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Curved arc emission

1/γ

ω
o

B

ρ

The observer, looking in the plane of the circular
trajectory,

“sees” the electron oscillate over a half
period in a time ∆t (observer’s frame).
The electron, in the laboratory frame, travels this
arc in:

∆t ′ =
(1/γ)ρ

v
=

1

γωo

Because of the Doppler shift, the observer sees the
electron emitting a pulse of radiation of length

∆t ∝ ∆t ′

γ2
=

1

γ3ωo

The Fourier transform of this pulse is the spectrum
of the radiation from the bending magnet.
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Characteristic Energy of a Bending Magnet

The radiation from a bending magnet is defined by it’s characteristic
frequency, ωc which, when the calculation is performed rigorously is:

ωc =
3

2
γ3ωo

but since T is the period of the rotation through the full circle of radius ρ

ωo =
2π

T
= 2π

c

2πρ
=

c

ρ
=

ceB

γmc

we can therefore calculate the characteristic energy Ec

Ec = ~ωc =
3

2
γ3

ceB

γmc
=

3

2
ceB

γ2

mc
=

3eB

2m

E2

(mc2)2

converting to storage ring units

Ec [keV] = 0.665E2[GeV]B[T]
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Bending magnet spectrum

When the radiation pulse time is
Fourier transformed, we obtain
the spectrum of a bending
magnet.

Scaling by the characteristic
energy, gives a universal curve

1.33×1013E2 I
(
ω

ωc

)2

K 2
2/3

(
ω

2ωc

)
where K2/3 is a modified Bessel
function of the second kind.
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Power from a bending magnet

The radiated power is given in storage ring units by:

P[kW] = 1.266E2[GeV]B2[T]L[m]I [A]

where L is the length of the arc visible to the observer and I is the storage
ring current.
We can calculate this for the ESRF where E = 6 GeV, B = 0.8 T,
Ec = 19.2 keV and the bending radius ρ = 24.8 m. Assuming that the
aperture is 1 mm2 at a distance of 20 m, the angular aperture is
1/20 = 0.05 mrad and the flux at the characteristic energy is given by:

Flux = (1.95×1013)(0.052mrad2)(62GeV2)(0.2A) = 3.5×1011ph/s/0.1%BW

The arc length is L = (24.8m)(0.05mrad) = 1.24mm and we have:

P = 1.266(6GeV)2(0.8T)2(1.24× 10−3m)(0.2A) = 7.3W
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Polarization

A bending magnet also produces circularly polarized radiation

• If the observer is in the plane of the
electron orbit, the electron motion
looks like a half period of linear
sinusoidal motion

• From above, the motion looks like an
arc in the clockwise direction

• From below, the motion looks like an
arc in the counterclockwise direction

The result is circularly polarized radiation above and below the on-axis
radiation.
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Wigglers and undulators

Wiggler

Like bending magnet except:

• larger ~B → higher Ec

• more bends → higher power

Undulator

Different from bending magnet:

• shallow bends → smaller source

• interference → peaked spectrum
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Wiggler radiation

• The electron’s trajectory through a wiggler can be considered as a
series of short circular arcs, each like a bending magnet

• If there are N poles to the wiggler, there are 2N arcs

• Each arc contributes as might a single bending magnet but the more
linear path means that the effective length, L, is much longer.

• The magnetic field varies along the length of the wiggler and is higher
than that in a bending magnet, having an average value of
Brms = Bo/

√
2

• This results in a significantly higher power load on all downstream
components

Power [kW] = 1.266E2e [GeV]B2[T]L[m]I [A]
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Undulator characterization

α
max

A

λ
u

z

x

Undulator radiation is characterized by
three parameters:

• The energy of the electrons, γmc2

• The wavelength, λu = 2π/ku, of
it’s magnetic field

• The maximum angular deviaton of
the electron, αmax

From the electron trajectory:

x = A sin (kuz)

αmax =
dx

dz

∣∣∣
z=0

= Aku cos (kuz)
∣∣∣
z=0

= Aku = 2πA/λu

Define a dimensionless quantity, K which scales αmax to the natural
opening angle of the radiation, 1/γ

K = αmaxγ
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Circular path approximation

Aρ

λ
u

z

x

Consider the trajectory of the electron along one period of the undulator.

