Today's Outline - February 05, 2015

Today's Outline - February 05, 2015

- Reflection from a thin slab

Today's Outline - February 05, 2015

- Reflection from a thin slab
- Kiessig fringes

Today's Outline - February 05, 2015

- Reflection from a thin slab
- Kiessig fringes
- Kinematical approximation for a thin slab

Today's Outline - February 05, 2015

- Reflection from a thin slab
- Kiessig fringes
- Kinematical approximation for a thin slab
- Multilayers in the Kinematical Regime

Today's Outline - February 05, 2015

- Reflection from a thin slab
- Kiessig fringes
- Kinematical approximation for a thin slab
- Multilayers in the Kinematical Regime
- Parratt's exact recursive calculation

Today's Outline - February 05, 2015

- Reflection from a thin slab
- Kiessig fringes
- Kinematical approximation for a thin slab
- Multilayers in the Kinematical Regime
- Parratt's exact recursive calculation
- Reflection from a graded index

Today's Outline - February 05, 2015

- Reflection from a thin slab
- Kiessig fringes
- Kinematical approximation for a thin slab
- Multilayers in the Kinematical Regime
- Parratt's exact recursive calculation
- Reflection from a graded index

Reading Assignment: Chapter 3.5-3.8

Today's Outline - February 05, 2015

- Reflection from a thin slab
- Kiessig fringes
- Kinematical approximation for a thin slab
- Multilayers in the Kinematical Regime
- Parratt's exact recursive calculation
- Reflection from a graded index

Reading Assignment: Chapter 3.5-3.8
Homework Assignment \#02:
Problems on Blackboard
due Thursday, February 12, 2015

Today's Outline - February 05, 2015

- Reflection from a thin slab
- Kiessig fringes
- Kinematical approximation for a thin slab
- Multilayers in the Kinematical Regime
- Parratt's exact recursive calculation
- Reflection from a graded index

Reading Assignment: Chapter 3.5-3.8
Homework Assignment \#02:
Problems on Blackboard
due Thursday, February 12, 2015
No class on Tuesday, February 10, 2015

Review of Interface Effects

We have covered the interface boundary conditions which govern the transmission and reflection of waves at a change in medium.

Review of Interface Effects

We have covered the interface boundary conditions which govern the transmission and reflection of waves at a change in medium.

Review of Interface Effects

We have covered the interface boundary conditions which govern the transmission and reflection of waves at a change in medium. These result in the Fresnel equations which we rewrite here in terms of the momentum transfer.

Review of Interface Effects

We have covered the interface boundary conditions which govern the transmission and reflection of waves at a change in medium. These result in the Fresnel equations which we rewrite here in terms of the momentum transfer.

$$
r=\frac{Q-Q^{\prime}}{Q+Q^{\prime}}
$$

Review of Interface Effects

We have covered the interface boundary conditions which govern the transmission and reflection of waves at a change in medium. These result in the Fresnel equations which we rewrite here in terms of the momentum transfer.

$$
\begin{aligned}
& r=\frac{Q-Q^{\prime}}{Q+Q^{\prime}} \\
& t=\frac{2 Q}{Q+Q^{\prime}}
\end{aligned}
$$

Review of Interface Effects

We have covered the interface boundary conditions which govern the transmission and reflection of waves at a change in medium. These result in the Fresnel equations which we rewrite here in terms of the momentum transfer.

$$
\begin{aligned}
& r=\frac{Q-Q^{\prime}}{Q+Q^{\prime}} \\
& t=\frac{2 Q}{Q+Q^{\prime}}
\end{aligned}
$$

We have assumed that the transmitted wave eventually attenuates to zero in all cases due to absorption.

Review of Interface Effects

We have covered the interface boundary conditions which govern the transmission and reflection of waves at a change in medium. These result in the Fresnel equations which we rewrite here in terms of the momentum transfer.

$$
\begin{aligned}
& r=\frac{Q-Q^{\prime}}{Q+Q^{\prime}} \\
& t=\frac{2 Q}{Q+Q^{\prime}}
\end{aligned}
$$

We have assumed that the transmitted wave eventually attenuates to zero in all cases due to absorption. We now consider what happens if there is a second interface encountered by the transmitted wave before it dies away. That is, a thin slab of material on top of an infinite substrate

Reflection and Transmission Coefficients

For a slab of thickness Δ on a substrate, the transmission and reflection coefficients at each interface are labeled:

Reflection and Transmission Coefficients

For a slab of thickness Δ on a substrate, the transmission and reflection coefficients at each interface are labeled:

$$
\begin{aligned}
& r_{01}-\text { reflection in } n_{0} \text { off } n_{1} \\
& t_{01} \text { - transmission from } n_{0} \text { into } n_{1}
\end{aligned}
$$

Reflection and Transmission Coefficients

For a slab of thickness Δ on a substrate, the transmission and reflection coefficients at each interface are labeled:
$r_{01}-$ reflection in n_{0} off n_{1}
t_{01} - transmission from n_{0} into n_{1}

$$
\begin{aligned}
& r_{12}-\text { reflection in } n_{1} \text { off } n_{2} \\
& t_{12}-\text { transmission from } n_{1} \text { into } n_{2}
\end{aligned}
$$

Reflection and Transmission Coefficients

For a slab of thickness Δ on a substrate, the transmission and reflection coefficients at each interface are labeled:


```
r01 - reflection in nofoff n
t01 - transmission from no into n1
r12 - reflection in n
t12 - transmission from n}\mp@subsup{n}{1}{}\mathrm{ into }\mp@subsup{n}{2}{
r r10 - reflection in n}\mp@subsup{n}{1}{}\mathrm{ off n
t10 - transmission from n}\mp@subsup{n}{1}{}\mathrm{ into no
```


Reflection and Transmission Coefficients

For a slab of thickness Δ on a substrate, the transmission and reflection coefficients at each interface are labeled:


```
ro1 - reflection in no off n
t01 - transmission from no into n1
r12 - reflection in n}\mp@subsup{n}{1}{}\mathrm{ off n}\mp@subsup{n}{2}{
t12 - transmission from n}\mp@subsup{n}{1}{}\mathrm{ into }\mp@subsup{n}{2}{
r r10 - reflection in n}\mp@subsup{n}{1}{}\mathrm{ off n
t10 - transmission from n}\mp@subsup{n}{1}{}\mathrm{ into }\mp@subsup{n}{0}{
```

Build the composite reflection coefficient from all possible events

Overall Reflection from a Slab

The composite reflection coefficient for each ray emerging from the top surface is computed

Overall Reflection from a Slab

The composite reflection coefficient for each ray emerging from the top surface is computed
$n_{0} \quad \downarrow$
r_{01}

Overall Reflection from a Slab

The composite reflection coefficient for each ray emerging from the top surface is computed

Overall Reflection from a Slab

The composite reflection coefficient for each ray emerging from the top surface is computed

$$
\begin{gathered}
r_{01} \\
+ \\
t_{01} r_{12} t_{10} \\
+ \\
t_{01} r_{12} r_{10} r_{12} t_{10}
\end{gathered}
$$

Overall Reflection from a Slab

The composite reflection coefficient for each ray emerging from the top surface is computed

Inside the medium, the x-rays are travelling an additional 2Δ per traversal. This adds a phase shift of

$$
p^{2}=e^{i 2\left(k_{1} \sin \alpha_{1}\right) \Delta}
$$

Overall Reflection from a Slab

The composite reflection coefficient for each ray emerging from the top surface is computed

Inside the medium, the x-rays are travelling an additional 2Δ per traversal. This adds a phase shift of

$$
p^{2}=e^{i 2\left(k_{1} \sin \alpha_{1}\right) \Delta}=e^{i Q_{1} \Delta}
$$

Overall Reflection from a Slab

The composite reflection coefficient for each ray emerging from the top surface is computed

Inside the medium, the x-rays are travelling an additional 2Δ per traversal. This adds a phase shift of

$$
p^{2}=e^{i 2\left(k_{1} \sin \alpha_{1}\right) \Delta}=e^{i Q_{1} \Delta}
$$

which multiplies the reflection coefficient

Overall Reflection from a Slab

The composite reflection coefficient for each ray emerging from the top surface is computed

Inside the medium, the x-rays are travelling an additional 2Δ per traversal. This adds a phase shift of

$$
p^{2}=e^{i 2\left(k_{1} \sin \alpha_{1}\right) \Delta}=e^{i Q_{1} \Delta}
$$

which multiplies the reflection coefficient with each pass through the slab

Composite Reflection Coefficient

The composite reflection coefficient can now be expressed as a sum

Composite Reflection Coefficient

The composite reflection coefficient can now be expressed as a sum

$$
r_{\text {slab }}=r_{01}+t_{01} r_{12} t_{10} p^{2}+t_{01} r_{10} r_{12}^{2} t_{10} p^{4}+t_{01} r_{10}^{2} r_{12}^{3} t_{10} p^{6}+\cdots
$$

