-specular reflection which should vary as

$$
I\left(q_{z}\right) \propto \sigma^{-2 / h} q_{z}^{-(3+1 / h)}
$$

Film growth kinetics

h can be obtained from the diffuse off-specular reflection which should vary as

$$
I\left(q_{z}\right) \propto \sigma^{-2 / h} q_{z}^{-(3+1 / h)}
$$

Film growth kinetics

h can be obtained from the diffuse off-specular reflection which should vary as

$$
I\left(q_{z}\right) \propto \sigma^{-2 / h} q_{z}^{-(3+1 / h)}
$$

Film growth kinetics

h can be obtained from the diffuse off-specular reflection which should vary as

$$
I\left(q_{z}\right) \propto \sigma^{-2 / h} q_{z}^{-(3+1 / h)}
$$

This gives $h=0.63$ but is this correct?

Film growth kinetics

h can be obtained from the diffuse off-specular reflection which should vary as

$$
I\left(q_{z}\right) \propto \sigma^{-2 / h} q_{z}^{-(3+1 / h)}
$$

This gives $h=0.63$ but is this correct?

Measure it directly using STM

Film growth kinetics

h can be obtained from the diffuse off-specular reflection which should vary as

$$
I\left(q_{z}\right) \propto \sigma^{-2 / h} q_{z}^{-(3+1 / h)}
$$

This gives $h=0.63$ but is this correct?

Measure it directly using STM

Film growth kinetics

h can be obtained from the diffuse off-specular reflection which should vary as

$$
I\left(q_{z}\right) \propto \sigma^{-2 / h} q_{z}^{-(3+1 / h)}
$$

This gives $h=0.63$ but is this correct?

Measure it directly using STM
$g(r)=2 \sigma^{2}\left[1-e^{(r / \xi)^{2 h}}\right]$

Film growth kinetics

h can be obtained from the diffuse off-specular reflection which should vary as

$$
I\left(q_{z}\right) \propto \sigma^{-2 / h} q_{z}^{-(3+1 / h)}
$$

This gives $h=0.63$ but is this correct?

Measure it directly using STM

$$
\begin{array}{r}
g(r)=2 \sigma^{2}\left[1-e^{(r / \xi)^{2 h}}\right] \\
h=0.78, \quad \xi=23 \mathrm{~nm} \\
\sigma=3.2 \mathrm{~nm}
\end{array}
$$

R (nm)

Thus $z_{s}=h / \beta=2.7$

Film growth kinetics

h can be obtained from the diffuse off-specular reflection which should vary as

$$
I\left(q_{z}\right) \propto \sigma^{-2 / h} q_{z}^{-(3+1 / h)}
$$

This gives $h=0.63$ but is this correct?

Measure it directly using STM

$$
\begin{array}{r}
g(r)=2 \sigma^{2}\left[1-e^{(r / \xi)^{2 h}}\right] \\
h=0.78, \quad \xi=23 \mathrm{~nm}, \\
\sigma=3.2 \mathrm{~nm}
\end{array}
$$

Thus $z_{s}=h / \beta=2.7$

Film growth kinetics

h can be obtained from the diffuse off-specular reflection which should vary as

$$
I\left(q_{z}\right) \propto \sigma^{-2 / h} q_{z}^{-(3+1 / h)}
$$

This gives $h=0.63$ but is this correct?

Measure it directly using STM

$$
\begin{array}{r}
g(r)=2 \sigma^{2}\left[1-e^{(r / \xi)^{2 h}}\right] \\
h=0.78, \quad \xi=23 \mathrm{~nm}, \\
\sigma=3.2 \mathrm{~nm}
\end{array}
$$

Thus $z_{s}=h / \beta=2.7$ and diffraction data confirm $\xi=19.9\langle h\rangle^{1 / 2.7} \AA$

Liquid metal surfaces

X-ray reflectivity using synchrotron radiation has made possible the study of the surface of liquid metals

Liquid metal surfaces

X-ray reflectivity using synchrotron radiation has made possible the study of the surface of liquid metals
a liquid can be described as charged ions in a sea of conduction electrons

Liquid metal surfaces

X-ray reflectivity using synchrotron radiation has made possible the study of the surface of liquid metals
a liquid can be described as charged ions in a sea of conduction electrons
this leads to a well-defined surface structure as can be seen in liquid gallium

Liquid metal surfaces

X-ray reflectivity using synchrotron radiation has made possible the study of the surface of liquid metals
a liquid can be described as charged ions in a sea of con-
 duction electrons
this leads to a well-defined surface structure as can be seen in liquid gallium

[^0]
Liquid metal surfaces

X-ray reflectivity using synchrotron radiation has made possible the study of the surface of liquid metals
a liquid can be described as charged ions in a sea of con-
 duction electrons
this leads to a well-defined surface structure as can be seen in liquid gallium contrast this with the scattering from liquid mercury

