
Today’s Outline - February 12, 2015

• Homework #02 discussion

• Reflection from a graded index

• Reflection from rough interfaces and surfaces

• Models of Surfaces

• Reflectivity from the MRCAT mirror

C. Segre (IIT) PHYS 570 - Spring 2015 February 12, 2015 1 / 19



Today’s Outline - February 12, 2015

• Homework #02 discussion

• Reflection from a graded index

• Reflection from rough interfaces and surfaces

• Models of Surfaces

• Reflectivity from the MRCAT mirror

C. Segre (IIT) PHYS 570 - Spring 2015 February 12, 2015 1 / 19



Today’s Outline - February 12, 2015

• Homework #02 discussion

• Reflection from a graded index

• Reflection from rough interfaces and surfaces

• Models of Surfaces

• Reflectivity from the MRCAT mirror

C. Segre (IIT) PHYS 570 - Spring 2015 February 12, 2015 1 / 19



Today’s Outline - February 12, 2015

• Homework #02 discussion

• Reflection from a graded index

• Reflection from rough interfaces and surfaces

• Models of Surfaces

• Reflectivity from the MRCAT mirror

C. Segre (IIT) PHYS 570 - Spring 2015 February 12, 2015 1 / 19



Today’s Outline - February 12, 2015

• Homework #02 discussion

• Reflection from a graded index

• Reflection from rough interfaces and surfaces

• Models of Surfaces

• Reflectivity from the MRCAT mirror

C. Segre (IIT) PHYS 570 - Spring 2015 February 12, 2015 1 / 19



Today’s Outline - February 12, 2015

• Homework #02 discussion

• Reflection from a graded index

• Reflection from rough interfaces and surfaces

• Models of Surfaces

• Reflectivity from the MRCAT mirror

C. Segre (IIT) PHYS 570 - Spring 2015 February 12, 2015 1 / 19



HW #02

1. Knowing that the photoelectric absorption of an element scales as the
inverse of the energy cubed, calculate:

(a) the absorption coefficient at 10keV for copper when the value at 5keV
is 1698.3 cm−1;

(b) The actual absorption coefficient of copper at 10keV is 1942.1 cm−1,
why is this so different than your calculated value?

2. A 30 cm long, ionization chamber, filled with 80% helium and 20%
nitrogen gases at 1 atmosphere, is being used to measure the photon rate
(photons/sec) in a synchrotron beamline at 12 keV. If a current of 10 nA
is measured, what is the photon flux entering the ionization chamber?

3. A 5 cm deep ionization chamber is used to measure the fluorescence
from a sample containing arsenic (As). Using any noble gases or nitrogen,
determine a gas fill (at 1 atmosphere) for this chamber which absorbs at
least 60% of the incident photons. How does this change if you are
measuring the fluorescence from ruthenium (Ru)?

C. Segre (IIT) PHYS 570 - Spring 2015 February 12, 2015 2 / 19



HW #02

4. Calculate the critical angle of reflection of 10 keV and 30 keV x-rays
for:

(a) A slab of glass (SiO2);

(b) A thick chromium mirror;

(c) A thick platinum mirror.

(d) If the incident x-ray beam is 2 mm high, what length of mirror is
required to reflect the entire beam for each material?

5. Calculate the fraction of silver (Ag) fluorescence x-rays which are
absorbed in a 1 mm thick silicon (Si) detector and the charge pulse
expected for each absorbed photon. Repeat the calculation for a 1 mm
thick germanium (Ge) detector.
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Graded Interfaces

f(z)

z

1

0

Since most interfaces are not sharp, it is im-
portant to be able to model a graded interface,
where the density, and therefore the index of
refraction varies near the interface itself.

The reflectivity of this kind of interface can
be calculated best in the kinematical limit
(Q > Qc).

The density profile of the interface can be de-
scribed by the function f (z) which approaches
1 as z →∞.

The reflectivity can be computed as the super-
position of the reflectivity of a series of infinites-
mal slabs of thickness dz at a depth z .

C. Segre (IIT) PHYS 570 - Spring 2015 February 12, 2015 4 / 19



Graded Interfaces

f(z)

z

1

0

Since most interfaces are not sharp, it is im-
portant to be able to model a graded interface,
where the density, and therefore the index of
refraction varies near the interface itself.

The reflectivity of this kind of interface can
be calculated best in the kinematical limit
(Q > Qc).

The density profile of the interface can be de-
scribed by the function f (z) which approaches
1 as z →∞.

The reflectivity can be computed as the super-
position of the reflectivity of a series of infinites-
mal slabs of thickness dz at a depth z .