Composite Reflection Coefficient

The composite reflection coefficient can now be expressed as a sum

$$
r_{\text {slab }}=r_{01}+t_{01} r_{12} t_{10} p^{2}+t_{01} r_{10} r_{12}^{2} t_{10} p^{4}+t_{01} r_{10}^{2} r_{12}^{3} t_{10} p^{6}+\cdots
$$

factoring out second term from all the rest

Composite Reflection Coefficient

The composite reflection coefficient can now be expressed as a sum

$$
\begin{array}{ll}
r_{\text {slab }}=r_{01}+t_{01} r_{12} t_{10} p^{2}+t_{01} r_{10} r_{12}^{2} t_{10} p^{4}+t_{01} r_{10}^{2} r_{12}^{3} t_{10} p^{6}+\cdots \\
& \text { factoring out second term } \\
r_{\text {slab }}=r_{01}+t_{01} t_{10} r_{12} p^{2} \sum_{m=0}^{\infty}\left(r_{10} r_{12} p^{2}\right)^{m} & \text { from all the rest }
\end{array}
$$

Composite Reflection Coefficient

The composite reflection coefficient can now be expressed as a sum

$$
\begin{array}{ll}
r_{\text {slab }}=r_{01}+t_{01} r_{12} t_{10} p^{2}+t_{01} r_{10} r_{12}^{2} t_{10} p^{4}+ & t_{01} r_{10}^{2} r_{12}^{3} t_{10} p^{6}+\cdots \\
& \text { factoring out second term } \\
r_{\text {slab }}=r_{01}+t_{01} t_{10} r_{12} p^{2} \sum_{m=0}^{\infty}\left(r_{10} r_{12} p^{2}\right)^{m} & \text { from all the rest } \\
& \begin{array}{l}
\text { summing the geometric series } \\
\\
\text { as previously }
\end{array}
\end{array}
$$

Composite Reflection Coefficient

The composite reflection coefficient can now be expressed as a sum

$$
\begin{array}{rlrl}
r_{\text {slab }} & =r_{01}+t_{01} r_{12} t_{10} p^{2}+t_{01} r_{10} r_{12}^{2} t_{10} p^{4}+ & t_{01} r_{10}^{2} r_{12}^{3} t_{10} p^{6}+\cdots \\
r_{\text {slab }} & =r_{01}+t_{01} t_{10} r_{12} p^{2} \sum_{m=0}^{\infty}\left(r_{10} r_{12} p^{2}\right)^{m} & & \text { factoring out second term all the rest } \\
& =r_{01}+t_{01} t_{10} r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}} & & \text { summing the geometric series } \\
& & \text { as previously }
\end{array}
$$

Composite Reflection Coefficient

The composite reflection coefficient can now be expressed as a sum

$$
\begin{array}{rlrl}
r_{\text {slab }} & =r_{01}+t_{01} r_{12} t_{10} p^{2}+t_{01} r_{10} r_{12}^{2} t_{10} p^{4}+ & t_{01} r_{10}^{2} r_{12}^{3} t_{10} p^{6}+\cdots \\
r_{\text {slab }} & =r_{01}+t_{01} t_{10} r_{12} p^{2} \sum_{m=0}^{\infty}\left(r_{10} r_{12} p^{2}\right)^{m} & \text { factoring out second term } \\
& \text { from all the rest } \\
& =r_{01}+t_{01} t_{10} r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}} & & \text { summing the geometric series } \\
\text { as previously }
\end{array}
$$

The individual reflection and transmission coefficients can be determined using the Fresnel equations. Recall

Composite Reflection Coefficient

The composite reflection coefficient can now be expressed as a sum

$$
\begin{array}{rlrl}
r_{\text {slab }} & =r_{01}+t_{01} r_{12} t_{10} p^{2}+t_{01} r_{10} r_{12}^{2} t_{10} p^{4}+ & t_{01} r_{10}^{2} r_{12}^{3} t_{10} p^{6}+\cdots \\
r_{\text {slab }} & =r_{01}+t_{01} t_{10} r_{12} p^{2} \sum_{m=0}^{\infty}\left(r_{10} r_{12} p^{2}\right)^{m} & \text { factoring out second term } \\
& \text { from all the rest } \\
& =r_{01}+t_{01} t_{10} r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}} & & \text { summing the geometric series } \\
\text { as previously }
\end{array}
$$

The individual reflection and transmission coefficients can be determined using the Fresnel equations. Recall

$$
r=\frac{Q-Q^{\prime}}{Q+Q^{\prime}}
$$

Composite Reflection Coefficient

The composite reflection coefficient can now be expressed as a sum

$$
\begin{array}{rlrl}
r_{\text {slab }} & =r_{01}+t_{01} r_{12} t_{10} p^{2}+t_{01} r_{10} r_{12}^{2} t_{10} p^{4}+ & t_{01} r_{10}^{2} r_{12}^{3} t_{10} p^{6}+\cdots \\
& & \text { factoring out second term } \\
r_{\text {slab }} & =r_{01}+t_{01} t_{10} r_{12} p^{2} \sum_{m=0}^{\infty}\left(r_{10} r_{12} p^{2}\right)^{m} & & \text { from all the rest } \\
& =r_{01}+t_{01} t_{10} r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}} & & \text { summing the geometric series } \\
& & \text { as previously }
\end{array}
$$

The individual reflection and transmission coefficients can be determined using the Fresnel equations. Recall

$$
r=\frac{Q-Q^{\prime}}{Q+Q^{\prime}}, \quad t=\frac{2 Q}{Q+Q^{\prime}}
$$

Fresnel Equation Identity

Applying the Fresnel equations to the top interface

Fresnel Equation Identity

Applying the Fresnel equations to the top interface

$$
r_{01}=\frac{Q_{0}-Q_{1}}{Q_{0}+Q_{1}}
$$

Fresnel Equation Identity

Applying the Fresnel equations to the top interface

$$
r_{01}=\frac{Q_{0}-Q_{1}}{Q_{0}+Q_{1}} \quad t_{01}=\frac{2 Q_{0}}{Q_{0}+Q_{1}}
$$

Fresnel Equation Identity

Applying the Fresnel equations to the top interface

$$
\begin{array}{ll}
r_{01}=\frac{Q_{0}-Q_{1}}{Q_{0}+Q_{1}} & t_{01}=\frac{2 Q_{0}}{Q_{0}+Q_{1}} \\
r_{10}=\frac{Q_{1}-Q_{0}}{Q_{1}+Q_{0}}=-r_{01} &
\end{array}
$$

Fresnel Equation Identity

Applying the Fresnel equations to the top interface

$$
\begin{array}{ll}
r_{01}=\frac{Q_{0}-Q_{1}}{Q_{0}+Q_{1}} & t_{01}=\frac{2 Q_{0}}{Q_{0}+Q_{1}} \\
r_{10}=\frac{Q_{1}-Q_{0}}{Q_{1}+Q_{0}}=-r_{01} & t_{10}=\frac{2 Q_{1}}{Q_{1}+Q_{0}}
\end{array}
$$

Fresnel Equation Identity

Applying the Fresnel equations to the top interface

$$
\begin{array}{ll}
r_{01}=\frac{Q_{0}-Q_{1}}{Q_{0}+Q_{1}} & t_{01}=\frac{2 Q_{0}}{Q_{0}+Q_{1}} \\
r_{10}=\frac{Q_{1}-Q_{0}}{Q_{1}+Q_{0}}=-r_{01} & t_{10}=\frac{2 Q_{1}}{Q_{1}+Q_{0}}
\end{array}
$$

we can, therefore, construct the following identity

$$
r_{01}^{2}+t_{01} t_{10}
$$

Fresnel Equation Identity

Applying the Fresnel equations to the top interface

$$
\begin{array}{ll}
r_{01}=\frac{Q_{0}-Q_{1}}{Q_{0}+Q_{1}} & t_{01}=\frac{2 Q_{0}}{Q_{0}+Q_{1}} \\
r_{10}=\frac{Q_{1}-Q_{0}}{Q_{1}+Q_{0}}=-r_{01} & t_{10}=\frac{2 Q_{1}}{Q_{1}+Q_{0}}
\end{array}
$$

we can, therefore, construct the following identity

$$
r_{01}^{2}+t_{01} t_{10}=\frac{\left(Q_{0}-Q_{1}\right)^{2}}{\left(Q_{0}+Q_{1}\right)^{2}}+\frac{2 Q_{0}}{Q_{0}+Q_{1}} \frac{2 Q_{1}}{Q_{1}+Q_{0}}
$$