Since the curvature is small, the path can be approximated by an arc or a
circle of radius ρ whose origin lies at x = −(ρ− A) and z = 0.
The equation of the circle which approximates the arc is:

ρ2 = [x + (ρ− A)]2 + z2

x + (ρ− A) =
√
ρ2 − z2
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The equation of the circle which approximates the arc is:

ρ2 = [x + (ρ− A)]2 + z2

x + (ρ− A) =
√
ρ2 − z2
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Radius of curvature

From the equation for a circle:

x = A− ρ+
√
ρ2 − z2

= A− ρ+ ρ

√
1− z2

ρ2

≈ A− ρ+ ρ

(
1− 1

2

z2

ρ2

)
≈ A− z2

2ρ

For the undulating path:

x = A cos (kuz)

≈ A

(
1− k2uz

2

2

)
≈ A− Ak2uz

2

2

Combining, we have

z2

2ρ
=

Ak2uz
2

2
−→ 1

ρ
= Ak2u −→ ρ =

1

Ak2u
=

λ2u
4π2A
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Electron path length

The displacement ds of the elec-
tron can be expressed in terms of
the two coordinates, x and z as:

ds =
√

(dx)2 + (dz)2

=

√
1 +

(
dx

dz

)2

dz

ds
dx

dz

dx

dz
=

d

dz
A cos kuz = −Aku sin kuz

Now calculate the length of the path traveled by the electron over one
period of the undulator

Sλu =

∫ λu

0

√
1 +

(
dx

dz

)2

dz ≈
∫ λu

0

[
1 +

1

2

(
dx

dz

)2
]
dz

=

∫ λu

0

[
1 +

A2k2u
2

sin2 kuz

]
dz
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Electron path length

Sλu =

∫ λu

0

[
1 +

A2k2u
2

sin2 kuz

]
dz

=

∫ λu

0

[
1 +

A2k2u
2

(
1

2
− 1

2
cos 2kuz

)]
dz

=

[
z +

A2k2u
4

z +
A2ku

8
sin 2kuz

∣∣∣∣λu
0

= λu

(
1 +

A2k2u
4

)
= λu

(
1 +

1

4

K 2

γ2

)

Using the identity:

sin2 kuz =
1 + cos 2kuz

2

integrating, the final
term vanishes

using the definition of
the undulator parameter,
K = γAku, we have
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The K parameter

Given the definition K = γAku, we can rewrite the radius of curvature of
the electron’s path in the undulator as

ρ =
1

Ak2u
−→ ρ =

γ

Kku

Recalling that the radius of curvature is related to the electron momentum
by the Lorentz force, we have

p = γmv ≈ γmc = ρeBo −→ γmc ≈ γ

Kku
eBo

Combining the above expressions yields

K =
eBo

mcku
=

e

2πmc
λuBo = 0.934λu[cm]Bo [T]

For APS Undulator A, λu = 3.3cm and Bo = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T] = 1.85

C. Segre (IIT) PHYS 570 - Spring 2015 January 22, 2015 14 / 23



The K parameter

Given the definition K = γAku, we can rewrite the radius of curvature of
the electron’s path in the undulator as

ρ =
1

Ak2u

−→ ρ =
γ

Kku

Recalling that the radius of curvature is related to the electron momentum
by the Lorentz force, we have

p = γmv ≈ γmc = ρeBo −→ γmc ≈ γ

Kku
eBo

Combining the above expressions yields

K =
eBo

mcku
=

e

2πmc
λuBo = 0.934λu[cm]Bo [T]

For APS Undulator A, λu = 3.3cm and Bo = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T] = 1.85

C. Segre (IIT) PHYS 570 - Spring 2015 January 22, 2015 14 / 23



The K parameter

Given the definition K = γAku, we can rewrite the radius of curvature of
the electron’s path in the undulator as

