Today's Outline - January 20, 2015

Today's Outline - January 20, 2015

- Coherence of x-ray sources

Today's Outline - January 20, 2015

- Coherence of x-ray sources
- The x-ray tube

Today's Outline - January 20, 2015

- Coherence of x-ray sources
- The x-ray tube
- The synchrotron

Today's Outline - January 20, 2015

- Coherence of x-ray sources
- The x-ray tube
- The synchrotron
- The bending magnet source

Today's Outline - January 20, 2015

- Coherence of x-ray sources
- The x-ray tube
- The synchrotron
- The bending magnet source
- Segmented arc approximation

Today's Outline - January 20, 2015

- Coherence of x-ray sources
- The x-ray tube
- The synchrotron
- The bending magnet source
- Segmented arc approximation
- Off-axis emission

Today's Outline - January 20, 2015

- Coherence of x-ray sources
- The x-ray tube
- The synchrotron
- The bending magnet source
- Segmented arc approximation
- Off-axis emission
- Curved arc emission

Today's Outline - January 20, 2015

- Coherence of x-ray sources
- The x-ray tube
- The synchrotron
- The bending magnet source
- Segmented arc approximation
- Off-axis emission
- Curved arc emission
- Characteristic energy

Today's Outline - January 20, 2015

- Coherence of x-ray sources
- The x-ray tube
- The synchrotron
- The bending magnet source
- Segmented arc approximation
- Off-axis emission
- Curved arc emission
- Characteristic energy
- Power and flux

Today's Outline - January 20, 2015

- Coherence of x-ray sources
- The x-ray tube
- The synchrotron
- The bending magnet source
- Segmented arc approximation
- Off-axis emission
- Curved arc emission
- Characteristic energy
- Power and flux
- Polarization

Today's Outline - January 20, 2015

- Coherence of x-ray sources
- The x-ray tube
- The synchrotron
- The bending magnet source
- Segmented arc approximation
- Off-axis emission
- Curved arc emission
- Characteristic energy
- Power and flux
- Polarization
- Wiggler \& undulator introduction

Today's Outline - January 20, 2015

- Coherence of x-ray sources
- The x-ray tube
- The synchrotron
- The bending magnet source
- Segmented arc approximation
- Off-axis emission
- Curved arc emission
- Characteristic energy
- Power and flux
- Polarization
- Wiggler \& undulator introduction

Homework Assignment \#01:
Chapter Chapter 2: 2,3,5,6,8
due Thursday, January 29, 2015

Coherence: what is it?

So far, in our discussion, we have assumed that x-rays are "plane waves". What does this really mean?

Coherence: what is it?

So far, in our discussion, we have assumed that x-rays are "plane waves". What does this really mean?

A plane wave has perfect coherence (like a laser).

Coherence: what is it?

So far, in our discussion, we have assumed that x-rays are "plane waves". What does this really mean?

A plane wave has perfect coherence (like a laser).
Real x-rays are not perfect plane waves in two ways:

Coherence: what is it?

So far, in our discussion, we have assumed that x-rays are "plane waves". What does this really mean?

A plane wave has perfect coherence (like a laser).
Real x-rays are not perfect plane waves in two ways:

- they are not perfectly monochromatic

Coherence: what is it?

So far, in our discussion, we have assumed that x-rays are "plane waves". What does this really mean?

A plane wave has perfect coherence (like a laser).
Real x-rays are not perfect plane waves in two ways:

- they are not perfectly monochromatic
- they do not travel in a perfectly co-linear direction

Coherence: what is it?

So far, in our discussion, we have assumed that x-rays are "plane waves". What does this really mean?

A plane wave has perfect coherence (like a laser).
Real x-rays are not perfect plane waves in two ways:

- they are not perfectly monochromatic
- they do not travel in a perfectly co-linear direction

Because of these imperfections the "coherence length" of an x-ray beam is finite and we can calculate it.

Longitudinal coherence

Definition: Distance over which two waves from the same source point with slightly different wavelengths will completely dephase.

Longitudinal coherence

Definition: Distance over which two waves from the same source point with slightly different wavelengths will completely dephase.

Two waves of slightly different wavelengths
 λ and $\lambda-\Delta \lambda$ are emitted from the same point in space simultaneously.

Longitudinal coherence

Definition: Distance over which two waves from the same source point with slightly different wavelengths will completely dephase.

Two waves of slightly different wavelengths
 λ and $\lambda-\Delta \lambda$ are emitted from the same point in space simultaneously.
After a distance L_{L}, the two waves will be exactly out of phase and after $2 L_{L}$ they will once again be in phase.

Longitudinal coherence

Definition: Distance over which two waves from the same source point with slightly different wavelengths will completely dephase.

Two waves of slightly different wavelengths
 λ and $\lambda-\Delta \lambda$ are emitted from the same point in space simultaneously.
After a distance L_{L}, the two waves will be exactly out of phase and after $2 L_{L}$ they will once again be in phase.

$$
2 L_{L}=N \lambda
$$

Longitudinal coherence

Definition: Distance over which two waves from the same source point with slightly different wavelengths will completely dephase.

Two waves of slightly different wavelengths
 λ and $\lambda-\Delta \lambda$ are emitted from the same point in space simultaneously.
After a distance L_{L}, the two waves will be exactly out of phase and after $2 L_{L}$ they will once again be in phase.

$$
\begin{gathered}
2 L_{L}=N \lambda \\
2 L_{L}=(N+1)(\lambda-\Delta \lambda)
\end{gathered}
$$

Longitudinal coherence

Definition: Distance over which two waves from the same source point with slightly different wavelengths will completely dephase.

