• Undulator coherence

- Undulator coherence
- ERLs and FELs

- Undulator coherence
- ERLs and FELs
- Detectors

- Undulator coherence
- ERLs and FELs
- Detectors

Reading Assignment: Chapter 3.1–3.3

- Undulator coherence
- ERLs and FELs
- Detectors

Reading Assignment: Chapter 3.1–3.3

Homework Assignment #01: Chapter Chapter 2: 2,3,5,6,8 due Thursday, January 29, 2015

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

A diffraction grating consists of N coherent sources whose emission is detected at a single point.

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

A diffraction grating consists of N coherent sources whose emission is detected at a single point.

The radiation from each slit has to travel a slightly different distance to get to the detector.

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

A diffraction grating consists of N coherent sources whose emission is detected at a single point.

The radiation from each slit has to travel a slightly different distance to get to the detector. For consecutive slits this path length difference, $L_{m+1} - L_m = \delta L$,

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

A diffraction grating consists of N coherent sources whose emission is detected at a single point.

The radiation from each slit has to travel a slightly different distance to get to the detector. For consecutive slits this path length difference, $L_{m+1} - L_m = \delta L$, gives rise to a phase shift, $2\pi\epsilon = 2\pi\delta L/\lambda$.

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

A diffraction grating consists of N coherent sources whose emission is detected at a single point.

The radiation from each slit has to travel a slightly different distance to get to the detector. For consecutive slits this path length difference, $L_{m+1} - L_m = \delta L$, gives rise to a phase shift, $2\pi\epsilon = 2\pi\delta L/\lambda$. So at the detector, we have a sum of waves:

$$\sum_{m=0}^{N-1} e^{i(\vec{k}\cdot\vec{r}+2\pi m\epsilon)}$$

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

A diffraction grating consists of N coherent sources whose emission is detected at a single point.

The radiation from each slit has to travel a slightly different distance to get to the detector. For consecutive slits this path length difference, $L_{m+1} - L_m = \delta L$, gives rise to a phase shift, $2\pi\epsilon = 2\pi\delta L/\lambda$. So at the detector, we have a sum of waves:

$$\sum_{m=0}^{N-1} e^{i(\vec{k}\cdot\vec{r}+2\pi m\epsilon)} = e^{i\vec{k}\cdot\vec{r}} \sum_{m=0}^{N-1} e^{i2\pi m\epsilon}$$

