Today's Outline - February 03, 2015

Today's Outline - February 03, 2015

- Refraction and reflection

Today's Outline - February 03, 2015

- Refraction and reflection
- Boundary conditions at an interface

Today's Outline - February 03, 2015

- Refraction and reflection
- Boundary conditions at an interface
- The Fresnel equations

Today's Outline - February 03, 2015

- Refraction and reflection
- Boundary conditions at an interface
- The Fresnel equations
- Reflectivity and Transmittivity

Today's Outline - February 03, 2015

- Refraction and reflection
- Boundary conditions at an interface
- The Fresnel equations
- Reflectivity and Transmittivity
- Normalized q-coordinates

Today's Outline - February 03, 2015

- Refraction and reflection
- Boundary conditions at an interface
- The Fresnel equations
- Reflectivity and Transmittivity
- Normalized q-coordinates

Reading Assignment: Chapter 3.4

Today's Outline - February 03, 2015

- Refraction and reflection
- Boundary conditions at an interface
- The Fresnel equations
- Reflectivity and Transmittivity
- Normalized q-coordinates

Reading Assignment: Chapter 3.4
Homework Assignment \#02:
Problems to be provided
due Thursday, February 12, 2015

HW \#02

1. Knowing that the photoelectric absorption of an element scales as the inverse of the energy cubed, calculate:
(a) the absorption coefficient at 10 keV for copper when the value at 5 keV is $1698.3 \mathrm{~cm}^{-1}$;
(b) The actual absorption coefficient of copper at 10 keV is $1942.1 \mathrm{~cm}^{-1}$, why is this so different than your calculated value?
2. A 30 cm long, ionization chamber, filled with 80% helium and 20% nitrogen gases at 1 atmosphere, is being used to measure the photon rate (photons $/ \mathrm{sec}$) in a synchrotron beamline at 12 keV . If a current of 10 nA is measured, what is the photon flux entering the ionization chamber?
3. A 5 cm deep ionization chamber is used to measure the fluorescence from a sample containing arsenic (As). Using any noble gases or nitrogen, determine a gas fill (at 1 atmosphere) for this chamber which absorbs at least 60% of the incident photons. How does this change if you are measuring the fluorescence from ruthenium (Ru) ?

HW \#02

4. Calculate the characteristic angle of reflection of 10 keV and 30 keV x-rays for:
(a) A slab of glass $\left(\mathrm{SiO}_{2}\right)$;
(b) A thick chromium mirror;
(c) A thick platinum mirror.
(d) If the incident x-ray beam is 2 mm high, what length of mirror is required to reflect the entire beam for each material?
5. Calculate the fraction of silver (Ag) fluorescence x -rays which are absorbed in a 1 mm thick silicon (Si) detector and the charge pulse expected for each absorbed photon. Repeat the calculation for a 1 mm thick germanium (Ge) detector.

Thin plate response - scattering approach

Consider a thin plate of thickness Δ onto which x-rays are incident from a point source S a perpendicular distance R_{o} away.

Thin plate response - scattering approach

Consider a thin plate of thickness Δ onto which x-rays are incident from a point source S a perpendicular distance R_{o} away. A detector is placed at P, also a perpendicular distance R_{o} on the other side of the plate

Thin plate response - scattering approach

Consider a thin plate of thickness Δ onto which x-rays are incident from a point source S a perpendicular distance R_{o} away. A detector is placed at P, also a perpendicular distance R_{o} on the other side of the plate We consider a small volume at location (x, y) which scatters the x-rays.

Thin plate response - scattering approach

Consider a thin plate of thickness Δ onto which x-rays are incident from a point source S a perpendicular distance R_{o} away. A detector is placed at P, also a perpendicular distance R_{o} on the other side of the plate We consider a small volume at location (x, y) which scatters the x-rays.

The plate has electron density

ρ and the volume $\Delta d x d y$ contains $\rho \Delta d x d y$ electrons which scatter the x-rays.

Thin plate response - scattering approach

Consider a thin plate of thickness Δ onto which x-rays are incident from a point source S a perpendicular distance R_{o} away. A detector is placed at P, also a perpendicular distance R_{o} on the other side of the plate We consider a small volume at location (x, y) which scatters the x-rays.

The plate has electron density

ρ and the volume $\Delta d x d y$ contains $\rho \Delta d x d y$ electrons which scatter the x-rays. The distance from S to the scattering volume is

Thin plate response - scattering approach

Consider a thin plate of thickness Δ onto which x-rays are incident from a point source S a perpendicular distance R_{o} away. A detector is placed at P, also a perpendicular distance R_{o} on the other side of the plate We consider a small volume at location (x, y) which scatters the x-rays.

The plate has electron density

ρ and the volume $\Delta d x d y$ contains $\rho \Delta d x d y$ electrons which scatter the x-rays. The distance from S to the scattering volume is

$$
R=\sqrt{R_{o}^{2}+x^{2}+y^{2}}
$$

Thin plate response - scattering approach

Consider a thin plate of thickness Δ onto which x-rays are incident from a point source S a perpendicular distance R_{o} away. A detector is placed at P, also a perpendicular distance R_{o} on the other side of the plate We consider a small volume at location (x, y) which scatters the x-rays.

$$
R=R_{o} \sqrt{1+\frac{x^{2}+y^{2}}{R_{o}^{2}}}
$$

ρ and the volume $\Delta d x d y$ contains $\rho \Delta d x d y$ electrons which scatter the x-rays. The distance from S to the scattering volume is

$$
R=\sqrt{R_{o}^{2}+x^{2}+y^{2}}
$$

Thin plate response - scattering approach

Consider a thin plate of thickness Δ onto which x-rays are incident from a point source S a perpendicular distance R_{o} away. A detector is placed at P, also a perpendicular distance R_{o} on the other side of the plate We consider a small volume at location (x, y) which scatters the x-rays.

The plate has electron density

ρ and the volume $\Delta d x d y$ contains $\rho \Delta d x d y$ electrons which scatter the x-rays. The distance from S to the scattering volume is

$$
R=\sqrt{R_{o}^{2}+x^{2}+y^{2}}
$$

$$
R=R_{o} \sqrt{1+\frac{x^{2}+y^{2}}{R_{o}^{2}}} \approx R_{o}\left[1+\frac{x^{2}+y^{2}}{2 R_{o}^{2}}\right]
$$

Thin plate response - scattering approach

R is also the distance between the scattering volume and P so, a wave (x-ray) which travels from $S \rightarrow P$ through the scattering volume will have an extra phase shift

Thin plate response - scattering approach

R is also the distance between the scattering volume and P so, a wave (x-ray) which travels from $S \rightarrow P$ through the scattering volume will have an extra phase shift

$$
\phi(x, y)=2 k \frac{x^{2}+y^{2}}{2 R_{o}^{2}}
$$

Thin plate response - scattering approach

R is also the distance between the scattering volume and P so, a wave (x-ray) which travels from $S \rightarrow P$ through the scattering volume will have an extra phase shift

$$
\phi(x, y)=2 k \frac{x^{2}+y^{2}}{2 R_{o}^{2}}=\frac{x^{2}+y^{2}}{R_{o}^{2}} k
$$

compared to a wave which travels directly along the z axis.

Thin plate response - scattering approach

R is also the distance between the scattering volume and P so, a wave (x-ray) which travels from $S \rightarrow P$ through the scattering volume will have an extra phase shift

$$
\phi(x, y)=2 k \frac{x^{2}+y^{2}}{2 R_{o}^{2}}=\frac{x^{2}+y^{2}}{R_{o}^{2}} k
$$

compared to a wave which travels directly along the z axis. The wave which is scattered through the volume will have the form

Thin plate response - scattering approach

R is also the distance between the scattering volume and P so, a wave (x-ray) which travels from $S \rightarrow P$ through the scattering volume will have an extra phase shift

$$
\phi(x, y)=2 k \frac{x^{2}+y^{2}}{2 R_{o}^{2}}=\frac{x^{2}+y^{2}}{R_{o}^{2}} k
$$

compared to a wave which travels directly along the z axis. The wave which is scattered through the volume will have the form

$$
d \psi_{S}^{P} \approx\left(\frac{e^{i k R_{o}}}{R_{o}}\right)
$$

Thin plate response - scattering approach

R is also the distance between the scattering volume and P so, a wave (x-ray) which travels from $S \rightarrow P$ through the scattering volume will have an extra phase shift

$\phi(x, y)=2 k \frac{x^{2}+y^{2}}{2 R_{o}^{2}}=\frac{x^{2}+y^{2}}{R_{o}^{2}} k$
compared to a wave which travels directly along the z axis. The wave which is scattered through the volume will have the form

$$
d \psi_{S}^{P} \approx\left(\frac{e^{i k R_{o}}}{R_{o}}\right)(\rho \Delta d x d y)
$$

Thin plate response - scattering approach

R is also the distance between the scattering volume and P so, a wave (x-ray) which travels from $S \rightarrow P$ through the scattering volume will have an extra phase shift

$$
\phi(x, y)=2 k \frac{x^{2}+y^{2}}{2 R_{o}^{2}}=\frac{x^{2}+y^{2}}{R_{o}^{2}} k
$$

compared to a wave which travels directly along the z axis. The wave which is scattered through the volume will have the form

$$
d \psi_{S}^{P} \approx\left(\frac{e^{i k R_{0}}}{R_{0}}\right)(\rho \Delta d x d y)\left(-b \frac{e^{i k R_{o}}}{R_{o}}\right)
$$

Thin plate response - scattering approach

R is also the distance between the scattering volume and P so, a wave (x-ray) which travels from $S \rightarrow P$ through the scattering volume will have an extra phase shift

$$
\phi(x, y)=2 k \frac{x^{2}+y^{2}}{2 R_{o}^{2}}=\frac{x^{2}+y^{2}}{R_{o}^{2}} k
$$

compared to a wave which travels directly along the z axis. The wave which is scattered through the volume will have the form

$$
d \psi_{S}^{P} \approx\left(\frac{e^{i k R_{0}}}{R_{0}}\right)(\rho \Delta d x d y)\left(-b \frac{e^{i k R_{0}}}{R_{0}}\right) e^{i \phi(x, y)}
$$

Thin plate response - scattering approach

$$
d \psi_{S}^{P}=\left(\frac{e^{i k R_{o}}}{R_{o}}\right) \rho(\Delta d x d y)\left(-b \frac{e^{i k R_{o}}}{R_{o}}\right) e^{i \phi(x, y)}
$$

Thin plate response - scattering approach

$$
d \psi_{S}^{P}=\left(\frac{e^{i k R_{o}}}{R_{o}}\right) \rho(\Delta d x d y)\left(-b \frac{e^{i k R_{o}}}{R_{o}}\right) e^{i \phi(x, y)} \quad \begin{aligned}
& \text { Integrate the scattered } \\
& \text { wave over the entire } \\
& \text { plate }
\end{aligned}
$$

Thin plate response - scattering approach

$$
\begin{gathered}
d \psi_{S}^{P}=\left(\frac{e^{i k R_{o}}}{R_{o}}\right) \rho(\Delta d x d y)\left(-b \frac{e^{i k R_{o}}}{R_{o}}\right) e^{i \phi(x, y)} \\
\psi_{S}^{P}=\int d \psi_{S}^{P}=-\rho b \Delta \frac{e^{i 2 k R_{o}}}{R_{o}^{2}} \int_{-\infty}^{\infty} e^{i \frac{x^{2}+y^{2}}{R_{0}^{2}} k} d x d y
\end{gathered}
$$

Integrate the scattered wave over the entire plate This integral is basically a Gaussian integral with an imaginary (instead of real) constant in the exponent

$$
I^{2}=i \frac{\pi R_{o}}{k}
$$

Thin plate response - scattering approach

$$
\begin{aligned}
d \psi_{S}^{P} & =\left(\frac{e^{i k R_{o}}}{R_{o}}\right) \rho(\Delta d x d y)\left(-b \frac{e^{i k R_{o}}}{R_{o}}\right) e^{i \phi(x, y)} \\
\psi_{S}^{P} & =\int d \psi_{S}^{P}=-\rho b \Delta \frac{e^{i 2 k R_{o}}}{R_{o}^{2}} \int_{-\infty}^{\infty} e^{i \frac{x^{2}+y^{2}}{R_{0}^{2}} k} d x d y \\
& =-\rho b \Delta \frac{e^{i 2 k R_{o}}}{R_{o}^{2}}\left(i \frac{\pi R_{o}}{k}\right)
\end{aligned}
$$

Integrate the scattered wave over the entire plate This integral is basically a Gaussian integral with an imaginary (instead of real) constant in the exponent

$$
I^{2}=i \frac{\pi R_{o}}{k}
$$

Thin plate response - scattering approach

$$
\begin{aligned}
d \psi_{S}^{P} & =\left(\frac{e^{i k R_{o}}}{R_{o}}\right) \rho(\Delta d x d y)\left(-b \frac{e^{i k R_{o}}}{R_{o}}\right) e^{i \phi(x, y)} \\
\psi_{S}^{P} & =\int d \psi_{S}^{P}=-\rho b \Delta \frac{e^{i 2 k R_{o}}}{R_{o}^{2}} \int_{-\infty}^{\infty} e^{i \frac{x^{2}+y^{2}}{R_{0}^{2}} k} d x d y \\
& =-\rho b \Delta \frac{e^{i 2 k R_{o}}}{R_{o}^{2}}\left(i \frac{\pi R_{o}}{k}\right)
\end{aligned}
$$