Two waves of slightly different wavelengths
 λ and $\lambda-\Delta \lambda$ are emitted from the same point in space simultaneously.
After a distance L_{L}, the two waves will be exactly out of phase and after $2 L_{L}$ they will once again be in phase.

$$
\begin{gathered}
2 L_{L}=N \lambda \\
2 L_{L}=(N+1)(\lambda-\Delta \lambda)
\end{gathered}
$$

$$
N \lambda=N \lambda+\lambda-N \Delta \lambda-\Delta \lambda
$$

Longitudinal coherence

Definition: Distance over which two waves from the same source point with slightly different wavelengths will completely dephase.

Two waves of slightly different wavelengths
 λ and $\lambda-\Delta \lambda$ are emitted from the same point in space simultaneously.
After a distance L_{L}, the two waves will be exactly out of phase and after $2 L_{L}$ they will once again be in phase.

$$
\begin{gathered}
2 L_{L}=N \lambda \\
2 L_{L}=(N+1)(\lambda-\Delta \lambda)
\end{gathered}
$$

$$
A \not A X=A X+\lambda-N \Delta \lambda-\Delta \lambda
$$

Longitudinal coherence

Definition: Distance over which two waves from the same source point with slightly different wavelengths will completely dephase.

Two waves of slightly different wavelengths
 λ and $\lambda-\Delta \lambda$ are emitted from the same point in space simultaneously.
After a distance L_{L}, the two waves will be exactly out of phase and after $2 L_{L}$ they will once again be in phase.

$$
\begin{gathered}
2 L_{L}=N \lambda \\
2 L_{L}=(N+1)(\lambda-\Delta \lambda)
\end{gathered}
$$

$$
A X X=A X X+\lambda-N \Delta \lambda-\Delta \lambda
$$

$$
0=\lambda-N \Delta \lambda-\Delta \lambda
$$

Longitudinal coherence

Definition: Distance over which two waves from the same source point with slightly different wavelengths will completely dephase.

Two waves of slightly different wavelengths
 λ and $\lambda-\Delta \lambda$ are emitted from the same point in space simultaneously.
After a distance L_{L}, the two waves will be exactly out of phase and after $2 L_{L}$ they will once again be in phase.

$$
\begin{gathered}
2 L_{L}=N \lambda \\
2 L_{L}=(N+1)(\lambda-\Delta \lambda)
\end{gathered}
$$

$$
A X X=A X+\lambda-N \Delta \lambda-\Delta \lambda
$$

$$
0=\lambda-N \Delta \lambda-\Delta \lambda \longrightarrow \lambda=(N+1) \Delta \lambda
$$

Longitudinal coherence

Definition: Distance over which two waves from the same source point with slightly different wavelengths will completely dephase.

Two waves of slightly different wavelengths
 λ and $\lambda-\Delta \lambda$ are emitted from the same point in space simultaneously.
After a distance L_{L}, the two waves will be exactly out of phase and after $2 L_{L}$ they will once again be in phase.

$$
\begin{gathered}
2 L_{L}=N \lambda \\
2 L_{L}=(N+1)(\lambda-\Delta \lambda)
\end{gathered}
$$

$$
A \not A X=A X X+\lambda-N \Delta \lambda-\Delta \lambda
$$

$0=\lambda-N \Delta \lambda-\Delta \lambda \longrightarrow \lambda=(N+1) \Delta \lambda \longrightarrow N \approx \frac{\lambda}{\Delta \lambda}$

Longitudinal coherence

Definition: Distance over which two waves from the same source point with slightly different wavelengths will completely dephase.

Two waves of slightly different wavelengths
 λ and $\lambda-\Delta \lambda$ are emitted from the same point in space simultaneously.
After a distance L_{L}, the two waves will be exactly out of phase and after $2 L_{L}$ they will once again be in phase.

$$
\begin{gathered}
2 L_{L}=N \lambda \\
2 L_{L}=(N+1)(\lambda-\Delta \lambda)
\end{gathered}
$$

$$
A X X=A X+\lambda-N \Delta \lambda-\Delta \lambda
$$

$0=\lambda-N \Delta \lambda-\Delta \lambda \longrightarrow \lambda=(N+1) \Delta \lambda \longrightarrow N \approx \frac{\lambda}{\Delta \lambda} \longrightarrow L_{L}=\frac{\lambda^{2}}{2 \Delta \lambda}$

Transverse coherence

Definition: The lateral distance along a wavefront over which there is a complete dephasing between two waves, of the same wavelength, which originate from two separate points in space.

Transverse coherence

Definition: The lateral distance along a wavefront over which there is a complete dephasing between two waves, of the same wavelength, which originate from two separate points in space.

If we assume that the two waves originate from points with a small angular separation $\Delta \theta$, The transverse coherence length is given by:

Transverse coherence

Definition: The lateral distance along a wavefront over which there is a complete dephasing between two waves, of the same wavelength, which originate from two separate points in space.

If we assume that the two waves originate from points with a small angular separation $\Delta \theta$, The transverse coherence length is given by:

$$
\frac{\lambda}{2 L_{T}}=\tan \Delta \theta \quad \frac{D}{R}=\tan \Delta \theta
$$

Transverse coherence

Definition: The lateral distance along a wavefront over which there is a complete dephasing between two waves, of the same wavelength, which originate from two separate points in space.

$$
\frac{\lambda}{2 L_{T}}=\tan \Delta \theta \approx \Delta \theta
$$

If we assume that the two waves originate from points with a small angular separation $\Delta \theta$, The transverse coherence length is given by:

$$
\frac{D}{R}=\tan \Delta \theta \approx \Delta \theta
$$

Transverse coherence

Definition: The lateral distance along a wavefront over which there is a complete dephasing between two waves, of the same wavelength, which originate from two separate points in space.

