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Layering in liquid films

THEOS, tetrakis(2-
ethylhexoxy)silane, a non-
polar, roughly spherical
molecule, was deposited
on Si(111) single crystals

Specular reflection mea-
surements were made at
MRCAT (Sector 10 at
APS)and at X18A (at
NSLS).

Deviations from uniform density are used to
fit experimental reflectivity

C.-J. Yu et al., “Observation of molecular layering in thin liquid films using
x-ray reflectivity”, Phys. Rev. Lett. 82, 2326–2329 (1999).
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Layering in liquid films

The peak below 10Å appears in all
but the thickest film and depends
on the interactions between film
and substrate.

There are always peaks between
10-20Å and 20-30Å

A broad peak appears at free sur-
face indicating that ordering re-
quires a hard smooth surface.
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Film growth kinetics

Gaussian roughness profile
with a “roughness” expo-
nent 0 < h < 1.

As the
film is grown by vapor de-
position, the rms width σ,
grows with a “growth ex-
ponent” β and the correla-
tion length in the plane of
the surface, ξ evolves with
the “dynamic” scaling ex-
ponent, zs = h/β.

g(r) ∝ r2h σ ∝ tβ

ξ ∝ t1/zs 〈h〉 ∝ t

h ≈ 0.33, β ≈ 0.25 for no
diffusion.

Ag/Si films: 10nm (A), 18nm (B),
37nm (C), 73nm (D), 150nm (E)

C. Thompson et al., “X-ray-reflectivity study of the growth kinetics of vapor-
deposited silver films”, Phys. Rev. B 49, 4902–4907 (1994).
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Film growth kinetics

h can be obtained from the
diffuse off-specular reflec-
tion which should vary as

I (qz) ∝ σ−2/hq
−(3+1/h)
z

This gives h = 0.63 but is
this correct?

Measure it directly using
STM

g(r) = 2σ2
[
1− e(r/ξ)2h

]
h = 0.78, ξ = 23nm,

σ = 3.2nm

Thus zs = h/β = 2.7 and diffraction data confirm ξ = 19.9〈h〉1/2.7 Å
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Liquid metal surfaces

X-ray reflectivity using syn-
chrotron radiation has made
possible the study of the sur-
face of liquid metals

a liquid can be described as
charged ions in a sea of con-
duction electrons

this leads to a well-defined
surface structure as can be
seen in liquid gallium

contrast this with the scat-
tering from liquid mercury

P. Pershan, “Review of the highlights of x-ray studies of liquid metal surfaces”, J. Appl. Phys. 116, 222201 (2014).
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Liquid metal eutectics

High vapor pressure and
thermal excitations limit the
number of pure metals which
can be studied but alloy eu-
tectics provide many possi-
bilities

tune x-rays around the Bi ab-
sorption edge at 13.42 keV
and measure a Bi43Sn57 eu-
tectic

surface layer is rich in Bi
(95%), second layer is defi-
cient (25%), and third layer
is rich in Bi (53%) once again

O. Shpyrko et al., “Atomic-scale surface demixing in a eutectic liquid
BiSn alloy”, Phys. Rev. Lett. 95, 106103 (2005).
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Scattering from two electrons

Consider systems where there is only weak scattering, with no multiple
scattering effects. We begin with the scattering of x-rays from two
electrons.

k’

k

r

2θ

k’

k
2θ

Q

~Q = (~k − ~k ′)

|~Q| = 2k sin θ =
4π

λ
sin θ

The scattering from the second electron will
have a phase shift of φ = ~Q ·~r .

A(~Q) = −ro
(

1 + e i
~Q·~r
)

I (~Q) = A(~Q)A(~Q)∗ = r2
o

(
1 + e i

~Q·~r
)(

1 + e−i
~Q·~r
)

= 2r2
o

(
1 + cos(~Q ·~r)

)
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Scattering from many electrons

for many electrons

generalizing to a crystal

A(~Q) = −ro
∑
j

e i
~Q·~rj

A(~Q) = −ro
∑
N

e i
~Q· ~RN

∑
j

e i
~Q·~rj

Since experiments measure I ∝ A2, the phase information is lost. This is a
problem if we don’t know the specific orientation of the scattering system
relative to the x-ray beam.

We will now look at the consequences of this orientation and generalize to
more than two electrons
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Two electrons — fixed orientation

The expression

I (~Q) = 2r2
o

(
1 + cos(~Q ·~r)

)
assumes that the two electrons
have a specific, fixed orienta-
tion. In this case the intensity
as a function of Q is.