ρ =
1

Ak2u
−→ ρ =

γ

Kku

Recalling that the radius of curvature is related to the electron momentum
by the Lorentz force, we have

p = γmv ≈ γmc = ρeBo −→ γmc ≈ γ

Kku
eBo

Combining the above expressions yields

K =
eBo

mcku
=

e

2πmc
λuBo = 0.934λu[cm]Bo [T]

For APS Undulator A, λu = 3.3cm and Bo = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T] = 1.85

C. Segre (IIT) PHYS 570 - Spring 2015 January 22, 2015 14 / 23



The K parameter

Given the definition K = γAku, we can rewrite the radius of curvature of
the electron’s path in the undulator as

ρ =
1

Ak2u
−→ ρ =

γ

Kku

Recalling that the radius of curvature is related to the electron momentum
by the Lorentz force, we have

p = γmv ≈ γmc = ρeBo −→ γmc ≈ γ

Kku
eBo

Combining the above expressions yields

K =
eBo

mcku
=

e

2πmc
λuBo = 0.934λu[cm]Bo [T]

For APS Undulator A, λu = 3.3cm and Bo = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T] = 1.85

C. Segre (IIT) PHYS 570 - Spring 2015 January 22, 2015 14 / 23



The K parameter

Given the definition K = γAku, we can rewrite the radius of curvature of
the electron’s path in the undulator as

ρ =
1

Ak2u
−→ ρ =

γ

Kku

Recalling that the radius of curvature is related to the electron momentum
by the Lorentz force, we have

p = γmv

≈ γmc = ρeBo −→ γmc ≈ γ

Kku
eBo

Combining the above expressions yields

K =
eBo

mcku
=

e

2πmc
λuBo = 0.934λu[cm]Bo [T]

For APS Undulator A, λu = 3.3cm and Bo = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T] = 1.85

C. Segre (IIT) PHYS 570 - Spring 2015 January 22, 2015 14 / 23



The K parameter

Given the definition K = γAku, we can rewrite the radius of curvature of
the electron’s path in the undulator as

ρ =
1

Ak2u
−→ ρ =

γ

Kku

Recalling that the radius of curvature is related to the electron momentum
by the Lorentz force, we have

p = γmv ≈ γmc

= ρeBo −→ γmc ≈ γ

Kku
eBo

Combining the above expressions yields

K =
eBo

mcku
=

e

2πmc
λuBo = 0.934λu[cm]Bo [T]

For APS Undulator A, λu = 3.3cm and Bo = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T] = 1.85

C. Segre (IIT) PHYS 570 - Spring 2015 January 22, 2015 14 / 23



The K parameter

Given the definition K = γAku, we can rewrite the radius of curvature of
the electron’s path in the undulator as

ρ =
1

Ak2u
−→ ρ =

γ

Kku

Recalling that the radius of curvature is related to the electron momentum
by the Lorentz force, we have

p = γmv ≈ γmc = ρeBo

−→ γmc ≈ γ

Kku
eBo

Combining the above expressions yields

K =
eBo

mcku
=

e

2πmc
λuBo = 0.934λu[cm]Bo [T]

For APS Undulator A, λu = 3.3cm and Bo = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T] = 1.85

C. Segre (IIT) PHYS 570 - Spring 2015 January 22, 2015 14 / 23



The K parameter

Given the definition K = γAku, we can rewrite the radius of curvature of
the electron’s path in the undulator as

ρ =
1

Ak2u
−→ ρ =

γ

Kku

Recalling that the radius of curvature is related to the electron momentum
by the Lorentz force, we have

p = γmv ≈ γmc = ρeBo −→ γmc ≈ γ

Kku
eBo

Combining the above expressions yields

K =
eBo

mcku
=

e

2πmc
λuBo = 0.934λu[cm]Bo [T]

For APS Undulator A, λu = 3.3cm and Bo = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T] = 1.85

C. Segre (IIT) PHYS 570 - Spring 2015 January 22, 2015 14 / 23



The K parameter

Given the definition K = γAku, we can rewrite the radius of curvature of
the electron’s path in the undulator as

