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Review of Interface Effects

We have covered the interface boundary conditions which govern the
transmission and reflection of waves at a change in medium.
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Review of Interface Effects

We have covered the interface boundary conditions which govern the
transmission and reflection of waves at a change in medium. These result

in the Fresnel equations which we rewrite here in terms of the momentum
transfer.

no 7Q_Ql
n, T o+ Q
t—72Q
QR+ @

We have assumed that the transmitted wave eventually attenuates to zero
in all cases due to absorption. We now consider what happens if there is a
second interface encountered by the transmitted wave before it dies away.
That is, a thin slab of material on top of an infinite substrate
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Reflection and Transmission Coefficients

For a slab of thickness A on a substrate, the transmission and reflection
coefficients at each interface are labeled:
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Reflection and Transmission Coefficients

For a slab of thickness A on a substrate, the transmission and reflection

coefficients at each interface are labeled:

ro1 — reflection in ng off m

t10 tp1 — transmission from ng into ny

n, 1A

rio — reflection in ny off no
ti» — transmission from ny into ny

rio — reflection in ny off ng
ti0 — transmission from ny into ng

Build the composite reflection coefficient from all possible events

C. Segre (lIT) PHYS 570 - Spring 2015 February 05, 2015

3/ 20
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The composite reflection coefficient for each ray emerging from the top
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Overall Reflection from a Slab

The composite reflection coefficient for each ray emerging from the top
surface is computed

no i
+
n
1 IA torr2tio - P2
n, +

4
torri2rionztio - p

Inside the medium, the x-rays are travelling an additional 2A per traversal.
This adds a phase shift of

p2 — ei2(k1 sin Oél)A — einA
which multiplies the reflection coefficient with each pass through the slab
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Composite Reflection Coefficient

The composite reflection coefficient can now be expressed as a sum
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Fresnel Equation Identity

Applying the Fresnel equations to the top interface
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we can, therefore, construct the following identity

rgl + to1tio
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Reflection Coefficient of a Slab

Starting with the reflection coefficient of the slab obtained earlier
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Reflection Coefficient of a Slab

Starting with the reflection coefficient of the slab obtained earlier

1

. Using the identity
1 —ronap

2
I'siab = ro1 + to1tiori2p

2
to1tio = 1-— 1
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Kiessig Fringes

p? — el

ro1 (1 — p?)

Islab = >
1-rqp?

C. Segre (lIT) PHYS 570 - Spring 2015 February 05, 2015 8 /20
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Islab = >
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If we plot the reflectivity
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Kiessig Fringes

p? — el

ro1 (1 — p?)

Islab = >
1-rqp?

If we plot the reflectivity
2
Rsiab = |rslab‘

These are Kiessig fringes which
arise from interference between
reflections at the top and bot-
tom of the slab.
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Kiessig Fringes
p? = A

Islab = >
1-rqp?

If we plot the reflectivity

Rsiab = |rslab‘2

These are Kiessig fringes which
arise from interference between
reflections at the top and bot-
tom of the slab. They have an

oscillation frequency

21/A = 0.0928
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Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab.
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Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we
are well above the critical angle
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Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we
are well above the critical angle
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Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we

are well above the critical angle refraction effects can be ignored and we
are in the “kinematical” regime.
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Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we
are well above the critical angle refraction effects can be ignored and we
are in the “kinematical” regime.
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Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we
are well above the critical angle refraction effects can be ignored and we
are in the “kinematical” regime.
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Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we
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Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we

are well above the critical angle refraction effects can be ignored and we
are in the “kinematical” regime.
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Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we

are well above the critical angle refraction effects can be ignored and we
are in the “kinematical” regime.

, ro1 (1 — p?)
lab = —o 5 5
sla 1 . rglp2
~ rop (1 — p?)
= 11 (1 — eiQA)
C. Segre (lIT)
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Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we

are well above the critical angle refraction effects can be ignored and we
are in the “kinematical” regime.
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Kinematical Reflection from a Thin Slab

Recall the reflection coefficient for a thin slab. If the slab is thin and we

are well above the critical angle refraction effects can be ignored and we
are in the “kinematical” regime.
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Multilayers in the Kinematical Regime

N repetitions of a bilayer of thickness A
9/\A/(e

composed of two materials, A and B which
1 IA have a density contrast (pa > pg).
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Multilayers in the Kinematical Regime

N repetitions of a bilayer of thickness A
9/\A/('9 composed of two materials, A and B which
1 IA have a density contrast (pa > pg).
2
3 r1 is the reflectivity of a single bilayer
B is the average absorption per bilayer
I;I ¢ = QA/2m is a dimensionless parameter

related to the phase shift of a single bilayer
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Multilayers in the Kinematical Regime

N repetitions of a bilayer of thickness A
6/\A/® composed of two materials, A and B which
1 IA have a density contrast (pa > pg).
2
3 r1 is the reflectivity of a single bilayer
B is the average absorption per bilayer
¢ = QA/2m is a dimensionless parameter
N related to the phase shift of a single bilayer
Form a stack of N bilayers
N-1 )
mw(¢) =) n(¢)e™ e
v=0
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Multilayers in the Kinematical Regime