Fixed orientation is not the
usual case, particularly for solu-
tion and small-angle scattering. 0 0.5 1 1.5 2

Q (units of 2π/r)

0
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3

4
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te
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Orientation averaging

A(~Q) = f1 + f2e
i ~Q·~r

I (~Q) = f 2
1 + f 2

2 + f1f2e
i ~Q·~r + f1f2e

−i ~Q·~r

〈
I (~Q)

〉
= f 2

1 + f 2
2 + 2f1f2

〈
e i
~Q·~r
〉

〈
e i
~Q·~r
〉

=

∫
e iQr cos θ sin θdθdφ∫

sin θdθdφ

=
1

4π
2π

∫ π

0
e iQr cos θ sin θdθ

=
2π

4π

(
− 1

iQr

)∫ −iQr

iQr
exdx

=
1

2
2

sin(Qr)

Qr
=

sin(Qr)

Qr

Consider scattering from two
arbitrary electron distribu-
tions, f1 and f2. A(~Q), is
given by

and the intensity, I (~Q), is

if the distance between the
scatterers,~r , remains constant
(no vibrations) but is allowed
to orient randomly in space〈
I (~Q)

〉
= f 2

1 +f 2
2 +2f1f2

sin(Qr)

Qr
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Randomly oriented electrons

Recall that when we had a fixed
orientation of the two electrons,
we had and intensity variation as
cos(Qr).

When we now replace the two
arbitrary scattering distributions
with electrons (f1, f2 → −ro),
we change the intensity profile
significantly.
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Hydrogen form factor calculation

Since ρ(r) = |ψ1s(r)|2, the form factor integral becomes

f 0
1s(~Q) =

1

πa3

∫
e−2r/ae i

~Q·~r r2 sin θdrdθdφ

the integral in φ gives 2π and if we choose ~Q to be along the z direction,
~Q ·~r → Qr cos θ, so

f 0
1s(~Q) =

1

πa3

∫ ∞
0

2πr2e−2r/a

∫ π

0
e iQr cos θ sin θdθdr

=
1

πa3

∫ ∞
0

2πr2e−2r/a 1

iQr

[
−e iQr cos θ

∣∣∣π
0
dr

=
1

πa3

∫ ∞
0

2πr2e−2r/a 1

iQr

[
e iQr − e−iQr

]
dr

=
1

πa3

∫ ∞
0

2πr2e−2r/a 2 sin(Qr)

Qr
dr
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Form factor calculation

f 0
1s(~Q) =

1

πa3

∫ ∞
0

2πr2e−2r/a 2 sin(Qr)

Qr
dr

If we write sin(Qr) = Im
[
e iQr

]
then the integral becomes

f 0
1s(~Q) =

4

a3Q

∫ ∞
0

re−2r/aIm
[
e iQr

]
dr

=
4

a3Q
Im

[∫ ∞
0

re−2r/ae iQrdr

]

this can be integrated by parts with

u = r dv = e−r(2/a−iQ)dr

du = dr v = −e−r(2/a−iQ)

(2/a− iQ)

f 0
1s(~Q) =

4

a3Q
Im

[
r
e−r(2/a−iQ)

(2/a− iQ)

∣∣∣∣∣
∞

0

+

∫ ∞
0

e−r(2/a−iQ)

(2/a− iQ)
dr

]
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Form factor calculation
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(2/a− iQ)

∣∣∣∣∣
∞

0

+

∫ ∞
0

e−r(2/a−iQ)

(2/a− iQ)
dr

]

the first term becomes zero because re−r(2/a−iQ) → 0 as r → 0, the
second is easily integrated

f 0
1s(~Q) =

4

a3Q
Im

[
− e−r(2/a−iQ)

(2/a− iQ)2

∣∣∣∣∣
∞

0

]
=

4

a3Q
Im

[
1

(2/a− iQ)2

]
=

4

a3Q
Im

[
(2/a + iQ)2

(2/a− iQ)2(2/a + iQ)2

]
=

4

a3Q
Im

[
(2/a)2 + i(4Q/a)− Q2

[(2/a)2 + Q2]2

]

f 0
1s(~Q)

=
4

a3Q

(a/2)4(4Q/a)

[1 + (Qa/2)2]2
=

1

[1 + (Qa/2)2]2
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1s and atomic form factors

f 0
1s(~Q) =

1

[1 + (Qa/2)2]2

This partial form factor will vary
with Z due to the Coulomb inter-
action

In principle, one can compute the
full atomic form factors, however,
it is more useful to tabulate the ex-
perimentally measured form factors
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Two hydrogen atoms

Previously we derived the scat-
tering intensity from two local-
ized electrons both fixed and
randomly oriented to the x-rays.

When we now replace the two
localized electrons with hydro-
gen atoms, we have, for fixed
atoms.

If we allow the hydrogen atoms
to be randomly oriented we
have.
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