If we assume that the two waves originate from points with a small angular separation $\Delta \theta$, The transverse coherence length is given by:

$$
\frac{\lambda}{2 L_{T}}=\tan \Delta \theta \approx \Delta \theta \quad \frac{D}{R}=\tan \Delta \theta \approx \Delta \theta
$$

$$
L_{T}=\frac{\lambda R}{2 D}
$$

Coherence lengths at the APS

For a typical $3^{\text {rd }}$ generation undulator source, such as at the Advanced Photon Source the vertical source size is $D=100 \mu \mathrm{~m}$ and we are typically $R=50 \mathrm{~m}$ away with our experiment. If we assume a typical wavelength of $\lambda=1 \AA$, and a monochromator resolution of $\Delta \lambda / \lambda=10^{-5}$ we have for the vertical direction:

Coherence lengths at the APS

For a typical $3^{\text {rd }}$ generation undulator source, such as at the Advanced Photon Source the vertical source size is $D=100 \mu \mathrm{~m}$ and we are typically $R=50 \mathrm{~m}$ away with our experiment. If we assume a typical wavelength of $\lambda=1 \AA$, and a monochromator resolution of $\Delta \lambda / \lambda=10^{-5}$ we have for the vertical direction:

$$
L_{L}=\frac{\lambda^{2}}{2 \Delta \lambda}
$$

Coherence lengths at the APS

For a typical $3^{\text {rd }}$ generation undulator source, such as at the Advanced Photon Source the vertical source size is $D=100 \mu \mathrm{~m}$ and we are typically $R=50 \mathrm{~m}$ away with our experiment. If we assume a typical wavelength of $\lambda=1 \AA$, and a monochromator resolution of $\Delta \lambda / \lambda=10^{-5}$ we have for the vertical direction:

$$
L_{L}=\frac{\lambda^{2}}{2 \Delta \lambda}=\frac{\lambda}{2} \cdot \frac{\lambda}{\Delta \lambda}
$$

Coherence lengths at the APS

For a typical $3^{\text {rd }}$ generation undulator source, such as at the Advanced Photon Source the vertical source size is $D=100 \mu \mathrm{~m}$ and we are typically $R=50 \mathrm{~m}$ away with our experiment. If we assume a typical wavelength of $\lambda=1 \AA$, and a monochromator resolution of $\Delta \lambda / \lambda=10^{-5}$ we have for the vertical direction:

$$
L_{L}=\frac{\lambda^{2}}{2 \Delta \lambda}=\frac{\lambda}{2} \cdot \frac{\lambda}{\Delta \lambda}=\frac{1 \times 10^{-10}}{2 \cdot 10^{-5}}
$$

Coherence lengths at the APS

For a typical $3^{\text {rd }}$ generation undulator source, such as at the Advanced Photon Source the vertical source size is $D=100 \mu \mathrm{~m}$ and we are typically $R=50 \mathrm{~m}$ away with our experiment. If we assume a typical wavelength of $\lambda=1 \AA$, and a monochromator resolution of $\Delta \lambda / \lambda=10^{-5}$ we have for the vertical direction:

$$
L_{L}=\frac{\lambda^{2}}{2 \Delta \lambda}=\frac{\lambda}{2} \cdot \frac{\lambda}{\Delta \lambda}=\frac{1 \times 10^{-10}}{2 \cdot 10^{-5}}=5 \mu \mathrm{~m}
$$

Coherence lengths at the APS

For a typical $3^{\text {rd }}$ generation undulator source, such as at the Advanced Photon Source the vertical source size is $D=100 \mu \mathrm{~m}$ and we are typically $R=50 \mathrm{~m}$ away with our experiment. If we assume a typical wavelength of $\lambda=1 \AA$, and a monochromator resolution of $\Delta \lambda / \lambda=10^{-5}$ we have for the vertical direction:

$$
\begin{aligned}
& L_{L}=\frac{\lambda^{2}}{2 \Delta \lambda}=\frac{\lambda}{2} \cdot \frac{\lambda}{\Delta \lambda}=\frac{1 \times 10^{-10}}{2 \cdot 10^{-5}}=5 \mu \mathrm{~m} \\
& L_{T}=\frac{\lambda R}{2 D}
\end{aligned}
$$

Coherence lengths at the APS

For a typical $3^{\text {rd }}$ generation undulator source, such as at the Advanced Photon Source the vertical source size is $D=100 \mu \mathrm{~m}$ and we are typically $R=50 \mathrm{~m}$ away with our experiment. If we assume a typical wavelength of $\lambda=1 \AA$, and a monochromator resolution of $\Delta \lambda / \lambda=10^{-5}$ we have for the vertical direction:

$$
\begin{aligned}
& L_{L}=\frac{\lambda^{2}}{2 \Delta \lambda}=\frac{\lambda}{2} \cdot \frac{\lambda}{\Delta \lambda}=\frac{1 \times 10^{-10}}{2 \cdot 10^{-5}}=5 \mu \mathrm{~m} \\
& L_{T}=\frac{\lambda R}{2 D}=\frac{\left(1 \times 10^{-10}\right) \cdot 50}{2 \cdot\left(100 \times 10^{-6}\right)}
\end{aligned}
$$

Coherence lengths at the APS

For a typical $3^{\text {rd }}$ generation undulator source, such as at the Advanced Photon Source the vertical source size is $D=100 \mu \mathrm{~m}$ and we are typically $R=50 \mathrm{~m}$ away with our experiment. If we assume a typical wavelength of $\lambda=1 \AA$, and a monochromator resolution of $\Delta \lambda / \lambda=10^{-5}$ we have for the vertical direction:

$$
\begin{gathered}
L_{L}=\frac{\lambda^{2}}{2 \Delta \lambda}=\frac{\lambda}{2} \cdot \frac{\lambda}{\Delta \lambda}=\frac{1 \times 10^{-10}}{2 \cdot 10^{-5}}=5 \mu \mathrm{~m} \\
L_{T}=\frac{\lambda R}{2 D}=\frac{\left(1 \times 10^{-10}\right) \cdot 50}{2 \cdot\left(100 \times 10^{-6}\right)}=25 \mu \mathrm{~m}
\end{gathered}
$$