C. Segre (IIT) PHYS 570 - Spring 2015 February 12, 2015 4 / 19



Graded Interfaces

f(z)

z

1

0

Since most interfaces are not sharp, it is im-
portant to be able to model a graded interface,
where the density, and therefore the index of
refraction varies near the interface itself.

The reflectivity of this kind of interface can
be calculated best in the kinematical limit
(Q > Qc).

The density profile of the interface can be de-
scribed by the function f (z) which approaches
1 as z →∞.

The reflectivity can be computed as the super-
position of the reflectivity of a series of infinites-
mal slabs of thickness dz at a depth z .

C. Segre (IIT) PHYS 570 - Spring 2015 February 12, 2015 4 / 19



Graded Interfaces

f(z)

z

1

0

dz

Since most interfaces are not sharp, it is im-
portant to be able to model a graded interface,
where the density, and therefore the index of
refraction varies near the interface itself.

The reflectivity of this kind of interface can
be calculated best in the kinematical limit
(Q > Qc).

The density profile of the interface can be de-
scribed by the function f (z) which approaches
1 as z →∞.

The reflectivity can be computed as the super-
position of the reflectivity of a series of infinites-
mal slabs of thickness dz at a depth z .

C. Segre (IIT) PHYS 570 - Spring 2015 February 12, 2015 4 / 19



Reflectivity of a Graded Interface

δr(Q) = −i Q
2
c

4Q
f (z)dz

r(Q) = −i Q
2
c

4Q

∫ ∞
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f (z)e iQzdz

= i
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iQ

Q2
c

4Q

∫ ∞
−∞

f ′(z)e iQzdz

=
Q2

c

4Q2

∫ ∞
−∞

f ′(z)e iQzdz

The differential reflectivity
from a slab of thickness dz at
depth z is:

integrating, to get the entire
reflectivity

integrating by parts simplifies

the term in front is simply the
Fresnel reflectivity for an inter-
face, rF (Q) when q � 1, the
integral is the Fourier transform
of the density gradient, φ(Q)

Calculating the full reflection coefficient relative to the Fresnel reflection
coefficient

R(Q)

RF (Q)
=

∣∣∣∣∫ ∞
−∞

(
df

dz

)
e iQzdz

∣∣∣∣2
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The Error Function - a Specific Case

The error function is often chosen as a model for the density gradient

f (z) = erf (
z√
2σ

) =
1√
π

∫ z/
√
2σ

0
e−t2dt

the gradient of the error function is simply a Gaussian

df (z)

dz
=

d

dz
erf (

z√
2σ

) =
1√

2πσ2
e−

1
2

z2

σ2

whose Fourier transform is also a Gaussian, which when squared to obtain
the reflection coefficient, gives.

Or more accurately.

R(Q) = RF (Q)e−Q2σ2

= RF (Q)e−QQ′σ2

Q = k sin θ, Q ′ = k ′ sin θ′
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Rough Surfaces

When a surface or interface is not perfectly smooth but has some
roughness the reflectivity is no longer simply specular but has a non-zero
diffuse component which we must include in the model.

θ
2

θ
1

V

rV = −ro
∫

V
(ρd~r)e i ~Q·~r

∫
V

(
~∇ · ~C

)
d~r =

∫
S

~C ·d ~S

The incident and scattered angles are no
longer the same, the x-rays illuminate the
volume V . The scattering from the entire,
illuminated volume is given by using Gauss’
theorem.
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Conversion to Surface Integral

∫
V

(
~∇ · ~C

)
d~r =

∫
S

~C · d ~S

Taking

~C = ẑ
e i ~Q·~r

iQz

We have

~∇ · ~C =
e i ~Q·~r

iQz
iQz = e i ~Q·~r

rV = −roρ
∫

V
e i ~Q·~rd~r

= −roρ
∫

V

~∇ ·

(
ẑ
e i ~Q·~r

iQz

)
· d~r

rS = −roρ
∫

S

(
ẑ
e i ~Q·~r

iQz

)
· d ~S

rS = −roρ
1

iQz

∫
S
e i ~Q·~rdxdy
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ẑ
e i ~Q·~r

iQz

)
· d ~S

rS = −roρ
1

iQz

∫
S
e i ~Q·~rdxdy

C. Segre (IIT) PHYS 570 - Spring 2015 February 12, 2015 8 / 19



Conversion to Surface Integral

∫
V

(
~∇ · ~C

)
d~r =

∫
S

~C · d ~S

Taking

~C = ẑ
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Evaluation of Surface Integral

The side surfaces of the volume do not contribute to this integral as they
are along the ẑ direction, but we can also choose the thickness of the slab
such that the lower surface will not contribute either.