The sum is simply a geometric series, S_N with $k = e^{i2\pi\epsilon}$

The sum is simply a geometric series, S_N with $k = e^{i2\pi\epsilon}$

$$S_N = \sum_{m=0}^{N-1} k^m$$

The sum is simply a geometric series, S_N with $k = e^{i2\pi\epsilon}$

$$S_N = \sum_{m=0}^{N-1} k^m = 1 + k + k^2 + \dots + k^{N-2} + k^{N-1}$$

The sum is simply a geometric series, S_N with $k = e^{i2\pi\epsilon}$

$$S_N = \sum_{m=0}^{N-1} k^m = 1 + k + k^2 + \dots + k^{N-2} + k^{N-1}$$

We can develop a recursion relation by writing the expression for S_{N-1}

$$S_{N-1} = \sum_{m=0}^{N-2} k^m = 1 + k + k^2 + \dots + k^{N-2}$$

The sum is simply a geometric series, S_N with $k = e^{i2\pi\epsilon}$

$$S_N = \sum_{m=0}^{N-1} k^m = 1 + k + k^2 + \dots + k^{N-2} + k^{N-1}$$

We can develop a recursion relation by writing the expression for S_{N-1}

$$S_{N-1} = \sum_{m=0}^{N-2} k^m = 1 + k + k^2 + \dots + k^{N-2}$$

so we can write that $S_{N-1} = S_N - k^{N-1}$

The sum is simply a geometric series, S_N with $k = e^{i2\pi\epsilon}$

$$S_N = \sum_{m=0}^{N-1} k^m = 1 + k + k^2 + \dots + k^{N-2} + k^{N-1}$$

We can develop a recursion relation by writing the expression for S_{N-1}

$$S_{N-1} = \sum_{m=0}^{N-2} k^m = 1 + k + k^2 + \dots + k^{N-2}$$

so we can write that $S_{N-1} = S_N - k^{N-1}$ and

$$S_N = 1 + k S_{N-1}$$

The sum is simply a geometric series, S_N with $k = e^{i2\pi\epsilon}$

$$S_N = \sum_{m=0}^{N-1} k^m = 1 + k + k^2 + \dots + k^{N-2} + k^{N-1}$$

We can develop a recursion relation by writing the expression for S_{N-1}

$$S_{N-1} = \sum_{m=0}^{N-2} k^m = 1 + k + k^2 + \dots + k^{N-2}$$

so we can write that $S_{N-1} = S_N - k^{N-1}$ and

$$S_N = 1 + kS_{N-1} = 1 + k(S_N - k^{N-1})$$

The sum is simply a geometric series, S_N with $k = e^{i2\pi\epsilon}$

$$S_N = \sum_{m=0}^{N-1} k^m = 1 + k + k^2 + \dots + k^{N-2} + k^{N-1}$$

We can develop a recursion relation by writing the expression for S_{N-1}

$$S_{N-1} = \sum_{m=0}^{N-2} k^m = 1 + k + k^2 + \dots + k^{N-2}$$

so we can write that $S_{N-1} = S_N - k^{N-1}$ and

$$S_N = 1 + kS_{N-1} = 1 + k(S_N - k^{N-1}) = 1 + kS_N - k^N$$

The sum is simply a geometric series, S_N with $k = e^{i2\pi\epsilon}$

$$S_N = \sum_{m=0}^{N-1} k^m = 1 + k + k^2 + \dots + k^{N-2} + k^{N-1}$$

We can develop a recursion relation by writing the expression for S_{N-1}

$$S_{N-1} = \sum_{m=0}^{N-2} k^m = 1 + k + k^2 + \dots + k^{N-2}$$

so we can write that $S_{N-1} = S_N - k^{N-1}$ and

$$S_N = 1 + kS_{N-1} = 1 + k(S_N - k^{N-1}) = 1 + kS_N - k^N$$

Solving for S_N , we have

The sum is simply a geometric series, S_N with $k = e^{i2\pi\epsilon}$

$$S_N = \sum_{m=0}^{N-1} k^m = 1 + k + k^2 + \dots + k^{N-2} + k^{N-1}$$

We can develop a recursion relation by writing the expression for S_{N-1}

$$S_{N-1} = \sum_{m=0}^{N-2} k^m = 1 + k + k^2 + \dots + k^{N-2}$$

so we can write that $S_{N-1} = S_N - k^{N-1}$ and

$$S_N = 1 + kS_{N-1} = 1 + k(S_N - k^{N-1}) = 1 + kS_N - k^N$$

Solving for S_N , we have

$$S_N - kS_N = 1 - k^N$$

The sum is simply a geometric series, S_N with $k = e^{i2\pi\epsilon}$

$$S_N = \sum_{m=0}^{N-1} k^m = 1 + k + k^2 + \dots + k^{N-2} + k^{N-1}$$

We can develop a recursion relation by writing the expression for S_{N-1}

$$S_{N-1} = \sum_{m=0}^{N-2} k^m = 1 + k + k^2 + \dots + k^{N-2}$$

so we can write that $S_{N-1} = S_N - k^{N-1}$ and

$$S_N = 1 + kS_{N-1} = 1 + k(S_N - k^{N-1}) = 1 + kS_N - k^N$$

Solving for S_N , we have

$$S_N - kS_N = 1 - k^N \quad \longrightarrow \quad S_N = \frac{1 - k^N}{1 - k}$$

$$\sum_{m=0}^{N-1} e^{i2\pi m\epsilon} = S_N$$

$$\sum_{m=0}^{N-1} e^{i2\pi m\epsilon} = S_N = \frac{1 - e^{i2\pi N\epsilon}}{1 - e^{i2\pi\epsilon}}$$

$$\sum_{m=0}^{N-1} e^{i2\pi m\epsilon} = S_N = \frac{1 - e^{i2\pi N\epsilon}}{1 - e^{i2\pi \epsilon}} = \left(\frac{e^{-i\pi N\epsilon} - e^{i\pi N\epsilon}}{e^{-i\pi \epsilon} - e^{i\pi \epsilon}}\right) \frac{e^{i\pi N\epsilon}}{e^{i\pi \epsilon}}$$

$$\sum_{m=0}^{N-1} e^{i2\pi m\epsilon} = S_N = \frac{1 - e^{i2\pi N\epsilon}}{1 - e^{i2\pi \epsilon}} = \left(\frac{e^{-i\pi N\epsilon} - e^{i\pi N\epsilon}}{e^{-i\pi \epsilon} - e^{i\pi \epsilon}}\right) \frac{e^{i\pi N\epsilon}}{e^{i\pi \epsilon}}$$

$$S_N = \left(\frac{\sin\left(\pi N\epsilon\right)}{\sin\left(\pi\epsilon\right)}\right) e^{i\pi(N-1)\epsilon}$$

