
Today’s Outline - February 05, 2015

• Reflection from a thin slab

• Kiessig fringes

• Kinematical approximation for a thin slab

• Multilayers in the Kinematical Regime

• Parratt’s exact recursive calculation

• Reflection from a graded index

Reading Assignment: Chapter 3.5–3.8

Homework Assignment #02:
Problems on Blackboard
due Thursday, February 12, 2015

No class on Tuesday, February 10, 2015
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Review of Interface Effects

We have covered the interface boundary conditions which govern the
transmission and reflection of waves at a change in medium.

These result
in the Fresnel equations which we rewrite here in terms of the momentum
transfer.

n
0

n
1

r=
Q − Q ′

Q + Q ′

t=
2Q

Q + Q ′

We have assumed that the transmitted wave eventually attenuates to zero
in all cases due to absorption. We now consider what happens if there is a
second interface encountered by the transmitted wave before it dies away.
That is, a thin slab of material on top of an infinite substrate
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Reflection and Transmission Coefficients

For a slab of thickness ∆ on a substrate, the transmission and reflection
coefficients at each interface are labeled:

n
0

n
1

r
01

t
01

∆

r01 – reflection in n0 off n1

t01 – transmission from n0 into n1

r12 – reflection in n1 off n2

t12 – transmission from n1 into n2

r10 – reflection in n1 off n0

t10 – transmission from n1 into n0

Build the composite reflection coefficient from all possible events
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Overall Reflection from a Slab

The composite reflection coefficient for each ray emerging from the top
surface is computed

n
0

n
1

n
2

∆

r01

+
t01r12t10

· p2

+
t01r12r10r12t10

· p4

Inside the medium, the x-rays are travelling an additional 2∆ per traversal.
This adds a phase shift of

p2 = e i2(k1 sinα1)∆

= e iQ1∆

which multiplies the reflection coefficient with each pass through the slab
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Composite Reflection Coefficient

The composite reflection coefficient can now be expressed as a sum

rslab = r01 + t01r12t10p
2 + t01r10r

2
12t10p

4 + t01r
2
10r

3
12t10p

6 + · · ·

rslab = r01 + t01t10r12p
2
∞∑

m=0

(
r10r12p

2
)m

= r01 + t01t10r12p
2 1

1− r10r12p2

factoring out second term
from all the rest

summing the geometric series
as previously

The individual reflection and transmission coefficients can be determined
using the Fresnel equations. Recall

r =
Q − Q ′

Q + Q ′
, t =

2Q

Q + Q ′
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Fresnel Equation Identity

Applying the Fresnel equations to the top interface

r01 =
Q0 − Q1

Q0 + Q1

r10 =
Q1 − Q0

Q1 + Q0
= −r01

t01 =
2Q0

Q0 + Q1

t10 =
2Q1

Q1 + Q0

we can, therefore, construct the following identity

r2
01 + t01t10 =

(Q0 − Q1)2

(Q0 + Q1)2
+

2Q0

Q0 + Q1

2Q1

Q1 + Q0

=
Q2

0 + 2Q0Q1 + Q2
1

(Q0 + Q1)2
=

(Q0 + Q1)2

(Q0 + Q1)2
= 1
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Reflection Coefficient of a Slab

Starting with the reflection coefficient of the slab obtained earlier

rslab = r01 + t01t10r12p
2 1

1− r10r12p2

= r01 +
(
1− r2

01

)
r12p

2 1

1− r10r12p2

=
r01 + r2

01r12p
2 +

(
1− r2

01

)
r12p

2

1− r10r12p2

rslab =
r01 + r12p

2

1 + r01r12p2
=

r01

(
1− p2

)
1− r2

01p
2

Using the identity

t01t10 = 1− r2
01

Expanding over a com-
mon denominator and re-
calling that r10 = −r01.

In the case of n0 = n2

there is the further simpli-
fication of r12 = −r01.
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Kiessig Fringes

p2 = e iQ1∆

rslab =
r01

(
1− p2

)
1− r2

01p
2

If we plot the reflectivity

Rslab = |rslab|2

These are Kiessig fringes which
arise from interference between
reflections at the top and bot-
tom of the slab. They have an
oscillation frequency

2π/∆ = 0.092Å
−1 0 0.2 0.4 0.6 0.8 1

Q (Å
-1

)

0

1

R
S

la
b

∆=68 Å
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−1 0 0.2 0.4 0.6 0.8 1

Q (Å
-1

)

10
-8

10
-4

10
0

R
S

la
b

∆=68 Å

2π/∆

C. Segre (IIT) PHYS 570 - Spring 2015 February 05, 2015 8 / 20



Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab.

If the slab is thin and we
are well above the critical angle refraction effects can be ignored and we
are in the “kinematical” regime.

rslab =
r01

(
1− p2

)
1− r2

01p
2

≈ r01

(
1− p2

)
= r01

(
1− e iQ∆

)
rslab ≈

(
Qc

2Q0

)2 (
1− e iQ∆

)

q � 1

|r01| � 1 α > αc

r01 =
q0 − q1

q0 + q1

q0 + q1

q0 + q1
=

q2
0 − q2

1

(q0 + q1)2

≈ 1

(2q0)2
=

(
Qc

2Q0

)2

rslab = −16πρro
4Q2

e iQ∆/2
(
e iQ∆/2 − e−iQ∆/2

)
= −i

(
4πρr0∆

Q

)
�
���

��sin(Q∆/2)

Q∆/2
����
e iQ∆/2 ≈ −i λρro∆

sinα
= rthin slab

Since Q∆� 1 for a thin slab
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Multilayers in the Kinematical Regime

Λ1

2

3

N

.

.

.

.

.

.

.