X-ray tube schematics

Fixed anode tube

- low power
- low maintenance

X-ray tube schematics

Fixed anode tube

- low power
- low maintenance

Rotating anode tube

- high power
- high maintenance

X-ray tube spectrum

Mini-X Output X-Ray Spectrum: Ag Target @ 40 kV

X-ray tube spectrum

Mini-X Output X-Ray Spectrum: Ag Target @ 40 kV

- Minimum wavelength (maximum energy) set by accelerating potential

X-ray tube spectrum

Mini-X Output X-Ray Spectrum: Ag Target @ 40 kV

- Minimum wavelength (maximum energy) set by accelerating potential
- Bremßtrahlung radiation provides smooth background (charged particle deceleration)

X-ray tube spectrum

Mini-X Output X-Ray Spectrum: Ag Target @ 40 kV

- Minimum wavelength (maximum energy) set by accelerating potential
- Bremßtrahlung radiation provides smooth background (charged particle deceleration)
- Highest intensity at the characteristic fluorescence emission energy of the anode material

X-ray tube spectrum

Mini-X Output X-Ray Spectrum: Ag Target @ 40 kV

- Minimum wavelength (maximum energy) set by accelerating potential
- Bremßtrahlung radiation provides smooth background (charged particle deceleration)
- Highest intensity at the characteristic fluorescence emission energy of the anode material
- Unpolarized, incoherent x-rays emitted in all directions from anode surface, must be collimated with slits

Synchrotron sources

Bending magnet

Synchrotron sources

Bending magnet

- Wide horizontal beam

Synchrotron sources

Bending magnet

- Wide horizontal beam
- Broad spectrum to high energies

Synchrotron sources

Bending magnet

Undulator

- Wide horizontal beam
- Broad spectrum to high energies

Synchrotron sources

Bending magnet

- Wide horizontal beam
- Broad spectrum to high energies

Undulator

- Highly collimated beam

Synchrotron sources

Bending magnet

- Wide horizontal beam
- Broad spectrum to high energies

Undulator

- Highly collimated beam
- Highly peaked spectrum with harmonics

Bending magnet spectra

Bending magnet spectra

Lower energy sources, such as NSLS have lower peak energy and higher intensity at the peak.

Bending magnet spectra

Lower energy sources, such as NSLS have lower peak energy and higher intensity at the peak.
Higher energy sources, such as APS have higher energy spectrum and are only off by a factor of 2 intensity at low energy.

Bending magnet spectra

Bending magnet spectra

Logarithmic scale shows clearly how much more energetic and intense the bending magnet sources at the 6 GeV and 7 GeV sources are.

Review of special relativity

\vec{V}

Review of special relativity

\vec{V}

$$
\beta=\frac{v}{c}
$$

Review of special relativity

\vec{V}

$$
\beta=\frac{v}{c} \quad \gamma=\sqrt{\frac{1}{1-\beta^{2}}}
$$

Review of special relativity

\vec{V}

$$
\begin{gathered}
\beta=\frac{v}{c} \quad \gamma=\sqrt{\frac{1}{1-\beta^{2}}} \\
E=\gamma m c^{2}
\end{gathered}
$$

Review of special relativity

$$
\begin{gathered}
\beta=\frac{v}{c} \quad \gamma=\sqrt{\frac{1}{1-\beta^{2}}} \\
E=\gamma m c^{2} \\
\beta=\sqrt{1-\frac{1}{\gamma^{2}}}
\end{gathered}
$$

Review of special relativity

$$
\begin{gathered}
\beta=\frac{v}{c} \quad \gamma=\sqrt{\frac{1}{1-\beta^{2}}} \\
E=\gamma m c^{2} \\
\beta=\sqrt{1-\frac{1}{\gamma^{2}}} \longrightarrow \beta \approx 1-\frac{1}{2} \frac{1}{\gamma^{2}}
\end{gathered}
$$

use binomial expansion since $1 / \gamma^{2} \ll 1$

Review of special relativity

Let's calculate these quantities for an electron at NSLS and APS

$$
\begin{gathered}
\beta=\frac{v}{c} \quad \gamma=\sqrt{\frac{1}{1-\beta^{2}}} \\
E=\gamma m c^{2} \\
\beta=\sqrt{1-\frac{1}{\gamma^{2}}} \longrightarrow \beta \approx 1-\frac{1}{2} \frac{1}{\gamma^{2}}
\end{gathered}
$$

use binomial expansion since $1 / \gamma^{2} \ll 1$

Review of special relativity

Let's calculate these quantities for an electron at NSLS and APS

$$
m_{e}=0.511 \mathrm{MeV} / \mathrm{c}^{2}
$$

$$
\beta=\sqrt{1-\frac{1}{\gamma^{2}}} \longrightarrow \beta \approx 1-\frac{1}{2} \frac{1}{\gamma^{2}}
$$

use binomial expansion since $1 / \gamma^{2} \ll 1$

Review of special relativity

Let's calculate these quantities for an electron at NSLS and APS

$$
\begin{array}{rc}
\beta=\frac{v}{c} \quad \gamma=\sqrt{\frac{1}{1-\beta^{2}}} & m_{e}=0.511 \mathrm{MeV} / \mathrm{c}^{2} \\
E=\gamma m c^{2} & \\
& \\
& \gamma=\frac{1.5 \times 10^{9}}{0.511 \times 10^{6}}=2935
\end{array}
$$

$$
\beta=\sqrt{1-\frac{1}{\gamma^{2}}} \longrightarrow \beta \approx 1-\frac{1}{2} \frac{1}{\gamma^{2}}
$$

