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• Coherence of x-ray sources
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• Segmented arc approximation
• Off-axis emission
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• Characteristic energy
• Power and flux
• Polarization

• Wiggler & undulator introduction
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Coherence: what is it?

So far, in our discussion, we have assumed that x-rays are
“plane waves”. What does this really mean?

A plane wave has perfect coherence (like a laser).

Real x-rays are not perfect plane waves in two ways:

• they are not perfectly monochromatic

• they do not travel in a perfectly co-linear direction

Because of these imperfections the “coherence length” of an
x-ray beam is finite and we can calculate it.
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Longitudinal coherence

Definition: Distance over which two waves from the same source point
with slightly different wavelengths will completely dephase.

λ

λ−∆λ

P

2L
L

Two waves of slightly different wavelengths
λ and λ−∆λ are emitted from the same
point in space simultaneously.

After a distance LL, the two waves will be
exactly out of phase and after 2LL they will
once again be in phase.

2LL = Nλ
2LL = (N + 1)(λ−∆λ)

��Nλ = ��Nλ+ λ− N∆λ−∆λ

0 = λ−N∆λ−∆λ −→ λ = (N + 1)∆λ −→ N ≈ λ

∆λ
−→ LL =

λ2

2∆λ
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Transverse coherence

Definition: The lateral distance along a wavefront over which there is a
complete dephasing between two waves, of the same wavelength, which
originate from two separate points in space.

λ

D

∆θ

2LT

P

R

∆θ

If we assume that the two waves
originate from points with a small
angular separation ∆θ, The
transverse coherence length is given
by:

λ

2LT
= tan ∆θ ≈ ∆θ

D

R
= tan ∆θ ≈ ∆θ

LT =
λR

2D
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Coherence lengths at the APS

For a typical 3rd generation undulator source, such as at the Advanced
Photon Source the vertical source size is D = 100µm and we are typically
R = 50m away with our experiment. If we assume a typical wavelength of
λ = 1Å, and a monochromator resolution of ∆λ/λ = 10−5 we have for the
vertical direction:

LL =
λ2

2∆λ

=
λ

2
· λ

∆λ
=

1× 10−10

2 · 10−5
= 5µm

LT =
λR

2D

=
(1× 10−10) · 50

2 · (100× 10−6)
= 25µm
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X-ray tube schematics

Fixed anode tube

Rotating anode tube

• low power

• low maintenance

• high power

• high maintenance
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X-ray tube spectrum

• Minimum wavelength
(maximum energy) set
by accelerating
potential

• Bremßtrahlung
radiation provides
smooth background
(charged particle
deceleration)

• Highest intensity at the characteristic fluorescence emission energy of
the anode material

• Unpolarized, incoherent x-rays emitted in all directions from anode
surface, must be collimated with slits
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Synchrotron sources

Bending magnet

• Wide horizontal beam

• Broad spectrum to high
energies

Undulator

• Highly collimated beam

• Highly peaked spectrum
with harmonics
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Bending magnet spectra
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Lower energy sources, such as NSLS have lower peak energy and higher
intensity at the peak.
Higher energy sources, such as APS have higher energy spectrum and are
only off by a factor of 2 intensity at low energy.
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Bending magnet spectra
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Logarithmic scale shows clearly how much more energetic and intense the
bending magnet sources at the 6 GeV and 7 GeV sources are.
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Review of special relativity

v

β =
v

c
γ =

√
1

1− β2

E = γmc2

β =

√
1− 1

γ2
−→ β ≈ 1− 1

2

1

γ2

use binomial expansion since 1/γ2 << 1

Let’s calculate these quantities
for an electron at NSLS and
APS

me = 0.511 MeV/c2

NSLS: E = 1.5 GeV

γ =
1.5× 109

0.511× 106
= 2935

APS: E = 7.0 GeV

γ =
7.0× 109

0.511× 106
= 13700
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“Headlight” effect

In electron rest frame:

emission is symmetric about the
axis of the acceleration vector

In lab frame:

emission is pushed into the direc-
tion of motion of the electron
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Relativistic emission

1/γv

a

the electron is in constant trans-
verse acceleration due to the
Lorentz force from the magnetic
field of the bending magnet

~F = e~v × ~B = me~a

the aperture angle of the radiation
cone is 1/γ

the angular frequency of the elec-
tron in the ring is ωo ≈ 106 and
the cutoff energy for emission is

Emax ≈ γ3ωo

for the APS, with γ ≈ 104 we have

Emax ≈ (104)3 · 106 = 1018
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Flux and brilliance

There are a number of important quantities which are relevant to the
quality of an x-ray source:

photon flux
photon density
beam divergence
energy resolution

source type optics
source type optics
source type optics
source type optics

All these quantities are conveniently taken into account in a measure
called brilliance

brilliance

=
flux [photons/s]

divergence
[
mrad2

]
· source size [mm2] [0.1% bandwidth]
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Computing brilliance

brilliance =
flux [photons/s]

divergence
[
mrad2

]
· source size [mm2] · [0.1% bandwidth]

Energy

F
lu

x

hν

∆hν

The source size depends on the elec-
tron beam size, its excursion, and
any slits which define how much of
the source is visible by the observer.

The divergence is the angular spread
the x-ray beam in the x and y direc-
tions.

α ≈ x/z β ≈ y/z ,
where z is the distance from the
source over which there is a lateral
spread x and y in each direction
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lu

x
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For a specific photon flux distribu-
tion, we would normally integrate to
get the total flux.

But this ignores
that most experiments are only in-
terested in a specific energy hν.