Fresnel Equation Identity

Applying the Fresnel equations to the top interface

$$
\begin{array}{ll}
r_{01}=\frac{Q_{0}-Q_{1}}{Q_{0}+Q_{1}} & t_{01}=\frac{2 Q_{0}}{Q_{0}+Q_{1}} \\
r_{10}=\frac{Q_{1}-Q_{0}}{Q_{1}+Q_{0}}=-r_{01} & t_{10}=\frac{2 Q_{1}}{Q_{1}+Q_{0}}
\end{array}
$$

we can, therefore, construct the following identity

$$
\begin{aligned}
r_{01}^{2}+t_{01} t_{10} & =\frac{\left(Q_{0}-Q_{1}\right)^{2}}{\left(Q_{0}+Q_{1}\right)^{2}}+\frac{2 Q_{0}}{Q_{0}+Q_{1}} \frac{2 Q_{1}}{Q_{1}+Q_{0}} \\
& =\frac{Q_{0}^{2}+2 Q_{0} Q_{1}+Q_{1}^{2}}{\left(Q_{0}+Q_{1}\right)^{2}}
\end{aligned}
$$

Fresnel Equation Identity

Applying the Fresnel equations to the top interface

$$
\begin{array}{ll}
r_{01}=\frac{Q_{0}-Q_{1}}{Q_{0}+Q_{1}} & t_{01}=\frac{2 Q_{0}}{Q_{0}+Q_{1}} \\
r_{10}=\frac{Q_{1}-Q_{0}}{Q_{1}+Q_{0}}=-r_{01} & t_{10}=\frac{2 Q_{1}}{Q_{1}+Q_{0}}
\end{array}
$$

we can, therefore, construct the following identity

$$
\begin{aligned}
r_{01}^{2}+t_{01} t_{10} & =\frac{\left(Q_{0}-Q_{1}\right)^{2}}{\left(Q_{0}+Q_{1}\right)^{2}}+\frac{2 Q_{0}}{Q_{0}+Q_{1}} \frac{2 Q_{1}}{Q_{1}+Q_{0}} \\
& =\frac{Q_{0}^{2}+2 Q_{0} Q_{1}+Q_{1}^{2}}{\left(Q_{0}+Q_{1}\right)^{2}}=\frac{\left(Q_{0}+Q_{1}\right)^{2}}{\left(Q_{0}+Q_{1}\right)^{2}}=1
\end{aligned}
$$

Reflection Coefficient of a Slab

Starting with the reflection coefficient of the slab obtained earlier

Reflection Coefficient of a Slab

Starting with the reflection coefficient of the slab obtained earlier

$$
r_{s l a b}=r_{01}+t_{01} t_{10} r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}}
$$

Reflection Coefficient of a Slab

Starting with the reflection coefficient of the slab obtained earlier

$$
r_{s l a b}=r_{01}+t_{01} t_{10} r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}}
$$

Using the identity

$$
t_{01} t_{10}=1-r_{01}^{2}
$$

Reflection Coefficient of a Slab

Starting with the reflection coefficient of the slab obtained earlier

$$
\begin{array}{rlr}
r_{\text {slab }} & =r_{01}+t_{01} t_{10} r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}} & \text { Using the identity } \\
t_{01} t_{10}=1-r_{01}^{2} \\
& =r_{01}+\left(1-r_{01}^{2}\right) r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}} &
\end{array}
$$

Reflection Coefficient of a Slab

Starting with the reflection coefficient of the slab obtained earlier
$r_{\text {slab }}=r_{01}+t_{01} t_{10} r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}}$

$$
=r_{01}+\left(1-r_{01}^{2}\right) r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}}
$$

Using the identity

$$
t_{01} t_{10}=1-r_{01}^{2}
$$

Expanding over a common denominator and recalling that $r_{10}=-r_{01}$.

Reflection Coefficient of a Slab

Starting with the reflection coefficient of the slab obtained earlier
$r_{\text {slab }}=r_{01}+t_{01} t_{10} r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}}$
$=r_{01}+\left(1-r_{01}^{2}\right) r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}}$
$=\frac{r_{01}+r_{01}^{2} r_{12} p^{2}+\left(1-r_{01}^{2}\right) r_{12} p^{2}}{1-r_{10} r_{12} p^{2}}$

Using the identity

$$
t_{01} t_{10}=1-r_{01}^{2}
$$

Expanding over a common denominator and recalling that $r_{10}=-r_{01}$.

Reflection Coefficient of a Slab

Starting with the reflection coefficient of the slab obtained earlier

$$
\begin{aligned}
r_{\text {slab }} & =r_{01}+t_{01} t_{10} r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}} \\
& =r_{01}+\left(1-r_{01}^{2}\right) r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}} \\
& =\frac{r_{01}+r_{01}^{2} r_{12} p^{2}+\left(1-r_{01}^{2}\right) r_{12} p^{2}}{1-r_{10} r_{12} p^{2}}
\end{aligned}
$$

Using the identity

$$
t_{01} t_{10}=1-r_{01}^{2}
$$

Expanding over a common denominator and recalling that $r_{10}=-r_{01}$.

$$
r_{s l a b}=\frac{r_{01}+r_{12} p^{2}}{1+r_{01} r_{12} p^{2}}
$$

Reflection Coefficient of a Slab

Starting with the reflection coefficient of the slab obtained earlier

$$
\begin{aligned}
r_{\text {slab }} & =r_{01}+t_{01} t_{10} r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}} \\
& =r_{01}+\left(1-r_{01}^{2}\right) r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}} \\
& =\frac{r_{01}+r_{01}^{2} r_{12} p^{2}+\left(1-r_{01}^{2}\right) r_{12} p^{2}}{1-r_{10} r_{12} p^{2}}
\end{aligned}
$$

$$
r_{\text {slab }}=\frac{r_{01}+r_{12} p^{2}}{1+r_{01} r_{12} p^{2}}
$$

Using the identity

$$
t_{01} t_{10}=1-r_{01}^{2}
$$

Expanding over a common denominator and recalling that $r_{10}=-r_{01}$.

In the case of $n_{0}=n_{2}$ there is the further simplification of $r_{12}=-r_{01}$.

Reflection Coefficient of a Slab

Starting with the reflection coefficient of the slab obtained earlier

$$
\begin{aligned}
r_{\text {slab }} & =r_{01}+t_{01} t_{10} r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}} \\
& =r_{01}+\left(1-r_{01}^{2}\right) r_{12} p^{2} \frac{1}{1-r_{10} r_{12} p^{2}} \\
& =\frac{r_{01}+r_{01}^{2} r_{12} p^{2}+\left(1-r_{01}^{2}\right) r_{12} p^{2}}{1-r_{10} r_{12} p^{2}} \\
r_{\text {slab }} & =\frac{r_{01}+r_{12} p^{2}}{1+r_{01} r_{12} p^{2}}=\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}}
\end{aligned}
$$

Using the identity

$$
t_{01} t_{10}=1-r_{01}^{2}
$$

Expanding over a common denominator and recalling that $r_{10}=-r_{01}$.

In the case of $n_{0}=n_{2}$ there is the further simplification of $r_{12}=-r_{01}$.

Kiessig Fringes

$$
\begin{gathered}
p^{2}=e^{i Q_{1} \Delta} \\
r_{s l a b}=\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}}
\end{gathered}
$$

Kiessig Fringes

$$
\begin{gathered}
p^{2}=e^{i Q_{1} \Delta} \\
r_{\text {slab }}=\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}}
\end{gathered}
$$

If we plot the reflectivity

$$
R_{\text {slab }}=\left|r_{s l a b}\right|^{2}
$$

Kiessig Fringes

$$
\begin{gathered}
p^{2}=e^{i Q_{1} \Delta} \\
r_{\text {slab }}=\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}}
\end{gathered}
$$

If we plot the reflectivity

$$
R_{s l a b}=\left|r_{s l a b}\right|^{2}
$$

Kiessig Fringes

$$
\begin{gathered}
p^{2}=e^{i Q_{1} \Delta} \\
r_{\text {slab }}=\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}}
\end{gathered}
$$

If we plot the reflectivity

$$
R_{\text {slab }}=\left|r_{\text {slab }}\right|^{2}
$$

These are Kiessig fringes which arise from interference between reflections at the top and bottom of the slab.