[^1]
Liquid metal surfaces

X-ray reflectivity using synchrotron radiation has made possible the study of the surface of liquid metals
a liquid can be described as charged ions in a sea of conduction electrons
this leads to a well-defined surface structure as can be seen in liquid gallium
contrast this with the scattering from liquid mercury

P. Pershan, "Review of the highlights of x-ray studies of liquid metal surfaces", J. Appl. Phys. 116, 222201 (2014).

Liquid metal eutectics

High vapor pressure and thermal excitations limit the number of pure metals which can be studied but alloy eutectics provide many possibilities

O. Shpyrko et al., "Atomic-scale surface demixing in a eutectic liquid BiSn alloy", Phys. Rev. Lett. 95, 106103 (2005).

Liquid metal eutectics

High vapor pressure and thermal excitations limit the number of pure metals which can be studied but alloy eutectics provide many possibilities
tune x-rays around the Bi absorption edge at 13.42 keV and measure a $\mathrm{Bi}_{43} \mathrm{Sn}_{57}$ eutectic

O. Shpyrko et al., "Atomic-scale surface demixing in a eutectic liquid BiSn alloy", Phys. Rev. Lett. 95, 106103 (2005).

Liquid metal eutectics

High vapor pressure and thermal excitations limit the number of pure metals which can be studied but alloy eutectics provide many possibilities
tune x-rays around the Bi absorption edge at 13.42 keV and measure a $\mathrm{Bi}_{43} \mathrm{Sn}_{57}$ eutectic

O. Shpyrko et al., "Atomic-scale surface demixing in a eutectic liquid BiSn alloy", Phys. Rev. Lett. 95, 106103 (2005).

Liquid metal eutectics

High vapor pressure and thermal excitations limit the number of pure metals which can be studied but alloy eutectics provide many possibilities
tune x-rays around the Bi absorption edge at 13.42 keV and measure a $\mathrm{Bi}_{43} \mathrm{Sn}_{57}$ eutectic

O. Shpyrko et al., "Atomic-scale surface demixing in a eutectic liquid BiSn alloy", Phys. Rev. Lett. 95, 106103 (2005).

Liquid metal eutectics

High vapor pressure and thermal excitations limit the number of pure metals which can be studied but alloy eutectics provide many possibilities
tune x-rays around the Bi ab sorption edge at 13.42 keV and measure a $\mathrm{Bi}_{43} \mathrm{Sn}_{57}$ eutectic
surface layer is rich in Bi (95\%), second layer is deficient (25%), and third layer is rich in $\mathrm{Bi}(53 \%)$ once again

O. Shpyrko et al., "Atomic-scale surface demixing in a eutectic liquid BiSn alloy", Phys. Rev. Lett. 95, 106103 (2005).

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

$$
\vec{Q}=\left(\vec{k}-\overrightarrow{k^{\prime}}\right)
$$

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

$$
\begin{gathered}
\vec{Q}=\left(\vec{k}-\overrightarrow{k^{\prime}}\right) \\
|\vec{Q}|=2 k \sin \theta=\frac{4 \pi}{\lambda} \sin \theta
\end{gathered}
$$

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

$$
\begin{gathered}
\vec{Q}=\left(\vec{k}-\vec{k}^{\prime}\right) \\
|\vec{Q}|=2 k \sin \theta=\frac{4 \pi}{\lambda} \sin \theta
\end{gathered}
$$

The scattering from the second electron will have a phase shift of $\phi=\vec{Q} \cdot \vec{r}$.

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

$$
\begin{gathered}
\vec{Q}=\left(\vec{k}-\overrightarrow{k^{\prime}}\right) \\
|\vec{Q}|=2 k \sin \theta=\frac{4 \pi}{\lambda} \sin \theta
\end{gathered}
$$

The scattering from the second electron will have a phase shift of $\phi=\vec{Q} \cdot \vec{r}$.

$$
A(\vec{Q})=-r_{0}\left(1+e^{i \vec{Q} \cdot \vec{r}}\right)
$$

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

$$
\begin{gathered}
\vec{Q}=\left(\vec{k}-\overrightarrow{k^{\prime}}\right) \\
|\vec{Q}|=2 k \sin \theta=\frac{4 \pi}{\lambda} \sin \theta
\end{gathered}
$$

The scattering from the second electron will have a phase shift of $\phi=\vec{Q} \cdot \vec{r}$.

$$
A(\vec{Q})=-r_{0}\left(1+e^{i \vec{Q} \cdot \vec{r}}\right)
$$

$$
I(\vec{Q})=A(\vec{Q}) A(\vec{Q})^{*}=r_{o}^{2}\left(1+e^{i \vec{Q} \cdot \vec{r}}\right)\left(1+e^{-i \vec{Q} \cdot \vec{r}}\right)
$$

Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple scattering effects. We begin with the scattering of x-rays from two electrons.