Integrate the scattered wave over the entire plate This integral is basically a Gaussian integral with an imaginary (instead of real) constant in the exponent

$$
I^{2}=i \frac{\pi R_{o}}{k}
$$

Thus the total wave (electric field) at P can be written

Thin plate response - scattering approach

$$
\begin{array}{rlr}
d \psi_{S}^{P} & =\left(\frac{e^{i k R_{o}}}{R_{o}}\right) \rho(\Delta d x d y)\left(-b \frac{e^{i k R_{o}}}{R_{o}}\right) e^{i \phi(x, y)} & \begin{array}{l}
\text { Integrate the scattered } \\
\text { wave over the entire } \\
\text { plate This integral is ba- }
\end{array} \\
\psi_{S}^{P} & =\int d \psi_{S}^{P}=-\rho b \Delta \frac{e^{i 2 k R_{o}}}{R_{o}^{2}} \int_{-\infty}^{\infty} e^{i \frac{x^{2}+y^{2}}{R_{0}^{2}} k} d x d y & \begin{array}{l}
\text { gral a with an imaginary inte- } \\
\text { (instead of real) con- } \\
\text { stant in the exponent }
\end{array} \\
& =-\rho b \Delta \frac{e^{i 2 k R_{o}}}{R_{o}^{2}}\left(i \frac{\pi R_{o}}{k}\right) & I^{2}=i \frac{\pi R_{o}}{k}
\end{array}
$$

$$
\psi^{P}=\psi_{o}^{P}+\psi_{S}^{P}
$$

Thus the total wave (electric field) at P can be written

Thin plate response - scattering approach

$$
\begin{aligned}
d \psi_{S}^{P} & =\left(\frac{e^{i k R_{o}}}{R_{o}}\right) \rho(\Delta d x d y)\left(-b \frac{e^{i k R_{o}}}{R_{o}}\right) e^{i \phi(x, y)} \\
\psi_{S}^{P} & =\int d \psi_{S}^{P}=-\rho b \Delta \frac{e^{i 2 k R_{o}}}{R_{o}^{2}} \int_{-\infty}^{\infty} e^{i \frac{x^{2}+y^{2}}{R_{0}^{2}} k} d x d y \\
& =-\rho b \Delta \frac{e^{i 2 k R_{o}}}{R_{o}^{2}}\left(i \frac{\pi R_{o}}{k}\right) \\
\psi^{P} & =\psi_{o}^{P}+\psi_{S}^{P} \\
& =\frac{e^{i 2 k R_{o}}}{2 R_{o}}-i \rho b \Delta \frac{\pi R_{o}}{k} \frac{e^{i 2 k R_{o}}}{R_{o}^{2}}
\end{aligned}
$$

Integrate the scattered wave over the entire plate This integral is basically a Gaussian integral with an imaginary (instead of real) constant in the exponent

$$
I^{2}=i \frac{\pi R_{o}}{k}
$$

Thus the total wave (electric field) at P can be written

Thin plate response - scattering approach

$$
\begin{aligned}
d \psi_{S}^{P} & =\left(\frac{e^{i k R_{o}}}{R_{o}}\right) \rho(\Delta d x d y)\left(-b \frac{e^{i k R_{o}}}{R_{o}}\right) e^{i \phi(x, y)} \\
\psi_{S}^{P} & =\int d \psi_{S}^{P}=-\rho b \Delta \frac{e^{i 2 k R_{o}}}{R_{o}^{2}} \int_{-\infty}^{\infty} e^{i \frac{i^{2}+y^{2}}{R_{o}^{2}} k} d x d y \\
& =-\rho b \Delta \frac{e^{i 2 k R_{o}}}{R_{o}^{2}}\left(i \frac{\pi R_{o}}{k}\right) \\
\psi^{P} & =\psi_{o}^{P}+\psi_{S}^{P} \\
& =\frac{e^{i 2 k R_{o}}}{2 R_{o}}-i \rho b \Delta \frac{\pi R_{o}}{k} \frac{e^{i 2 k R_{o}}}{R_{o}^{2}} \\
& =\frac{e^{i 2 k R_{o}}}{2 R_{o}}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right]
\end{aligned}
$$

Integrate the scattered wave over the entire plate This integral is basically a Gaussian integral with an imaginary (instead of real) constant in the exponent

$$
I^{2}=i \frac{\pi R_{o}}{k}
$$

Thus the total wave (electric field) at P can be written

Thin plate response - scattering approach

$$
\begin{aligned}
d \psi_{S}^{P} & =\left(\frac{e^{i k R_{o}}}{R_{o}}\right) \rho(\Delta d x d y)\left(-b \frac{e^{i k R_{o}}}{R_{o}}\right) e^{i \phi(x, y)} \\
\psi_{S}^{P} & =\int d \psi_{S}^{P}=-\rho b \Delta \frac{e^{i 2 k R_{o}}}{R_{o}^{2}} \int_{-\infty}^{\infty} e^{i \frac{x^{2}+y^{2}}{R_{o}^{2}} k} d x d y \\
& =-\rho b \Delta \frac{e^{i 2 k R_{o}}}{R_{o}^{2}}\left(i \frac{\pi R_{o}}{k}\right) \\
\psi^{P} & =\psi_{o}^{P}+\psi_{S}^{P} \\
& =\frac{e^{i k k R_{o}}}{2 R_{o}}-i \rho b \Delta \frac{\pi R_{o}}{k} \frac{e^{i 2 k R_{o}}}{R_{o}^{2}} \\
& =\psi_{0}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right]
\end{aligned}
$$

Integrate the scattered wave over the entire plate This integral is basically a Gaussian integral with an imaginary (instead of real) constant in the exponent

$$
I^{2}=i \frac{\pi R_{o}}{k}
$$

Thus the total wave (electric field) at P can be written

Thin plate response - refraction approach

Now let's look at this phenomenon from a different point of view, that of refraction.

Thin plate response - refraction approach

Now let's look at this phenomenon from a different point of view, that of refraction. Assume that the wave passing through the plate simply gains a phase shift because it passes through a medium compared to a wave which does not have the plate present.

Thin plate response - refraction approach

Now let's look at this phenomenon from a different point of view, that of refraction. Assume that the wave passing through the plate simply gains a phase shift because it passes through a medium compared to a wave which does not have the plate present.

The phase shift depends on the thickness and the difference between the index of refraction of the medium and that of vacuum

$$
\phi=(n-1) k \Delta
$$

Thin plate response - refraction approach

Now let's look at this phenomenon from a different point of view, that of refraction. Assume that the wave passing through the plate simply gains a phase shift because it passes through a medium compared to a wave which does not have the plate present.

The phase shift depends on the thickness and the difference between the index of refraction of the medium and that of vacuum

$$
\phi=(n-1) k \Delta
$$

The wave function at P is then:

Thin plate response - refraction approach

Now let's look at this phenomenon from a different point of view, that of refraction. Assume that the wave passing through the plate simply gains a phase shift because it passes through a medium compared to a wave which does not have the plate present.

The phase shift depends on the thickness and the difference between the index of refraction of the medium and that of vacuum

$$
\phi=(n-1) k \Delta
$$

The wave function at P is then:
$\psi^{P}=\psi_{o}^{P} e^{i(n-1) k \Delta}$

Thin plate response - refraction approach

Now let's look at this phenomenon from a different point of view, that of refraction. Assume that the wave passing through the plate simply gains a phase shift because it passes through a medium compared to a wave which does not have the plate present.

The phase shift depends on the thickness and the difference between the index of refraction of the medium and that of vacuum

$$
\phi=(n-1) k \Delta
$$

The wave function at P is then:
$\psi^{P}=\psi_{o}^{P} e^{i(n-1) k \Delta}=\psi_{o}^{P}[1+i(n-1) k \Delta+\cdots]$

Thin plate response - refraction approach

Now let's look at this phenomenon from a different point of view, that of refraction. Assume that the wave passing through the plate simply gains a phase shift because it passes through a medium compared to a wave which does not have the plate present.

The phase shift depends on the thickness and the difference between the index of refraction of the medium and that of vacuum

$$
\phi=(n-1) k \Delta
$$

The wave function at P is then:

$$
\psi^{P}=\psi_{o}^{P} e^{i(n-1) k \Delta}=\psi_{o}^{P}[1+i(n-1) k \Delta+\cdots] \approx \psi_{o}^{P}[1+i(n-1) k \Delta]
$$

Calculating n

We can now compare the expressions obtained by the scattering and refraction approaches.

Calculating n

We can now compare the expressions obtained by the scattering and refraction approaches.

Scattering
Refraction

Calculating n

We can now compare the expressions obtained by the scattering and refraction approaches.

Scattering

$$
\psi^{P}=\psi_{o}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right]
$$

Refraction

$$
\psi^{P}=\psi_{o}^{P}[1+i(n-1) k \Delta]
$$

Calculating n

We can now compare the expressions obtained by the scattering and refraction approaches.

$$
\begin{array}{cc}
\text { Scattering } & \text { Refraction } \\
\psi^{P}=\psi_{o}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right] & \psi^{P}=\psi_{o}^{P}[1+i(n-1) k \Delta]
\end{array}
$$

By inspection we have

Calculating n

We can now compare the expressions obtained by the scattering and refraction approaches.

$$
\begin{array}{cc}
\text { Scattering } & \text { Refraction } \\
\psi^{P}=\psi_{o}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right] & \psi^{P}=\psi_{o}^{P}[1+i(n-1) k \Delta]
\end{array}
$$

By inspection we have

$$
(n-1) k \Delta=-\frac{2 \pi \rho b \Delta}{k}
$$

Calculating n

We can now compare the expressions obtained by the scattering and refraction approaches.

$$
\begin{array}{cc}
\text { Scattering } & \text { Refraction } \\
\psi^{P}=\psi_{o}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right] & \psi^{P}=\psi_{o}^{P}[1+i(n-1) k \Delta]
\end{array}
$$

By inspection we have

$$
\begin{aligned}
(n-1) k \Delta & =-\frac{2 \pi \rho b \Delta}{k} \\
n-1 & =-\frac{2 \pi \rho b}{k^{2}}
\end{aligned}
$$

Calculating n

We can now compare the expressions obtained by the scattering and refraction approaches.

$$
\begin{array}{cc}
\text { Scattering } & \text { Refraction } \\
\psi^{P}=\psi_{o}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right] & \psi^{P}=\psi_{o}^{P}[1+i(n-1) k \Delta]
\end{array}
$$

By inspection we have

$$
\begin{aligned}
(n-1) k \Delta & =-\frac{2 \pi \rho b \Delta}{k} \\
n-1 & =-\frac{2 \pi \rho b}{k^{2}} \\
n & =1-\frac{2 \pi \rho b}{k^{2}}
\end{aligned}
$$

Calculating n

We can now compare the expressions obtained by the scattering and refraction approaches.

$$
\begin{array}{cc}
\text { Scattering } & \text { Refraction } \\
\psi^{P}=\psi_{o}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right] & \psi^{P}=\psi_{o}^{P}[1+i(n-1) k \Delta]
\end{array}
$$

By inspection we have

$$
\begin{aligned}
(n-1) k \Delta & =-\frac{2 \pi \rho b \Delta}{k} \\
n-1 & =-\frac{2 \pi \rho b}{k^{2}} \\
n & =1-\frac{2 \pi \rho b}{k^{2}}=1-\delta
\end{aligned}
$$

Index of refraction \& critical angle

Now that we have an expression for the index of refraction, we can examine the consequences and estimate it's magnitude.

Index of refraction \& critical angle

Now that we have an expression for the index of refraction, we can examine the consequences and estimate it's magnitude.
Consider an x-ray incident on an interface at angle α_{1} to the surface

Index of refraction \& critical angle

Now that we have an expression for the index of refraction, we can examine the consequences and estimate it's magnitude. Consider an x-ray incident on an interface at angle α_{1} to the surface which is refracted into the medium of index n_{2} at angle α_{2}.

Index of refraction \& critical angle

Now that we have an expression for the index of refraction, we can examine the consequences and estimate it's magnitude. Consider an x-ray incident on an interface at angle α_{1} to the surface which is refracted into the medium of index n_{2} at angle α_{2}.

Applying Snell's Law

$$
n_{1} \cos \alpha_{1}=n_{2} \cos \alpha_{2}
$$

Index of refraction \& critical angle

Now that we have an expression for the index of refraction, we can examine the consequences and estimate it's magnitude.
Consider an x-ray incident on an interface at angle α_{1} to the surface which is refracted into the medium of index n_{2} at angle α_{2}.

Applying Snell's Law, and assuming that the incident medium is air (vacuum).

$$
\begin{aligned}
n_{1} \cos \alpha_{1} & =n_{2} \cos \alpha_{2} \\
\cos \alpha_{1} & =n_{2} \cos \alpha_{2}
\end{aligned}
$$

Index of refraction \& critical angle

Now that we have an expression for the index of refraction, we can examine the consequences and estimate it's magnitude.
Consider an x-ray incident on an interface at angle α_{1} to the surface which is refracted into the medium of index n_{2} at angle α_{2}.

$$
\begin{aligned}
n_{1} \cos \alpha_{1} & =n_{2} \cos \alpha_{2} \\
\cos \alpha_{1} & =n_{2} \cos \alpha_{2} \\
\cos \alpha_{1} & =(1-\delta) \cos \alpha_{2}
\end{aligned}
$$

Applying Snell's Law, and assuming that the incident medium is air (vacuum).
If we now apply the known form of the index of refraction for the medium $\left(n_{2}=1-\delta\right)$.

Index of refraction \& critical angle

Now that we have an expression for the index of refraction, we can examine the consequences and estimate it's magnitude.
Consider an x-ray incident on an interface at angle α_{1} to the surface which is refracted into the medium of index n_{2} at angle α_{2}.

Applying Snell's Law, and assuming that the incident medium is air (vacuum).

If we now apply the known form of the index of refraction for the medium

$$
\begin{aligned}
n_{1} \cos \alpha_{1} & =n_{2} \cos \alpha_{2} \\
\cos \alpha_{1} & =n_{2} \cos \alpha_{2} \\
\cos \alpha_{1} & =(1-\delta) \cos \alpha_{2} \\
\cos \alpha_{c} & =1-\delta
\end{aligned}
$$

$\left(n_{2}=1-\delta\right)$.