Kiessig Fringes

$$
\begin{gathered}
p^{2}=e^{i Q_{1} \Delta} \\
r_{\text {slab }}=\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}}
\end{gathered}
$$

If we plot the reflectivity

$$
R_{s l a b}=\left|r_{s l a b}\right|^{2}
$$

These are Kiessig fringes which arise from interference between reflections at the top and bottom of the slab. They have an oscillation frequency

$$
2 \pi / \Delta=0.092 \AA^{-1}
$$

Kinematical Reflection from a Thin Slab
Recall the reflection coefficient for a thin slab.

Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab.

$$
r_{\text {slab }}=\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}}
$$

Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle

$$
r_{\text {slab }}=\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}}
$$

Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle

$$
r_{s l a b}=\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}}
$$

Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle

$$
r_{s l a b}=\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}}
$$

$$
\left|r_{01}\right| \ll 1 \quad q \gg 18 \alpha_{c} \quad \alpha>{ }^{q \gg}
$$

Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle

$$
\begin{aligned}
r_{s l a b} & =\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}} \\
& \approx r_{01}\left(1-p^{2}\right)
\end{aligned}
$$

$$
\left|r_{01}\right| \ll 1 \quad q \gg 18 \alpha_{c} \quad \alpha>{ }^{q \gg}
$$

Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the "kinematical" regime.

$$
\begin{aligned}
r_{s l a b} & =\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}} \\
& \approx r_{01}\left(1-p^{2}\right)
\end{aligned}
$$

$$
\left|r_{01}\right| \ll 1 \quad q \gg 18 \alpha_{c} \quad \alpha>{ }^{q \gg}
$$

Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the "kinematical" regime.

$$
\begin{array}{rlr}
r_{\text {slab }} & =\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}} & q \gg 1 \\
& \approx r_{01}\left(1-p^{2}\right) & \\
& & \\
& =r_{01}\left(1-e^{i Q \Delta}\right) &
\end{array}
$$

Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the "kinematical" regime.

$$
\begin{array}{rlr}
r_{\text {slab }} & =\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}} & q \gg 1 \\
& \approx r_{01}\left(1-p^{2}\right) & \left|r_{01}\right| \ll 1
\end{array} \alpha>\alpha_{c}
$$

Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the "kinematical" regime.

$$
\begin{array}{rlr}
r_{\text {slab }} & =\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}} & q \gg 1 \\
& \approx r_{01}\left(1-p^{2}\right) \\
& =r_{01}\left(1-e^{i Q \Delta}\right) & r_{01}=\frac{q_{01} \mid \ll 1}{q_{0}+q_{1}} \frac{q_{1}}{q_{0}+q_{1}} \\
q_{0}+q_{1}
\end{array}
$$

Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the "kinematical" regime.

$$
\begin{aligned}
r_{\text {slab }} & =\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}} \\
& \approx r_{01}\left(1-p^{2}\right) \\
& =r_{01}\left(1-e^{i Q \Delta}\right)
\end{aligned}
$$

$$
\begin{gathered}
q \gg 1 \\
\left|r_{01}\right| \ll 1 \quad \alpha>\alpha_{c} \\
r_{01}=\frac{q_{0}-q_{1}}{q_{0}+q_{1}} \frac{q_{0}+q_{1}}{q_{0}+q_{1}}=\frac{q_{0}^{2}-q_{1}^{2}}{\left(q_{0}+q_{1}\right)^{2}}
\end{gathered}
$$

Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the "kinematical" regime.

$$
\begin{aligned}
r_{\text {slab }} & =\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}} \\
& \approx r_{01}\left(1-p^{2}\right) \\
& =r_{01}\left(1-e^{i Q \Delta}\right)
\end{aligned}
$$

$$
\begin{aligned}
& q \gg 1 \\
&\left|r_{01}\right| \ll 1 \quad \alpha>\alpha_{c} \\
& r_{01}= \frac{q_{0}-q_{1}}{q_{0}+q_{1}} \frac{q_{0}+q_{1}}{q_{0}+q_{1}}=\frac{q_{0}^{2}-q_{1}^{2}}{\left(q_{0}+q_{1}\right)^{2}} \\
& \approx \frac{1}{\left(2 q_{0}\right)^{2}}
\end{aligned}
$$

Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the "kinematical" regime.

$$
\begin{aligned}
r_{\text {slab }} & =\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}} \\
& \approx r_{01}\left(1-p^{2}\right) \\
& =r_{01}\left(1-e^{i Q \Delta}\right)
\end{aligned}
$$

$$
\begin{gathered}
q \gg 1 \\
r_{01}=\frac{q_{01} \mid \ll 1 \quad \alpha>q_{c}}{q_{0}+q_{1}} \frac{q_{0}+q_{1}}{q_{0}+q_{1}}=\frac{q_{0}^{2}-q_{1}^{2}}{\left(q_{0}+q_{1}\right)^{2}} \\
\approx \\
\frac{1}{\left(2 q_{0}\right)^{2}}=\left(\frac{Q_{c}}{2 Q_{0}}\right)^{2}
\end{gathered}
$$

Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the "kinematical" regime.

$$
\begin{array}{rlrl}
r_{\text {slab }} & =\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}} & q \gg 1 \\
& \approx r_{01}\left(1-p^{2}\right) & & \left|r_{01}\right| \ll 1 \quad \alpha>\alpha_{c} \\
& =r_{01}\left(1-e^{i Q \Delta}\right) & r_{01} & =\frac{q_{0}-q_{1}}{q_{0}+q_{1}} \frac{q_{0}+q_{1}}{q_{0}+q_{1}}=\frac{q_{0}^{2}-q_{1}^{2}}{\left(q_{0}+q_{1}\right)^{2}} \\
r_{\text {slab }} & \approx\left(\frac{Q_{c}}{2 Q_{0}}\right)^{2}\left(1-e^{i Q \Delta}\right) & & \approx \frac{1}{\left(2 q_{0}\right)^{2}}=\left(\frac{Q_{c}}{2 Q_{0}}\right)^{2}
\end{array}
$$

Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the "kinematical" regime.

$$
\begin{array}{rlr}
r_{\text {slab }} & =\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}} & q \gg 1 \\
& \approx r_{01}\left(1-p^{2}\right) & \left|r_{01}\right| \ll 1 \quad \alpha> \\
& =r_{01}\left(1-e^{i Q \Delta}\right) & r_{01}=\frac{q_{0}-q_{1}}{q_{0}+q_{1}} \frac{q_{0}+q_{1}}{q_{0}+q_{1}}= \\
r_{\text {slab }} & \approx\left(\frac{Q_{c}}{2 Q_{0}}\right)^{2}\left(1-e^{i Q \Delta}\right) & \approx \frac{1}{\left(2 q_{0}\right)^{2}}=\left(\frac{Q_{c}}{2 Q_{0}}\right)^{2} \\
r_{\text {slab }} & =-\frac{16 \pi \rho r_{0}}{4 Q^{2}} e^{i Q \Delta / 2}\left(e^{i Q \Delta / 2}-e^{-i Q \Delta / 2}\right)
\end{array}
$$

Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the "kinematical" regime.

$$
\begin{aligned}
& r_{\text {slab }}= \frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}} \\
& \approx r_{01}\left(1-p^{2}\right) \quad q \gg 1 \\
&=r_{01}\left(1-e^{i Q \Delta}\right) \quad r_{01}=\frac{q_{0}-q_{1}}{q_{0}+q_{1}} \frac{q_{0}+q_{1}}{q_{0}+q_{1}}=\frac{q_{0}^{2}-q_{1}^{2}}{\left(q_{0}+q_{1}\right)^{2}} \\
& r_{\text {slab }} \approx\left(\frac{Q_{c}}{2 Q_{0}}\right)^{2}\left(1-e^{i Q \Delta}\right) \quad \approx \frac{1}{\left(2 q_{0}\right)^{2}}=\left(\frac{Q_{c}}{2 Q_{0}}\right)^{2} \\
& r_{\text {slab }}=-\frac{16 \pi \rho r_{0}}{4 Q^{2}} e^{i Q \Delta / 2}\left(e^{i Q \Delta / 2}-e^{-i Q \Delta / 2}\right) \\
&=-i\left(\frac{4 \pi \rho r_{0} \Delta}{Q}\right) \frac{\sin (Q \Delta / 2)}{Q \Delta / 2} e^{i Q \Delta / 2}
\end{aligned}
$$

Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the "kinematical" regime.