ρ =
1

Ak2u
−→ ρ =

γ

Kku

Recalling that the radius of curvature is related to the electron momentum
by the Lorentz force, we have

p = γmv ≈ γmc = ρeBo −→ γmc ≈ γ

Kku
eBo

Combining the above expressions yields

K =
eBo

mcku
=

e

2πmc
λuBo = 0.934λu[cm]Bo [T]

For APS Undulator A, λu = 3.3cm and Bo = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T] = 1.85

C. Segre (IIT) PHYS 570 - Spring 2015 January 22, 2015 14 / 23



The K parameter

Given the definition K = γAku, we can rewrite the radius of curvature of
the electron’s path in the undulator as

ρ =
1

Ak2u
−→ ρ =

γ

Kku

Recalling that the radius of curvature is related to the electron momentum
by the Lorentz force, we have

p = γmv ≈ γmc = ρeBo −→ γmc ≈ γ

Kku
eBo

Combining the above expressions yields

K =
eBo

mcku

=
e

2πmc
λuBo = 0.934λu[cm]Bo [T]

For APS Undulator A, λu = 3.3cm and Bo = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T] = 1.85

C. Segre (IIT) PHYS 570 - Spring 2015 January 22, 2015 14 / 23



The K parameter

Given the definition K = γAku, we can rewrite the radius of curvature of
the electron’s path in the undulator as

ρ =
1

Ak2u
−→ ρ =

γ

Kku

Recalling that the radius of curvature is related to the electron momentum
by the Lorentz force, we have

p = γmv ≈ γmc = ρeBo −→ γmc ≈ γ

Kku
eBo

Combining the above expressions yields

K =
eBo

mcku
=

e

2πmc
λuBo

= 0.934λu[cm]Bo [T]

For APS Undulator A, λu = 3.3cm and Bo = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T] = 1.85

C. Segre (IIT) PHYS 570 - Spring 2015 January 22, 2015 14 / 23



The K parameter

Given the definition K = γAku, we can rewrite the radius of curvature of
the electron’s path in the undulator as

ρ =
1

Ak2u
−→ ρ =

γ

Kku

Recalling that the radius of curvature is related to the electron momentum
by the Lorentz force, we have

p = γmv ≈ γmc = ρeBo −→ γmc ≈ γ

Kku
eBo

Combining the above expressions yields

K =
eBo

mcku
=

e

2πmc
λuBo = 0.934λu[cm]Bo [T]

For APS Undulator A, λu = 3.3cm and Bo = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T] = 1.85

C. Segre (IIT) PHYS 570 - Spring 2015 January 22, 2015 14 / 23



The K parameter

Given the definition K = γAku, we can rewrite the radius of curvature of
the electron’s path in the undulator as

ρ =
1

Ak2u
−→ ρ =

γ

Kku

Recalling that the radius of curvature is related to the electron momentum
by the Lorentz force, we have

p = γmv ≈ γmc = ρeBo −→ γmc ≈ γ

Kku
eBo

Combining the above expressions yields

K =
eBo

mcku
=

e

2πmc
λuBo = 0.934λu[cm]Bo [T]

For APS Undulator A, λu = 3.3cm and Bo = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T] = 1.85

C. Segre (IIT) PHYS 570 - Spring 2015 January 22, 2015 14 / 23



The K parameter

Given the definition K = γAku, we can rewrite the radius of curvature of
the electron’s path in the undulator as

ρ =
1

Ak2u
−→ ρ =

γ

Kku

Recalling that the radius of curvature is related to the electron momentum
by the Lorentz force, we have

p = γmv ≈ γmc = ρeBo −→ γmc ≈ γ

Kku
eBo

Combining the above expressions yields

K =
eBo

mcku
=

e

2πmc
λuBo = 0.934λu[cm]Bo [T]

For APS Undulator A, λu = 3.3cm and Bo = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T]

= 1.85

C. Segre (IIT) PHYS 570 - Spring 2015 January 22, 2015 14 / 23



The K parameter

Given the definition K = γAku, we can rewrite the radius of curvature of
the electron’s path in the undulator as