When the incident angle becomes small enough, there will be total external reflection

Estimation of critical angle

$$
1-\delta=\cos \alpha_{c}
$$

Estimation of critical angle

$$
\begin{array}{ll}
\qquad 1-\delta=\cos \alpha_{c} \\
\text { For small angles, the cosine } & 1-\delta=1-\frac{\alpha_{c}{ }^{2}}{2}+\cdots \\
\text { function can expanded }
\end{array}
$$

Estimation of critical angle

$$
\begin{aligned}
& 1-\delta=\cos \alpha_{c} \\
& 1-\delta=1-\frac{\alpha_{c}{ }^{2}}{2}+\cdots \\
& 1-\delta \approx 1-\frac{\alpha_{c}{ }^{2}}{2}
\end{aligned}
$$

Estimation of critical angle

For small angles, the cosine function can expanded to give a simple relation for the critical angle

$$
\begin{aligned}
1-\delta & =\cos \alpha_{c} \\
1-\delta & =1-\frac{\alpha_{c}{ }^{2}}{2}+\cdots \\
1-\delta & \approx 1-\frac{\alpha_{c}{ }^{2}}{2} \\
\delta & \approx \frac{\alpha_{c}{ }^{2}}{2} \\
\alpha_{c} & =\sqrt{2 \delta}
\end{aligned}
$$

Estimation of critical angle

For small angles, the cosine function can expanded to give a simple relation for the critical angle

$$
\begin{aligned}
1-\delta & =\cos \alpha_{c} \\
1-\delta & =1-\frac{\alpha_{c}{ }^{2}}{2}+\cdots \\
1-\delta & \approx 1-\frac{\alpha_{c}{ }^{2}}{2} \\
\delta & \approx \frac{\alpha_{c}{ }^{2}}{2} \\
\alpha_{c} & =\sqrt{2 \delta}
\end{aligned}
$$

If $\delta \sim 10^{-5}$, then the critical angle is

$$
\alpha_{c}=\sqrt{2 \times 10^{-5}}
$$

Estimation of critical angle

For small angles, the cosine function can expanded to give a simple relation for the critical angle

$$
\begin{aligned}
1-\delta & =\cos \alpha_{c} \\
1-\delta & =1-\frac{\alpha_{c}{ }^{2}}{2}+\cdots \\
1-\delta & \approx 1-\frac{\alpha_{c}{ }^{2}}{2} \\
\delta & \approx \frac{\alpha_{c}{ }^{2}}{2} \\
\alpha_{c} & =\sqrt{2 \delta}
\end{aligned}
$$

If $\delta \sim 10^{-5}$, then the critical angle is

$$
\begin{aligned}
\alpha_{c} & =\sqrt{2 \times 10^{-5}} \\
& =4.5 \times 10^{-3}=4.5 \mathrm{mrad}
\end{aligned}
$$

Estimation of critical angle

For small angles, the cosine function can expanded to give a simple relation for the critical angle

$$
\begin{aligned}
1-\delta & =\cos \alpha_{c} \\
1-\delta & =1-\frac{\alpha_{c}{ }^{2}}{2}+\cdots \\
1-\delta & \approx 1-\frac{\alpha_{c}{ }^{2}}{2} \\
\delta & \approx \frac{\alpha_{c}{ }^{2}}{2} \\
\alpha_{c} & =\sqrt{2 \delta}
\end{aligned}
$$

If $\delta \sim 10^{-5}$, then the critical angle is

$$
\begin{aligned}
\alpha_{c} & =\sqrt{2 \times 10^{-5}} \\
& =4.5 \times 10^{-3}=4.5 \mathrm{mrad} \\
& =0.26^{\circ}
\end{aligned}
$$

Connection to atomic scattering

So far, we have made the assumption that the charge distribution is uniform. We know that this is not correct, and that usually electron charge distributions are those of the atoms making up the solid.
$\psi^{P}=\psi_{o}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right]$

Connection to atomic scattering

So far, we have made the assumption that the charge distribution is uniform. We know that this is not correct, and that usually electron charge distributions are those of the atoms making up the solid. Therefore, it is useful to replace the uniform charge distribution, ρ, with a more realistic one, including the atom distribution ρ_{a} :
$\psi^{P}=\psi_{o}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right]$

Connection to atomic scattering

So far, we have made the assumption that the charge distribution is uniform. We know that this is not correct, and that usually electron charge distributions are those of the atoms making up the solid. Therefore, it is useful to replace the uniform charge distribution, ρ, with a more realistic one, including the atom distribution ρ_{a} :

$$
\begin{aligned}
\psi^{P} & =\psi_{o}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right] \\
\rho & =\rho_{a} f^{0}\left(\theta=90^{\circ}\right)
\end{aligned}
$$

Connection to atomic scattering

So far, we have made the assumption that the charge distribution is uniform. We know that this is not correct, and that usually electron charge distributions are those of the atoms making up the solid.
Therefore, it is useful to replace the uniform charge distribution, ρ, with a more realistic one, including the atom distribution ρ_{a} :

$$
\begin{aligned}
\psi^{P} & =\psi_{o}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right] \\
\rho & =\rho_{a} f^{0}\left(\theta=90^{\circ}\right)
\end{aligned}
$$

This holds for forward scattering ($\theta=90^{\circ}$ or $\psi=0^{\circ}$) only, and a correction term of $\sin \theta$ is needed if the viewing angle is different.

Connection to atomic scattering

So far, we have made the assumption that the charge distribution is uniform. We know that this is not correct, and that usually electron charge distributions are those of the atoms making up the solid.
Therefore, it is useful to replace the uniform charge distribution, ρ, with a more realistic one, including the atom distribution ρ_{a} :

$$
\begin{aligned}
\psi^{P} & =\psi_{o}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right] \\
\rho & =\rho_{a} f^{0}\left(\theta=90^{\circ}\right) \quad k=2 \pi / \lambda
\end{aligned}
$$

This holds for forward scattering ($\theta=90^{\circ}$ or $\psi=0^{\circ}$) only, and a correction term of $\sin \theta$ is needed if the viewing angle is different.

Connection to atomic scattering

So far, we have made the assumption that the charge distribution is uniform. We know that this is not correct, and that usually electron charge distributions are those of the atoms making up the solid.
Therefore, it is useful to replace the uniform charge distribution, ρ, with a more realistic one, including the atom distribution ρ_{a} :

$$
\begin{aligned}
\psi^{P} & =\psi_{o}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right] \\
\rho & =\rho_{a} f^{0}\left(\theta=90^{\circ}\right) \quad k=2 \pi / \lambda
\end{aligned}
$$

This holds for forward scattering
$\left(\theta=90^{\circ}\right.$ or $\left.\psi=0^{\circ}\right)$ only, and a
This holds for forward scattering
$\left(\theta=90^{\circ}\right.$ or $\left.\psi=0^{\circ}\right)$ only, and a correction term of $\sin \theta$ is needed if the viewing angle is different.

$$
\psi^{P}=\psi_{o}^{P}\left[1-i \frac{\lambda \rho_{a} f^{0} r_{o} \Delta}{\sin \theta}\right]
$$

Connection to atomic scattering

So far, we have made the assumption that the charge distribution is uniform. We know that this is not correct, and that usually electron charge distributions are those of the atoms making up the solid.
Therefore, it is useful to replace the uniform charge distribution, ρ, with a more realistic one, including the atom distribution ρ_{a} :

$$
\begin{aligned}
\psi^{P} & =\psi_{o}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right] \\
\rho & =\rho_{a} f^{0}\left(\theta=90^{\circ}\right) \quad k=2 \pi / \lambda \\
\psi^{P} & =\psi_{o}^{P}\left[1-i \frac{\lambda \rho_{a} f^{0} r_{o} \Delta}{\sin \theta}\right] \\
\psi^{P} & =\psi_{o}^{P}\left[1-i g_{o}\right]
\end{aligned}
$$

This holds for forward scattering

$$
\left(\theta=90^{\circ} \text { or } \psi=0^{\circ}\right) \text { only, and a }
$$

$$
\text { correction term of } \sin \theta \text { is needed if }
$$ the viewing angle is different.

Connection to atomic scattering

So far, we have made the assumption that the charge distribution is uniform. We know that this is not correct, and that usually electron charge distributions are those of the atoms making up the solid.
Therefore, it is useful to replace the uniform charge distribution, ρ, with a more realistic one, including the atom distribution ρ_{a} :

$$
\begin{aligned}
\psi^{P} & =\psi_{o}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right] \\
\rho & =\rho_{a} f^{0}\left(\theta=90^{\circ}\right) \quad k=2 \pi / \lambda
\end{aligned}
$$

This holds for forward scattering ($\theta=90^{\circ}$ or $\psi=0^{\circ}$) only, and a correction term of $\sin \theta$ is needed if

$$
\psi^{P}=\psi_{o}^{P}\left[1-i \frac{\lambda \rho_{a} f^{0} r_{o} \Delta}{\sin \theta}\right]
$$ the viewing angle is different.

The second term is nothing more than a phase shift to the electromagnetic wave.

Connection to atomic scattering

So far, we have made the assumption that the charge distribution is uniform. We know that this is not correct, and that usually electron charge distributions are those of the atoms making up the solid.
Therefore, it is useful to replace the uniform charge distribution, ρ, with a more realistic one, including the atom distribution ρ_{a} :

$$
\begin{aligned}
\psi^{P} & =\psi_{o}^{P}\left[1-i \frac{2 \pi \rho b \Delta}{k}\right] \\
\rho & =\rho_{a} f^{0}\left(\theta=90^{\circ}\right) \quad k=2 \pi / \lambda \\
\psi^{P} & =\psi_{o}^{P}\left[1-i \frac{\lambda \rho_{a} f^{0} r_{o} \Delta}{\sin \theta}\right] \\
\psi^{P} & =\psi_{o}^{P}\left[1-i g_{o}\right] \approx \psi_{o}^{P} e^{-i g_{o}}
\end{aligned}
$$

This holds for forward scattering ($\theta=90^{\circ}$ or $\psi=0^{\circ}$) only, and a correction term of $\sin \theta$ is needed if the viewing angle is different.

The second term is nothing more than a phase shift to the electromagnetic wave.

Absorption term in n

Since the actual scattering factor of an atom has anomalous terms, $f(Q)=f^{0}(Q)+f^{\prime}+i f^{\prime \prime}$, we must include an absorption term in the model for the index of refraction.

Absorption term in n

Since the actual scattering factor of an atom has anomalous terms, $f(Q)=f^{0}(Q)+f^{\prime}+i f^{\prime \prime}$, we must include an absorption term in the model for the index of refraction.

$$
n=1-\delta+i \beta
$$

Absorption term in n

Since the actual scattering factor of an atom has anomalous terms, $f(Q)=f^{0}(Q)+f^{\prime}+i f^{\prime \prime}$, we must include an absorption term in the model for the index of refraction.

Begin with Beer's Law for absorption

$$
n=1-\delta+i \beta
$$

Absorption term in n

Since the actual scattering factor of an atom has anomalous terms, $f(Q)=f^{0}(Q)+f^{\prime}+i f^{\prime \prime}$, we must include an absorption term in the model for the index of refraction.

Begin with Beer's Law for absorption

$$
n=1-\delta+i \beta
$$

$$
I(z)=I_{o} e^{-\mu z}
$$

Absorption term in n

Since the actual scattering factor of an atom has anomalous terms, $f(Q)=f^{0}(Q)+f^{\prime}+i f^{\prime \prime}$, we must include an absorption term in the model for the index of refraction.

Begin with Beer's Law for absorption

$$
n=1-\delta+i \beta
$$

In the refractive approach, the phase shift caused by a medium is

$$
I(z)=I_{o} e^{-\mu z}
$$

Absorption term in n

Since the actual scattering factor of an atom has anomalous terms, $f(Q)=f^{0}(Q)+f^{\prime}+i f^{\prime \prime}$, we must include an absorption term in the model for the index of refraction.

Begin with Beer's Law for absorption

$$
n=1-\delta+i \beta
$$

In the refractive approach, the phase shift caused by a medium is

$$
I(z)=I_{o} e^{-\mu z}
$$

$$
e^{i n k z}=e^{i(1-\delta) k z} e^{-\beta k z}
$$

Absorption term in n

Since the actual scattering factor of an atom has anomalous terms, $f(Q)=f^{0}(Q)+f^{\prime}+i f^{\prime \prime}$, we must include an absorption term in the model for the index of refraction.

Begin with Beer's Law for absorption

$$
n=1-\delta+i \beta
$$

In the refractive approach, the phase shift caused by a medium is

$$
I(z)=I_{o} e^{-\mu z}
$$

The real exponential can be com-

$$
e^{i n k z}=e^{i(1-\delta) k z} e^{-\beta k z}
$$ pared with Beer's Law, noting that intensity is proportional to the square of the wave function

Absorption term in n

Since the actual scattering factor of an atom has anomalous terms, $f(Q)=f^{0}(Q)+f^{\prime}+i f^{\prime \prime}$, we must include an absorption term in the model for the index of refraction.

Begin with Beer's Law for absorption

$$
n=1-\delta+i \beta
$$

In the refractive approach, the phase shift caused by a medium is

$$
\begin{aligned}
I(z) & =I_{o} e^{-\mu z} \\
e^{i n k z} & =e^{i(1-\delta) k z} e^{-\beta k z} \\
\mu & =2 \beta k \rightarrow \beta=\frac{\mu}{2 k}
\end{aligned}
$$

The real exponential can be compared with Beer's Law, noting that intensity is proportional to the square of the wave function

Absorption term in n

The absorptive term in the index of refraction is directly related to the $f^{\prime \prime}$ term in the atomic scattering factor:

Absorption term in n

The absorptive term in the index of refraction is directly related to the $f^{\prime \prime}$ term in the atomic scattering factor:

$$
n=1-\frac{2 \pi \rho_{a} r_{o}}{k^{2}}\left[f^{0}(Q)+f^{\prime}+i f^{\prime \prime}\right]
$$

Absorption term in n

The absorptive term in the index of refraction is directly related to the $f^{\prime \prime}$ term in the atomic scattering factor:

$$
\begin{aligned}
n & =1-\frac{2 \pi \rho_{a} r_{o}}{k^{2}}\left[f^{0}(Q)+f^{\prime}+i f^{\prime \prime}\right] \\
& =1-\frac{2 \pi \rho_{a} r_{o}}{k^{2}}\left[f^{0}(Q)+f^{\prime}\right]-i \frac{2 \pi \rho_{a} r_{o}}{k^{2}} f^{\prime \prime}
\end{aligned}
$$

Absorption term in n

The absorptive term in the index of refraction is directly related to the $f^{\prime \prime}$ term in the atomic scattering factor:

$$
\begin{aligned}
n & =1-\frac{2 \pi \rho_{a} r_{o}}{k^{2}}\left[f^{0}(Q)+f^{\prime}+i f^{\prime \prime}\right] \\
& =1-\frac{2 \pi \rho_{a} r_{o}}{k^{2}}\left[f^{0}(Q)+f^{\prime}\right]-i \frac{2 \pi \rho_{a} r_{o}}{k^{2}} f^{\prime \prime} \\
& =1-\quad \delta
\end{aligned}
$$

Absorption term in n

The absorptive term in the index of refraction is directly related to the $f^{\prime \prime}$ term in the atomic scattering factor:

$$
\begin{aligned}
n & =1-\frac{2 \pi \rho_{a} r_{o}}{k^{2}}\left[f^{0}(Q)+f^{\prime}+i f^{\prime \prime}\right] \\
& =1-\frac{2 \pi \rho_{a} r_{0}}{k^{2}}\left[f^{0}(Q)+f^{\prime}\right]-i \frac{2 \pi \rho_{a} r_{o}}{k^{2}} f^{\prime \prime} \\
& =1-\quad+i \beta
\end{aligned}
$$