The scattering from the second electron will have a phase shift of $\phi=\vec{Q} \cdot \vec{r}$.

$$
A(\vec{Q})=-r_{0}\left(1+e^{i \vec{Q} \cdot \vec{r}}\right)
$$

$$
I(\vec{Q})=A(\vec{Q}) A(\vec{Q})^{*}=r_{o}^{2}\left(1+e^{i \vec{Q} \cdot \vec{r}}\right)\left(1+e^{-i \vec{Q} \cdot \vec{r}}\right)=2 r_{o}^{2}(1+\cos (\vec{Q} \cdot \vec{r}))
$$

Scattering from many electrons

for many electrons

Scattering from many electrons

for many electrons

$$
A(\vec{Q})=-r_{0} \sum_{j} e^{i \vec{Q} \cdot \vec{r}_{j}}
$$

Scattering from many electrons

for many electrons

$$
A(\vec{Q})=-r_{0} \sum_{j} e^{i \vec{Q} \cdot \vec{r}_{j}}
$$

generalizing to a crystal

Scattering from many electrons

for many electrons
generalizing to a crystal

$$
\begin{aligned}
& A(\vec{Q})=-r_{0} \sum_{j} e^{i \vec{Q} \cdot \vec{r}_{j}} \\
& A(\vec{Q})=-r_{0} \sum_{N} e^{i \vec{Q} \cdot \overrightarrow{R_{N}}} \sum_{j} e^{i \vec{Q} \cdot \vec{r}_{j}}
\end{aligned}
$$

Scattering from many electrons

for many electrons
generalizing to a crystal

$$
\begin{aligned}
& A(\vec{Q})=-r_{0} \sum_{j} e^{i \vec{Q} \cdot \vec{r}_{j}} \\
& A(\vec{Q})=-r_{0} \sum_{N} e^{i \vec{Q} \cdot \overrightarrow{R_{N}}} \sum_{j} e^{i \vec{Q} \cdot \vec{r}_{j}}
\end{aligned}
$$

Since experiments measure $I \propto A^{2}$, the phase information is lost. This is a problem if we don't know the specific orientation of the scattering system relative to the x-ray beam.

Scattering from many electrons

for many electrons
generalizing to a crystal

$$
\begin{aligned}
& A(\vec{Q})=-r_{0} \sum_{j} e^{i \vec{Q} \cdot \vec{r}_{j}} \\
& A(\vec{Q})=-r_{0} \sum_{N} e^{i \vec{Q} \cdot \overrightarrow{R_{N}}} \sum_{j} e^{i \vec{Q} \cdot \vec{r}_{j}}
\end{aligned}
$$

Since experiments measure $I \propto A^{2}$, the phase information is lost. This is a problem if we don't know the specific orientation of the scattering system relative to the x-ray beam.

We will now look at the consequences of this orientation and generalize to more than two electrons

Two electrons - fixed orientation

The expression

$$
I(\vec{Q})=2 r_{o}^{2}(1+\cos (\vec{Q} \cdot \vec{r}))
$$

assumes that the two electrons have a specific, fixed orientation. In this case the intensity as a function of Q is.

Two electrons - fixed orientation

The expression

$$
I(\vec{Q})=2 r_{0}^{2}(1+\cos (\vec{Q} \cdot \vec{r}))
$$

assumes that the two electrons have a specific, fixed orientation. In this case the intensity as a function of Q is.

Two electrons - fixed orientation

The expression

$$
I(\vec{Q})=2 r_{0}^{2}(1+\cos (\vec{Q} \cdot \vec{r}))
$$

assumes that the two electrons have a specific, fixed orientation. In this case the intensity as a function of Q is.

Fixed orientation is not the usual case, particularly for solution and small-angle scattering.

Orientation averaging

Consider scattering from two arbitrary electron distributions, f_{1} and f_{2}. $A(\vec{Q})$, is given by

Orientation averaging

$$
A(\vec{Q})=f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and $f_{2} . A(\vec{Q})$, is given by

Orientation averaging

$$
A(\vec{Q})=f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and f_{2}. $A(\vec{Q})$, is given by
and the intensity, $I(\vec{Q})$, is

Orientation averaging

$$
\begin{aligned}
& A(\vec{Q})=f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}} \\
& I(\vec{Q})=f_{1}^{2}+f_{2}^{2}+f_{1} f_{2} e^{i \vec{Q} \cdot \vec{r}}+f_{1} f_{2} e^{-i \vec{Q} \cdot \vec{r}}
\end{aligned}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and $f_{2} . A(\vec{Q})$, is given by
and the intensity, $I(\vec{Q})$, is