ρ =
1

Ak2u
−→ ρ =

γ

Kku

Recalling that the radius of curvature is related to the electron momentum
by the Lorentz force, we have

p = γmv ≈ γmc = ρeBo −→ γmc ≈ γ

Kku
eBo

Combining the above expressions yields

K =
eBo

mcku
=

e

2πmc
λuBo = 0.934λu[cm]Bo [T]

For APS Undulator A, λu = 3.3cm and Bo = 0.6T at closed gap, so

K = 0.934 · 3.3[cm] · 0.6[T] = 1.85

C. Segre (IIT) PHYS 570 - Spring 2015 January 22, 2015 14 / 23



Undulator wavelength

Consider an electron traveling through the undulator and emitting
radiation at the first maximum excursion from the center.

λ
u

The emitted wave travels slightly
faster than the electron.
It moves cT ′ in the time the elec-
tron travels a distance λu along the
undulator.

The observer sees radiation with a
compressed wavelength, along with
harmonics which satisfy the same
condition.

nλn = cT ′ − λu
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The fundamental wavelength

The fundamental wavelength must be
corrected for the observer angle θ

λ1 = cT ′ − λu cos θ

= λu

(
S
c

v
− cos θ

)

= λu

([
1 +

K 2

4γ2

]
1

β
− cos θ

)

Over the time T ′ the electron
actually travels a distance Sλu,
so that

T ′ =
Sλu
v

S ≈ 1 +
K 2

4γ2

Since γ is large, the maximum observation angle θ is small so

λ1 ≈ λu
(

1

β
+

K 2

4γ2β
− 1 +

θ2

2

)
=

λu
2γ2

(
2γ2

β
+

K 2

2β
− 2γ2 + γ2θ2

)

C. Segre (IIT) PHYS 570 - Spring 2015 January 22, 2015 16 / 23



The fundamental wavelength

The fundamental wavelength must be
corrected for the observer angle θ

λ1 = cT ′ − λu cos θ

= λu

(
S
c

v
− cos θ

)

= λu

([
1 +

K 2

4γ2

]
1

β
− cos θ

)

Over the time T ′ the electron
actually travels a distance Sλu,
so that

T ′ =
Sλu
v

S ≈ 1 +
K 2

4γ2

Since γ is large, the maximum observation angle θ is small so

λ1 ≈ λu
(

1

β
+

K 2

4γ2β
− 1 +

θ2

2

)
=

λu
2γ2

(
2γ2

β
+

K 2

2β
− 2γ2 + γ2θ2

)

C. Segre (IIT) PHYS 570 - Spring 2015 January 22, 2015 16 / 23



The fundamental wavelength

The fundamental wavelength must be
corrected for the observer angle θ

λ1 = cT ′ − λu cos θ

= λu

(
S
c

v
− cos θ

)

= λu

([
1 +

K 2

4γ2

]
1

β
− cos θ

)

Over the time T ′ the electron
actually travels a distance Sλu,
so that

T ′ =
Sλu
v

S ≈ 1 +
K 2

4γ2

Since γ is large, the maximum observation angle θ is small so

λ1 ≈ λu
(

1

β
+

K 2

4γ2β
− 1 +

θ2

2

)
=

λu
2γ2

(
2γ2

β
+

K 2

2β
− 2γ2 + γ2θ2

)

C. Segre (IIT) PHYS 570 - Spring 2015 January 22, 2015 16 / 23



The fundamental wavelength

The fundamental wavelength must be
corrected for the observer angle θ

λ1 = cT ′ − λu cos θ

= λu

(
S
c

v
− cos θ

)

= λu

([
1 +

K 2

4γ2

]
1

β
− cos θ

)

Over the time T ′ the electron
actually travels a distance Sλu,
so that

T ′ =
Sλu
v

S ≈ 1 +
K 2

4γ2

Since γ is large, the maximum observation angle θ is small so

λ1 ≈ λu
(

1

β
+

K 2

4γ2β
− 1 +

θ2

2

)
=

λu
2γ2

(
2γ2

β
+

K 2

2β
− 2γ2 + γ2θ2

)