N repetitions of a bilayer of thickness A
6/\A/® composed of two materials, A and B which

1 IA have a density contrast (pa > pg).
2
3 r1 is the reflectivity of a single bilayer

B is the average absorption per bilayer

¢ = QA/2m is a dimensionless parameter
N related to the phase shift of a single bilayer
Form a stack of N bilayers
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Reflectivity of a Bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivity

developed for a slab but replacing the density of the slab material with the
difference in densities of the bilayer components
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Reflectivity of a Bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivity
developed for a slab but replacing the density of the slab material with the
difference in densities of the bilayer components and assuming that
material A is a fraction [ of the bilayer thickness
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Reflectivity of a Bilayer

The reflectivity from a single bilayer can be evaluated using the reflectivity
developed for a slab but replacing the density of the slab material with the
difference in densities of the bilayer components and assuming that
material A is a fraction [ of the bilayer thickness
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Absorption Coefficient of a Bilayer

The total reflectivity for the multilayer is therefore:

= _0ir ﬂ sin (71¢) 1 — e?2mCNe=BN
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Absorption Coefficient of a Bilayer

The total reflectivity for the multilayer is therefore:

/\2F> sin (71¢) 1 — e?2mCNe=BN

ry = —2iropAB (C ﬂrC 1_ eizﬂ'Ce*,B

The incident x-ray has a path length A/sin@ in a bilayer, a fraction I’
through na and a fraction (1 — ') through ng.
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Absorption Coefficient of a Bilayer

The total reflectivity for the multilayer is therefore:

A2F> sin (71¢) 1 — e?2mCNe=BN

ry = —2iropAB (C ﬂrC 1_ ei27TCe*,3

The incident x-ray has a path length A/sin@ in a bilayer, a fraction I’
through na and a fraction (1 — I') through ng. The amplitude absorption
coefficient, 3 is
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Absorption Coefficient of a Bilayer

The total reflectivity for the multilayer is therefore:
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N — OpAB C 7TrC 1 _ ei2ﬂ.<eiﬁ

The incident x-ray has a path length A/sin@ in a bilayer, a fraction I’
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Reflectivity Calculation
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Reflectivity Calculation
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Reflectivity Calculation
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Reflectivity Calculation
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When ¢ = QA/27 is an
integer, we have peaks

As N becomes larger, these
peaks would become more
prominent

This is effectively a
diffraction grating for
X-rays

Multilayers are used
commonly on laboratory
sources as well as at
synchrotrons as mirrors
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Slab - Multilayer Comparison
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Parratt’s Recursive Method

Treat the multilayer as a stratified medium on top of an infinitely thick
substrate.
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Parratt’s Recursive Method

Treat the multilayer as a stratified medium on top of an infinitely thick
substrate. Take A; as the thickness of each layer and n; =1 —§; +if3; as
the index of refraction of each layer.

Because of continuity, k,; = kx and therefore, we can compute the
z-component of I?J

(njk)? — k%
(1—06;+iBj)* k? — k2
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Parratt’s Recursive Method

Treat the multilayer as a stratified medium on top of an infinitely thick
substrate. Take A; as the thickness of each layer and n; =1 —§; +if3; as
the index of refraction of each layer.

Because of continuity, k,; = kx and therefore, we can compute the
z-component of k;
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substrate. Take A; as the thickness of each layer and n; =1 —§; +if3; as
the index of refraction of each layer.

Because of continuity, k,; = kx and therefore, we can compute the
z-component of k;
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and the wavevector transfer
in the jt layer
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Parratt’s Recursive Method

Treat the multilayer as a stratified medium on top of an infinitely thick
substrate. Take A; as the thickness of each layer and n; =1 —§; +if3; as
the index of refraction of each layer.

Because of contirluity, k. = kx and therefore, we can compute the
z-component of k;
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Parratt’s Recursive Method
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substrate. Take A; as the thickness of each layer and n; =1 —§; +if3; as
the index of refraction of each layer.
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Parratt Reflectivity Calculation

The reflectivity from the interface between
layer j and j + 1, not including multiple
reflections is
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Parratt Reflectivity Calculation

The reflectivity from the interface between
layer j and j + 1, not including multiple
reflections is

Now start calculating the reflectivity
from the bottom of the N layer, closest
to the substrate, where multiple reflections
are not present
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Parratt Reflectivity Calculation

The reflectivity from the interface between y Qi — Qj+1
layer j and j + 1, not including multiple St Qi + Qj+1
reflections is

Now start calculating the reflectivity / Qv — Qoo
from the bottom of the N layer, closest .00 Qn + Qo
to the substrate, where multiple reflections

are not present
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Parratt Reflectivity Calculation

The reflectivity from the interface between
layer j and j + 1, not including multiple
reflections is