Orientation averaging

$$
\begin{aligned}
& A(\vec{Q})=f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}} \\
& I(\vec{Q})=f_{1}^{2}+f_{2}^{2}+f_{1} f_{2} e^{i \vec{Q} \cdot \vec{r}}+f_{1} f_{2} e^{-i \vec{Q} \cdot \vec{r}}
\end{aligned}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and $f_{2} . \quad A(\vec{Q})$, is given by
and the intensity, $I(\vec{Q})$, is
if the distance between the scatterers, \vec{r}, remains constant (no vibrations) but is allowed to orient randomly in space

Orientation averaging

$$
\begin{aligned}
& A(\vec{Q})=f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}} \\
& I(\vec{Q})=f_{1}^{2}+f_{2}^{2}+f_{1} f_{2} e^{i \vec{Q} \cdot \vec{r}}+f_{1} f_{2} e^{-i \vec{Q} \cdot \vec{r}}
\end{aligned}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and f_{2}. $A(\vec{Q})$, is given by

$$
\langle I(\vec{Q})\rangle=f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2}\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle
$$

and the intensity, $I(\vec{Q})$, is
if the distance between the scatterers, \vec{r}, remains constant (no vibrations) but is allowed to orient randomly in space

Orientation averaging

$$
\begin{aligned}
A(\vec{Q}) & =f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}} \\
I(\vec{Q}) & =f_{1}^{2}+f_{2}^{2}+f_{1} f_{2} e^{i \vec{Q} \cdot \vec{r}}+f_{1} f_{2} e^{-i \vec{Q} \cdot \vec{r}} \\
\langle I(\vec{Q})\rangle & =f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2}\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle \\
\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle & =\frac{\int e^{i Q r \cos \theta} \sin \theta d \theta d \phi}{\int \sin \theta d \theta d \phi}
\end{aligned}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and f_{2}. $A(\vec{Q})$, is given by
and the intensity, $I(\vec{Q})$, is
if the distance between the scatterers, \vec{r}, remains constant (no vibrations) but is allowed to orient randomly in space

Orientation averaging

$$
\begin{aligned}
A(\vec{Q}) & =f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}} \\
I(\vec{Q}) & =f_{1}^{2}+f_{2}^{2}+f_{1} f_{2} e^{i \vec{Q} \cdot \vec{r}}+f_{1} f_{2} e^{-i \vec{Q} \cdot \vec{r}} \\
\langle I(\vec{Q})\rangle & =f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2}\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle \\
\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle & =\frac{\int e^{i Q r \cos \theta} \sin \theta d \theta d \phi}{\int \sin \theta d \theta d \phi} \\
& =\frac{1}{4 \pi} 2 \pi \int_{0}^{\pi} e^{i Q r \cos \theta} \sin \theta d \theta
\end{aligned}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and f_{2}. $A(\vec{Q})$, is given by
and the intensity, $I(\vec{Q})$, is
if the distance between the scatterers, \vec{r}, remains constant (no vibrations) but is allowed to orient randomly in space

Orientation averaging

$$
\begin{aligned}
& A(\vec{Q})=f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}} \\
& I(\vec{Q})=f_{1}^{2}+f_{2}^{2}+f_{1} f_{2} e^{i \vec{Q} \cdot \vec{r}}+f_{1} f_{2} e^{-i \vec{Q} \cdot \vec{r}} \\
& \langle I(\vec{Q})\rangle=f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2}\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle \\
& \left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle=\frac{\int e^{i Q r \cos \theta} \sin \theta d \theta d \phi}{\int \sin \theta d \theta d \phi} \\
& =\frac{1}{4 \pi} 2 \pi \int_{0}^{\pi} e^{i Q r \cos \theta} \sin \theta d \theta \\
& =\frac{2 \pi}{4 \pi}\left(-\frac{1}{i Q r}\right) \int_{i Q r}^{-i Q r} e^{\times} d x \\
& \text { Consider scattering from two } \\
& \text { arbitrary electron distribu- } \\
& \text { tions, } f_{1} \text { and } f_{2} \text {. } A(\vec{Q}) \text {, is } \\
& \text { given by } \\
& \text { and the intensity, } I(\vec{Q}) \text {, is } \\
& \text { if the distance between the } \\
& \text { scatterers, } \vec{r} \text {, remains constant } \\
& \text { (no vibrations) but is allowed } \\
& \text { to orient randomly in space }
\end{aligned}
$$

Orientation averaging

$$
\begin{aligned}
A(\vec{Q}) & =f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}} \\
I(\vec{Q}) & =f_{1}^{2}+f_{2}^{2}+f_{1} f_{2} e^{i \vec{Q} \cdot \vec{r}}+f_{1} f_{2} e^{-i \vec{Q} \cdot \vec{r}} \\
\langle I(\vec{Q})\rangle & =f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2}\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle \\
\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle & =\frac{\int e^{i Q r \cos \theta} \sin \theta d \theta d \phi}{\int \sin \theta d \theta d \phi} \\
& =\frac{1}{4 \pi} 2 \pi \int_{0}^{\pi} e^{i Q r \cos \theta} \sin \theta d \theta \\
& =\frac{2 \pi}{4 \pi}\left(-\frac{1}{i Q r}\right) \int_{i Q r}^{-i Q r} e^{x} d x \\
& =\frac{1}{2} 2 \frac{\sin (Q r)}{Q r}
\end{aligned}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and f_{2}. $A(\vec{Q})$, is given by and the intensity, $I(\vec{Q})$, is
if the distance between the scatterers, \vec{r}, remains constant (no vibrations) but is allowed to orient randomly in space