$$
\begin{aligned}
r_{\text {slab }} & =\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}} \\
& \approx r_{01}\left(1-p^{2}\right) \quad\left|r_{01}\right| \ll \\
& =r_{01}\left(1-e^{i Q \Delta}\right) \quad r_{01}=\frac{q_{0}-q_{1}}{q_{0}+q_{1}} \\
r_{\text {slab }} & \approx\left(\frac{Q_{c}}{2 Q_{0}}\right)^{2}\left(1-e^{i Q \Delta}\right) \quad \approx \frac{1}{\left(2 q_{0}\right)^{2}}= \\
r_{\text {slab }} & =-\frac{16 \pi \rho r_{0}}{4 Q^{2}} e^{i Q \Delta / 2}\left(e^{i Q \Delta / 2}-e^{-i Q \Delta / 2}\right) \\
& =-i\left(\frac{4 \pi \rho r_{0} \Delta}{Q}\right) \frac{\sin (Q \Delta / 2)}{Q \Delta / 2} e^{i Q \Delta / 2}
\end{aligned}
$$

Since $Q \Delta \ll 1$ for a thin slab

Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the "kinematical" regime.

$$
\begin{aligned}
& r_{\text {slab }}=\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}} \\
& \approx r_{01}\left(1-p^{2}\right) \quad \\
&=r_{01}\left(1-e^{i Q \Delta}\right) \quad r_{01} \mid \ll 1 \\
& r_{01}=\frac{q_{0}-q_{1}}{q_{0}+q_{1}} \frac{q \gg 1}{q_{0}+q_{1}}= \\
& r_{\text {slab }} \approx\left(\frac{Q_{c}}{2 Q_{0}}\right)^{2}\left(1-e^{i Q \Delta}\right) \quad \approx \frac{1}{\left(2 q_{0}\right)^{2}}=\left(\frac{Q_{c}}{2 Q_{0}}\right)^{2} \\
& r_{\text {slab }}=-\frac{16 \pi \rho r_{0}}{4 Q^{2}} e^{i Q \Delta / 2}\left(e^{i Q \Delta / 2}-e^{-i Q \Delta / 2}\right) \\
&=-i\left(\frac{4 \pi \rho r_{0} \Delta}{Q}\right) \frac{\sin (Q \Delta / 2)}{Q \Delta / 2} e^{i Q \Delta+2}
\end{aligned}
$$

Since $Q \Delta \ll 1$ for a thin slab

Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we are well above the critical angle refraction effects can be ignored and we are in the "kinematical" regime.

$$
\begin{aligned}
r_{\text {slab }} & =\frac{r_{01}\left(1-p^{2}\right)}{1-r_{01}^{2} p^{2}} \\
& \approx r_{01}\left(1-p^{2}\right) \quad q \gg 1 \\
& =r_{01}\left(1-e^{i Q \Delta}\right) \quad\left|r_{01}\right| \ll 1 \quad \alpha>\alpha_{c} \\
r_{\text {slab }} & \approx\left(\frac{Q_{c}}{2 Q_{0}}\right)^{2}\left(1-e^{i Q \Delta}\right) \quad \frac{q_{0}-q_{1}}{q_{0}+q_{1}} \frac{q_{0}+q_{1}}{q_{0}+q_{1}}=\frac{q_{0}^{2}-q_{1}^{2}}{\left(q_{0}+q_{1}\right)} \\
r_{\text {slab }} & =-\frac{16 \pi \rho r_{0}}{4 Q^{2}} e^{i Q \Delta / 2}\left(e^{i Q \Delta / 2}-e^{-i Q \Delta / 2}\right) \\
& \left.=-i\left(\frac{4 \pi \rho r_{0} \Delta}{Q}\right) \frac{\sin (Q \Delta / 2)}{Q \Delta / 2} e^{i Q \Delta / 2} \approx-i \frac{Q_{c}}{2 Q_{0}}\right)^{2} \\
\sin \alpha & =r_{\text {thin slab }}
\end{aligned}
$$

Since $Q \Delta \ll 1$ for a thin slab

Multilayers in the Kinematical Regime

N repetitions of a bilayer of thickness Λ composed of two materials, A and B which have a density contrast $\left(\rho_{A}>\rho_{B}\right)$.

Multilayers in the Kinematical Regime

> N repetitions of a bilayer of thickness Λ composed of two materials, A and B which have a density contrast $\left(\rho_{A}>\rho_{B}\right)$.

r_{1} is the reflectivity of a single bilayer

Multilayers in the Kinematical Regime

N repetitions of a bilayer of thickness Λ composed of two materials, A and B which have a density contrast $\left(\rho_{A}>\rho_{B}\right)$.
r_{1} is the reflectivity of a single bilayer
β is the average absorption per bilayer

Multilayers in the Kinematical Regime

N repetitions of a bilayer of thickness Λ composed of two materials, A and B which have a density contrast $\left(\rho_{A}>\rho_{B}\right)$.
r_{1} is the reflectivity of a single bilayer
β is the average absorption per bilayer
$\zeta=Q \Lambda / 2 \pi$ is a dimensionless parameter related to the phase shift of a single bilayer

Multilayers in the Kinematical Regime

N repetitions of a bilayer of thickness Λ composed of two materials, A and B which have a density contrast $\left(\rho_{A}>\rho_{B}\right)$.
r_{1} is the reflectivity of a single bilayer
β is the average absorption per bilayer
$\zeta=Q \Lambda / 2 \pi$ is a dimensionless parameter related to the phase shift of a single bilayer

Form a stack of N bilayers

$$
r_{N}(\zeta)=\sum_{\nu=0}^{N-1} r_{1}(\zeta) e^{i 2 \pi \zeta \nu} e^{-\beta \nu}
$$

Multilayers in the Kinematical Regime

N repetitions of a bilayer of thickness Λ composed of two materials, A and B which have a density contrast $\left(\rho_{A}>\rho_{B}\right)$.
r_{1} is the reflectivity of a single bilayer
β is the average absorption per bilayer
$\zeta=Q \Lambda / 2 \pi$ is a dimensionless parameter related to the phase shift of a single bilayer

Form a stack of N bilayers

$$
r_{N}(\zeta)=\sum_{\nu=0}^{N-1} r_{1}(\zeta) e^{i 2 \pi \zeta \nu} e^{-\beta \nu}=r_{1}(\zeta) \frac{1-e^{i 2 \pi \zeta N} e^{-\beta N}}{1-e^{i 2 \pi \zeta} e^{-\beta}}
$$

Reflectivity of a Bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab but replacing the density of the slab material with the difference in densities of the bilayer components

Reflectivity of a Bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab but replacing the density of the slab material with the difference in densities of the bilayer components

$$
\rho \quad \longrightarrow \quad \rho_{A B}=\rho_{A}-\rho_{B}
$$

Reflectivity of a Bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab but replacing the density of the slab material with the difference in densities of the bilayer components and assuming that material A is a fraction Γ of the bilayer thickness

$$
\rho \quad \longrightarrow \quad \rho_{A B}=\rho_{A}-\rho_{B}
$$

$r_{1}(\zeta)=-i \frac{\lambda r_{o} \rho_{A B}}{\sin \theta} \int_{-\lceil\Lambda / 2}^{+\Gamma \Lambda / 2} e^{i 2 \pi \zeta z / \Lambda} d z$

Reflectivity of a Bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab but replacing the density of the slab material with the difference in densities of the bilayer components and assuming that material A is a fraction Γ of the bilayer thickness

$$
\rho \quad \longrightarrow \quad \rho_{A B}=\rho_{A}-\rho_{B}
$$

$r_{1}(\zeta)=-i \frac{\lambda r_{o} \rho_{A B}}{\sin \theta} \int_{-\lceil\Lambda / 2}^{+\Gamma \Lambda / 2} e^{i 2 \pi \zeta z / \Lambda} d z$

$$
=-i \frac{\lambda r_{0} \rho_{A B}}{\sin \theta} \frac{\Lambda}{i 2 \pi \zeta}\left[e^{i \pi \zeta\ulcorner }-e^{-i \pi \zeta\ulcorner }\right]
$$