Now start calculating the reflectivity
from the bottom of the N layer, closest
to the substrate, where multiple reflections
are not present

The reflectivity from the top of the
N layer, including multiple reflections is
now calculated (note no prime!)
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Parratt Reflectivity Calculation

The reflectivity from the interface between
layer j and j + 1, not including multiple
reflections is

Now start calculating the reflectivity
from the bottom of the N layer, closest
to the substrate, where multiple reflections
are not present

The reflectivity from the top of the
N layer, including multiple reflections is
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Parratt Reflectivity Calculation

The reflectivity from the interface between
layer j and j + 1, not including multiple
reflections is

Now start calculating the reflectivity
from the bottom of the N layer, closest
to the substrate, where multiple reflections
are not present

The reflectivity from the top of the
N layer, including multiple reflections is
now calculated (note no prime!)
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r/ _ QN - Qoo
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/ / 2
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The recursive relation can be seen from the calculation of reflectivity of

the next layer up

/ 2
'N—2N—1 T IN-1,NPN_1

rN—2,N—1 =
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Kinematical - Parratt Comparison
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Kinematical - Parratt Comparison

T T Kinematical approximation
gives a reasonably good ap-
proximation to the correct

- 1 calculation, with a few excep-
tions.
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Kinematical - Parratt Comparison

- T Kinematical approximation
gives a reasonably good ap-
proximation to the correct
- 1 calculation, with a few excep-
tions.

10° Parratt calculation gives
Rpsr = 1 as Q@ — 0 while kine-
matical diverges (Rkj, — 00).
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Kinematical - Parratt Comparison

Multilayer

R

10°

10

C. Segre (lIT)

PHYS 570 - Spring 2015

Kinematical approximation
gives a reasonably good ap-
proximation to the correct
calculation, with a few excep-
tions.

Parratt calculation gives
Rpsr = 1 as Q@ — 0 while kine-
matical diverges (Rkj, — 00).

Parratt peaks shifted to slightly
higher values of @
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Kinematical - Parratt Comparison

Multilayer

R

1 T T

Kinematical approximation
gives a reasonably good ap-
proximation to the correct
calculation, with a few excep-
tions.

Parratt calculation gives
Rp,y = 1 as Q — 0 while kine-
matical diverges (Rkj, — 00).

Parratt peaks shifted to slightly
higher values of @

Peaks in kinematical calcula-
tion are somewhat higher re-
flectivity than true value.
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Graded Interfaces

Since most interfaces are not sharp, it is im-
portant to be able to model a graded interface,
where the density, and therefore the index of
refraction varies near the interface itself.
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The reflectivity of this kind of interface can
be calculated best in the kinematical limit

(Q > Qo).
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Graded Interfaces

Since most interfaces are not sharp, it is im-
portant to be able to model a graded interface,
where the density, and therefore the index of
refraction varies near the interface itself.

or The reflectivity of this kind of interface can
1 f be calculated best in the kinematical limit
@) (0> q.

The density profile of the interface can be de-
scribed by the function f(z) which approaches
1as z— oc.
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Graded Interfaces

C. Segre (IIT)

Since most interfaces are not sharp, it is im-
portant to be able to model a graded interface,
where the density, and therefore the index of
refraction varies near the interface itself.

The reflectivity of this kind of interface can
be calculated best in the kinematical limit

(Q > Qo).

The density profile of the interface can be de-
scribed by the function f(z) which approaches
1as z— oc.

The reflectivity can be computed as the super-
position of the reflectivity of a series of infinites-
mal slabs of thickness dz at a depth z.
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Reflectivity of a Graded Interface

The differential  reflectivity
from a slab of thickness dz at
depth z is:

C. Segre (lIT) PHYS 570 - Spring 2015 February 05, 2015 19 /20



Reflectivity of a Graded Interface

The differential  reflectivity

from a slab of thickness dz at
Qg depth z is:
0r(Q) = —i—=f(z)dz
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Reflectivity of a Graded Interface

C. Segre (lIT)

The differential  reflectivity
from a slab of thickness dz at
depth z is:

integrating, to get the entire
reflectivity
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Reflectivity of a Graded Interface

The differential  reflectivity
from a slab of thickness dz at

2 .
5’,(0) — _14% ( )dZ depth z is:
integrating, to get the entire
@ reflectivity
— _;Xc iQz
Q) = _'4Q f(z)e dz integrating by parts simplifies
1 Q?

f’(z)eindz the term in front is simply the
IQ 4Q Fresnel reflectivity for an inter-
_ Q2 /oc f’(z)eiQZdZ face, r,:'(Q) when.q > 1, the
4Q2) integral is the Fourier transform
of the density gradient, ¢(Q)
Calculating the full reflection coefficient relative to the Fresnel reflection

coefficient
/ <df> led
Re(Q) dz
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The Error Function - a Specific Case

The error function is often chosen as a model for the density gradient

f( ) f( /z/fa 2
z er “hdt
f \/>
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