use binomial expansion since $1 / \gamma^{2} \ll 1$

Review of special relativity

Let's calculate these quantities for an electron at NSLS and APS

$$
\beta=\frac{v}{c} \quad \gamma=\sqrt{\frac{1}{1-\beta^{2}}}
$$

$$
m_{e}=0.511 \mathrm{MeV} / \mathrm{c}^{2}
$$

$$
E=\gamma m c^{2}
$$

$$
\beta=\sqrt{1-\frac{1}{\gamma^{2}}} \longrightarrow \beta \approx 1-\frac{1}{2} \frac{1}{\gamma^{2}}
$$

use binomial expansion since $1 / \gamma^{2} \ll 1$

"Headlight" effect

In electron rest frame:

emission is symmetric about the axis of the acceleration vector

"Headlight" effect

In electron rest frame:

emission is symmetric about the axis of the acceleration vector

In lab frame:

emission is pushed into the direction of motion of the electron

Relativistic emission

the electron is in constant transverse acceleration due to the Lorentz force from the magnetic field of the bending magnet

$$
\vec{F}=e \vec{v} \times \vec{B}=m_{e} \vec{a}
$$

Relativistic emission

the electron is in constant transverse acceleration due to the Lorentz force from the magnetic field of the bending magnet

$$
\vec{F}=e \vec{v} \times \vec{B}=m_{e} \vec{a}
$$

the aperture angle of the radiation cone is $1 / \gamma$

Relativistic emission

the electron is in constant transverse acceleration due to the Lorentz force from the magnetic field of the bending magnet

$$
\vec{F}=e \vec{v} \times \vec{B}=m_{e} \vec{a}
$$

the aperture angle of the radiation cone is $1 / \gamma$
the angular frequency of the electron in the ring is $\omega_{o} \approx 10^{6}$

Relativistic emission

the electron is in constant transverse acceleration due to the Lorentz force from the magnetic field of the bending magnet

$$
\vec{F}=e \vec{v} \times \vec{B}=m_{e} \vec{a}
$$

the aperture angle of the radiation cone is $1 / \gamma$
the angular frequency of the electron in the ring is $\omega_{0} \approx 10^{6}$ and the cutoff energy for emission is

$$
E_{\max } \approx \gamma^{3} \omega_{0}
$$

Relativistic emission

the electron is in constant transverse acceleration due to the Lorentz force from the magnetic field of the bending magnet

$$
\vec{F}=e \vec{v} \times \vec{B}=m_{e} \vec{a}
$$

the aperture angle of the radiation cone is $1 / \gamma$
the angular frequency of the electron in the ring is $\omega_{0} \approx 10^{6}$ and the cutoff energy for emission is

$$
E_{\max } \approx \gamma^{3} \omega_{0}
$$

for the APS, with $\gamma \approx 10^{4}$ we have

$$
E_{\max } \approx\left(10^{4}\right)^{3} \cdot 10^{6}=10^{18}
$$

Flux and brilliance

There are a number of important quantities which are relevant to the quality of an x-ray source:

Flux and brilliance

There are a number of important quantities which are relevant to the quality of an x-ray source:
photon flux

Flux and brilliance

There are a number of important quantities which are relevant to the quality of an x-ray source:
photon flux
photon density

Flux and brilliance

There are a number of important quantities which are relevant to the quality of an x-ray source:
photon flux
photon density
beam divergence

Flux and brilliance

There are a number of important quantities which are relevant to the quality of an x-ray source:
photon flux
photon density
beam divergence
energy resolution

Flux and brilliance

There are a number of important quantities which are relevant to the quality of an x-ray source:
photon flux
photon density
beam divergence
energy resolution
source type
source type
source type

Flux and brilliance

There are a number of important quantities which are relevant to the quality of an x-ray source:
photon flux
photon density
beam divergence
energy resolution
source type optics
source type optics
source type optics
optics

Flux and brilliance

There are a number of important quantities which are relevant to the quality of an x-ray source:
photon flux
photon density
beam divergence
energy resolution
source type optics
source type optics
source type optics
optics

All these quantities are conveniently taken into account in a measure called brilliance

Flux and brilliance

There are a number of important quantities which are relevant to the quality of an x-ray source:
photon flux
photon density
beam divergence
energy resolution
source type optics
source type optics
source type optics
optics

All these quantities are conveniently taken into account in a measure called brilliance

brilliance

Flux and brilliance

There are a number of important quantities which are relevant to the quality of an x-ray source:
photon flux
photon density
beam divergence
energy resolution
source type optics
source type optics
source type optics
optics

All these quantities are conveniently taken into account in a measure called brilliance

$$
\text { brilliance }=\xrightarrow{\text { flux }[\text { photons } / \mathrm{s}]}
$$

Flux and brilliance

There are a number of important quantities which are relevant to the quality of an x-ray source:
photon flux
photon density
beam divergence
energy resolution
source type optics
source type optics
source type optics
optics

All these quantities are conveniently taken into account in a measure called brilliance

$$
\text { brilliance }=\frac{\text { flux }[\text { photons } / \mathrm{s}]}{\text { divergence }\left[\mathrm{mrad}^{2}\right]}
$$

Flux and brilliance

There are a number of important quantities which are relevant to the quality of an x-ray source:
photon flux
photon density
beam divergence
energy resolution
source type optics
source type optics
source type optics
optics

All these quantities are conveniently taken into account in a measure called brilliance

$$
\text { brilliance }=\frac{\text { flux }[\text { photons } / \mathrm{s}]}{\text { divergence }\left[\mathrm{mrad}^{2}\right] \cdot \text { source size }\left[\mathrm{mm}^{2}\right]}
$$

Flux and brilliance

There are a number of important quantities which are relevant to the quality of an x-ray source:
photon flux
photon density
beam divergence
energy resolution
source type optics
source type optics
source type optics
optics

All these quantities are conveniently taken into account in a measure called brilliance

$$
\text { brilliance }=\frac{\text { flux }[\text { photons } / \mathrm{s}]}{\text { divergence }\left[\mathrm{mrad}^{2}\right] \cdot \text { source size }\left[\mathrm{mm}^{2}\right][0.1 \% \text { bandwidth }]}
$$

Computing brilliance

$$
\text { brilliance }=\frac{\text { flux }[\text { photons } / \mathrm{s}]}{\text { divergence }\left[\mathrm{mrad}^{2}\right] \cdot \text { source size }\left[\mathrm{mm}^{2}\right] \cdot[0.1 \% \text { bandwidth }]}
$$

Computing brilliance

$$
\text { brilliance }=\frac{\text { flux }[\text { photons } / \mathrm{s}]}{\text { divergence }\left[\mathrm{mrad}^{2}\right] \cdot \text { source size }\left[\mathrm{mm}^{2}\right] \cdot[0.1 \% \text { bandwidth }]}
$$

For a specific photon flux distribution, we would normally integrate to get the total flux.