Restoring the expression for $k = e^{i2\pi\epsilon}$, we have:

$$\sum_{m=0}^{N-1} e^{i2\pi m\epsilon} = S_N = \frac{1 - e^{i2\pi N\epsilon}}{1 - e^{i2\pi \epsilon}} = \left(\frac{e^{-i\pi N\epsilon} - e^{i\pi N\epsilon}}{e^{-i\pi \epsilon} - e^{i\pi \epsilon}}\right) \frac{e^{i\pi N\epsilon}}{e^{i\pi \epsilon}}$$
$$S_N = \left(\frac{\sin\left(\pi N\epsilon\right)}{\sin\left(\pi \epsilon\right)}\right) e^{i\pi(N-1)\epsilon}$$

Restoring the expression for $k = e^{i2\pi\epsilon}$, we have:

$$\sum_{m=0}^{N-1} e^{i2\pi m\epsilon} = S_N = \frac{1 - e^{i2\pi N\epsilon}}{1 - e^{i2\pi\epsilon}} = \left(\frac{e^{-i\pi N\epsilon} - e^{i\pi N\epsilon}}{e^{-i\pi\epsilon} - e^{i\pi\epsilon}}\right) \frac{e^{i\pi N\epsilon}}{e^{i\pi\epsilon}}$$
$$S_N = \left(\frac{\sin(\pi N\epsilon)}{\sin(\pi\epsilon)}\right) e^{i\pi(N-1)\epsilon}$$

$$I = \left| e^{i\vec{k}\cdot\vec{r}} \sum_{m=0}^{N-1} e^{i2\pi m\epsilon} \right|^2$$

Restoring the expression for $k = e^{i2\pi\epsilon}$, we have:

$$\sum_{m=0}^{N-1} e^{i2\pi m\epsilon} = S_N = \frac{1 - e^{i2\pi N\epsilon}}{1 - e^{i2\pi \epsilon}} = \left(\frac{e^{-i\pi N\epsilon} - e^{i\pi N\epsilon}}{e^{-i\pi \epsilon} - e^{i\pi \epsilon}}\right) \frac{e^{i\pi N\epsilon}}{e^{i\pi \epsilon}}$$

$$S_N = \left(rac{\sin\left(\pi N\epsilon
ight)}{\sin\left(\pi \epsilon
ight)}
ight) e^{i\pi\left(N-1
ight)\epsilon}$$

$$I = \left| e^{i\vec{k}\cdot\vec{r}} \sum_{m=0}^{N-1} e^{i2\pi m\epsilon} \right|^2 = \left| e^{i\vec{k}\cdot\vec{r}} S_N \right|^2$$

Restoring the expression for $k = e^{i2\pi\epsilon}$, we have:

$$\sum_{m=0}^{N-1} e^{i2\pi m\epsilon} = S_N = \frac{1 - e^{i2\pi N\epsilon}}{1 - e^{i2\pi\epsilon}} = \left(\frac{e^{-i\pi N\epsilon} - e^{i\pi N\epsilon}}{e^{-i\pi\epsilon} - e^{i\pi\epsilon}}\right) \frac{e^{i\pi N\epsilon}}{e^{i\pi\epsilon}}$$

$$S_N = \left(rac{\sin\left(\pi N\epsilon
ight)}{\sin\left(\pi\epsilon
ight)}
ight) e^{i\pi(N-1)\epsilon}$$

$$I = \left| e^{i\vec{k}\cdot\vec{r}} \sum_{m=0}^{N-1} e^{i2\pi m\epsilon} \right|^2 = \left| e^{i\vec{k}\cdot\vec{r}} S_N \right|^2 = \left| e^{i\vec{k}\cdot\vec{r}} \frac{\sin(\pi N\epsilon)}{\sin(\pi\epsilon)} e^{i\pi(N-1)\epsilon} \right|^2$$

Restoring the expression for $k = e^{i2\pi\epsilon}$, we have:

$$\sum_{m=0}^{N-1} e^{i2\pi m\epsilon} = S_N = \frac{1 - e^{i2\pi N\epsilon}}{1 - e^{i2\pi \epsilon}} = \left(\frac{e^{-i\pi N\epsilon} - e^{i\pi N\epsilon}}{e^{-i\pi \epsilon} - e^{i\pi \epsilon}}\right) \frac{e^{i\pi N\epsilon}}{e^{i\pi \epsilon}}$$

$$S_N = \left(rac{\sin\left(\pi N\epsilon
ight)}{\sin\left(\pi\epsilon
ight)}
ight) e^{i\pi\left(N-1
ight)\epsilon}$$