Thus, the integral need only
be evaluated over the top,
rough surface whose varia-
tion we characterize by the
function h(x , y)

~Q · ~r = Qzh(x , y) + Qxx + Qyy

rS = − roρ

iQz

∫
S
e iQz h(x ,y)e i(Qx x+Qy y)dxdy

The actual scattering cross section is the square of this integral

dσ

dΩ
=

(
roρ

Qz

)2 ∫
S

∫
S ′
e iQz (h(x ,y)−h(x ′,y ′))e iQx (x−x ′)e iQy (y−y ′)dxdydx ′dy ′
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Scattering Cross Section

If we assume that h(x , y)− h(x ′, y ′) depends only on the relative
difference in position, x − x ′ and y − y ′ the four dimensional integral
collapses to the product of two two dimensional integrals

(
dσ

dΩ

)
=

(
roρ

Qz

)2 ∫
S ′
dx ′dy ′

∫
S

〈
e iQz (h(0,0)−h(x ,y))

〉
e iQx xe iQy ydxdy

=

(
roρ

Qz

)2 Ao

sin θ1

∫ 〈
e iQz (h(0,0)−h(x ,y))

〉
e iQx xe iQy ydxdy

where Ao/ sin θ1 is just the illuminated surface area and the term in the
angled brackets is an ensemble average over all possible choices of the
origin within the illuminated area.
Finally, it is assumed that the statistics of the height variation are
Gaussian and(

dσ

dΩ

)
=

(
roρ

Qz

)2 Ao

sin θ1

∫
e−Q2

z 〈[h(0,0)−h(x ,y)]2〉/2e iQx xe iQy ydxdy
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Limiting Case - Flat Surface

Define a function g(x , y) =
〈

[h(0, 0)− h(x , y)]2
〉

which can be modeled

in various ways.

For a perfectly flat surface, h(x , y) = 0 for all x and y .

by the definition of a delta
function

2πδ(q) =

∫
e iqxdx

the expression for the scat-
tered intensity in terms of
the momentum transfer wave
vectors is

(
dσ

dΩ

)
=

(
roρ

Qz

)2 Ao

sin θ1

∫
e iQx xe iQy ydxdy

=

(
roρ

Qz

)2 Ao

sin θ1
δ(Qx )δ(Qy )

Isc =

(
Io
Ao

)(
dσ

dΩ

)
∆Qx ∆Qy

k2 sin θ2

R(Qz ) =
Isc

Io
=

(
Q2

c /8

Qz

)2(
1

Qz/2

)2

=

(
Qc

2Qz

)4
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Uncorrelated Surfaces

For a totally uncorrelated surface, h(x , y) is independent from h(x ′, y ′) and

〈
[h(0, 0)− h(x , y)]2

〉
= 〈h(0, 0)〉2 − 2 〈h(0, 0)〉 〈h(x , y)〉+ 〈h(x , y)〉2

= 2
〈
h2
〉

This quantity is simply related to the rms roughness, σ by σ2 =
〈
h2
〉

and
the cross-section is given by(

dσ

dΩ

)
=

(
roρ

Qz

)2 Ao

sin θ1

∫
e−Q2

z 〈h2〉2/2e iQx xe iQy ydxdy

=

(
roρ

Qz

)2 Ao

sin θ1
e−Q2

z σ
2
∫

e iQx xe iQy ydxdy

Which, apart from the term containing σ is simply the Fresnel
cross-section for a flat surface(

dσ

dΩ

)
=

(
dσ

dΩ

)
Fresnel

e−Q2
z σ

2
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Surface Roughness Effect

(
dσ

dΩ

)
=

(
dσ

dΩ

)
Fresnel

e−Q2
z σ

2

for a perfectly flat surface,
we get the Fresnel reflectivity
derived for a thin slab

for an uncorrelated rough
surface, the reflectivity is
reduced by an exponential
factor controlled by the rms
surface roughness σ 0 0.2 0.4 0.6 0.8 1

Q (Å
-1

)
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-8

10
-4

10
0
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Correlated Surfaces

Assume that height fluctuations are isotropically correlated in the x-y
plane. Therefore, g(x , y) = g(r) = g(

√
x2 + y2).