Absorption term in n

The absorptive term in the index of refraction is directly related to the $f^{\prime \prime}$ term in the atomic scattering factor:

$$
\begin{aligned}
n & =1-\frac{2 \pi \rho_{a} r_{o}}{k^{2}}\left[f^{0}(Q)+f^{\prime}+i f^{\prime \prime}\right] \\
& =1-\frac{2 \pi \rho_{a} r_{0}}{k^{2}}\left[f^{0}(Q)+f^{\prime}\right]-i \frac{2 \pi \rho_{a} r_{o}}{k^{2}} f^{\prime \prime} \\
& =1-\quad+\quad i \beta
\end{aligned}
$$

Since $f^{0}(0) \gg f^{\prime}$ in the forward direction, we have

$$
\delta \approx \frac{2 \pi \rho_{a} f^{0}(0) r_{0}}{k^{2}}
$$

Absorption term in n

The absorptive term in the index of refraction is directly related to the $f^{\prime \prime}$ term in the atomic scattering factor:

$$
\begin{aligned}
n & =1-\frac{2 \pi \rho_{a} r_{0}}{k^{2}}\left[f^{0}(Q)+f^{\prime}+i f^{\prime \prime}\right] \\
& =1-\frac{2 \pi \rho_{a} r_{0}}{k^{2}}\left[f^{0}(Q)+f^{\prime}\right]-i \frac{2 \pi \rho_{a} r_{o}}{k^{2}} f^{\prime \prime} \\
& =1-\quad+i \beta
\end{aligned}
$$

Since $f^{0}(0) \gg f^{\prime}$ in the forward direction, we have

$$
\begin{aligned}
& \delta \approx \frac{2 \pi \rho_{\mathrm{a}} f^{0}(0) r_{o}}{k^{2}} \\
& \beta=-\frac{2 \pi \rho_{\mathrm{a}} f^{\prime \prime} r_{0}}{k^{2}}
\end{aligned}
$$

Absorption term in n

The absorptive term in the index of refraction is directly related to the $f^{\prime \prime}$ term in the atomic scattering factor:

$$
\begin{aligned}
n & =1-\frac{2 \pi \rho_{a} r_{0}}{k^{2}}\left[f^{0}(Q)+f^{\prime}+i f^{\prime \prime}\right] \\
& =1-\frac{2 \pi \rho_{a} r_{0}}{k^{2}}\left[f^{0}(Q)+f^{\prime}\right]-i \frac{2 \pi \rho_{a} r_{o}}{k^{2}} f^{\prime \prime} \\
& =1-\quad+i \beta
\end{aligned}
$$

Since $f^{0}(0) \gg f^{\prime}$ in the forward direction, we have

In terms of the absorption coefficient, μ

$$
\begin{aligned}
\delta & \approx \frac{2 \pi \rho_{a} f^{0}(0) r_{0}}{k^{2}} \\
\beta & =-\frac{2 \pi \rho_{a} f^{\prime \prime} r_{0}}{k^{2}} \\
f^{\prime \prime} & =-\frac{k^{2}}{2 \pi \rho_{a} r_{0}} \frac{\mu}{2 k}
\end{aligned}
$$

Absorption term in n

The absorptive term in the index of refraction is directly related to the $f^{\prime \prime}$ term in the atomic scattering factor:

$$
\begin{aligned}
n & =1-\frac{2 \pi \rho_{a} r_{0}}{k^{2}}\left[f^{0}(Q)+f^{\prime}+i f^{\prime \prime}\right] \\
& =1-\frac{2 \pi \rho_{a} r_{0}}{k^{2}}\left[f^{0}(Q)+f^{\prime}\right]-i \frac{2 \pi \rho_{a} r_{o}}{k^{2}} f^{\prime \prime} \\
& =1-\quad+i \beta
\end{aligned}
$$

Since $f^{0}(0) \gg f^{\prime}$ in the forward direction, we have

In terms of the absorption coefficient, μ, and the atomic crosssection, σ_{a}

$$
\begin{aligned}
\delta & \approx \frac{2 \pi \rho_{a} f^{0}(0) r_{o}}{k^{2}} \\
\beta & =-\frac{2 \pi \rho_{a} f^{\prime \prime} r_{0}}{k^{2}} \\
f^{\prime \prime} & =-\frac{k^{2}}{2 \pi \rho_{a} r_{o}} \frac{\mu}{2 k} \\
& =-\frac{k}{4 \pi r_{o}} \sigma_{a}
\end{aligned}
$$

Electromagnetic boundary conditions

Maxwell's equations require that an electromagnetic wave and its derivative be continuous in all directions at any interface. This condition places restrictions on the waves which exist at any interface:

Electromagnetic boundary conditions

Maxwell's equations require that an electromagnetic wave and its derivative be continuous in all directions at any interface. This condition places restrictions on the waves which exist at any interface:

$$
\psi_{l}=a_{l} e^{i \vec{k}_{l} \cdot \vec{r}} \quad \text { incident wave }
$$

Electromagnetic boundary conditions

Maxwell's equations require that an electromagnetic wave and its derivative be continuous in all directions at any interface. This condition places restrictions on the waves which exist at any interface:

$$
\begin{aligned}
& \psi_{I}=a_{l} e^{i \overrightarrow{k_{l}} \cdot \vec{r}} \\
& \psi_{R}=a_{R} e^{i \overrightarrow{k_{R}} \cdot \vec{r}} \\
& \text { reflected wave }
\end{aligned}
$$

Electromagnetic boundary conditions

Maxwell's equations require that an electromagnetic wave and its derivative be continuous in all directions at any interface. This condition places restrictions on the waves which exist at any interface:

$$
\begin{aligned}
& \psi_{I}=a_{l} e^{i \vec{k}_{l} \cdot \vec{r}} \\
& \psi_{R}=a_{R} e^{i \overrightarrow{k_{R}} \cdot \vec{r}} \\
& \text { incident wave } \\
& \psi_{T}=a_{T} e^{i \overrightarrow{k_{T}} \cdot \vec{r}} \\
& \text { reflected wave } \\
& \text { transmitted wave }
\end{aligned}
$$

Electromagnetic boundary conditions

Maxwell's equations require that an electromagnetic wave and its derivative be continuous in all directions at any interface. This condition places restrictions on the waves which exist at any interface:

$$
\begin{aligned}
& \psi_{I}=a_{l} e^{i \vec{k}_{l} \cdot \vec{r}} \\
& \psi_{R}=a_{R} e^{i \overrightarrow{k_{R}} \cdot \vec{r}} \\
& \text { incident wave } \\
& \psi_{T}=a_{T} e^{i \overrightarrow{k_{T}} \cdot \vec{r}} \\
& \text { reflected wave } \\
& \text { transmitted wave }
\end{aligned}
$$

which leads to conditions on the amplitudes and the wave vectors of the waves at $z=0$.

Electromagnetic boundary conditions

Maxwell's equations require that an electromagnetic wave and its derivative be continuous in all directions at any interface. This condition places restrictions on the waves which exist at any interface:

$$
\begin{aligned}
& \psi_{I}=a_{l} e^{i \vec{k}_{l} \cdot \vec{r}} \\
& \psi_{R}=a_{R} e^{i \overrightarrow{k_{R}} \cdot \vec{r}} \\
& \text { incident wave } \\
& \psi_{T}=a_{T} e^{i \overrightarrow{k_{T}} \cdot \vec{r}} \\
& \text { reflected wave } \\
& \text { transmitted wave }
\end{aligned}
$$

which leads to conditions on the amplitudes and the wave vec-

$$
a_{T}=a_{l}+a_{R}
$$

Electromagnetic boundary conditions

Maxwell's equations require that an electromagnetic wave and its derivative be continuous in all directions at any interface. This condition places restrictions on the waves which exist at any interface:

$$
\begin{aligned}
& \psi_{I}=a_{l} e^{i \vec{k}_{l} \cdot \vec{r}} \\
& \psi_{R}=a_{R} e^{i \overrightarrow{k_{R}} \cdot \vec{r}} \\
& \text { incident wave } \\
& \psi_{T}=a_{T} e^{i \overrightarrow{k_{T}} \cdot \vec{r}} \\
& \text { reflected wave } \\
& \text { transmitted wave }
\end{aligned}
$$

which leads to conditions on the amplitudes and the wave vectors of the waves at $z=0$.

$$
\begin{aligned}
a_{T} & =a_{l}+a_{R} \\
a_{T} \overrightarrow{k_{T}} & =a_{l} \overrightarrow{k_{l}}+a_{R} \overrightarrow{k_{R}}
\end{aligned}
$$

Electromagnetic boundary conditions

Maxwell's equations require that an electromagnetic wave and its derivative be continuous in all directions at any interface. This condition places restrictions on the waves which exist at any interface:

$$
\begin{aligned}
& \psi_{I}=a_{l} e^{i \vec{k}_{l} \cdot \vec{r}} \\
& \psi_{R}=a_{R} e^{i \overrightarrow{k_{R}} \cdot \vec{r}} \\
& \text { incident wave } \\
& \psi_{T}=a_{T} e^{i \overrightarrow{k_{T}} \cdot \vec{r}} \\
& \text { reflected wave } \\
& \text { transmitted wave }
\end{aligned}
$$

which leads to conditions on the amplitudes and the wave vectors of the waves at $z=0$. Taking vector components:

$$
\begin{aligned}
a_{T} & =a_{l}+a_{R} \\
a_{T} \overrightarrow{k_{T}} & =a_{l} \overrightarrow{k_{l}}+a_{R} \overrightarrow{k_{R}}
\end{aligned}
$$

Electromagnetic boundary conditions

Maxwell's equations require that an electromagnetic wave and its derivative be continuous in all directions at any interface. This condition places restrictions on the waves which exist at any interface:

$$
\begin{aligned}
& \psi_{I}=a_{l} e^{i \vec{k}_{l} \cdot \vec{r}} \\
& \psi_{R}=a_{R} e^{i \overrightarrow{k_{R}} \cdot \vec{r}} \\
& \text { incident wave } \\
& \psi_{T}=a_{T} e^{i \overrightarrow{k_{T}} \cdot \vec{r}} \\
& \text { reflected wave } \\
& \text { transmitted wave }
\end{aligned}
$$

which leads to conditions on the amplitudes and the wave vectors of the waves at $z=0$. Taking vector components:

$$
\begin{aligned}
a_{T} & =a_{l}+a_{R} \\
a_{T} \overrightarrow{k_{T}} & =a_{l} \overrightarrow{k_{l}}+a_{R} \overrightarrow{k_{R}}
\end{aligned}
$$

$$
a_{T} k_{T} \cos \alpha^{\prime}=a_{l} k_{l} \cos \alpha+a_{R} k_{R} \cos \alpha
$$

Electromagnetic boundary conditions

Maxwell's equations require that an electromagnetic wave and its derivative be continuous in all directions at any interface. This condition places restrictions on the waves which exist at any interface:

$$
\begin{aligned}
& \psi_{I}=a_{l} e^{i \vec{k}_{l} \cdot \vec{r}} \\
& \psi_{R}=a_{R} e^{i \overrightarrow{k_{R}} \cdot \vec{r}} \\
& \text { incident wave } \\
& \psi_{T}=a_{T} e^{i \overrightarrow{k_{T}} \cdot \vec{r}} \\
& \text { reflected wave } \\
& \text { transmitted wave }
\end{aligned}
$$

which leads to conditions on the amplitudes and the wave vectors of the waves at $z=0$. Taking vector components:

$$
\begin{aligned}
a_{T} & =a_{l}+a_{R} \\
a_{T} \overrightarrow{k_{T}} & =a_{l} \overrightarrow{k_{l}}+a_{R} \overrightarrow{k_{R}}
\end{aligned}
$$

$$
\begin{aligned}
a_{T} k_{T} \cos \alpha^{\prime} & =a_{l} k_{l} \cos \alpha+a_{R} k_{R} \cos \alpha \\
-a_{T} k_{T} \sin \alpha^{\prime} & =-a_{l} k_{l} \sin \alpha+a_{R} k_{R} \sin \alpha
\end{aligned}
$$

Parallel projection \& Snell's Law

Starting with the equation for the parallel projection of the field on the surface and noting that

Parallel projection \& Snell's Law

Starting with the equation for the parallel projection of the field on

$$
\left|\overrightarrow{k_{R}}\right|=\left|\overrightarrow{k_{l}}\right|=k \quad \text { in vacuum }
$$

the surface and noting that

Parallel projection \& Snell's Law

Starting with the equation for the parallel projection of the field on the surface and noting that

$$
\begin{aligned}
\left|\overrightarrow{k_{R}}\right|=\left|\overrightarrow{k_{1}}\right| & =k & & \text { in vacuum } \\
\left|\overrightarrow{k_{T}}\right| & =n k & & \text { in medium }
\end{aligned}
$$

Parallel projection \& Snell's Law

Starting with the equation for the parallel projection of the field on the surface and noting that

$$
\begin{aligned}
\left|\overrightarrow{k_{R}}\right|=\left|\overrightarrow{k_{1}}\right| & =k & & \text { in vacuum } \\
\left|\overrightarrow{k_{T}}\right| & =n k & & \text { in medium }
\end{aligned}
$$

$$
a_{T} n k \cos \alpha^{\prime}=a_{l} k \cos \alpha+a_{R} k \cos \alpha
$$

Parallel projection \& Snell's Law

Starting with the equation for the parallel projection of the field on the surface and noting that

$$
\begin{aligned}
\left|\overrightarrow{k_{R}}\right|=\left|\overrightarrow{k_{l}}\right| & =k & & \text { in vacuum } \\
\left|\overrightarrow{k_{T}}\right| & =n k & & \text { in medium }
\end{aligned}
$$

Combining with the amplitude equation $a_{T} n k \cos \alpha^{\prime}=a_{l} k \cos \alpha+a_{R} k \cos \alpha$ and cancelling

$$
a_{T}=a_{l}+a_{R}
$$

Parallel projection \& Snell's Law

Starting with the equation for the parallel projection of the field on the surface and noting that

$$
\begin{aligned}
\left|\overrightarrow{k_{R}}\right|=\left|\overrightarrow{k_{l}}\right| & =k & & \text { in vacuum } \\
\left|\overrightarrow{k_{T}}\right| & =n k & & \text { in medium }
\end{aligned}
$$

Combining with the amplitude equation
$a_{T} n k \cos \alpha^{\prime}=a_{l} k \cos \alpha+a_{R} k \cos \alpha$ and cancelling

$$
a_{T}=a_{l}+a_{R} \quad\left(a_{l}+a_{R}\right) n \cos \alpha^{\prime}=\left(a_{l}+a_{R}\right) \cos \alpha
$$

Parallel projection \& Snell's Law

Starting with the equation for the parallel projection of the field on the surface and noting that

$$
\begin{aligned}
\left|\overrightarrow{k_{R}}\right|=\left|\overrightarrow{k_{1}}\right| & =k & & \text { in vacuum } \\
\left|\overrightarrow{k_{T}}\right| & =n k & & \text { in medium }
\end{aligned}
$$

Combining with the amplitude equation
$a_{T} n k \cos \alpha^{\prime}=a_{l} k \cos \alpha+a_{R} k \cos \alpha$ and cancelling

$$
a_{T}=a_{l}+a_{R}
$$

$$
\left(a_{l}+a_{R}\right) n \cos \alpha^{\prime}=\left(a_{l}+a_{R}\right) \cos \alpha
$$

This simply results in Snell's Law

$$
\cos \alpha=n \cos \alpha^{\prime}
$$

Parallel projection \& Snell's Law

Starting with the equation for the parallel projection of the field on the surface and noting that

$$
\begin{aligned}
\left|\overrightarrow{k_{R}}\right|=\left|\overrightarrow{k_{l}}\right| & =k & & \text { in vacuum } \\
\left|\overrightarrow{k_{T}}\right| & =n k & & \text { in medium }
\end{aligned}
$$

Combining with the amplitude equation $a_{T} n k \cos \alpha^{\prime}=a_{l} k \cos \alpha+a_{R} k \cos \alpha$ and cancelling

$$
a_{T}=a_{l}+a_{R}
$$

$$
\left(a_{l}+a_{R}\right) n \cos \alpha^{\prime}=\left(a_{l}+a_{R}\right) \cos \alpha
$$

This simply results in Snell's Law which for

$$
\cos \alpha=n \cos \alpha^{\prime}
$$

small angles can be expanded.