Therefore, for the diffraction grating we can calculate the intensity at the detector as

$$I = \left| e^{i\vec{k}\cdot\vec{r}} \sum_{m=0}^{N-1} e^{i2\pi m\epsilon} \right|^2 = \left| e^{i\vec{k}\cdot\vec{r}} S_N \right|^2 = \left| e^{i\vec{k}\cdot\vec{r}} \frac{\sin(\pi N\epsilon)}{\sin(\pi\epsilon)} e^{i\pi(N-1)\epsilon} \right|^2$$
$$I = \frac{\sin(\pi N\epsilon)^2}{\sin(\pi\epsilon)^2}$$

PHYS 570 - Spring 2015

Beam coherence

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

Beam coherence

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

An N period undulator is basically like a diffraction grating, only in the time domain rather than the space domain.

With the height and width of the peak dependent on the number of poles.

C. Segre (IIT)

PHYS 570 - Spring 2015

Undulator coherence

Undulator coherence

Synchrotron time structure

7 / 28

Energy recovery linacs

Undulators have limited peak brilliance

Energy recovery linacs

Undulators have limited peak brilliance but the use of an energy recovery linac can overcome this limitation and enhance peak brilliance by up to three orders of magnitude

Energy recovery linacs

Undulators have limited peak brilliance but the use of an energy recovery linac can overcome this limitation and enhance peak brilliance by up to three orders of magnitude

8 / 28

• Initial electron cloud, each electron emits coherently but independently

- Initial electron cloud, each electron emits coherently but independently
- Over course of 100 m, electric field of photons, feeds back on electron bunch

 $\uparrow \downarrow \uparrow \downarrow \uparrow$ $\bullet \bullet \bullet \bullet \bullet)))))))$

- Initial electron cloud, each electron emits coherently but independently
- Over course of 100 m, electric field of photons, feeds back on electron bunch

- Initial electron cloud, each electron emits coherently but independently
- Over course of 100 m, electric field of photons, feeds back on electron bunch
- Microbunches form with period of FEL (and radiation in electron frame)

 $\uparrow \downarrow \uparrow \downarrow \uparrow$

- Initial electron cloud, each electron emits coherently but independently
- Over course of 100 m, electric field of photons, feeds back on electron bunch
- Microbunches form with period of FEL (and radiation in electron frame)
- Each microbunch emits coherently with neighboring ones

Self-amplified spontaneous emission

FEL emission

Distance along undulator

FEL emission

FEL emission

C. Segre (IIT)

PHYS 570 - Spring 2015

Compact sources

Gas detectors

Gas detectors

Scintillation counters

Gas detectors

Scintillation counters Solid state detectors

Gas detectors

Scintillation counters Solid state detectors

Gas detectors

Ionization chamber

Scintillation counters Solid state detectors

Gas detectors

- Ionization chamber
- Proportional counter

Scintillation counters Solid state detectors

Gas detectors

- Ionization chamber
- Proportional counter
- Geiger-Muller tube
 Scintillation counters
 Solid state detectors
Gas detectors

- Ionization chamber
- Proportional counter
- Geiger-Muller tube

Scintillation counters Solid state detectors

• Intrinsic semiconductor

Gas detectors

- Ionization chamber
- Proportional counter
- Geiger-Muller tube

Scintillation counters Solid state detectors

- Intrinsic semiconductor
- P-I-N junction

Gas detectors

- Ionization chamber
- Proportional counter
- Geiger-Muller tube

Scintillation counters Solid state detectors

- Intrinsic semiconductor
- P-I-N junction
- Silicon drift

Gas detectors

- Ionization chamber
- Proportional counter
- Geiger-Muller tube

Scintillation counters Solid state detectors

- Intrinsic semiconductor
- P-I-N junction
- Silicon drift

Charge coupled device detectors

Indirect

Gas detectors

- Ionization chamber
- Proportional counter
- Geiger-Muller tube

Scintillation counters Solid state detectors

- Intrinsic semiconductor
- P-I-N junction
- Silicon drift

- Indirect
- Direct coupled

Gas Detector Curve

Useful for beam monitoring, flux measurement, fluorescence measurement, spectroscopy.