In the limit that the correlations are unbounded as r →∞, g(x , y) is
given by

g(x , y) = Ar2h

where h is a fractal parameter which defines the shape of the surface.

jagged surface for h� 1 smoother surface for h→ 1

If the resolution in the y direction is very broad (typical for a synchrotron),
we can eliminate the y-integral and have(

dσ

dΩ

)
=

(
roρ

Qz

)2 Ao

sin θ1

∫
e−AQ2

z |x |
2h/2 cos(Qxx)dx
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Unbounded Correlations - Limiting Cases

This integral can be evaluated in closed form for two special cases, both
having a broad diffuse scattering and no specular peak.

h = 1/2(
dσ

dΩ

)
=

(
Aor

2
oρ

2

2 sin θ1

)
A

(Q2
x + (A/2)2Q4

z )

Lorentzian with half-width AQ2
z /2

h = 1(
dσ

dΩ

)
=

(
2
√
πAor

2
oρ

2

2 sin θ1

)
1

Q4
z

e
− 1

2

(
Q2

x
AQ2

z

)

Gaussian with variance AQ2
z

-0.01 -0.005  0  0.005  0.01

Qx

 0

 0.02

 0.04

 0.06

 0.08

 0.1

Q
z

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

-0.04 -0.02  0  0.02  0.04

Qx

 0

 0.002

 0.004

 0.006

 0.008

 0.01

Q
z

 1e-300

 1e-250

 1e-200

 1e-150

 1e-100

 1e-50

 1

 1e+50

C. Segre (IIT) PHYS 570 - Spring 2015 February 12, 2015 15 / 19



Unbounded Correlations - Limiting Cases

This integral can be evaluated in closed form for two special cases, both
having a broad diffuse scattering and no specular peak.

h = 1/2(
dσ

dΩ

)
=

(
Aor

2
oρ

2

2 sin θ1

)
A

(Q2
x + (A/2)2Q4

z )

Lorentzian with half-width AQ2
z /2

h = 1(
dσ

dΩ

)
=

(
2
√
πAor

2
oρ

2

2 sin θ1

)
1

Q4
z

e
− 1

2

(
Q2

x
AQ2

z

)

Gaussian with variance AQ2
z

-0.01 -0.005  0  0.005  0.01

Qx

 0

 0.02

 0.04

 0.06

 0.08

 0.1

Q
z

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

-0.04 -0.02  0  0.02  0.04

Qx

 0

 0.002

 0.004

 0.006

 0.008

 0.01

Q
z

 1e-300

 1e-250

 1e-200

 1e-150

 1e-100

 1e-50

 1

 1e+50

C. Segre (IIT) PHYS 570 - Spring 2015 February 12, 2015 15 / 19



Unbounded Correlations - Limiting Cases

This integral can be evaluated in closed form for two special cases, both
having a broad diffuse scattering and no specular peak.

h = 1/2(
dσ

dΩ

)
=

(
Aor

2
oρ

2

2 sin θ1

)
A

(Q2
x + (A/2)2Q4

z )

Lorentzian with half-width AQ2
z /2

h = 1(
dσ

dΩ

)
=

(
2
√
πAor

2
oρ

2

2 sin θ1

)
1

Q4
z

e
− 1

2

(
Q2

x
AQ2

z

)

Gaussian with variance AQ2
z

-0.01 -0.005  0  0.005  0.01

Qx

 0

 0.02

 0.04

 0.06

 0.08

 0.1

Q
z

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

-0.04 -0.02  0  0.02  0.04

Qx

 0

 0.002

 0.004

 0.006

 0.008

 0.01

Q
z

 1e-300

 1e-250

 1e-200

 1e-150

 1e-100

 1e-50

 1

 1e+50

C. Segre (IIT) PHYS 570 - Spring 2015 February 12, 2015 15 / 19



Unbounded Correlations - Limiting Cases

This integral can be evaluated in closed form for two special cases, both
having a broad diffuse scattering and no specular peak.

h = 1/2(
dσ

dΩ

)
=

(
Aor

2
oρ

2

2 sin θ1

)
A

(Q2
x + (A/2)2Q4

z )

Lorentzian with half-width AQ2
z /2

h = 1(
dσ

dΩ

)
=

(
2
√
πAor

2
oρ

2

2 sin θ1

)
1

Q4
z

e
− 1

2

(
Q2

x
AQ2

z

)