Parallel projection \& Snell's Law

Starting with the equation for the parallel projection of the field on the surface and noting that

$$
\begin{aligned}
\left|\overrightarrow{k_{R}}\right|=\left|\overrightarrow{k_{l}}\right| & =k & & \text { in vacuum } \\
\left|\overrightarrow{k_{T}}\right| & =n k & & \text { in medium }
\end{aligned}
$$

Combining with the amplitude equation $a_{T} n k \cos \alpha^{\prime}=a_{l} k \cos \alpha+a_{R} k \cos \alpha$ and cancelling

$$
a_{T}=a_{l}+a_{R}
$$

$$
\left(a_{I}+a_{R}\right) n \cos \alpha^{\prime}=\left(a_{I}+a_{R}\right) \cos \alpha
$$

This simply results in Snell's Law which for small angles can be expanded.

$$
\begin{aligned}
\cos \alpha & =n \cos \alpha^{\prime} \\
1-\frac{\alpha^{2}}{2} & =(1-\delta+i \beta)\left(1-\frac{\alpha^{\prime 2}}{2}\right)
\end{aligned}
$$

Parallel projection \& Snell's Law

Starting with the equation for the parallel projection of the field on the surface and noting that

$$
\begin{aligned}
\left|\overrightarrow{k_{R}}\right|=\left|\overrightarrow{k_{l}}\right| & =k & & \text { in vacuum } \\
\left|\overrightarrow{k_{T}}\right| & =n k & & \text { in medium }
\end{aligned}
$$

Combining with the amplitude equation $a_{T} n k \cos \alpha^{\prime}=a_{l} k \cos \alpha+a_{R} k \cos \alpha$ and cancelling

$$
a_{T}=a_{l}+a_{R}
$$

$$
\left(a_{I}+a_{R}\right) n \cos \alpha^{\prime}=\left(a_{I}+a_{R}\right) \cos \alpha
$$

This simply results in Snell's Law which for small angles can be expanded.

$$
\begin{aligned}
\cos \alpha & =n \cos \alpha^{\prime} \\
1-\frac{\alpha^{2}}{2} & =(1-\delta+i \beta)\left(1-\frac{\alpha^{\prime 2}}{2}\right) \\
-\alpha^{2} & =-\alpha^{\prime 2}-2 \delta+2 i \beta
\end{aligned}
$$

Parallel projection \& Snell's Law

Starting with the equation for the parallel projection of the field on the surface and noting that

$$
\begin{aligned}
\left|\overrightarrow{k_{R}}\right|=\left|\overrightarrow{k_{1}}\right| & =k & & \text { in vacuum } \\
\left|\overrightarrow{k_{T}}\right| & =n k & & \text { in medium }
\end{aligned}
$$

Combining with the amplitude equation and cancelling

$$
a_{T}=a_{l}+a_{R}
$$

$$
\left(a_{I}+a_{R}\right) n \cos \alpha^{\prime}=\left(a_{I}+a_{R}\right) \cos \alpha
$$

This simply results in Snell's Law which for small angles can be expanded.

Recalling that

$$
\alpha_{c}=\sqrt{2 \delta}
$$

$$
\begin{aligned}
\cos \alpha & =n \cos \alpha^{\prime} \\
1-\frac{\alpha^{2}}{2} & =(1-\delta+i \beta)\left(1-\frac{\alpha^{\prime 2}}{2}\right) \\
-\alpha^{2} & =-\alpha^{\prime 2}-2 \delta+2 i \beta \\
\alpha^{2} & =\alpha^{\prime 2}+\alpha_{c}^{2}-2 i \beta
\end{aligned}
$$

Perpendicular projection \& Fresnel equations

Taking the perpendicular projection, substituting for the wave vectors

Perpendicular projection \& Fresnel equations

Taking the perpendicular projection, substituting for the wave vectors

$$
-a_{T} k_{T} \sin \alpha^{\prime}=-a_{l} k_{l} \sin \alpha+a_{R} k_{R} \sin \alpha
$$

Perpendicular projection \& Fresnel equations

Taking the perpendicular projection, substituting for the wave vectors

$$
\begin{aligned}
& -a_{T} k_{T} \sin \alpha^{\prime}=-a_{l} k_{l} \sin \alpha+a_{R} k_{R} \sin \alpha \\
& -a_{T} n k \sin \alpha^{\prime}=-\left(a_{l}-a_{R}\right) k \sin \alpha
\end{aligned}
$$

Perpendicular projection \& Fresnel equations

Taking the perpendicular projection, substituting for the wave vectors and using the amplitude equation

$$
a_{T}=a_{l}+a_{R}
$$

$-a_{T} k_{T} \sin \alpha^{\prime}=-a_{l} k_{l} \sin \alpha+a_{R} k_{R} \sin \alpha$
$-a_{T} n k \sin \alpha^{\prime}=-\left(a_{I}-a_{R}\right) k \sin \alpha$

$$
\left(a_{l}+a_{R}\right) n \sin \alpha^{\prime}=\left(a_{l}-a_{R}\right) k \sin \alpha
$$

Perpendicular projection \& Fresnel equations

Taking the perpendicular projection, substituting for the wave vectors and using the amplitude equation

$$
\begin{aligned}
-a_{T} k_{T} \sin \alpha^{\prime} & =-a_{l} k_{l} \sin \alpha+a_{R} k_{R} \sin \alpha \\
-a_{T} n k \sin \alpha^{\prime} & =-\left(a_{l}-a_{R}\right) k \sin \alpha \\
\left(a_{l}+a_{R}\right) n \sin \alpha^{\prime} & =\left(a_{l}-a_{R}\right) k \sin \alpha \\
\frac{a_{l}-a_{R}}{a_{l}+a_{R}} & =\frac{n \sin \alpha^{\prime}}{\sin \alpha}
\end{aligned}
$$

Perpendicular projection \& Fresnel equations

Taking the perpendicular projection, substituting for the wave vectors and using the amplitude equation

$$
\begin{aligned}
-a_{T} k_{T} \sin \alpha^{\prime} & =-a_{l} k_{l} \sin \alpha+a_{R} k_{R} \sin \alpha \\
-a_{T} n k \sin \alpha^{\prime} & =-\left(a_{l}-a_{R}\right) k \sin \alpha \\
\left(a_{I}+a_{R}\right) n \sin \alpha^{\prime} & =\left(a_{l}-a_{R}\right) k \sin \alpha \\
\frac{a_{l}-a_{R}}{a_{l}+a_{R}} & =\frac{n \sin \alpha^{\prime}}{\sin \alpha} \approx n \frac{\alpha^{\prime}}{\alpha}
\end{aligned}
$$

Perpendicular projection \& Fresnel equations

Taking the perpendicular projection, substituting for the wave vectors and using the amplitude equation

$$
a_{T}=a_{l}+a_{R}
$$

taking $n \approx 1$
$-a_{T} k_{T} \sin \alpha^{\prime}=-a_{l} k_{l} \sin \alpha+a_{R} k_{R} \sin \alpha$
$-a_{T} n k \sin \alpha^{\prime}=-\left(a_{I}-a_{R}\right) k \sin \alpha$
$\left(a_{l}+a_{R}\right) n \sin \alpha^{\prime}=\left(a_{l}-a_{R}\right) k \sin \alpha$

$$
\frac{a_{l}-a_{R}}{a_{l}+a_{R}}=\frac{n \sin \alpha^{\prime}}{\sin \alpha} \approx n \frac{\alpha^{\prime}}{\alpha} \approx \frac{\alpha^{\prime}}{\alpha}
$$

Perpendicular projection \& Fresnel equations

Taking the perpendicular projection, substituting for the wave vectors and using the amplitude equation

$$
a_{T}=a_{l}+a_{R}
$$

taking $n \approx 1$
$-a_{T} k_{T} \sin \alpha^{\prime}=-a_{l} k_{l} \sin \alpha+a_{R} k_{R} \sin \alpha$
$-a_{T} n k \sin \alpha^{\prime}=-\left(a_{I}-a_{R}\right) k \sin \alpha$
$\left(a_{l}+a_{R}\right) n \sin \alpha^{\prime}=\left(a_{l}-a_{R}\right) k \sin \alpha$

$$
\frac{a_{l}-a_{R}}{a_{l}+a_{R}}=\frac{n \sin \alpha^{\prime}}{\sin \alpha} \approx n \frac{\alpha^{\prime}}{\alpha} \approx \frac{\alpha^{\prime}}{\alpha}
$$

The Fresnel Equations can now be derived

Perpendicular projection \& Fresnel equations

Taking the perpendicular projection, substituting for the wave vectors and using the amplitude equation

$$
a_{T}=a_{l}+a_{R}
$$

taking $n \approx 1$

The Fresnel Equations can now be derived

$-a_{T} k_{T} \sin \alpha^{\prime}=-a_{l} k_{l} \sin \alpha+a_{R} k_{R} \sin \alpha$
$-a_{T} n k \sin \alpha^{\prime}=-\left(a_{I}-a_{R}\right) k \sin \alpha$
$\left(a_{l}+a_{R}\right) n \sin \alpha^{\prime}=\left(a_{l}-a_{R}\right) k \sin \alpha$

$$
\frac{a_{l}-a_{R}}{a_{l}+a_{R}}=\frac{n \sin \alpha^{\prime}}{\sin \alpha} \approx n \frac{\alpha^{\prime}}{\alpha} \approx \frac{\alpha^{\prime}}{\alpha}
$$

$$
a_{\jmath} \alpha-a_{R} \alpha=a_{\jmath} \alpha^{\prime}+a_{R} \alpha^{\prime}
$$

Perpendicular projection \& Fresnel equations

Taking the perpendicular projection, substituting for the wave vectors and using the amplitude equation

$$
a_{T}=a_{l}+a_{R}
$$

taking $n \approx 1$

The Fresnel Equations can now be derived
$-a_{T} k_{T} \sin \alpha^{\prime}=-a_{l} k_{l} \sin \alpha+a_{R} k_{R} \sin \alpha$
$-a_{T} n k \sin \alpha^{\prime}=-\left(a_{I}-a_{R}\right) k \sin \alpha$

$$
\left(a_{l}+a_{R}\right) n \sin \alpha^{\prime}=\left(a_{l}-a_{R}\right) k \sin \alpha
$$

$$
\frac{a_{l}-a_{R}}{a_{I}+a_{R}}=\frac{n \sin \alpha^{\prime}}{\sin \alpha} \approx n \frac{\alpha^{\prime}}{\alpha} \approx \frac{\alpha^{\prime}}{\alpha}
$$

$$
\begin{aligned}
& a_{l} \alpha-a_{R} \alpha=a_{l} \alpha^{\prime}+a_{R} \alpha^{\prime} \\
& a_{l}\left(\alpha-\alpha^{\prime}\right)=a_{R}\left(\alpha+\alpha^{\prime}\right)
\end{aligned}
$$

Perpendicular projection \& Fresnel equations

Taking the perpendicular projection, substituting for the wave vectors and using the amplitude equation

$$
a_{T}=a_{l}+a_{R}
$$

taking $n \approx 1$
$-a_{T} k_{T} \sin \alpha^{\prime}=-a_{l} k_{l} \sin \alpha+a_{R} k_{R} \sin \alpha$
$-a_{T} n k \sin \alpha^{\prime}=-\left(a_{I}-a_{R}\right) k \sin \alpha$

$$
\left(a_{l}+a_{R}\right) n \sin \alpha^{\prime}=\left(a_{l}-a_{R}\right) k \sin \alpha
$$

$$
\frac{a_{l}-a_{R}}{a_{l}+a_{R}}=\frac{n \sin \alpha^{\prime}}{\sin \alpha} \approx n \frac{\alpha^{\prime}}{\alpha} \approx \frac{\alpha^{\prime}}{\alpha}
$$

The Fresnel Equations
can now be derived

$$
\begin{aligned}
& a_{l} \alpha-a_{R} \alpha=a_{l} \alpha^{\prime}+a_{R} \alpha^{\prime} \\
& a_{l}\left(\alpha-\alpha^{\prime}\right)=a_{R}\left(\alpha+\alpha^{\prime}\right) \rightarrow r
\end{aligned}
$$

$$
r=\frac{a_{R}}{a_{l}}=\frac{\alpha-\alpha^{\prime}}{\alpha+\alpha^{\prime}}
$$