Reflectivity of a Bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab but replacing the density of the slab material with the difference in densities of the bilayer components and assuming that material A is a fraction Γ of the bilayer thickness

$$
\rho \quad \longrightarrow \quad \rho_{A B}=\rho_{A}-\rho_{B}
$$

$r_{1}(\zeta)=-i \frac{\lambda r_{o} \rho_{A B}}{\sin \theta} \int_{-\Gamma \Lambda / 2}^{+\Gamma \Lambda / 2} e^{i 2 \pi \zeta z / \Lambda} d z$

$$
e^{i x}-e^{-i x}=2 i \sin x
$$

$$
=-i \frac{\lambda r_{o} \rho_{A B}}{\sin \theta} \frac{\Lambda}{i 2 \pi \zeta}\left[e^{i \pi \zeta \Gamma}-e^{-i \pi \zeta \Gamma}\right]
$$

$$
Q=4 \pi \sin \theta / \lambda=2 \pi \zeta / \Lambda
$$

Reflectivity of a Bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivity developed for a slab but replacing the density of the slab material with the difference in densities of the bilayer components and assuming that material A is a fraction Γ of the bilayer thickness

$$
\rho \quad \longrightarrow \quad \rho_{A B}=\rho_{A}-\rho_{B}
$$

$$
\begin{array}{rlrl}
r_{1}(\zeta) & =-i \frac{\lambda r_{0} \rho_{A B}}{\sin \theta} \int_{-\Gamma \Lambda / 2}^{+\Gamma \Lambda / 2} e^{i 2 \pi \zeta z / \Lambda} d z & \\
& =-i \frac{\lambda r_{0} \rho_{A B}}{\sin \theta} \frac{\Lambda}{i 2 \pi \zeta}\left[e^{i \pi \zeta \Gamma}-e^{-i \pi \zeta \Gamma}\right] & e^{i x}-e^{-i x}=2 i \sin x \\
& Q=4 \pi \sin \theta / \lambda=2 \pi \zeta / \Lambda
\end{array}
$$

$$
r_{1}=-2 i r_{o} \rho_{A B}\left(\frac{\Lambda^{2} \Gamma}{\zeta}\right) \frac{\sin (\pi \Gamma \zeta)}{\pi \Gamma \zeta}
$$

Absorption Coefficient of a Bilayer

The total reflectivity for the multilayer is therefore:

$$
r_{N}=-2 i r_{o} \rho_{A B}\left(\frac{\Lambda^{2} \Gamma}{\zeta}\right) \frac{\sin (\pi \Gamma \zeta)}{\pi \Gamma \zeta} \frac{1-e^{i 2 \pi \zeta N} e^{-\beta N}}{1-e^{i 2 \pi \zeta} e^{-\beta}}
$$

Absorption Coefficient of a Bilayer

The total reflectivity for the multilayer is therefore:

$$
r_{N}=-2 i r_{o} \rho_{A B}\left(\frac{\Lambda^{2} \Gamma}{\zeta}\right) \frac{\sin (\pi \Gamma \zeta)}{\pi \Gamma \zeta} \frac{1-e^{i 2 \pi \zeta N} e^{-\beta N}}{1-e^{i 2 \pi \zeta} e^{-\beta}}
$$

The incident x-ray has a path length $\Lambda / \sin \theta$ in a bilayer, a fraction Γ through n_{A} and a fraction $(1-\Gamma)$ through n_{B}.

Absorption Coefficient of a Bilayer

The total reflectivity for the multilayer is therefore:

$$
r_{N}=-2 i r_{o} \rho_{A B}\left(\frac{\Lambda^{2} \Gamma}{\zeta}\right) \frac{\sin (\pi \Gamma \zeta)}{\pi \Gamma \zeta} \frac{1-e^{i 2 \pi \zeta N} e^{-\beta N}}{1-e^{i 2 \pi \zeta} e^{-\beta}}
$$

The incident x-ray has a path length $\Lambda / \sin \theta$ in a bilayer, a fraction Γ through n_{A} and a fraction $(1-\Gamma)$ through n_{B}. The amplitude absorption coefficient, β is

Absorption Coefficient of a Bilayer

The total reflectivity for the multilayer is therefore:

$$
r_{N}=-2 i_{o} \rho_{A B}\left(\frac{\Lambda^{2} \Gamma}{\zeta}\right) \frac{\sin (\pi \Gamma \zeta)}{\pi \Gamma \zeta} \frac{1-e^{i 2 \pi \zeta N} e^{-\beta N}}{1-e^{i 2 \pi \zeta} e^{-\beta}}
$$

The incident x-ray has a path length $\Lambda / \sin \theta$ in a bilayer, a fraction Γ through n_{A} and a fraction $(1-\Gamma)$ through n_{B}. The amplitude absorption coefficient, β is

$$
\beta=2\left[\frac{\mu_{A}}{2} \frac{\Gamma \Lambda}{\sin \theta}+\frac{\mu_{B}}{2} \frac{(1-\Gamma) \Lambda}{\sin \theta}\right]
$$

Absorption Coefficient of a Bilayer

The total reflectivity for the multilayer is therefore:

$$
r_{N}=-2 i r_{o} \rho_{A B}\left(\frac{\Lambda^{2} \Gamma}{\zeta}\right) \frac{\sin (\pi \Gamma \zeta)}{\pi \Gamma \zeta} \frac{1-e^{i 2 \pi \zeta N} e^{-\beta N}}{1-e^{i 2 \pi \zeta} e^{-\beta}}
$$

The incident x-ray has a path length $\Lambda / \sin \theta$ in a bilayer, a fraction Γ through n_{A} and a fraction $(1-\Gamma)$ through n_{B}. The amplitude absorption coefficient, β is

$$
\beta=2\left[\frac{\mu_{A}}{2} \frac{\Gamma \Lambda}{\sin \theta}+\frac{\mu_{B}}{2} \frac{(1-\Gamma) \Lambda}{\sin \theta}\right]=\frac{\Lambda}{\sin \theta}\left[\mu_{A} \Gamma+\mu_{B}(1-\Gamma)\right]
$$

Reflectivity Calculation

Reflectivity Calculation

- When $\zeta=Q \wedge / 2 \pi$ is an integer, we have peaks

Reflectivity Calculation

- When $\zeta=Q \Lambda / 2 \pi$ is an integer, we have peaks
- As N becomes larger, these peaks would become more prominent

Reflectivity Calculation

- When $\zeta=Q \wedge / 2 \pi$ is an integer, we have peaks
- As N becomes larger, these peaks would become more prominent
- This is effectively a diffraction grating for x-rays

Reflectivity Calculation

- When $\zeta=Q \wedge / 2 \pi$ is an integer, we have peaks
- As N becomes larger, these peaks would become more prominent
- This is effectively a diffraction grating for x-rays
- Multilayers are used commonly on laboratory sources as well as at synchrotrons as mirrors

Slab - Multilayer Comparison

Parratt's Recursive Method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate.

Parratt's Recursive Method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take Δ_{j} as the thickness of each layer and $n_{j}=1-\delta_{j}+i \beta_{j}$ as the index of refraction of each layer.

Parratt's Recursive Method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take Δ_{j} as the thickness of each layer and $n_{j}=1-\delta_{j}+i \beta_{j}$ as the index of refraction of each layer.
Because of continuity, $k_{x j}=k_{x}$ and therefore, we can compute the z-component of \vec{k}_{j}

Parratt's Recursive Method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take Δ_{j} as the thickness of each layer and $n_{j}=1-\delta_{j}+i \beta_{j}$ as the index of refraction of each layer.
Because of continuity, $k_{x j}=k_{x}$ and therefore, we can compute the z-component of \vec{k}_{j}

$$
k_{z j}^{2}=\left(n_{j} k\right)^{2}-k_{x}^{2}
$$

Parratt's Recursive Method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take Δ_{j} as the thickness of each layer and $n_{j}=1-\delta_{j}+i \beta_{j}$ as the index of refraction of each layer.
Because of continuity, $k_{x j}=k_{x}$ and therefore, we can compute the z-component of \vec{k}_{j}

$$
\begin{aligned}
k_{z j}^{2} & =\left(n_{j} k\right)^{2}-k_{x}^{2} \\
& =\left(1-\delta_{j}+i \beta_{j}\right)^{2} k^{2}-k_{x}^{2}
\end{aligned}
$$

Parratt's Recursive Method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take Δ_{j} as the thickness of each layer and $n_{j}=1-\delta_{j}+i \beta_{j}$ as the index of refraction of each layer.
Because of continuity, $k_{x j}=k_{x}$ and therefore, we can compute the z-component of \vec{k}_{j}

$$
\begin{aligned}
k_{z j}^{2} & =\left(n_{j} k\right)^{2}-k_{x}^{2} \\
& =\left(1-\delta_{j}+i \beta_{j}\right)^{2} k^{2}-k_{x}^{2} \\
& \approx k_{z}^{2}-2 \delta_{j} k^{2}+2 i \beta_{j} k^{2}
\end{aligned}
$$