Gaussian with variance AQ2
z

-0.01 -0.005  0  0.005  0.01

Qx

 0

 0.02

 0.04

 0.06

 0.08

 0.1

Q
z

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

-0.04 -0.02  0  0.02  0.04

Qx

 0

 0.002

 0.004

 0.006

 0.008

 0.01

Q
z

 1e-300

 1e-250

 1e-200

 1e-150

 1e-100

 1e-50

 1

 1e+50

C. Segre (IIT) PHYS 570 - Spring 2015 February 12, 2015 15 / 19



Unbounded Correlations - Limiting Cases

This integral can be evaluated in closed form for two special cases, both
having a broad diffuse scattering and no specular peak.

h = 1/2(
dσ

dΩ

)
=

(
Aor

2
oρ

2

2 sin θ1

)
A

(Q2
x + (A/2)2Q4

z )

Lorentzian with half-width AQ2
z /2

h = 1(
dσ

dΩ

)
=

(
2
√
πAor

2
oρ

2

2 sin θ1

)
1

Q4
z

e
− 1

2

(
Q2

x
AQ2

z

)

Gaussian with variance AQ2
z

-0.01 -0.005  0  0.005  0.01

Qx

 0

 0.02

 0.04

 0.06

 0.08

 0.1

Q
z

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

-0.04 -0.02  0  0.02  0.04

Qx

 0

 0.002

 0.004

 0.006

 0.008

 0.01

Q
z

 1e-300

 1e-250

 1e-200

 1e-150

 1e-100

 1e-50

 1

 1e+50

C. Segre (IIT) PHYS 570 - Spring 2015 February 12, 2015 15 / 19



Unbounded Correlations - Limiting Cases

This integral can be evaluated in closed form for two special cases, both
having a broad diffuse scattering and no specular peak.

h = 1/2(
dσ

dΩ

)
=

(
Aor

2
oρ

2

2 sin θ1

)
A

(Q2
x + (A/2)2Q4

z )

Lorentzian with half-width AQ2
z /2

h = 1(
dσ

dΩ

)
=

(
2
√
πAor

2
oρ

2

2 sin θ1

)
1

Q4
z

e
− 1

2

(
Q2

x
AQ2

z

)

Gaussian with variance AQ2
z

-0.01 -0.005  0  0.005  0.01

Qx

 0

 0.02

 0.04

 0.06

 0.08

 0.1

Q
z

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

-0.04 -0.02  0  0.02  0.04

Qx

 0

 0.002

 0.004

 0.006

 0.008

 0.01

Q
z

 1e-300

 1e-250

 1e-200

 1e-150

 1e-100

 1e-50

 1

 1e+50

C. Segre (IIT) PHYS 570 - Spring 2015 February 12, 2015 15 / 19



Bounded Correlations

If the correlations remain bounded as r →∞

g(x , y) = 2
〈
h2
〉
− 2 〈h(0, 0)h(x .y)〉 = 2σ2 − 2C (x , y)

where
C (x , y) = σ2e−(r/ξ)

2h

(
dσ

dΩ

)
=

(
roρ

Qz

)2 Ao

sin θ1
e−Q2

z σ
2
∫

eQ2
z C(x ,y)e iQx xe iQy ydxdy

=

(
roρ

Qz

)2 Ao

sin θ1
e−Q2

z σ
2
∫ [

eQ2
z C(x ,y) − 1 + 1

]
e iQx xe iQy ydxdy

=

(
dσ

dΩ

)
Fresnel

e−Q2
z σ

2
+

(
roρ

Qz

)2 Ao

sin θ1
e−Q2

z σ
2
Fdiffuse( ~Q)

And the scattering exhibits both a specular peak, reduced by uncorrelated
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The MRCAT Mirror

50 cm

x-rays

Rh Pt

glass

Ultra low expansion glass polished to a
few Å roughness

One platinum stripe and one rhodium
stripe deposited along the length of the
mirror on top of a chromium buffer layer

A mounting system which permits angu-
lar positioning to less than 1/100 of a
degree as well as horizontal and vertical
motions

A bending mechanism to permit vertical
focusing of the beam to ∼ 60 µm
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Mirror Performance I

When illuminated with 12 keV
x-rays on the glass “stripe”, the
reflectivity is measured as:

With the Rh stripe, the thin
slab reflection is evident and
the critical angle is significantly
higher.

The Pt stripe gives a higher crit-
ical angle still but a lower reflec-
tivity and it looks like an infinite
slab. Why?
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Mirror Performance II
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As we move up in energy the
critical angle for the Pt stripe
drops.

The reflectivity at low angles
improves as we are well away
from the Pt absorption edges
at 11,565 eV, 13,273 eV, and
13,880 eV.

As energy rises, the Pt layer be-
gins to show the reflectivity of a
thin slab.
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Mirror Performance II
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Mirror Performance II
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