Orientation averaging

$$
\begin{aligned}
A(\vec{Q}) & =f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}} \\
I(\vec{Q}) & =f_{1}^{2}+f_{2}^{2}+f_{1} f_{2} e^{i \vec{Q} \cdot \vec{r}}+f_{1} f_{2} e^{-i \vec{Q} \cdot \vec{r}} \\
\langle I(\vec{Q})\rangle & =f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2}\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle \\
\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle & =\frac{\int e^{i Q r \cos \theta} \sin \theta d \theta d \phi}{\int \sin \theta d \theta d \phi} \\
& =\frac{1}{4 \pi} 2 \pi \int_{0}^{\pi} e^{i Q r \cos \theta} \sin \theta d \theta \\
& =\frac{2 \pi}{4 \pi}\left(-\frac{1}{i Q r}\right) \int_{i Q r}^{-i Q r} e^{x} d x \\
& =\frac{1}{2} 2 \frac{\sin (Q r)}{Q r}=\frac{\sin (Q r)}{Q r}
\end{aligned}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and f_{2}. $A(\vec{Q})$, is given by
and the intensity, $I(\vec{Q})$, is
if the distance between the scatterers, \vec{r}, remains constant (no vibrations) but is allowed to orient randomly in space

Orientation averaging

$$
\begin{aligned}
A(\vec{Q}) & =f_{1}+f_{2} e^{i \vec{Q} \cdot \vec{r}} \\
I(\vec{Q}) & =f_{1}^{2}+f_{2}^{2}+f_{1} f_{2} e^{i \vec{Q} \cdot \vec{r}}+f_{1} f_{2} e^{-i \vec{Q} \cdot \vec{r}} \\
\langle I(\vec{Q})\rangle & =f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2}\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle \\
\left\langle e^{i \vec{Q} \cdot \vec{r}}\right\rangle & =\frac{\int e^{i Q r \cos \theta} \sin \theta d \theta d \phi}{\int \sin \theta d \theta d \phi} \\
& =\frac{1}{4 \pi} 2 \pi \int_{0}^{\pi} e^{i Q r \cos \theta} \sin \theta d \theta \\
& =\frac{2 \pi}{4 \pi}\left(-\frac{1}{i Q r}\right) \int_{i Q r}^{-i Q r} e^{x} d x \\
& =\frac{1}{2} 2 \frac{\sin (Q r)}{Q r}=\frac{\sin (Q r)}{Q r}
\end{aligned}
$$

Consider scattering from two arbitrary electron distributions, f_{1} and $f_{2} . A(\vec{Q})$, is given by
and the intensity, $I(\vec{Q})$, is
if the distance between the scatterers, \vec{r}, remains constant (no vibrations) but is allowed to orient randomly in space
$\langle l(\vec{Q})\rangle=f_{1}^{2}+f_{2}^{2}+2 f_{1} f_{2} \frac{\sin (Q r)}{Q r}$

Randomly oriented electrons

Recall that when we had a fixed orientation of the two electrons, we had and intensity variation as $\cos (Q r)$.

Randomly oriented electrons

Recall that when we had a fixed orientation of the two electrons, we had and intensity variation as $\cos (Q r)$.

When we now replace the two arbitrary scattering distributions with electrons ($f_{1}, f_{2} \rightarrow-r_{0}$), we change the intensity profile significantly.

Randomly oriented electrons

Recall that when we had a fixed orientation of the two electrons, we had and intensity variation as $\cos (Q r)$.

When we now replace the two arbitrary scattering distributions with electrons ($f_{1}, f_{2} \rightarrow-r_{0}$), we change the intensity profile significantly.