Perpendicular projection \& Fresnel equations

Taking the perpendicular projection, substituting for the wave vectors and using the amplitude equation
$-a_{T} k_{T} \sin \alpha^{\prime}=-a_{l} k_{l} \sin \alpha+a_{R} k_{R} \sin \alpha$
$-a_{T} n k \sin \alpha^{\prime}=-\left(a_{I}-a_{R}\right) k \sin \alpha$

$$
\left(a_{l}+a_{R}\right) n \sin \alpha^{\prime}=\left(a_{l}-a_{R}\right) k \sin \alpha
$$

$$
\frac{a_{l}-a_{R}}{a_{l}+a_{R}}=\frac{n \sin \alpha^{\prime}}{\sin \alpha} \approx n \frac{\alpha^{\prime}}{\alpha} \approx \frac{\alpha^{\prime}}{\alpha}
$$

The Fresnel Equations
can now be derived

$$
\begin{aligned}
& a_{l} \alpha-a_{R} \alpha=a_{l} \alpha^{\prime}+a_{R} \alpha^{\prime} \\
& a_{l}\left(\alpha-\alpha^{\prime}\right)=a_{R}\left(\alpha+\alpha^{\prime}\right) \rightarrow r \\
& a_{l}\left(\alpha-\alpha^{\prime}\right)=\left(a_{T}-a_{l}\right)\left(\alpha+\alpha^{\prime}\right)
\end{aligned}
$$

$$
r=\frac{a_{R}}{a_{l}}=\frac{\alpha-\alpha^{\prime}}{\alpha+\alpha^{\prime}}
$$

Perpendicular projection \& Fresnel equations

Taking the perpendicular projection, substituting for the wave vectors and using the amplitude equation
$-a_{T} k_{T} \sin \alpha^{\prime}=-a_{l} k_{l} \sin \alpha+a_{R} k_{R} \sin \alpha$
$-a_{T} n k \sin \alpha^{\prime}=-\left(a_{I}-a_{R}\right) k \sin \alpha$

$$
\left(a_{l}+a_{R}\right) n \sin \alpha^{\prime}=\left(a_{l}-a_{R}\right) k \sin \alpha
$$

$$
\frac{a_{l}-a_{R}}{a_{l}+a_{R}}=\frac{n \sin \alpha^{\prime}}{\sin \alpha} \approx n \frac{\alpha^{\prime}}{\alpha} \approx \frac{\alpha^{\prime}}{\alpha}
$$

The Fresnel Equations
can now be derived

$$
\begin{aligned}
& a_{l} \alpha-a_{R} \alpha=a_{l} \alpha^{\prime}+a_{R} \alpha^{\prime} \\
& a_{l}\left(\alpha-\alpha^{\prime}\right)=a_{R}\left(\alpha+\alpha^{\prime}\right) \rightarrow r \\
& a_{l}\left(\alpha-\alpha^{\prime}\right)=\left(a_{T}-a_{l}\right)\left(\alpha+\alpha^{\prime}\right) \rightarrow t
\end{aligned}
$$

$$
r=\frac{a_{R}}{a_{l}}=\frac{\alpha-\alpha^{\prime}}{\alpha+\alpha^{\prime}} \quad t=\frac{a_{T}}{a_{l}}=\frac{2 \alpha}{\alpha+\alpha^{\prime}}
$$

Reflectivity and transmittivity

r and t are called the reflection and transmission coefficients, respectively.

$$
\begin{aligned}
& r=\frac{a_{R}}{a_{l}}=\frac{\alpha-\alpha^{\prime}}{\alpha+\alpha^{\prime}} \\
& t=\frac{a_{T}}{a_{l}}=\frac{2 \alpha}{\alpha+\alpha^{\prime}}
\end{aligned}
$$

Reflectivity and transmittivity

r and t are called the reflection and transmission coefficients, respectively. The reflectivity $R=\left|r^{2}\right|$ and transmittivity $T=\left|t^{2}\right|$ are the squares of these quantities, which are complex because α^{\prime} is complex.

$$
\begin{aligned}
& r=\frac{a_{R}}{a_{l}}=\frac{\alpha-\alpha^{\prime}}{\alpha+\alpha^{\prime}} \\
& t=\frac{a_{T}}{a_{l}}=\frac{2 \alpha}{\alpha+\alpha^{\prime}}
\end{aligned}
$$

Reflectivity and transmittivity

r and t are called the reflection and transmission coefficients, respectively. The reflectivity $R=\left|r^{2}\right|$ and transmittivity $T=\left|t^{2}\right|$ are the squares of these quantities, which are complex because α^{\prime} is complex.

$$
\alpha^{\prime}=\operatorname{Re}\left(\alpha^{\prime}\right)+\mathrm{i} \operatorname{Im}\left(\alpha^{\prime}\right)
$$

$$
\begin{aligned}
& r=\frac{a_{R}}{a_{l}}=\frac{\alpha-\alpha^{\prime}}{\alpha+\alpha^{\prime}} \\
& t=\frac{a_{T}}{a_{l}}=\frac{2 \alpha}{\alpha+\alpha^{\prime}}
\end{aligned}
$$

Reflectivity and transmittivity

r and t are called the reflection and transmission coefficients, respectively. The reflectivity $R=\left|r^{2}\right|$ and transmittivity $T=\left|t^{2}\right|$ are the squares of these quantities, which are complex because α^{\prime} is complex.

$$
\alpha^{\prime}=\operatorname{Re}\left(\alpha^{\prime}\right)+\mathrm{i} \operatorname{Im}\left(\alpha^{\prime}\right)
$$

$$
\begin{aligned}
& r=\frac{a_{R}}{a_{l}}=\frac{\alpha-\alpha^{\prime}}{\alpha+\alpha^{\prime}} \\
& t=\frac{a_{T}}{a_{l}}=\frac{2 \alpha}{\alpha+\alpha^{\prime}}
\end{aligned}
$$

In the z direction, the amplitude of the transmitted wave has two terms

Reflectivity and transmittivity

r and t are called the reflection and transmission coefficients, respectively. The reflectivity $R=\left|r^{2}\right|$ and transmittivity $T=\left|t^{2}\right|$ are the squares of these quantities, which are complex because α^{\prime} is complex.

$$
\alpha^{\prime}=\operatorname{Re}\left(\alpha^{\prime}\right)+\mathrm{i} \operatorname{Im}\left(\alpha^{\prime}\right)
$$

$$
a_{T} e^{i k \alpha^{\prime} z}=a_{T} e^{i k \operatorname{Re}\left(\alpha^{\prime}\right) z} e^{-k \operatorname{lm}\left(\alpha^{\prime}\right) z}
$$

$$
\begin{aligned}
& r=\frac{a_{R}}{a_{l}}=\frac{\alpha-\alpha^{\prime}}{\alpha+\alpha^{\prime}} \\
& t=\frac{a_{T}}{a_{l}}=\frac{2 \alpha}{\alpha+\alpha^{\prime}}
\end{aligned}
$$

In the z direction, the amplitude of the transmitted wave has two terms

Reflectivity and transmittivity

r and t are called the reflection and transmission coefficients, respectively. The reflectivity $R=\left|r^{2}\right|$ and transmittivity $T=\left|t^{2}\right|$ are the squares of these quantities, which are complex because α^{\prime} is complex.

$$
\alpha^{\prime}=\operatorname{Re}\left(\alpha^{\prime}\right)+\mathrm{i} \operatorname{Im}\left(\alpha^{\prime}\right)
$$

$$
a_{T} e^{i k \alpha^{\prime} z}=a_{T} e^{i k \operatorname{Re}\left(\alpha^{\prime}\right) z} e^{-k \ln \left(\alpha^{\prime}\right) z}
$$

$$
\begin{aligned}
& r=\frac{a_{R}}{a_{l}}=\frac{\alpha-\alpha^{\prime}}{\alpha+\alpha^{\prime}} \\
& t=\frac{a_{T}}{a_{l}}=\frac{2 \alpha}{\alpha+\alpha^{\prime}}
\end{aligned}
$$

In the z direction, the amplitude of the transmitted wave has two terms with the second one being the attenuation of the wave in the medium due to absorption.

Reflectivity and transmittivity

r and t are called the reflection and transmission coefficients, respectively. The reflectivity $R=\left|r^{2}\right|$ and transmittivity $T=\left|t^{2}\right|$ are the squares of these quantities, which are complex because α^{\prime} is complex.

$$
\begin{gathered}
\alpha^{\prime}=\operatorname{Re}\left(\alpha^{\prime}\right)+\mathrm{i} \operatorname{lm}\left(\alpha^{\prime}\right) \\
a_{T} e^{i k \alpha^{\prime} z}=a_{T} e^{i k \operatorname{Re}\left(\alpha^{\prime}\right) z} e^{-k \operatorname{lm}\left(\alpha^{\prime}\right) z}
\end{gathered}
$$

Reflectivity and transmittivity

r and t are called the reflection and transmission coefficients, respectively. The reflectivity $R=\left|r^{2}\right|$ and transmittivity $T=\left|t^{2}\right|$ are the squares of these quantities, which are complex because α^{\prime} is complex.

$$
\alpha^{\prime}=\operatorname{Re}\left(\alpha^{\prime}\right)+\mathrm{i} \operatorname{Im}\left(\alpha^{\prime}\right)
$$

$$
a_{T} e^{i k \alpha^{\prime} z}=a_{T} e^{i k \operatorname{Re}\left(\alpha^{\prime}\right) z} e^{-k \operatorname{lm}\left(\alpha^{\prime}\right) z}
$$

$$
\Lambda=\frac{1}{2 k \operatorname{lm}\left(\alpha^{\prime}\right)}
$$

$$
\begin{aligned}
& r=\frac{a_{R}}{a_{l}}=\frac{\alpha-\alpha^{\prime}}{\alpha+\alpha^{\prime}} \\
& t=\frac{a_{T}}{a_{l}}=\frac{2 \alpha}{\alpha+\alpha^{\prime}}
\end{aligned}
$$

In the z direction, the amplitude of the transmitted wave has two terms with the second one being the attenuation of the wave in the medium due to absorption. This attenuation is characterized by a quantity called the penetration depth, Λ.

Wavevector Transfers

While it is physically easier to think of angles, a more useful parameter is called the wavevector transfer.

Wavevector Transfers

While it is physically easier to think of angles, a more useful parameter is called the wavevector transfer.

$$
Q=2 k \sin \alpha \approx 2 k \alpha
$$

Wavevector Transfers

While it is physically easier to think of angles, a more useful parameter is called the wavevector transfer.

$$
Q=2 k \sin \alpha \approx 2 k \alpha
$$

and for the critical angle

$$
Q_{c}=2 k \sin \alpha_{c} \approx 2 k \alpha_{c}
$$

Wavevector Transfers

While it is physically easier to think of angles, a more useful parameter is called the wavevector transfer.

$$
Q=2 k \sin \alpha \approx 2 k \alpha
$$

and for the critical angle

$$
Q_{c}=2 k \sin \alpha_{c} \approx 2 k \alpha_{c}
$$

in dimensionless units, these become

Wavevector Transfers

While it is physically easier to think of angles, a more useful parameter is called the wavevector transfer.

$$
Q=2 k \sin \alpha \approx 2 k \alpha
$$

and for the critical angle

$$
Q_{c}=2 k \sin \alpha_{c} \approx 2 k \alpha_{c}
$$

in dimensionless units, these become

$$
q=\frac{Q}{Q_{c}} \approx \frac{2 k}{Q_{c}} \alpha
$$

Wavevector Transfers

While it is physically easier to think of angles, a more useful parameter is called the wavevector transfer.

$$
Q=2 k \sin \alpha \approx 2 k \alpha
$$

and for the critical angle

$$
Q_{c}=2 k \sin \alpha_{c} \approx 2 k \alpha_{c}
$$

in dimensionless units, these become

$$
q=\frac{Q}{Q_{c}} \approx \frac{2 k}{Q_{c}} \alpha \quad q^{\prime}=\frac{Q^{\prime}}{Q_{c}} \approx \frac{2 k}{Q_{c}} \alpha^{\prime}
$$

q is a convenient parameter to use because it is a combination of two parameters which are often varied in experiments, the angle of incidence α and the wavenumber (energy) of the x-ray, k.

Defining Equations in q

Start with the reduced version of Snell's Law

$$
\alpha^{2}=\alpha^{\prime 2}+\alpha_{c}^{2}-2 i \beta
$$

Defining Equations in q

Start with the reduced version of Snell's Law and multiply by a $1 / \alpha_{c}^{2}=\left(2 k / Q_{c}\right)^{2}$.

$$
\alpha^{2}=\alpha^{\prime 2}+\alpha_{c}^{2}-2 i \beta
$$

Defining Equations in q

Start with the reduced version of Snell's Law and multiply by a $1 / \alpha_{c}^{2}=\left(2 k / Q_{c}\right)^{2}$.

$$
\alpha^{2}=\alpha^{\prime 2}+\alpha_{c}^{2}-2 i \beta
$$

$$
\left(\frac{2 k}{Q_{c}}\right)^{2} \alpha^{2}=\left(\frac{2 k}{Q_{c}}\right)^{2}\left(\alpha^{\prime 2}+\alpha_{c}^{2}-2 i \beta\right)
$$

Defining Equations in q

Start with the reduced version of Snell's Law and multiply by a $1 / \alpha_{c}^{2}=\left(2 k / Q_{c}\right)^{2}$. Noting that

$$
\alpha^{2}=\alpha^{\prime 2}+\alpha_{c}^{2}-2 i \beta
$$

$$
q=\frac{2 k}{Q_{c}} \alpha \quad\left(\frac{2 k}{Q_{c}}\right)^{2} \alpha^{2}=\left(\frac{2 k}{Q_{c}}\right)^{2}\left(\alpha^{\prime 2}+\alpha_{c}^{2}-2 i \beta\right)
$$

Defining Equations in q

Start with the reduced version of Snell's Law and multiply by a $1 / \alpha_{c}^{2}=\left(2 k / Q_{c}\right)^{2}$. Noting that

$$
\begin{aligned}
q & =\frac{2 k}{Q_{c}} \alpha \\
\left(\frac{2 k}{Q_{c}}\right)^{2} \beta & =\frac{4 k^{2}}{Q_{c}^{2}} \frac{\mu}{2 k} \\
& =\frac{2 k}{Q_{c}^{2}} \mu=b_{\mu}
\end{aligned}
$$

Defining Equations in q

Start with the reduced version of Snell's Law and multiply by a $1 / \alpha_{c}^{2}=\left(2 k / Q_{c}\right)^{2}$. Noting that

$$
\alpha^{2}=\alpha^{\prime 2}+\alpha_{c}^{2}-2 i \beta
$$

$$
\begin{aligned}
q & =\frac{2 k}{Q_{c}} \alpha & \left(\frac{2 k}{Q_{c}}\right)^{2} \alpha^{2}=\left(\frac{2 k}{Q_{c}}\right)^{2}\left(\alpha^{\prime 2}+\alpha_{c}^{2}-2 i \beta\right) \\
\left(\frac{2 k}{Q_{c}}\right)^{2} \beta & =\frac{4 k^{2}}{Q_{c}^{2}} \frac{\mu}{2 k} & q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& =\frac{2 k}{Q_{c}^{2}} \mu=b_{\mu} &
\end{aligned}
$$

Defining Equations in q

Start with the reduced version of Snell's Law and multiply by a $1 / \alpha_{c}^{2}=\left(2 k / Q_{c}\right)^{2}$. Noting that

$$
\begin{aligned}
q & =\frac{2 k}{Q_{c}} \alpha \\
\left(\frac{2 k}{Q_{c}}\right)^{2} \beta & =\frac{4 k^{2}}{Q_{c}^{2}} \frac{\mu}{2 k} \\
& =\frac{2 k}{Q_{c}^{2}} \mu=b_{\mu}
\end{aligned}
$$

$$
\alpha^{2}=\alpha^{\prime 2}+\alpha_{c}^{2}-2 i \beta
$$

$$
\left(\frac{2 k}{Q_{c}}\right)^{2} \alpha^{2}=\left(\frac{2 k}{Q_{c}}\right)^{2}\left(\alpha^{\prime 2}+\alpha_{c}^{2}-2 i \beta\right)
$$

$$
q^{2}=q^{\prime 2}+1-2 i b_{\mu}
$$

Similarly, we convert the reflection and transmission coefficients.