Energy

Computing brilliance

$$
\text { brilliance }=\frac{\text { flux }[\text { photons } / \mathrm{s}]}{\text { divergence }\left[\mathrm{mrad}^{2}\right] \cdot \text { source size }\left[\mathrm{mm}^{2}\right] \cdot[0.1 \% \text { bandwidth }]}
$$

For a specific photon flux distribution, we would normally integrate to get the total flux. But this ignores that most experiments are only interested in a specific energy $h \nu$.

Energy

Computing brilliance

$$
\text { brilliance }=\frac{\text { flux }[\text { photons } / \mathrm{s}]}{\text { divergence }\left[\mathrm{mrad}^{2}\right] \cdot \text { source size }\left[\mathrm{mm}^{2}\right] \cdot[0.1 \% \text { bandwidth }]}
$$

For a specific photon flux distribution, we would normally integrate to get the total flux. But this ignores that most experiments are only interested in a specific energy $h \nu$.
Take a bandwidth $\Delta h \nu=h \nu / 1000$, which is about 10 times wider than the bandwidth of the typical monochromator.

Energy

Computing brilliance

$$
\text { brilliance }=\frac{\text { flux }[\text { photons } / \mathrm{s}]}{\text { divergence }\left[\mathrm{mrad}^{2}\right] \cdot \text { source size }\left[\mathrm{mm}^{2}\right] \cdot[0.1 \% \text { bandwidth }]}
$$

Energy

For a specific photon flux distribution, we would normally integrate to get the total flux. But this ignores that most experiments are only interested in a specific energy $h \nu$.
Take a bandwidth $\Delta h \nu=h \nu / 1000$, which is about 10 times wider than the bandwidth of the typical monochromator.
Compute the integrated photon flux in that bandwidth.

Computing brilliance

$$
\text { brilliance }=\frac{\text { flux }[\text { photons } / \mathrm{s}]}{\text { divergence }\left[\mathrm{mrad}^{2}\right] \cdot \text { source size }\left[\mathrm{mm}^{2}\right] \cdot[0.1 \% \text { bandwidth }]}
$$

The source size depends on the electron beam size, its excursion, and any slits which define how much of the source is visible by the observer.

Energy

Computing brilliance

$$
\text { brilliance }=\frac{\text { flux }[\text { photons } / \mathrm{s}]}{\text { divergence }\left[\mathrm{mrad}^{2}\right] \cdot \text { source size }\left[\mathrm{mm}^{2}\right] \cdot[0.1 \% \text { bandwidth }]}
$$

The source size depends on the electron beam size, its excursion, and any slits which define how much of the source is visible by the observer.
The divergence is the angular spread the x-ray beam in the x and y directions.

Energy

Computing brilliance

$$
\text { brilliance }=\frac{\text { flux }[\text { photons } / \mathrm{s}]}{\text { divergence }\left[\mathrm{mrad}^{2}\right] \cdot \text { source size }\left[\mathrm{mm}^{2}\right] \cdot[0.1 \% \text { bandwidth }]}
$$

Energy

The source size depends on the electron beam size, its excursion, and any slits which define how much of the source is visible by the observer.

The divergence is the angular spread the x-ray beam in the x and y directions.

$$
\alpha \approx x / z \quad \beta \approx y / z
$$

where z is the distance from the source over which there is a lateral spread x and y in each direction

Segmented arc approximation

Segmented arc approximation

- Approximate the electron's path as a series of segments

Segmented arc approximation

- Approximate the electron's path as a series of segments
- At each corner the electron is accelerated and emits radiation

Segmented arc approximation

- Approximate the electron's path as a series of segments
- At each corner the electron is accelerated and emits radiation
- Consider the emissions at points B and C

Segmented arc approximation

- Approximate the electron's path as a series of segments
- At each corner the electron is accelerated and emits radiation
- Consider the emissions at points B and C

The electron travels the distance from B to C in Δt^{\prime}

Segmented arc approximation

- Approximate the electron's path as a series of segments
- At each corner the electron is accelerated and emits radiation
- Consider the emissions at points B and C

The electron travels the distance from B to C in Δt^{\prime} while the light pulse emitted at B travels further, $c \Delta t^{\prime}$, in the same time.

Segmented arc approximation

- Approximate the electron's path as a series of segments
- At each corner the electron is accelerated and emits radiation
- Consider the emissions at points B and C

The electron travels the distance from B to C in Δt^{\prime} while the light pulse emitted at B travels further, $c \Delta t^{\prime}$, in the same time.
The light pulse emitted at C is therefore, a distance $(c-v) \Delta t^{\prime}$ behind the pulse emitted at B.