Parratt's Recursive Method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take Δ_{j} as the thickness of each layer and $n_{j}=1-\delta_{j}+i \beta_{j}$ as the index of refraction of each layer.
Because of continuity, $k_{x j}=k_{x}$ and therefore, we can compute the z-component of \vec{k}_{j}

$$
\begin{aligned}
k_{z j}^{2} & =\left(n_{j} k\right)^{2}-k_{x}^{2} \\
& =\left(1-\delta_{j}+i \beta_{j}\right)^{2} k^{2}-k_{x}^{2} \\
& \approx k_{z}^{2}-2 \delta_{j} k^{2}+2 i \beta_{j} k^{2}
\end{aligned}
$$

and the wavevector transfer in the $\mathrm{j}^{\text {th }}$ layer

Parratt's Recursive Method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take Δ_{j} as the thickness of each layer and $n_{j}=1-\delta_{j}+i \beta_{j}$ as the index of refraction of each layer.
Because of continuity, $k_{x j}=k_{x}$ and therefore, we can compute the z-component of \vec{k}_{j}

$$
\begin{aligned}
k_{z j}^{2} & =\left(n_{j} k\right)^{2}-k_{x}^{2} \\
& =\left(1-\delta_{j}+i \beta_{j}\right)^{2} k^{2}-k_{x}^{2} \\
& \approx k_{z}^{2}-2 \delta_{j} k^{2}+2 i \beta_{j} k^{2} \\
Q_{j} & =2 k_{j} \sin \alpha_{j}=2 k_{z j}
\end{aligned}
$$

and the wavevector transfer in the $\mathrm{j}^{\text {th }}$ layer

Parratt's Recursive Method

Treat the multilayer as a stratified medium on top of an infinitely thick substrate. Take Δ_{j} as the thickness of each layer and $n_{j}=1-\delta_{j}+i \beta_{j}$ as the index of refraction of each layer.
Because of continuity, $k_{x j}=k_{x}$ and therefore, we can compute the z-component of \vec{k}_{j}

$$
\begin{aligned}
k_{z j}^{2} & =\left(n_{j} k\right)^{2}-k_{x}^{2} \\
& =\left(1-\delta_{j}+i \beta_{j}\right)^{2} k^{2}-k_{x}^{2} \\
& \approx k_{z}^{2}-2 \delta_{j} k^{2}+2 i \beta_{j} k^{2} \\
Q_{j} & =2 k_{j} \sin \alpha_{j}=2 k_{z j} \\
& =\sqrt{Q^{2}-8 k^{2} \delta_{j}+8 i k^{2} \beta_{j}}
\end{aligned}
$$

and the wavevector transfer in the $\mathrm{j}^{\text {th }}$ layer

Parratt Reflectivity Calculation

The reflectivity from the interface between layer j and $j+1$, not including multiple reflections is

Parratt Reflectivity Calculation

The reflectivity from the interface between layer j and $j+1$, not including multiple $r_{j, j+1}^{\prime}=\frac{Q_{j}-Q_{j+1}}{Q_{j}+Q_{j+1}}$ reflections is

Parratt Reflectivity Calculation

The reflectivity from the interface between layer j and $j+1$, not including multiple

$$
r_{j, j+1}^{\prime}=\frac{Q_{j}-Q_{j+1}}{Q_{j}+Q_{j+1}}
$$ reflections is

Now start calculating the reflectivity from the bottom of the $N^{t h}$ layer, closest to the substrate, where multiple reflections are not present

Parratt Reflectivity Calculation

The reflectivity from the interface between layer j and $j+1$, not including multiple reflections is

Now start calculating the reflectivity from the bottom of the $N^{t h}$ layer, closest to the substrate, where multiple reflections are not present

$$
r_{j, j+1}^{\prime}=\frac{Q_{j}-Q_{j+1}}{Q_{j}+Q_{j+1}}
$$

Parratt Reflectivity Calculation

The reflectivity from the interface between layer j and $j+1$, not including multiple reflections is

Now start calculating the reflectivity from the bottom of the $N^{\text {th }}$ layer, closest to the substrate, where multiple reflections are not present

The reflectivity from the top of the
$N^{t h}$ layer, including multiple reflections is
The reflectivity from the top of the
$N^{\text {th }}$ layer, including multiple reflections is now calculated (note no prime!)

$$
r_{j, j+1}^{\prime}=\frac{Q_{j}-Q_{j+1}}{Q_{j}+Q_{j+1}}
$$

$$
r_{N, \infty}^{\prime}=\frac{Q_{N}-Q_{\infty}}{Q_{N}+Q_{\infty}}
$$

Parratt Reflectivity Calculation

The reflectivity from the interface between layer j and $j+1$, not including multiple reflections is

Now start calculating the reflectivity from the bottom of the $N^{\text {th }}$ layer, closest to the substrate, where multiple reflections are not present

The reflectivity from the top of the $N^{\text {th }}$ layer, including multiple reflections is now calculated (note no prime!)

$$
r_{j, j+1}^{\prime}=\frac{Q_{j}-Q_{j+1}}{Q_{j}+Q_{j+1}}
$$

$$
r_{N, \infty}^{\prime}=\frac{Q_{N}-Q_{\infty}}{Q_{N}+Q_{\infty}}
$$

Parratt Reflectivity Calculation

The reflectivity from the interface between layer j and $j+1$, not including multiple reflections is

$$
r_{j, j+1}^{\prime}=\frac{Q_{j}-Q_{j+1}}{Q_{j}+Q_{j+1}}
$$

Now start calculating the reflectivity from the bottom of the $N^{\text {th }}$ layer, closest

$$
r_{N, \infty}^{\prime}=\frac{Q_{N}-Q_{\infty}}{Q_{N}+Q_{\infty}}
$$ to the substrate, where multiple reflections are not present

The reflectivity from the top of the $N^{\text {th }}$ layer, including multiple reflections is

$$
r_{N-1, N}=\frac{r_{N-1, N}^{\prime}+r_{N, \infty}^{\prime} p_{N}^{2}}{1+r_{N-1, N}^{\prime} r_{N, \infty}^{\prime} p_{N}^{2}}
$$ now calculated (note no prime!)

The recursive relation can be seen from the calculation of reflectivity of the next layer up

$$
r_{N-2, N-1}=\frac{r_{N-2, N-1}^{\prime}+r_{N-1, N} p_{N-1}^{2}}{1+r_{N-2, N-1}^{\prime} r_{N-1, N} p_{N-1}^{2}}
$$

Kinematical - Parratt Comparison

Kinematical - Parratt Comparison

Kinematical approximation gives a reasonably good approximation to the correct calculation, with a few exceptions.

Kinematical - Parratt Comparison

Kinematical approximation gives a reasonably good approximation to the correct calculation, with a few exceptions.

Parratt calculation gives $R_{\text {Par }}=1$ as $Q \rightarrow 0$ while kinematical diverges $\left(R_{\text {Kin }} \rightarrow \infty\right)$.

Kinematical - Parratt Comparison

Kinematical approximation gives a reasonably good approximation to the correct calculation, with a few exceptions.

Parratt calculation gives $R_{\text {Par }}=1$ as $Q \rightarrow 0$ while kinematical diverges $\left(R_{\text {Kin }} \rightarrow \infty\right)$.

Parratt peaks shifted to slightly higher values of Q

Kinematical - Parratt Comparison

Kinematical approximation gives a reasonably good approximation to the correct calculation, with a few exceptions.

Parratt calculation gives $R_{\text {Par }}=1$ as $Q \rightarrow 0$ while kinematical diverges $\left(R_{\text {Kin }} \rightarrow \infty\right)$.

Parratt peaks shifted to slightly higher values of Q

Peaks in kinematical calculation are somewhat higher reflectivity than true value.

Graded Interfaces

Since most interfaces are not sharp, it is important to be able to model a graded interface, where the density, and therefore the index of refraction varies near the interface itself.

Graded Interfaces

Since most interfaces are not sharp, it is important to be able to model a graded interface, where the density, and therefore the index of refraction varies near the interface itself.

The reflectivity of this kind of interface can be calculated best in the kinematical limit $\left(Q>Q_{c}\right)$.

Graded Interfaces

Since most interfaces are not sharp, it is important to be able to model a graded interface, where the density, and therefore the index of refraction varies near the interface itself.

The reflectivity of this kind of interface can be calculated best in the kinematical limit $\left(Q>Q_{c}\right)$.

The density profile of the interface can be described by the function $f(z)$ which approaches 1 as $z \rightarrow \infty$.

Graded Interfaces

Since most interfaces are not sharp, it is important to be able to model a graded interface, where the density, and therefore the index of refraction varies near the interface itself.

The reflectivity of this kind of interface can be calculated best in the kinematical limit $\left(Q>Q_{c}\right)$.

The density profile of the interface can be described by the function $f(z)$ which approaches 1 as $z \rightarrow \infty$.

The reflectivity can be computed as the superposition of the reflectivity of a series of infinitesmal slabs of thickness $d z$ at a depth z.