Defining Equations in q

Start with the reduced version of Snell's Law and multiply by a $1 / \alpha_{c}^{2}=\left(2 k / Q_{c}\right)^{2}$. Noting that

$$
\alpha^{2}=\alpha^{\prime 2}+\alpha_{c}^{2}-2 i \beta
$$

$$
q=\frac{2 k}{Q_{c}} \alpha
$$

$$
\left(\frac{2 k}{Q_{c}}\right)^{2} \alpha^{2}=\left(\frac{2 k}{Q_{c}}\right)^{2}\left(\alpha^{\prime 2}+\alpha_{c}^{2}-2 i \beta\right)
$$

$$
\begin{aligned}
\left(\frac{2 k}{Q_{c}}\right)^{2} \beta & =\frac{4 k^{2}}{Q_{c}^{2}} \frac{\mu}{2 k} \\
& =\frac{2 k}{Q_{c}^{2}} \mu=b_{\mu}
\end{aligned}
$$

$$
q^{2}=q^{\prime 2}+1-2 i b_{\mu}
$$

Similarly, we convert the reflection and transmission coefficients.

$$
r=\frac{q-q^{\prime}}{q+q^{\prime}} \quad t=\frac{2 q}{q+q^{\prime}}
$$

Limiting Cases $-q \gg 1$

When $q \gg 1$ "Snell's Law" be- $\quad q^{2}=q^{2}+1-2 i b_{\mu}$
comes

Limiting Cases $-q \gg 1$

$$
\begin{aligned}
& \text { When } q \gg 1 \text { "Snell's Law" be- } \\
& \text { comes } \\
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{2} \approx q^{\prime 2}-2 i b_{\mu}
\end{aligned}
$$

Limiting Cases $-q \gg 1$

$$
\begin{aligned}
& \text { When } q \gg 1 \text { "Snell's Law" be- } \\
& \text { comes } \\
& \qquad \begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{2} & \approx q^{\prime 2}-2 i b_{\mu} \\
q^{\prime 2} & \approx q^{2}+2 i b_{\mu}
\end{aligned}
\end{aligned}
$$

Limiting Cases $-q \gg 1$

$$
\begin{aligned}
& \text { When } q \gg 1 \text { "Snell's Law" be- } \\
& \text { comes } \\
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{2} \approx q^{\prime 2}-2 i b_{\mu} \\
& q^{\prime 2} \approx q^{2}+2 i b_{\mu}
\end{aligned}
$$

Limiting Cases $-q \gg 1$

When $q \gg 1$ "Snell's Law" becomes

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{2} & \approx q^{\prime 2}-2 i b_{\mu} \\
q^{\prime 2} & \approx q^{2}+2 i b_{\mu}
\end{aligned}
$$

we have that $\operatorname{Re}\left(q^{\prime}\right) \approx q$ while the imaginary part can be computed as

Limiting Cases $-q \gg 1$

When $q \gg 1$ "Snell's Law" becomes

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{2} & \approx q^{\prime 2}-2 i b_{\mu} \\
q^{\prime 2} & \approx q^{2}+2 i b_{\mu}
\end{aligned}
$$

$$
q^{\prime}=q+i \operatorname{lm}\left(q^{\prime}\right)
$$

Limiting Cases $-q \gg 1$

When $q \gg 1$ "Snell's Law" becomes
we have that $\operatorname{Re}\left(q^{\prime}\right) \approx q$ while the imaginary part can be computed as

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{2} \approx q^{\prime 2}-2 i b_{\mu} \\
& q^{\prime 2} \approx q^{2}+2 i b_{\mu}
\end{aligned}
$$

$$
q^{\prime}=q+i \operatorname{lm}\left(q^{\prime}\right)
$$

$$
q^{\prime 2}=q^{2}\left(1+i \frac{\operatorname{Im}\left(q^{\prime}\right)}{q}\right)^{2}
$$

Limiting Cases $-q \gg 1$

When $q>1$ "Snell's Law" becomes
we have that $\operatorname{Re}\left(q^{\prime}\right) \approx q$ while the imaginary part can be computed as

$$
\begin{gathered}
q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
q^{2} \approx q^{\prime 2}-2 i b_{\mu} \\
q^{\prime 2} \approx q^{2}+2 i b_{\mu}
\end{gathered}
$$

$$
\begin{aligned}
q^{\prime} & =q+i \operatorname{Im}\left(q^{\prime}\right) \\
q^{\prime 2} & =q^{2}\left(1+i \frac{\operatorname{Im}\left(q^{\prime}\right)}{q}\right)^{2} \\
& \approx q^{2}\left(1+2 i \frac{\operatorname{Im}\left(q^{\prime}\right)}{q}\right)
\end{aligned}
$$

Limiting Cases $-q \gg 1$

When $q \gg 1$ "Snell's Law" becomes

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{2} & \approx q^{\prime 2}-2 i b_{\mu} \\
q^{\prime 2} & \approx q^{2}+2 i b_{\mu}
\end{aligned}
$$ imaginary part can be computed as

$$
\begin{aligned}
q^{\prime} & =q+i \operatorname{Im}\left(q^{\prime}\right) \\
q^{\prime 2} & =q^{2}\left(1+i \frac{\operatorname{Im}\left(q^{\prime}\right)}{q}\right)^{2} \\
& \approx q^{2}+2 i q \operatorname{Im}\left(q^{\prime}\right)
\end{aligned}
$$

Limiting Cases $-q \gg 1$

When $q \gg 1$ "Snell's Law" becomes
we have that $\operatorname{Re}\left(q^{\prime}\right) \approx q$ while the imaginary part can be computed as

Comparing to the equation above gives

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{2} \approx q^{\prime 2}-2 i b_{\mu}
\end{aligned}
$$

$$
q^{\prime 2} \approx q^{2}+2 i b_{\mu}
$$

$$
q^{\prime}=q+i \operatorname{Im}\left(q^{\prime}\right)
$$

$$
\begin{aligned}
q^{\prime 2} & =q^{2}\left(1+i \frac{\operatorname{Im}\left(q^{\prime}\right)}{q}\right)^{2} \\
& \approx q^{2}+2 i q \operatorname{lm}\left(q^{\prime}\right)
\end{aligned}
$$

Limiting Cases $-q \gg 1$

When $q \gg 1$ "Snell's Law" becomes

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{2} \approx q^{\prime 2}-2 i b_{\mu}
\end{aligned}
$$

$$
q^{\prime 2} \approx q^{2}+2 i b_{\mu}
$$

imaginary part can be computed as

$$
q^{\prime}=q+i \operatorname{Im}\left(q^{\prime}\right)
$$

Comparing to the equation above gives

$$
\begin{aligned}
q^{\prime 2} & =q^{2}\left(1+i \frac{\operatorname{Im}\left(q^{\prime}\right)}{q}\right)^{2} \\
& \approx q^{2}+2 i q \operatorname{Im}\left(q^{\prime}\right)
\end{aligned}
$$

$$
\operatorname{Im}\left(q^{\prime}\right) q \approx b_{\mu}
$$

Limiting Cases $-q \gg 1$

When $q \gg 1$ "Snell's Law" becomes
we have that $\operatorname{Re}\left(q^{\prime}\right) \approx q$ while the imaginary part can be computed as

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{2} \approx q^{\prime 2}-2 i b_{\mu}
\end{aligned}
$$

$$
q^{\prime 2} \approx q^{2}+2 i b_{\mu}
$$

$$
\begin{aligned}
q^{\prime} & =q+i \operatorname{Im}\left(q^{\prime}\right) \\
q^{\prime 2} & =q^{2}\left(1+i \frac{\operatorname{Im}\left(q^{\prime}\right)}{q}\right)^{2} \\
& \approx q^{2}+2 i q \operatorname{Im}\left(q^{\prime}\right) \\
\operatorname{Im}\left(q^{\prime}\right) q & \approx b_{\mu} \rightarrow \operatorname{Im}\left(q^{\prime}\right) \approx \frac{b_{\mu}}{q}
\end{aligned}
$$

Comparing to the equation above gives

Limiting Cases $-q \gg 1$

When $q \gg 1$ "Snell's Law" becomes
we have that $\operatorname{Re}\left(q^{\prime}\right) \approx q$ while the

$$
q^{\prime 2} \approx q^{2}+2 i b_{\mu}
$$ imaginary part can be computed as

$$
q^{\prime}=q+i \operatorname{lm}\left(q^{\prime}\right)
$$

Comparing to the equation above gives

The reflection and transmission coefficients are thus

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{2} \approx q^{\prime 2}-2 i b_{\mu}
\end{aligned}
$$

$$
\begin{aligned}
q^{\prime 2} & =q^{2}\left(1+i \frac{\operatorname{Im}\left(q^{\prime}\right)}{q}\right)^{2} \\
& \approx q^{2}+2 i q \operatorname{lm}\left(q^{\prime}\right)
\end{aligned}
$$

$$
\operatorname{Im}\left(q^{\prime}\right) q \approx b_{\mu} \rightarrow \operatorname{Im}\left(q^{\prime}\right) \approx \frac{b_{\mu}}{q}
$$

Limiting Cases $-q \gg 1$

When $q \gg 1$ "Snell's Law" becomes
we have that $\operatorname{Re}\left(q^{\prime}\right) \approx q$ while the

$$
q^{\prime 2} \approx q^{2}+2 i b_{\mu}
$$ imaginary part can be computed as

Comparing to the equation above gives

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{2} \approx q^{\prime 2}-2 i b_{\mu}
\end{aligned}
$$

$$
q^{\prime}=q+i \operatorname{lm}\left(q^{\prime}\right)
$$

The reflection and transmission co-

$$
\begin{aligned}
q^{\prime 2} & =q^{2}\left(1+i \frac{\operatorname{lm}\left(q^{\prime}\right)}{q}\right)^{2} \\
& \approx q^{2}+2 i q \operatorname{lm}\left(q^{\prime}\right)
\end{aligned}
$$ efficients are thus

$$
\operatorname{Im}\left(q^{\prime}\right) q \approx b_{\mu} \rightarrow \operatorname{Im}\left(q^{\prime}\right) \approx \frac{b_{\mu}}{q}
$$

$$
r=\frac{\left(q-q^{\prime}\right)\left(q+q^{\prime}\right)}{\left(q+q^{\prime}\right)\left(q+q^{\prime}\right)}
$$

Limiting Cases $-q \gg 1$

When $q \gg 1$ "Snell's Law" becomes
we have that $\operatorname{Re}\left(q^{\prime}\right) \approx q$ while the imaginary part can be computed as

Comparing to the equation above gives

The reflection and transmission coefficients are thus

$$
\operatorname{Im}\left(q^{\prime}\right) q \approx b_{\mu} \rightarrow \operatorname{Im}\left(q^{\prime}\right) \approx \frac{b_{\mu}}{q}
$$

$$
r=\frac{\left(q-q^{\prime}\right)\left(q+q^{\prime}\right)}{\left(q+q^{\prime}\right)\left(q+q^{\prime}\right)}=\frac{q^{2}-q^{\prime 2}}{\left(q+q^{\prime}\right)^{2}}
$$

Limiting Cases $-q \gg 1$

When $q \gg 1$ "Snell's Law" becomes

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{2} \approx q^{\prime 2}-2 i b_{\mu}
\end{aligned}
$$

we have that $\operatorname{Re}\left(q^{\prime}\right) \approx q$ while the imaginary part can be computed as

$$
q^{\prime 2} \approx q^{2}+2 i b_{\mu}
$$

$$
q^{\prime}=q+i \operatorname{Im}\left(q^{\prime}\right)
$$

Comparing to the equation above gives

$$
\begin{aligned}
q^{\prime 2} & =q^{2}\left(1+i \frac{\operatorname{lm}\left(q^{\prime}\right)}{q}\right)^{2} \\
& \approx q^{2}+2 i q \operatorname{lm}\left(q^{\prime}\right)
\end{aligned}
$$

The reflection and transmission coefficients are thus

$$
\operatorname{Im}\left(q^{\prime}\right) q \approx b_{\mu} \rightarrow \operatorname{Im}\left(q^{\prime}\right) \approx \frac{b_{\mu}}{q}
$$

$$
r=\frac{\left(q-q^{\prime}\right)\left(q+q^{\prime}\right)}{\left(q+q^{\prime}\right)\left(q+q^{\prime}\right)}=\frac{q^{2}-q^{\prime 2}}{\left(q+q^{\prime}\right)^{2}} \approx \frac{1}{(2 q)^{2}}
$$

Limiting Cases $-q \gg 1$

When $q \gg 1$ "Snell's Law" becomes

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{2} \approx q^{\prime 2}-2 i b_{\mu}
\end{aligned}
$$

we have that $\operatorname{Re}\left(q^{\prime}\right) \approx q$ while the imaginary part can be computed as

$$
q^{\prime 2} \approx q^{2}+2 i b_{\mu}
$$

$$
q^{\prime}=q+i \operatorname{Im}\left(q^{\prime}\right)
$$

Comparing to the equation above gives

$$
\begin{aligned}
q^{\prime 2} & =q^{2}\left(1+i \frac{\operatorname{lm}\left(q^{\prime}\right)}{q}\right)^{2} \\
& \approx q^{2}+2 i q \operatorname{lm}\left(q^{\prime}\right)
\end{aligned}
$$