Segmented arc approximation

- Approximate the electron's path as a series of segments
- At each corner the electron is accelerated and emits radiation
- Consider the emissions at points B and C

The electron travels the distance from B to C in Δt^{\prime} while the light pulse emitted at B travels further, $c \Delta t^{\prime}$, in the same time.
The light pulse emitted at C is therefore, a distance $(c-v) \Delta t^{\prime}$ behind the pulse emitted at B.
The observer will measure a time between the two pulses:

Segmented arc approximation

- Approximate the electron's path as a series of segments
- At each corner the electron is accelerated and emits radiation
- Consider the emissions at points B and C

The electron travels the distance from B to C in Δt^{\prime} while the light pulse emitted at B travels further, $c \Delta t^{\prime}$, in the same time.
The light pulse emitted at C is therefore, a distance $(c-v) \Delta t^{\prime}$ behind the pulse emitted at B.
The observer will measure a time between the two pulses:

$$
\Delta t=\frac{(c-v) \Delta t^{\prime}}{c}
$$

Segmented arc approximation

- Approximate the electron's path as a series of segments
- At each corner the electron is accelerated and emits radiation
- Consider the emissions at points B and C

The electron travels the distance from B to C in Δt^{\prime} while the light pulse emitted at B travels further, $c \Delta t^{\prime}$, in the same time.
The light pulse emitted at C is therefore, a distance $(c-v) \Delta t^{\prime}$ behind the pulse emitted at B.
The observer will measure a time between the two pulses:

$$
\Delta t=\frac{(c-v) \Delta t^{\prime}}{c}=\left(1-\frac{v}{c}\right) \Delta t^{\prime}
$$

Segmented arc approximation

- Approximate the electron's path as a series of segments
- At each corner the electron is accelerated and emits radiation
- Consider the emissions at points B and C

The electron travels the distance from B to C in Δt^{\prime} while the light pulse emitted at B travels further, $c \Delta t^{\prime}$, in the same time.
The light pulse emitted at C is therefore, a distance $(c-v) \Delta t^{\prime}$ behind the pulse emitted at B.
The observer will measure a time between the two pulses:

$$
\Delta t=\frac{(c-v) \Delta t^{\prime}}{c}=\left(1-\frac{v}{c}\right) \Delta t^{\prime}=(1-\beta) \Delta t^{\prime}
$$

Doppler compression

Doppler compression

$$
\Delta t=(1-\beta) \Delta t^{\prime}
$$

Since $0<\beta<1$ this translates to a Doppler compression of the emitted wavelength.

Doppler compression

$$
\Delta t=(1-\beta) \Delta t^{\prime}
$$

> Since $0<\beta<1$ this translates to a Doppler compression of the emitted wavelength.

Recall that

$$
\beta=\sqrt{1-\frac{1}{\gamma^{2}}}
$$

but for synchrotron radiation, $\gamma>1000$,

Doppler compression

$$
\Delta t=(1-\beta) \Delta t^{\prime}
$$

> Since $0<\beta<1$ this translates to a Doppler compression of the emitted wavelength.

Recall that

$$
\beta=\sqrt{1-\frac{1}{\gamma^{2}}}
$$

but for synchrotron radiation, $\gamma>1000$, so $1 / \gamma \ll 1$

Doppler compression

$$
\Delta t=(1-\beta) \Delta t^{\prime}
$$

Since $0<\beta<1$ this translates to a Doppler compression of the emitted wavelength.

Recall that

$$
\beta=\sqrt{1-\frac{1}{\gamma^{2}}}
$$

but for synchrotron radiation, $\gamma>1000$, so $1 / \gamma \ll 1$ and we can, therefore, approximate

$$
\beta=\left(1-\frac{1}{\gamma^{2}}\right)^{1 / 2}
$$

Doppler compression

$$
\Delta t=(1-\beta) \Delta t^{\prime}
$$

Since $0<\beta<1$ this translates to a Doppler compression of the emitted wavelength.

Recall that

$$
\beta=\sqrt{1-\frac{1}{\gamma^{2}}}
$$

but for synchrotron radiation, $\gamma>1000$, so $1 / \gamma \ll 1$ and we can, therefore, approximate

$$
\beta=\left(1-\frac{1}{\gamma^{2}}\right)^{1 / 2}=1-\frac{1}{2} \frac{1}{\gamma^{2}}+\frac{1}{2} \frac{1}{2} \frac{1}{2!} \frac{1}{\gamma^{4}}+\cdots
$$

Doppler compression

$$
\Delta t=(1-\beta) \Delta t^{\prime}
$$

Since $0<\beta<1$ this translates to a Doppler compression of the emitted wavelength.

Recall that

$$
\beta=\sqrt{1-\frac{1}{\gamma^{2}}}
$$

but for synchrotron radiation, $\gamma>1000$, so $1 / \gamma \ll 1$ and we can, therefore, approximate

$$
\beta=\left(1-\frac{1}{\gamma^{2}}\right)^{1 / 2}=1-\frac{1}{2} \frac{1}{\gamma^{2}}+\frac{1}{2} \frac{1}{2} \frac{1}{2!} \frac{1}{\gamma^{4}}+\cdots \approx 1-\frac{1}{2 \gamma^{2}}
$$

Off-axis emission

Consider the emission from segment $A B$, which is not along the line toward the observer.

Off-axis emission

Consider the emission from segment $A B$, which is not along the line toward the observer. While on the $A B$ segment, the electron moves only a distance $v \cos \alpha \Delta t^{\prime}$ in the direction of the $B C$ segment.

Off-axis emission

Consider the emission from segment $A B$, which is not along the line toward the observer. While on the $A B$ segment, the electron moves only a distance $v \cos \alpha \Delta t^{\prime}$ in the direction of the $B C$ segment.

The light pulse emitted at A still travels $c \Delta t^{\prime}$, in the same time.

Off-axis emission

Consider the emission from segment $A B$, which is not along the line toward the observer. While on the $A B$ segment, the electron moves only a distance $v \cos \alpha \Delta t^{\prime}$ in the direction of the $B C$ segment.

The light pulse emitted at A still travels $c \Delta t^{\prime}$, in the same time. The light pulse emitted at B is therefore, a distance $(c-v \cos \alpha) \Delta t^{\prime}$ behind the pulse emitted at A.