Useful for beam monitoring, flux measurement, fluorescence measurement, spectroscopy.

• Closed (or sealed) chamber of length L with gas mixture $\mu = \sum \rho_i \mu_i$

Useful for beam monitoring, flux measurement, fluorescence measurement, spectroscopy.

- Closed (or sealed) chamber of length L with gas mixture $\mu = \sum \rho_i \mu_i$
- High voltage applied to plates

Useful for beam monitoring, flux measurement, fluorescence measurement, spectroscopy.

- Closed (or sealed) chamber of length L with gas mixture $\mu = \sum \rho_i \mu_i$
- High voltage applied to plates
- Calculate fraction of beam absorbed $I/I_o = e^{-\mu L}$

Useful for beam monitoring, flux measurement, fluorescence measurement, spectroscopy.

- Closed (or sealed) chamber of length L with gas mixture $\mu = \sum \rho_i \mu_i$
- High voltage applied to plates
- Calculate fraction of beam absorbed $I/I_o = e^{-\mu L}$

• When x-ray interacts with gas atom, photoionized electrons swept rapidly to positive electrode and current (nano Amperes) is measured.

Useful for beam monitoring, flux measurement, fluorescence measurement, spectroscopy.

- Closed (or sealed) chamber of length L with gas mixture $\mu = \sum \rho_i \mu_i$
- High voltage applied to plates
- Calculate fraction of beam absorbed $I/I_o = e^{-\mu L}$

- When x-ray interacts with gas atom, photoionized electrons swept rapidly to positive electrode and current (nano Amperes) is measured.
- Count rates up to 10¹¹ photons/s/cm³

Useful for beam monitoring, flux measurement, fluorescence measurement, spectroscopy.

- Closed (or sealed) chamber of length L with gas mixture $\mu = \sum \rho_i \mu_i$
- High voltage applied to plates
- Calculate fraction of beam absorbed $I/I_o = e^{-\mu L}$

- When x-ray interacts with gas atom, photoionized electrons swept rapidly to positive electrode and current (nano Amperes) is measured.
- Count rates up to 10¹¹ photons/s/cm³
- 22-41 eV per electron-hole pair (depending on the gas) makes this useful for quantitative measurements.

Useful for photon counting experiments

Useful for photon counting experiments

• Nal(TI), Yttrium Aluminum Perovskite (YAP) or plastic which, absorb x-rays and fluoresce in the visible spectrum.

Useful for photon counting experiments

- Nal(TI), Yttrium Aluminum Perovskite (YAP) or plastic which, absorb x-rays and fluoresce in the visible spectrum.
- Light strikes a thin photocathode which emits electrons into the vacuum portion of a photomultiplier tube.

Useful for photon counting experiments

- Nal(TI), Yttrium Aluminum Perovskite (YAP) or plastic which, absorb x-rays and fluoresce in the visible spectrum.
- Light strikes a thin photocathode which emits electrons into the vacuum portion of a photomultiplier tube.
- Photoelectrons are accelerated in steps, striking dynodes and becoming amplified.

Useful for photon counting experiments

- Nal(TI), Yttrium Aluminum Perovskite (YAP) or plastic which, absorb x-rays and fluoresce in the visible spectrum.
- Light strikes a thin photocathode which emits electrons into the vacuum portion of a photomultiplier tube.
- Photoelectrons are accelerated in steps, striking dynodes and becoming amplified.
- Output voltage pulse is proportional to initial x-ray energy.

C. Segre (IIT)

PHYS 570 - Spring 2015

Solid State Detectors

Open circuit p-n junction has a natural depletion region

depletion region

Solid State Detectors

Open circuit p-n junction has a natural depletion region

When reverse biased, the depletion region grows

Solid State Detectors

Open circuit p-n junction has a natural depletion region

When reverse biased, the depletion region grows creating a higher electric field near the junction

Ge Detector Operation

Silicon Drift Detector

Same principle as intrinsic or p-i-n detector but much more compact and operates at higher temperatures

Relatively low stopping power is a drawback

C. Segre (IIT)

CCD detectors - direct

CCD detectors - indirect

CCD detectors - lightpipe taper

Pixel Array Detectors - schematic

Pixel Array Detectors - Pilatus

Pixel array detector with 1,000,000 pixels.

Each pixel has energy resolving capabilities & high speed readout.

Silicon sensor limits energy range of operation.

from Swiss Light Source

Pixel Array Detectors - high energy solutions