The reflection and transmission coefficients are thus

$$
\operatorname{Im}\left(q^{\prime}\right) q \approx b_{\mu} \rightarrow \operatorname{Im}\left(q^{\prime}\right) \approx \frac{b_{\mu}}{q}
$$

$$
r=\frac{\left(q-q^{\prime}\right)\left(q+q^{\prime}\right)}{\left(q+q^{\prime}\right)\left(q+q^{\prime}\right)}=\frac{q^{2}-q^{\prime 2}}{\left(q+q^{\prime}\right)^{2}} \approx \frac{1}{(2 q)^{2}}, \quad t=\frac{2 q}{q+q^{\prime}} \approx 1
$$

Limiting Cases $-q \gg 1$

When $q \gg 1$ "Snell's Law" becomes

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{2} \approx q^{\prime 2}-2 i b_{\mu}
\end{aligned}
$$

we have that $\operatorname{Re}\left(q^{\prime}\right) \approx q$ while the imaginary part can be computed as

$$
q^{\prime 2} \approx q^{2}+2 i b_{\mu}
$$

$$
q^{\prime}=q+i \operatorname{Im}\left(q^{\prime}\right)
$$

Comparing to the equation above gives

$$
\begin{aligned}
q^{\prime 2} & =q^{2}\left(1+i \frac{\operatorname{Im}\left(q^{\prime}\right)}{q}\right)^{2} \\
& \approx q^{2}+2 i q \operatorname{lm}\left(q^{\prime}\right)
\end{aligned}
$$

The reflection and transmission coefficients are thus

$$
\operatorname{Im}\left(q^{\prime}\right) q \approx b_{\mu} \rightarrow \operatorname{Im}\left(q^{\prime}\right) \approx \frac{b_{\mu}}{q}
$$

$$
r=\frac{\left(q-q^{\prime}\right)\left(q+q^{\prime}\right)}{\left(q+q^{\prime}\right)\left(q+q^{\prime}\right)}=\frac{q^{2}-q^{\prime 2}}{\left(q+q^{\prime}\right)^{2}} \approx \frac{1}{(2 q)^{2}}, \quad t=\frac{2 q}{q+q^{\prime}} \approx 1, \quad \Lambda \approx \frac{\alpha}{\mu}
$$

Limiting Cases $-q \gg 1$

When $q \gg 1$ "Snell's Law" becomes

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{2} \approx q^{\prime 2}-2 i b_{\mu}
\end{aligned}
$$

$$
q^{\prime 2} \approx q^{2}+2 i b_{\mu}
$$ imaginary part can be computed as

$$
q^{\prime}=q+i \operatorname{lm}\left(q^{\prime}\right)
$$

$$
\begin{aligned}
q^{\prime 2} & =q^{2}\left(1+i \frac{\operatorname{lm}\left(q^{\prime}\right)}{q}\right)^{2} \\
& \approx q^{2}+2 i q \operatorname{lm}\left(q^{\prime}\right)
\end{aligned}
$$

The reflection and transmission coefficients are thus

$$
\operatorname{Im}\left(q^{\prime}\right) q \approx b_{\mu} \rightarrow \operatorname{Im}\left(q^{\prime}\right) \approx \frac{b_{\mu}}{q}
$$

$$
r=\frac{\left(q-q^{\prime}\right)\left(q+q^{\prime}\right)}{\left(q+q^{\prime}\right)\left(q+q^{\prime}\right)}=\frac{q^{2}-q^{\prime 2}}{\left(q+q^{\prime}\right)^{2}} \approx \frac{1}{(2 q)^{2}}, \quad t=\frac{2 q}{q+q^{\prime}} \approx 1, \quad \Lambda \approx \frac{\alpha}{\mu}
$$

reflected wave in phase with incident, almost total transmission

Limiting Cases - $q \ll 1$

When $q \ll 1$

$$
q^{2}=q^{\prime 2}+1-2 i b_{\mu}
$$

Limiting Cases $-q \ll 1$

When $q \ll 1$

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{\prime 2} & \approx-1
\end{aligned}
$$

Limiting Cases $-q \ll 1$

When $q \ll 1, q^{\prime}$ is mostly imagi-

$$
q^{2}=q^{\prime 2}+1-2 i b_{\mu}
$$

$$
\begin{aligned}
q^{\prime 2} & \approx-1 \\
q^{\prime} & \approx i
\end{aligned}
$$

Limiting Cases $-q \ll 1$

When $q \ll 1, q^{\prime}$ is mostly imagi-

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2} \approx-1 \\
& q^{\prime} \approx i
\end{aligned}
$$

Thus the reflection and transmission coefficients become

Limiting Cases $-q \ll 1$

When $q \ll 1, q^{\prime}$ is mostly imagi-

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2} \approx-1 \\
& q^{\prime} \approx i
\end{aligned}
$$

Thus the reflection and transmission coefficients become

$$
r=\frac{\left(q-q^{\prime}\right)}{\left(q+q^{\prime}\right)}
$$

Limiting Cases $-q \ll 1$

When $q \ll 1, q^{\prime}$ is mostly imagi-

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2} \approx-1 \\
& q^{\prime} \approx i
\end{aligned}
$$

Thus the reflection and transmission coefficients become

$$
r=\frac{\left(q-q^{\prime}\right)}{\left(q+q^{\prime}\right)} \approx \frac{-q^{\prime}}{+q^{\prime}}
$$

Limiting Cases $-q \ll 1$

When $q \ll 1, q^{\prime}$ is mostly imagi-

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2} \approx-1 \\
& q^{\prime} \approx i
\end{aligned}
$$

Thus the reflection and transmission coefficients become

$$
r=\frac{\left(q-q^{\prime}\right)}{\left(q+q^{\prime}\right)} \approx \frac{-q^{\prime}}{+q^{\prime}}=-1
$$

Limiting Cases $-q \ll 1$

When $q \ll 1, q^{\prime}$ is mostly imagi-

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2} \approx-1 \\
& q^{\prime} \approx i
\end{aligned}
$$

Thus the reflection and transmission coefficients become

$$
\begin{aligned}
& r=\frac{\left(q-q^{\prime}\right)}{\left(q+q^{\prime}\right)} \approx \frac{-q^{\prime}}{+q^{\prime}}=-1 \\
& t=\frac{2 q}{q+q^{\prime}}
\end{aligned}
$$

Limiting Cases $-q \ll 1$

When $q \ll 1, q^{\prime}$ is mostly imagi-

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2} \approx-1 \\
& q^{\prime} \approx i
\end{aligned}
$$

Thus the reflection and transmission coefficients become

$$
\begin{aligned}
& r=\frac{\left(q-q^{\prime}\right)}{\left(q+q^{\prime}\right)} \approx \frac{-q^{\prime}}{+q^{\prime}}=-1 \\
& t=\frac{2 q}{q+q^{\prime}} \approx-2 i q \ll 1
\end{aligned}
$$

Limiting Cases $-q \ll 1$

When $q \ll 1, q^{\prime}$ is mostly imagi-

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2} \approx-1 \\
& q^{\prime} \approx i
\end{aligned}
$$

Thus the reflection and transmission coefficients become

$$
\begin{aligned}
& r=\frac{\left(q-q^{\prime}\right)}{\left(q+q^{\prime}\right)} \approx \frac{-q^{\prime}}{+q^{\prime}}=-1 \\
& t=\frac{2 q}{q+q^{\prime}} \approx-2 i q \ll 1 \\
& \Lambda \approx \frac{1}{Q_{c}}
\end{aligned}
$$

Limiting Cases $-q \ll 1$

When $q \ll 1, q^{\prime}$ is mostly imaginary with magnitude 1

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{\prime 2} & \approx-1 \\
q^{\prime} & \approx i
\end{aligned}
$$

Thus the reflection and transmission coefficients become

$$
\begin{aligned}
& r=\frac{\left(q-q^{\prime}\right)}{\left(q+q^{\prime}\right)} \approx \frac{-q^{\prime}}{+q^{\prime}}=-1 \\
& t=\frac{2 q}{q+q^{\prime}} \approx-2 i q \ll 1 \\
& \Lambda \approx \frac{1}{Q_{c}}
\end{aligned}
$$

The reflected wave is out of phase with the incident wave, there is only small transmission in the form of an evanescent wave, and the penetration depth is very short.

Limiting Cases - $q \sim 1$

If $q \sim 1$

$$
q^{2}=q^{\prime 2}+1-2 i b_{\mu}
$$

Limiting Cases - $q \sim 1$

If $q \sim 1$

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{\prime 2} & \approx 2 i b_{\mu}
\end{aligned}
$$

Limiting Cases - $q \sim 1$

If $q \sim 1$

$$
\begin{aligned}
& q^{2}=q^{\prime 2}+1-2 i b_{\mu} \\
& q^{\prime 2} \approx 2 i b_{\mu}=b_{\mu}(2+2 i-2)
\end{aligned}
$$

Limiting Cases - $q \sim 1$

If $q \sim 1$

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{\prime 2} & \approx 2 i b_{\mu}=b_{\mu}(2+2 i-2) \\
& =b_{\mu}(1+i)^{2}
\end{aligned}
$$

Limiting Cases - $q \sim 1$

If $q \sim 1, q^{\prime}$ is complex with real and imaginary parts of equal magnitude.

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{\prime 2} & \approx 2 i b_{\mu}=b_{\mu}(2+2 i-2) \\
& =b_{\mu}(1+i)^{2}
\end{aligned}
$$

Limiting Cases - $q \sim 1$

If $q \sim 1, q^{\prime}$ is complex with real and imaginary parts of equal magnitude.

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{\prime 2} & \approx 2 i b_{\mu}=b_{\mu}(2+2 i-2) \\
& =b_{\mu}(1+i)^{2} \\
q^{\prime} & \approx \sqrt{b_{\mu}}(1+i)
\end{aligned}
$$

Limiting Cases - $q \sim 1$

If $q \sim 1, q^{\prime}$ is complex with real and imaginary parts of equal magnitude.

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{\prime 2} & \approx 2 i b_{\mu}=b_{\mu}(2+2 i-2) \\
& =b_{\mu}(1+i)^{2} \\
q^{\prime} & \approx \sqrt{b_{\mu}}(1+i)
\end{aligned}
$$

Since $\sqrt{b_{\mu}} \ll 1$, the reflection and transmission coefficients become

Limiting Cases - $q \sim 1$

If $q \sim 1, q^{\prime}$ is complex with real and imaginary parts of equal magnitude.

Since $\sqrt{b_{\mu}} \ll 1$, the reflection and transmission coefficients become

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{\prime 2} & \approx 2 i b_{\mu}=b_{\mu}(2+2 i-2) \\
& =b_{\mu}(1+i)^{2} \\
q^{\prime} & \approx \sqrt{b_{\mu}}(1+i) \\
r & =\frac{\left(q-q^{\prime}\right)}{\left(q+q^{\prime}\right)}
\end{aligned}
$$

Limiting Cases - $q \sim 1$

If $q \sim 1, q^{\prime}$ is complex with real and imaginary parts of equal magnitude.

Since $\sqrt{b_{\mu}} \ll 1$, the reflection and transmission coefficients become

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{\prime 2} & \approx 2 i b_{\mu}=b_{\mu}(2+2 i-2) \\
& =b_{\mu}(1+i)^{2} \\
q^{\prime} & \approx \sqrt{b_{\mu}}(1+i) \\
r & =\frac{\left(q-q^{\prime}\right)}{\left(q+q^{\prime}\right)} \approx \frac{q}{q} \approx 1
\end{aligned}
$$

Limiting Cases - $q \sim 1$

If $q \sim 1, q^{\prime}$ is complex with real and imaginary parts of equal magnitude.

Since $\sqrt{b_{\mu}} \ll 1$, the reflection and transmission coefficients become

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{\prime 2} & \approx 2 i b_{\mu}=b_{\mu}(2+2 i-2) \\
& =b_{\mu}(1+i)^{2} \\
q^{\prime} & \approx \sqrt{b_{\mu}}(1+i) \\
r & =\frac{\left(q-q^{\prime}\right)}{\left(q+q^{\prime}\right)} \approx \frac{q}{q} \approx 1 \\
t & =\frac{2 q}{q+q^{\prime}} \approx 2
\end{aligned}
$$

Limiting Cases - $q \sim 1$

If $q \sim 1, q^{\prime}$ is complex with real and imaginary parts of equal magnitude.

Since $\sqrt{b_{\mu}} \ll 1$, the reflection and transmission coefficients become

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{\prime 2} & \approx 2 i b_{\mu}=b_{\mu}(2+2 i-2) \\
& =b_{\mu}(1+i)^{2} \\
q^{\prime} & \approx \sqrt{b_{\mu}}(1+i) \\
r & =\frac{\left(q-q^{\prime}\right)}{\left(q+q^{\prime}\right)} \approx \frac{q}{q} \approx 1 \\
t & =\frac{2 q}{q+q^{\prime}} \approx 2 \\
\Lambda & \approx \frac{1}{Q_{c} \operatorname{lm}\left(q^{\prime}\right)} \approx \frac{1}{Q_{c} \sqrt{b_{\mu}}}
\end{aligned}
$$

Limiting Cases - $q \sim 1$

If $q \sim 1, q^{\prime}$ is complex with real and imaginary parts of equal magnitude.

Since $\sqrt{b_{\mu}} \ll 1$, the reflection and transmission coefficients become

$$
\begin{aligned}
q^{2} & =q^{\prime 2}+1-2 i b_{\mu} \\
q^{\prime 2} & \approx 2 i b_{\mu}=b_{\mu}(2+2 i-2) \\
& =b_{\mu}(1+i)^{2} \\
q^{\prime} & \approx \sqrt{b_{\mu}}(1+i) \\
r & =\frac{\left(q-q^{\prime}\right)}{\left(q+q^{\prime}\right)} \approx \frac{q}{q} \approx 1 \\
t & =\frac{2 q}{q+q^{\prime}} \approx 2 \\
\Lambda & \approx \frac{1}{Q_{c} \operatorname{lm}\left(q^{\prime}\right)} \approx \frac{1}{Q_{c} \sqrt{b_{\mu}}}
\end{aligned}
$$

The reflected wave is in phase with the incident, there is significant (larger amplitude than the reflection) transmission with a large penetration depth.