Hydrogen form factor calculation

Since $\rho(r)=\left|\psi_{1 s}(r)\right|^{2}$, the form factor integral becomes

Hydrogen form factor calculation

Since $\rho(r)=\left|\psi_{1 s}(r)\right|^{2}$, the form factor integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int e^{-2 r / a} e^{i \vec{Q} \cdot \vec{r}} r^{2} \sin \theta d r d \theta d \phi
$$

Hydrogen form factor calculation

Since $\rho(r)=\left|\psi_{1 s}(r)\right|^{2}$, the form factor integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int e^{-2 r / a} e^{i \vec{Q} \cdot \vec{r}} r^{2} \sin \theta d r d \theta d \phi
$$

the integral in ϕ gives 2π and if we choose \vec{Q} to be along the z direction, $\vec{Q} \cdot \vec{r} \rightarrow Q r \cos \theta$, so

Hydrogen form factor calculation

Since $\rho(r)=\left|\psi_{1 s}(r)\right|^{2}$, the form factor integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int e^{-2 r / a} e^{i \vec{Q} \cdot \vec{r}} r^{2} \sin \theta d r d \theta d \phi
$$

the integral in ϕ gives 2π and if we choose \vec{Q} to be along the z direction, $\vec{Q} \cdot \vec{r} \rightarrow Q r \cos \theta$, so

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \int_{0}^{\pi} e^{i Q r \cos \theta} \sin \theta d \theta d r
$$

Hydrogen form factor calculation

Since $\rho(r)=\left|\psi_{1 s}(r)\right|^{2}$, the form factor integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int e^{-2 r / a} e^{i \vec{Q} \cdot \vec{r}} r^{2} \sin \theta d r d \theta d \phi
$$

the integral in ϕ gives 2π and if we choose \vec{Q} to be along the z direction, $\vec{Q} \cdot \vec{r} \rightarrow \operatorname{Qr} \cos \theta$, so

$$
\begin{aligned}
f_{1 s}^{0}(\vec{Q}) & =\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \int_{0}^{\pi} e^{i Q r \cos \theta} \sin \theta d \theta d r \\
& =\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{1}{i Q r}\left[-\left.e^{i Q r \cos \theta}\right|_{0} ^{\pi} d r\right.
\end{aligned}
$$

Hydrogen form factor calculation

Since $\rho(r)=\left|\psi_{1 s}(r)\right|^{2}$, the form factor integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int e^{-2 r / a} e^{i \vec{Q} \cdot \vec{r}} r^{2} \sin \theta d r d \theta d \phi
$$

the integral in ϕ gives 2π and if we choose \vec{Q} to be along the z direction, $\vec{Q} \cdot \vec{r} \rightarrow \operatorname{Qr} \cos \theta$, so

$$
\begin{aligned}
f_{1 s}^{0}(\vec{Q}) & =\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \int_{0}^{\pi} e^{i Q r \cos \theta} \sin \theta d \theta d r \\
& =\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{1}{i Q r}\left[-\left.e^{i Q r \cos \theta}\right|_{0} ^{\pi} d r\right. \\
& =\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{1}{i Q r}\left[e^{i Q r}-e^{-i Q r}\right] d r
\end{aligned}
$$

Hydrogen form factor calculation

Since $\rho(r)=\left|\psi_{1 s}(r)\right|^{2}$, the form factor integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int e^{-2 r / a} e^{i \vec{Q} \cdot \vec{r}} r^{2} \sin \theta d r d \theta d \phi
$$

the integral in ϕ gives 2π and if we choose \vec{Q} to be along the z direction, $\vec{Q} \cdot \vec{r} \rightarrow \operatorname{Qr} \cos \theta$, so

$$
\begin{aligned}
f_{1 s}^{0}(\vec{Q}) & =\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \int_{0}^{\pi} e^{i Q r \cos \theta} \sin \theta d \theta d r \\
& =\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{1}{i Q r}\left[-\left.e^{i Q r \cos \theta}\right|_{0} ^{\pi} d r\right. \\
& =\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{1}{i Q r}\left[e^{i Q r}-e^{-i Q r}\right] d r \\
& =\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{2 \sin (Q r)}{Q r} d r
\end{aligned}
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{2 \sin (Q r)}{Q r} d r
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{2 \sin (Q r)}{Q r} d r
$$

If we write $\sin (Q r)=\operatorname{Im}\left[e^{i Q r}\right]$ then the integral becomes

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{2 \sin (Q r)}{Q r} d r
$$

If we write $\sin (Q r)=\operatorname{Im}\left[e^{i Q r}\right]$ then the integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \int_{0}^{\infty} r e^{-2 r / a} \operatorname{lm}\left[e^{i Q r}\right] d r
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{2 \sin (Q r)}{Q r} d r
$$

If we write $\sin (Q r)=\operatorname{Im}\left[e^{i Q r}\right]$ then the integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \int_{0}^{\infty} r e^{-2 r / a} \operatorname{lm}\left[e^{i Q r}\right] d r=\frac{4}{a^{3} Q} \operatorname{lm}\left[\int_{0}^{\infty} r e^{-2 r / a} e^{i Q r} d r\right]
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{2 \sin (Q r)}{Q r} d r
$$