C. Segre (IIT) PHYS 570 - Spring 2015 January 22, 2015 16 / 23



The fundamental wavelength

The fundamental wavelength must be
corrected for the observer angle θ

λ1 = cT ′ − λu cos θ

= λu

(
S
c

v
− cos θ

)

= λu

([
1 +

K 2

4γ2

]
1

β
− cos θ

)

Over the time T ′ the electron
actually travels a distance Sλu,
so that

T ′ =
Sλu
v

S ≈ 1 +
K 2

4γ2

Since γ is large, the maximum observation angle θ is small so

λ1 ≈ λu
(

1

β
+

K 2

4γ2β
− 1 +

θ2

2

)
=

λu
2γ2

(
2γ2

β
+

K 2

2β
− 2γ2 + γ2θ2

)

C. Segre (IIT) PHYS 570 - Spring 2015 January 22, 2015 16 / 23



The fundamental wavelength

The fundamental wavelength must be
corrected for the observer angle θ

λ1 = cT ′ − λu cos θ

= λu

(
S
c

v
− cos θ

)

= λu

([
1 +

K 2

4γ2

]
1

β
− cos θ

)

Over the time T ′ the electron
actually travels a distance Sλu,
so that

T ′ =
Sλu
v

S ≈ 1 +
K 2

4γ2

Since γ is large, the maximum observation angle θ is small so

λ1 ≈ λu
(

1

β
+

K 2

4γ2β
− 1 +

θ2

2

)
=

λu
2γ2

(
2γ2

β
+

K 2

2β
− 2γ2 + γ2θ2

)

C. Segre (IIT) PHYS 570 - Spring 2015 January 22, 2015 16 / 23



The fundamental wavelength

The fundamental wavelength must be
corrected for the observer angle θ

λ1 = cT ′ − λu cos θ

= λu

(
S
c

v
− cos θ

)

= λu

([
1 +

K 2

4γ2

]
1

β
− cos θ

)

Over the time T ′ the electron
actually travels a distance Sλu,
so that

T ′ =
Sλu
v

S ≈ 1 +
K 2

4γ2

Since γ is large, the maximum observation angle θ is small so

λ1 ≈ λu
(

1

β
+

K 2

4γ2β
− 1 +

θ2

2

)

=
λu
2γ2

(
2γ2

β
+

K 2

2β
− 2γ2 + γ2θ2

)

C. Segre (IIT) PHYS 570 - Spring 2015 January 22, 2015 16 / 23



The fundamental wavelength

The fundamental wavelength must be
corrected for the observer angle θ

λ1 = cT ′ − λu cos θ

= λu

(
S
c

v
− cos θ

)

= λu

([
1 +

K 2

4γ2

]
1

β
− cos θ

)

Over the time T ′ the electron
actually travels a distance Sλu,
so that

T ′ =
Sλu
v

S ≈ 1 +
K 2

4γ2

Since γ is large, the maximum observation angle θ is small so

λ1 ≈ λu
(

1

β
+

K 2

4γ2β
− 1 +

θ2

2

)
=

λu
2γ2

(
2γ2

β
+

K 2

2β
− 2γ2 + γ2θ2

)

C. Segre (IIT) PHYS 570 - Spring 2015 January 22, 2015 16 / 23



The fundamental wavelength

λ1 ≈
λu
2γ2

(
2γ2

β
+

K 2

2β
− 2γ2 + γ2θ2

)

≈ λu
2γ2

(
2γ2

[
1

β
− 1

]
+

K 2

2β
− (γθ)2

)

≈ λu
2γ2

(
2

1

1− β2

[
1− β
β

]
+

K 2

2β
− (γθ)2

)

≈ λu
2γ2

(
2

β(1 + β)
+

K 2

2β
− [γθ]2

)

regrouping terms

γ =

√
1

1− β2

1− β2 = (1 + β)(1− β)
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The fundamental wavelength

If we assume that β ∼ 1 for these highly relativistic electrons
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+
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− (γθ)2
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2γ2

(
1 +

K 2
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)
and directly on axis

λ1 ≈
λu
2γ2

(
1 +

K 2

2

)
for a typical undulator γ ∼ 104, K ∼ 1, and λu ∼ 2cm so we estimate

λ1 ≈
2× 10−2

2 (104)2

(
1 +

(1)2

2

)
= 1.5× 10−10m = 1.5Å

This corresponds to an energy E1 ≈ 8.2keV but as the undulator gap is
widened, Bo decreases, K decreases, λ1 decreases, and E1 increases.
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This corresponds to an energy E1 ≈ 8.2keV but as the undulator gap is
widened, Bo decreases, K decreases, λ1 decreases

, and E1 increases.