Take a bandwidth ∆hν = hν/1000,
which is about 10 times wider
than the bandwidth of the typical
monochromator.

Compute the integrated photon flux
in that bandwidth.
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Segmented arc approximation

A

B C

v∆t’

c∆t’

(c-v)∆t’

• Approximate the electron’s path
as a series of segments

• At each corner the electron is
accelerated and emits radiation

• Consider the emissions at points
B and C

The electron travels the distance from B to C in ∆t ′ while the light pulse
emitted at B travels further, c∆t ′, in the same time.
The light pulse emitted at C is therefore, a distance (c − v)∆t ′ behind the
pulse emitted at B.
The observer will measure a time between the two pulses:

∆t =
(c − v)∆t ′
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Doppler compression

A

B C

v∆t’

c∆t’

(c-v)∆t’

∆t = (1− β)∆t ′

Since 0 < β < 1 this translates
to a Doppler compression of the
emitted wavelength.

Recall that

β =

√
1− 1

γ2
,

but for synchrotron radiation, γ > 1000, so 1/γ � 1 and we can,
therefore, approximate

β =

(
1− 1

γ2

)1/2

= 1− 1

2

1

γ2
+

1

2

1

2

1

2!

1

γ4
+ · · · ≈ 1− 1

2γ2
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Off-axis emission

A

B C

v cosα ∆t’

c∆t’

α

(c-v cosα)∆t’

Consider the emission from seg-
ment AB, which is not along
the line toward the observer.

While on the AB segment, the
electron moves only a distance
v cosα∆t ′ in the direction of
the BC segment.

The light pulse emitted at A still travels c∆t ′, in the same time.
The light pulse emitted at B is therefore, a distance (c − v cosα)∆t ′

behind the pulse emitted at A. The observer will measure a time between
the two pulses:

∆t =
(c − v cosα)∆t ′

c
=
(

1− v

c
cosα

)
∆t ′ = (1− β cosα)∆t ′
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Corrected Doppler shift

A

B C

v cosα ∆t’

c∆t’

α

(c-v cosα)∆t’

∆t = (1− βcosα)∆t ′

Since α is very small:

cosα ≈ 1− α2

2

and γ is very large, we have

∆t

∆t ′
≈ 1−

(
1− 1

2γ2

)(
1− α2

2

)
= 1− 1 +

α2

2
+

1

2γ2
− α2

2γ2

∆t

∆t ′
≈ α2

2
+

1

2γ2
=

1 + α2γ2

2γ2

called the time compression ratio.
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called the time compression ratio.
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Radiation opening angle

The Doppler shift is defined in terms of the time compression ratio

f

f ′
=

∆t ′

∆t
=

2γ2

1 + α2γ2

-0.001 -0.0005 0 0.0005 0.001

α (radians)

1e+07

1e+08

f 
/ 
f’

γ=14000

γ=3000

• For APS and NSLS
parameters the Doppler blue
shift is between 107 and 109

• The intesection of the
horizontal and vertical dashed
lines indicate where
α = ±1/γ and f /f ′ is one
half of it’s maximum value

• The highest energy emitted
radiation appears within a
cone of half angle 1/γ
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Curved arc emission

1/γ

ω
o

B

ρ

But in the limit, the compression ra-
tio:

∆t

∆t ′

∣∣∣
∆t→0

=
dt

dt ′
= 1− β cosα

so we need to treat the electron path
as a continuous arc.
An electron moving in a constant
magnetic field describes a circular
path

FLorentz = evB a =
dp

dt
=

v 2

ρ

evB = m
v 2

ρ
−→ mv = p = ρeB
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Electron bending radius

1/γ

ω
o

B

ρ

mv = p = ρeB

but the electron is relativistic so we
must correct the momentum to retain
consistent laws of physics p → γmv

γmv = ρeB

at a synchrotron γ � 1 so v ≈ c

γmc ≈ ρeB −→ γmc2 ≈ ρecB

since E = mc2 and c = 2.998× 108m/s2 we have

ρ =
E [J]

ecB[T]
=
E [eV]

cB[T]
= 3.3

E [GeV]

B[T]
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Curved arc emission

1/γ

ω
o

B

ρ

The observer, looking in the plane of the circular
trajectory,

“sees” the electron oscillate over a half
period in a time ∆t (observer’s frame).
The electron, in the laboratory frame, travels this
arc in:

∆t ′ =
(1/γ)ρ

v
=

1

γωo

Because of the Doppler shift, the observer sees the
electron emitting a pulse of radiation of length

∆t ∝ ∆t ′

γ2
=

1

γ3ωo

The Fourier transform of this pulse is the spectrum
of the radiation from the bending magnet.
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Characteristic Energy of a Bending Magnet

The radiation from a bending magnet is defined by it’s characteristic
frequency, ωc which, when the calculation is performed rigorously is:

ωc =
3

2
γ3ωo

but since T is the period of the rotation through the full circle of radius ρ

ωo =
2π

T
= 2π

c

2πρ
=

c

ρ
=

ceB

γmc

we can therefore calculate the characteristic energy Ec

Ec = ~ωc =
3

2
γ3 ceB

γmc
=

3

2
ceB

γ2

mc
=

3eB

2m

E2

(mc2)2

converting to storage ring units

Ec [keV] = 0.665E2[GeV]B[T]
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Bending magnet spectrum

When the radiation pulse time is
Fourier transformed, we obtain
the spectrum of a bending
magnet.

Scaling by the characteristic
energy, gives a universal curve

1.33×1013E2 I

(
ω

ωc

)2

K 2
2/3

(
ω

2ωc

)
where K2/3 is a modified Bessel
function of the second kind.
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