If we write $\sin (Q r)=\operatorname{Im}\left[e^{i Q r}\right]$ then the integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \int_{0}^{\infty} r e^{-2 r / a} \operatorname{lm}\left[e^{i Q r}\right] d r=\frac{4}{a^{3} Q} \operatorname{Im}\left[\int_{0}^{\infty} r e^{-2 r / a} e^{i Q r} d r\right]
$$

this can be integrated by parts with

$$
u=r
$$

$$
d v=e^{-r(2 / a-i Q)} d r
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{2 \sin (Q r)}{Q r} d r
$$

If we write $\sin (Q r)=\operatorname{Im}\left[e^{i Q r}\right]$ then the integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \int_{0}^{\infty} r e^{-2 r / a} \operatorname{lm}\left[e^{i Q r}\right] d r=\frac{4}{a^{3} Q} \operatorname{Im}\left[\int_{0}^{\infty} r e^{-2 r / a} e^{i Q r} d r\right]
$$

this can be integrated by parts with

$$
\begin{array}{rlrl}
u & =r & d v & =e^{-r(2 / a-i Q)} d r \\
d u & =d r & v & =-\frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)}
\end{array}
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\pi a^{3}} \int_{0}^{\infty} 2 \pi r^{2} e^{-2 r / a} \frac{2 \sin (Q r)}{Q r} d r
$$

If we write $\sin (Q r)=\operatorname{lm}\left[e^{i Q r}\right]$ then the integral becomes

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \int_{0}^{\infty} r e^{-2 r / a} \operatorname{lm}\left[e^{i Q r}\right] d r=\frac{4}{a^{3} Q} \operatorname{lm}\left[\int_{0}^{\infty} r e^{-2 r / a} e^{i Q r} d r\right]
$$

this can be integrated by parts with

$$
\begin{array}{rlrl}
u & =r & d v & =e^{-r(2 / a-i Q)} d r \\
d u & =d r & v & =-\frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)} \\
f_{1 s}^{0}(\vec{Q})= & \frac{4}{a^{3} Q} \operatorname{lm}\left[\left.r \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)} d r\right]
\end{array}
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \operatorname{lm}\left[\left.r \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)} d r\right]
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \operatorname{lm}\left[\left.r \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)} d r\right]
$$

the first term becomes zero because $r e^{-r(2 / a-i Q)} \rightarrow 0$ as $r \rightarrow 0$, the second is easily integrated

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \operatorname{lm}\left[\left.r \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)} d r\right]
$$

the first term becomes zero because $r e^{-r(2 / a-i Q)} \rightarrow 0$ as $r \rightarrow 0$, the second is easily integrated

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \operatorname{lm}\left[-\left.\frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)^{2}}\right|_{0} ^{\infty}\right]
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \operatorname{lm}\left[\left.r \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)} d r\right]
$$

the first term becomes zero because $r e^{-r(2 / a-i Q)} \rightarrow 0$ as $r \rightarrow 0$, the second is easily integrated

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \operatorname{lm}\left[-\left.\frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)^{2}}\right|_{0} ^{\infty}\right]=\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{1}{(2 / a-i Q)^{2}}\right]
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \operatorname{lm}\left[\left.r \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)} d r\right]
$$

the first term becomes zero because $r e^{-r(2 / a-i Q)} \rightarrow 0$ as $r \rightarrow 0$, the second is easily integrated

$$
\begin{aligned}
f_{1 s}^{0}(\vec{Q}) & =\frac{4}{a^{3} Q} \operatorname{lm}\left[-\left.\frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)^{2}}\right|_{0} ^{\infty}\right]=\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{1}{(2 / a-i Q)^{2}}\right] \\
& =\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{(2 / a+i Q)^{2}}{(2 / a-i Q)^{2}(2 / a+i Q)^{2}}\right]
\end{aligned}
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \operatorname{lm}\left[\left.r \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)} d r\right]
$$

the first term becomes zero because $r e^{-r(2 / a-i Q)} \rightarrow 0$ as $r \rightarrow 0$, the second is easily integrated

$$
\begin{aligned}
f_{1 s}^{0}(\vec{Q}) & =\frac{4}{a^{3} Q} \operatorname{lm}\left[-\left.\frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)^{2}}\right|_{0} ^{\infty}\right]=\frac{4}{a^{3} Q} \operatorname{Im}\left[\frac{1}{(2 / a-i Q)^{2}}\right] \\
& =\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{(2 / a+i Q)^{2}}{(2 / a-i Q)^{2}(2 / a+i Q)^{2}}\right] \\
& =\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{(2 / a)^{2}+i(4 Q / a)-Q^{2}}{\left[(2 / a)^{2}+Q^{2}\right]^{2}}\right]
\end{aligned}
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \operatorname{lm}\left[\left.r \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)} d r\right]
$$

the first term becomes zero because $r e^{-r(2 / a-i Q)} \rightarrow 0$ as $r \rightarrow 0$, the second is easily integrated

$$
\begin{aligned}
f_{1 s}^{0}(\vec{Q}) & =\frac{4}{a^{3} Q} \operatorname{lm}\left[-\left.\frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)^{2}}\right|_{0} ^{\infty}\right]=\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{1}{(2 / a-i Q)^{2}}\right] \\
& =\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{(2 / a+i Q)^{2}}{(2 / a-i Q)^{2}(2 / a+i Q)^{2}}\right] \\
& =\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{(2 / a)^{2}+i(4 Q / a)-Q^{2}}{\left[(2 / a)^{2}+Q^{2}\right]^{2}}\right] \\
& =\frac{4}{a^{3} Q} \frac{(a / 2)^{4}(4 Q / a)}{\left[1+(Q a / 2)^{2}\right]^{2}}
\end{aligned}
$$