Reflectivity of a Graded Interface

> The differential reflectivity from a slab of thickness $d z$ at depth z is:

Reflectivity of a Graded Interface

The differential reflectivity from a slab of thickness $d z$ at depth z is:

Reflectivity of a Graded Interface

The differential reflectivity from a slab of thickness $d z$ at depth z is:
integrating, to get the entire reflectivity

Reflectivity of a Graded Interface

The differential reflectivity from a slab of thickness $d z$ at depth z is:
integrating, to get the entire reflectivity

$$
r(Q)=-i \frac{Q_{c}^{2}}{4 Q} \int_{-\infty}^{\infty} f(z) e^{i Q z} d z
$$

Reflectivity of a Graded Interface

The differential reflectivity from a slab of thickness $d z$ at depth z is:
integrating, to get the entire reflectivity

$$
r(Q)=-i \frac{Q_{c}^{2}}{4 Q} \int_{-\infty}^{\infty} f(z) e^{i Q z} d z
$$

Reflectivity of a Graded Interface

The differential reflectivity from a slab of thickness $d z$ at

$$
\begin{aligned}
r(Q) & =-i \frac{Q_{c}^{2}}{4 Q} \int_{-\infty}^{\infty} f(z) e^{i Q z} d z \\
& =i \frac{1}{i Q} \frac{Q_{c}^{2}}{4 Q} \int_{-\infty}^{\infty} f^{\prime}(z) e^{i Q z} d z
\end{aligned}
$$

depth z is:
integrating, to get the entire reflectivity
$\delta r(Q)=-i \frac{Q_{c}^{2}}{4 Q} f(z) d z$
integrating by parts simplifies

Reflectivity of a Graded Interface

The differential reflectivity from a slab of thickness $d z$ at

$$
\begin{aligned}
r(Q) & =-i \frac{Q_{c}^{2}}{4 Q} \int_{-\infty}^{\infty} f(z) e^{i Q z} d z \\
& =i \frac{1}{i Q} \frac{Q_{c}^{2}}{4 Q} \int_{-\infty}^{\infty} f^{\prime}(z) e^{i Q z} d z \\
& =\frac{Q_{c}^{2}}{4 Q^{2}} \int_{-\infty}^{\infty} f^{\prime}(z) e^{i Q z} d z
\end{aligned}
$$

depth z is:
integrating, to get the entire

$$
\delta r(Q)=-i \frac{Q_{c}^{2}}{4 Q} f(z) d z
$$

reflectivity
integrating by parts simplifies

Reflectivity of a Graded Interface

The differential reflectivity

$$
\delta r(Q)=-i \frac{Q_{c}^{2}}{4 Q} f(z) d z
$$ from a slab of thickness $d z$ at depth z is:

integrating, to get the entire
reflectivity
integrating, to get the entire
reflectivity

$$
\begin{aligned}
r(Q) & =-i \frac{Q_{c}^{2}}{4 Q} \int_{-\infty}^{\infty} f(z) e^{i Q z} d z \\
& =i \frac{1}{i Q} \frac{Q_{c}^{2}}{4 Q} \int_{-\infty}^{\infty} f^{\prime}(z) e^{i Q z} d z \\
& =\frac{Q_{c}^{2}}{4 Q^{2}} \int_{-\infty}^{\infty} f^{\prime}(z) e^{i Q z} d z
\end{aligned}
$$

integrating by parts simplifies the term in front is simply the Fresnel reflectivity for an interface, $r_{F}(Q)$ when $q \gg 1$

Reflectivity of a Graded Interface

The differential reflectivity from a slab of thickness $d z$ at depth z is:
integrating, to get the entire reflectivity

$$
\begin{aligned}
r(Q) & =-i \frac{Q_{c}^{2}}{4 Q} \int_{-\infty}^{\infty} f(z) e^{i Q z} d z \\
& =i \frac{1}{i Q} \frac{Q_{c}^{2}}{4 Q} \int_{-\infty}^{\infty} f^{\prime}(z) e^{i Q z} d z \\
& =\frac{Q_{c}^{2}}{4 Q^{2}} \int_{-\infty}^{\infty} f^{\prime}(z) e^{i Q z} d z
\end{aligned}
$$

Reflectivity of a Graded Interface

$$
\begin{aligned}
\delta r(Q) & =-i \frac{Q_{c}^{2}}{4 Q} f(z) d z \\
r(Q) & =-i \frac{Q_{c}^{2}}{4 Q} \int_{-\infty}^{\infty} f(z) e^{i Q z} d z \\
& =i \frac{1}{i Q} \frac{Q_{c}^{2}}{4 Q} \int_{-\infty}^{\infty} f^{\prime}(z) e^{i Q z} d z \\
& =\frac{Q_{c}^{2}}{4 Q^{2}} \int_{-\infty}^{\infty} f^{\prime}(z) e^{i Q z} d z
\end{aligned}
$$

The differential reflectivity from a slab of thickness $d z$ at depth z is:
integrating, to get the entire reflectivity
integrating by parts simplifies the term in front is simply the Fresnel reflectivity for an interface, $r_{F}(Q)$ when $q \gg 1$, the integral is the Fourier transform of the density gradient, $\phi(Q)$

Calculating the full reflection coefficient relative to the Fresnel reflection coefficient

$$
\frac{R(Q)}{R_{F}(Q)}=\left|\int_{-\infty}^{\infty}\left(\frac{d f}{d z}\right) e^{i Q z} d z\right|^{2}
$$

The Error Function - a Specific Case

The error function is often chosen as a model for the density gradient

$$
f(z)=\operatorname{erf}\left(\frac{z}{\sqrt{2} \sigma}\right)=\frac{1}{\sqrt{\pi}} \int_{0}^{z / \sqrt{2} \sigma} e^{-t^{2}} d t
$$

The Error Function - a Specific Case

The error function is often chosen as a model for the density gradient

$$
f(z)=\operatorname{erf}\left(\frac{z}{\sqrt{2} \sigma}\right)=\frac{1}{\sqrt{\pi}} \int_{0}^{z / \sqrt{2} \sigma} e^{-t^{2}} d t
$$

the gradient of the error function is simply a Gaussian

$$
\frac{d f(z)}{d z}=\frac{d}{d z} \operatorname{erf}\left(\frac{z}{\sqrt{2} \sigma}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2} \frac{z^{2}}{\sigma^{2}}}
$$

The Error Function - a Specific Case

The error function is often chosen as a model for the density gradient

$$
f(z)=\operatorname{erf}\left(\frac{z}{\sqrt{2} \sigma}\right)=\frac{1}{\sqrt{\pi}} \int_{0}^{z / \sqrt{2} \sigma} e^{-t^{2}} d t
$$

the gradient of the error function is simply a Gaussian

$$
\frac{d f(z)}{d z}=\frac{d}{d z} \operatorname{erf}\left(\frac{z}{\sqrt{2} \sigma}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2} \frac{z^{2}}{\sigma^{2}}}
$$

whose Fourier transform is also a Gaussian, which when squared to obtain the reflection coefficient, gives.

$$
R(Q)=R_{F}(Q) e^{-Q^{2} \sigma^{2}}
$$

The Error Function - a Specific Case

The error function is often chosen as a model for the density gradient

$$
f(z)=\operatorname{erf}\left(\frac{z}{\sqrt{2} \sigma}\right)=\frac{1}{\sqrt{\pi}} \int_{0}^{z / \sqrt{2} \sigma} e^{-t^{2}} d t
$$

the gradient of the error function is simply a Gaussian

$$
\frac{d f(z)}{d z}=\frac{d}{d z} \operatorname{erf}\left(\frac{z}{\sqrt{2} \sigma}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2} \frac{z^{2}}{\sigma^{2}}}
$$

whose Fourier transform is also a Gaussian, which when squared to obtain the reflection coefficient, gives. Or more accurately.

$$
R(Q)=R_{F}(Q) e^{-Q^{2} \sigma^{2}}=R_{F}(Q) e^{-Q Q^{\prime} \sigma^{2}}
$$

The Error Function - a Specific Case

The error function is often chosen as a model for the density gradient

$$
f(z)=\operatorname{erf}\left(\frac{z}{\sqrt{2} \sigma}\right)=\frac{1}{\sqrt{\pi}} \int_{0}^{z / \sqrt{2} \sigma} e^{-t^{2}} d t
$$

the gradient of the error function is simply a Gaussian

$$
\frac{d f(z)}{d z}=\frac{d}{d z} \operatorname{erf}\left(\frac{z}{\sqrt{2} \sigma}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2} \frac{z^{2}}{\sigma^{2}}}
$$

whose Fourier transform is also a Gaussian, which when squared to obtain the reflection coefficient, gives. Or more accurately.

$$
\begin{gathered}
R(Q)=R_{F}(Q) e^{-Q^{2} \sigma^{2}}=R_{F}(Q) e^{-Q Q^{\prime} \sigma^{2}} \\
Q=k \sin \theta, \quad Q^{\prime}=k^{\prime} \sin \theta^{\prime}
\end{gathered}
$$