C. Segre (IIT) PHYS 570 - Spring 2015 January 22, 2015 18 / 23



The fundamental wavelength

If we assume that β ∼ 1 for these highly relativistic electrons

λ1 ≈
λu
2γ2

(
2

β(1 + β)
+

K 2

2β
− (γθ)2

)
≈ λu

2γ2

(
1 +

K 2

2β
− (γθ)2

)
and directly on axis

λ1 ≈
λu
2γ2

(
1 +

K 2

2

)
for a typical undulator γ ∼ 104, K ∼ 1, and λu ∼ 2cm so we estimate

λ1 ≈
2× 10−2

2 (104)2

(
1 +

(1)2

2

)
= 1.5× 10−10m = 1.5Å
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Higher harmonics

y
x

z

ψ

φ

θ

n

dt

dt ′
= 1− ~n · ~β(t ′)

≈ 1− β
[
αφ+

(
1− θ2

2
− α2

2

)]

Recall that we developed an expres-
sion for the Doppler time compres-
sion of the emission from a moving
electron as a function of the ob-
server angle.

This can be rewritten in terms of
the coordinates in the figure using
the vector of unit length in the ob-
server direction:

~n ≈
{
φ, ψ, (1− θ2/2)

}
~β ≈ β

{
α, 0, (1− α2/2)

}
dt

dt ′
≈ 1−

(
1− 1

2γ2

)(
1 + αφ− θ2

2
− α2

2

)
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Higher harmonics

dt

dt ′
≈ 1−

(
1− 1

2γ2

)(
1 + αφ− θ2

2
− α2

2

)

≈ 1− 1− αφ+
θ2

2
+
α2

2
+

1

2γ2
=

1

2

(
θ2 + α2 +

1

γ2

)
− αφ

This differential equation can be solved, realizing that φ and θ are
constant while α(t ′) varies as the electron moves through the insertion
device, and gives:

ω1t = ωut
′− K 2/4

1 + (γθ)2 + K 2/2
sin (2ωut

′)− 2Kγ

1 + (γθ)2 + K 2/2
φ sin (ωut

′)

ω1 � ωu as expected because of the Doppler compression , but they are
not proportional because of the second and third terms.

The motion of the electron, sinωut
′, is always sinusoidal, but because of

the additional terms, the motion as seen by the observer, sinω1t, is not.
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On-axis undulator characteristics

ω1t = ωut
′ − K 2/4

1 + (γθ)2 + K 2/2
sin (2ωut

′)

Suppose we have K = 1 and θ = 0
(on axis), then

ω1t = ωut
′ +

1

6
sin (2ωut

′)

Plotting sinωut
′ and sinω1t shows

the deviation from sinusoidal.

Similarly, for K = 2 and K =
5, the deviation becomes more pro-
nounced. This shows how higher
harmonics must be present in the ra-
diation as seen by the observer. 0 π/2 π
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Off-axis undulator characteristics

ω1t = ωut
′− K 2/4

1 + (γθ)2 + K 2/2
sin (2ωut

′)− 2Kγ

1 + (γθ)2 + K 2/2
φ sin (ωut

′)
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When K = 2 and θ = φ = 1/γ, we
have

ω1t = ωut
′+

1

4
sin (2ωut

′) + sinωut
′

The last term introduces an antisym-
metric term which skews the func-
tion and leads to the presence of
forbidden harmonics (2nd , 4th, etc)
in the radiation from the undulator
compared to the on-axis radiation.
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Spectral comparison

• Brilliance is 6 orders larger
than a bending magnet

• Both odd and even
harmonics appear

• Harmonics can be tuned in
energy (dashed lines)
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