θ θ
N repetitions of a bilayer of thickness Λ
composed of two materials, A and B which
have a density contrast (ρA > ρB).

r1 is the reflectivity of a single bilayer

β is the average absorption per bilayer

ζ = QΛ/2π is a dimensionless parameter
related to the phase shift of a single bilayer

Form a stack of N bilayers

rN(ζ) =
N−1∑
ν=0

r1(ζ)e i2πζνe−βν = r1(ζ)
1− e i2πζNe−βN

1− e i2πζe−β
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Reflectivity of a Bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivity
developed for a slab but replacing the density of the slab material with the
difference in densities of the bilayer components

and assuming that
material A is a fraction Γ of the bilayer thickness

ρ −→ ρAB = ρA − ρB

r1(ζ) = −i λroρAB
sin θ

∫ +ΓΛ/2

−ΓΛ/2
e i2πζz/Λdz

= −i λroρAB
sin θ

Λ

i2πζ

[
e iπζΓ − e−iπζΓ

]

r1 = −2iroρAB

(
Λ2Γ

ζ

)
sin (πΓζ)

πΓζ

e ix − e−ix = 2i sin x

Q = 4π sin θ/λ = 2πζ/Λ
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Absorption Coefficient of a Bilayer

The total reflectivity for the multilayer is therefore:

rN = −2iroρAB

(
Λ2Γ

ζ

)
sin (πΓζ)

πΓζ

1− e i2πζNe−βN

1− e i2πζe−β

The incident x-ray has a path length Λ/ sin θ in a bilayer, a fraction Γ
through nA and a fraction (1− Γ) through nB . The amplitude absorption
coefficient, β is

β = 2

[
µA
2

ΓΛ

sin θ
+
µB
2

(1− Γ)Λ

sin θ

]
=

Λ

sin θ
[µAΓ + µB(1− Γ)]
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Reflectivity Calculation

0 0.2

Q (Å
-1

)

0

1

R
M

ul
til

ay
er

∆W/∆Si=10Å/40Å

10 bilayers
of W/Si

• When ζ = QΛ/2π is an
integer, we have peaks

• As N becomes larger, these
peaks would become more
prominent

• This is effectively a
diffraction grating for
x-rays

• Multilayers are used
commonly on laboratory
sources as well as at
synchrotrons as mirrors
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Slab - Multilayer Comparison
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Parratt’s Recursive Method

Treat the multilayer as a stratified medium on top of an infinitely thick
substrate.

Take ∆j as the thickness of each layer and nj = 1− δj + iβj as
the index of refraction of each layer.
Because of continuity, kxj = kx and therefore, we can compute the

z-component of ~kj

k2
zj = (njk)2 − k2

x

= (1− δj + iβj)
2 k2 − k2

x

≈ k2
z − 2δjk

2 + 2iβjk
2

Qj = 2kj sinαj = 2kzj

=
√

Q2 − 8k2δj + 8ik2βj

nj
kzj

kz

kx

and the wavevector transfer
in the jth layer
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Parratt Reflectivity Calculation

The reflectivity from the interface between
layer j and j + 1, not including multiple
reflections is

Now start calculating the reflectivity
from the bottom of the Nth layer, closest
to the substrate, where multiple reflections
are not present

The reflectivity from the top of the
Nth layer, including multiple reflections is
now calculated (note no prime!)

r ′j ,j+1 =
Qj − Qj+1

Qj + Qj+1

r ′N,∞ =
QN − Q∞
QN + Q∞

rN−1,N =
r ′N−1,N + r ′N,∞p2

N

1 + r ′N−1,N r
′
N,∞p2

N

The recursive relation can be seen from the calculation of reflectivity of
the next layer up

rN−2,N−1 =
r ′N−2,N−1 + rN−1,Np

2
N−1

1 + r ′N−2,N−1rN−1,Np
2
N−1
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Kinematical - Parratt Comparison
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Kinematical approximation
gives a reasonably good ap-
proximation to the correct
calculation, with a few excep-
tions.

Parratt calculation gives
RPar = 1 as Q → 0 while kine-
matical diverges (RKin →∞).

Parratt peaks shifted to slightly
higher values of Q

Peaks in kinematical calcula-
tion are somewhat higher re-
flectivity than true value.
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Graded Interfaces

f(z)

z

1

0

Since most interfaces are not sharp, it is im-
portant to be able to model a graded interface,
where the density, and therefore the index of
refraction varies near the interface itself.

The reflectivity of this kind of interface can
be calculated best in the kinematical limit
(Q > Qc).

The density profile of the interface can be de-
scribed by the function f (z) which approaches
1 as z →∞.

The reflectivity can be computed as the super-
position of the reflectivity of a series of infinites-
mal slabs of thickness dz at a depth z .
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Reflectivity of a Graded Interface

δr(Q) = −i Q
2
c

4Q
f (z)dz

r(Q) = −i Q
2
c

4Q

∫ ∞
−∞

f (z)e iQzdz

= i
1

iQ

Q2
c

4Q

∫ ∞
−∞

f ′(z)e iQzdz

=
Q2

c

4Q2

∫ ∞
−∞

f ′(z)e iQzdz
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The Error Function - a Specific Case

The error function is often chosen as a model for the density gradient

f (z) = erf (
z√
2σ

) =
1√
π

∫ z/
√

2σ

0
e−t

2
dt

the gradient of the error function is simply a Gaussian

df (z)

dz
=

d

dz
erf (

z√
2σ

) =
1√

2πσ2
e−

1
2

z2

σ2

whose Fourier transform is also a Gaussian, which when squared to obtain
the reflection coefficient, gives.

Or more accurately.

R(Q) = RF (Q)e−Q
2σ2

= RF (Q)e−QQ′σ2

Q = k sin θ, Q ′ = k ′ sin θ′
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