Form factor calculation

$$
f_{1 s}^{0}(\vec{Q})=\frac{4}{a^{3} Q} \operatorname{lm}\left[\left.r \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)}\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)} d r\right]
$$

the first term becomes zero because $r e^{-r(2 / a-i Q)} \rightarrow 0$ as $r \rightarrow 0$, the second is easily integrated

$$
\begin{aligned}
f_{1 s}^{0}(\vec{Q}) & =\frac{4}{a^{3} Q} \operatorname{lm}\left[-\left.\frac{e^{-r(2 / a-i Q)}}{(2 / a-i Q)^{2}}\right|_{0} ^{\infty}\right]=\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{1}{(2 / a-i Q)^{2}}\right] \\
& =\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{(2 / a+i Q)^{2}}{(2 / a-i Q)^{2}(2 / a+i Q)^{2}}\right] \\
& =\frac{4}{a^{3} Q} \operatorname{lm}\left[\frac{(2 / a)^{2}+i(4 Q / a)-Q^{2}}{\left[(2 / a)^{2}+Q^{2}\right]^{2}}\right] \\
f_{1 s}^{0}(\vec{Q}) & =\frac{4}{a^{3} Q} \frac{(a / 2)^{4}(4 Q / a)}{\left[1+(Q a / 2)^{2}\right]^{2}}=\frac{1}{\left[1+(Q a / 2)^{2}\right]^{2}}
\end{aligned}
$$

1s and atomic form factors

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\left[1+(Q a / 2)^{2}\right]^{2}}
$$

1s and atomic form factors

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\left[1+(Q a / 2)^{2}\right]^{2}}
$$

This partial form factor will vary with Z due to the Coulomb interaction

1s and atomic form factors

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\left[1+(Q a / 2)^{2}\right]^{2}}
$$

This partial form factor will vary with Z due to the Coulomb interaction

1s and atomic form factors

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\left[1+(Q a / 2)^{2}\right]^{2}}
$$

This partial form factor will vary with Z due to the Coulomb interaction

In principle, one can compute the full atomic form factors, however, it is more useful to tabulate the experimentally measured form factors

1s and atomic form factors

$$
f_{1 s}^{0}(\vec{Q})=\frac{1}{\left[1+(Q a / 2)^{2}\right]^{2}}
$$

This partial form factor will vary with Z due to the Coulomb interaction

In principle, one can compute the full atomic form factors, however, it is more useful to tabulate the experimentally measured form factors

$$
f^{0}(Q / 4 \pi)=\sum_{j=1}^{4} a_{j} e^{-b_{j} \sin ^{2} \theta / \lambda^{2}}+c=\sum_{j=1}^{4} a_{j} e^{-b_{j}(Q / 4 \pi)^{2}}+c
$$

Two hydrogen atoms

Previously we derived the scattering intensity from two localized electrons both fixed and randomly oriented to the x-rays.

Two hydrogen atoms

Previously we derived the scattering intensity from two localized electrons both fixed and randomly oriented to the x-rays.

When we now replace the two localized electrons with hydrogen atoms, we have, for fixed atoms.

Two hydrogen atoms

Previously we derived the scattering intensity from two localized electrons both fixed and randomly oriented to the x-rays.

When we now replace the two localized electrons with hydrogen atoms, we have, for fixed atoms.

Two hydrogen atoms

Previously we derived the scattering intensity from two localized electrons both fixed and randomly oriented to the x-rays.

When we now replace the two localized electrons with hydrogen atoms, we have, for fixed atoms.

If we allow the hydrogen atoms to be randomly oriented we have.

Two hydrogen atoms

Previously we derived the scattering intensity from two localized electrons both fixed and randomly oriented to the x-rays.

When we now replace the two localized electrons with hydrogen atoms, we have, for fixed atoms.

If we allow the hydrogen atoms to be randomly oriented we have.

[^0]: P. Pershan, "Review of the highlights of x-ray studies of liquid metal surfaces", J. Appl. Phys. 116, 222201 (2014).

[^1]: P. Pershan, "Review of the highlights of x-ray studies of liquid metal surfaces", J. Appl. Phys. 116, 222201 (2014).