Off-axis emission

Consider the emission from segment $A B$, which is not along the line toward the observer. While on the $A B$ segment, the electron moves only a distance $v \cos \alpha \Delta t^{\prime}$ in the direction of the $B C$ segment.

The light pulse emitted at A still travels $c \Delta t^{\prime}$, in the same time. The light pulse emitted at B is therefore, a distance $(c-v \cos \alpha) \Delta t^{\prime}$ behind the pulse emitted at A. The observer will measure a time between the two pulses:

Off-axis emission

Consider the emission from segment $A B$, which is not along the line toward the observer. While on the $A B$ segment, the electron moves only a distance $v \cos \alpha \Delta t^{\prime}$ in the direction of the $B C$ segment.

The light pulse emitted at A still travels $c \Delta t^{\prime}$, in the same time. The light pulse emitted at B is therefore, a distance $(c-v \cos \alpha) \Delta t^{\prime}$ behind the pulse emitted at A. The observer will measure a time between the two pulses:

$$
\Delta t=\frac{(c-v \cos \alpha) \Delta t^{\prime}}{c}
$$

Off-axis emission

Consider the emission from segment $A B$, which is not along the line toward the observer. While on the $A B$ segment, the electron moves only a distance $v \cos \alpha \Delta t^{\prime}$ in the direction of the $B C$ segment.

The light pulse emitted at A still travels $c \Delta t^{\prime}$, in the same time. The light pulse emitted at B is therefore, a distance $(c-v \cos \alpha) \Delta t^{\prime}$ behind the pulse emitted at A. The observer will measure a time between the two pulses:

$$
\Delta t=\frac{(c-v \cos \alpha) \Delta t^{\prime}}{c}=\left(1-\frac{v}{c} \cos \alpha\right) \Delta t^{\prime}
$$

Off-axis emission

Consider the emission from segment $A B$, which is not along the line toward the observer. While on the $A B$ segment, the electron moves only a distance $v \cos \alpha \Delta t^{\prime}$ in the direction of the $B C$ segment.

The light pulse emitted at A still travels $c \Delta t^{\prime}$, in the same time. The light pulse emitted at B is therefore, a distance $(c-v \cos \alpha) \Delta t^{\prime}$ behind the pulse emitted at A. The observer will measure a time between the two pulses:

$$
\Delta t=\frac{(c-v \cos \alpha) \Delta t^{\prime}}{c}=\left(1-\frac{v}{c} \cos \alpha\right) \Delta t^{\prime}=(1-\beta \cos \alpha) \Delta t^{\prime}
$$

Corrected Doppler shift

$$
\Delta t=(1-\beta \cos \alpha) \Delta t^{\prime}
$$

Corrected Doppler shift

$$
\Delta t=(1-\beta \cos \alpha) \Delta t^{\prime}
$$

Since α is very small:

Corrected Doppler shift

$$
\Delta t=(1-\beta \cos \alpha) \Delta t^{\prime}
$$

Since α is very small:

$$
\cos \alpha \approx 1-\frac{\alpha^{2}}{2}
$$

Corrected Doppler shift

$$
\Delta t=(1-\beta \cos \alpha) \Delta t^{\prime}
$$

Since α is very small:

$$
\cos \alpha \approx 1-\frac{\alpha^{2}}{2}
$$

and γ is very large, we have

$$
\frac{\Delta t}{\Delta t^{\prime}} \approx 1-\left(1-\frac{1}{2 \gamma^{2}}\right)\left(1-\frac{\alpha^{2}}{2}\right)
$$

Corrected Doppler shift

$$
\Delta t=(1-\beta \cos \alpha) \Delta t^{\prime}
$$

Since α is very small:

$$
\cos \alpha \approx 1-\frac{\alpha^{2}}{2}
$$

and γ is very large, we have

$$
\frac{\Delta t}{\Delta t^{\prime}} \approx 1-\left(1-\frac{1}{2 \gamma^{2}}\right)\left(1-\frac{\alpha^{2}}{2}\right)=1-1+\frac{\alpha^{2}}{2}+\frac{1}{2 \gamma^{2}}-\frac{\alpha^{2}}{2 \gamma^{2}}
$$

Corrected Doppler shift

$$
\Delta t=(1-\beta \cos \alpha) \Delta t^{\prime}
$$

Since α is very small:

$$
\cos \alpha \approx 1-\frac{\alpha^{2}}{2}
$$

and γ is very large, we have

$$
\begin{gathered}
\frac{\Delta t}{\Delta t^{\prime}} \approx 1-\left(1-\frac{1}{2 \gamma^{2}}\right)\left(1-\frac{\alpha^{2}}{2}\right)=1-1+\frac{\alpha^{2}}{2}+\frac{1}{2 \gamma^{2}}-\frac{\alpha^{2}}{2 \gamma^{2}} \\
\frac{\Delta t}{\Delta t^{\prime}} \approx \frac{\alpha^{2}}{2}+\frac{1}{2 \gamma^{2}}
\end{gathered}
$$

Corrected Doppler shift

$$
\Delta t=(1-\beta \cos \alpha) \Delta t^{\prime}
$$

Since α is very small:

$$
\cos \alpha \approx 1-\frac{\alpha^{2}}{2}
$$

and γ is very large, we have

$$
\begin{gathered}
\frac{\Delta t}{\Delta t^{\prime}} \approx 1-\left(1-\frac{1}{2 \gamma^{2}}\right)\left(1-\frac{\alpha^{2}}{2}\right)=1-1+\frac{\alpha^{2}}{2}+\frac{1}{2 \gamma^{2}}-\frac{\alpha^{2}}{2 \gamma^{2}} \\
\frac{\Delta t}{\Delta t^{\prime}} \approx \frac{\alpha^{2}}{2}+\frac{1}{2 \gamma^{2}}=\frac{1+\alpha^{2} \gamma^{2}}{2 \gamma^{2}}
\end{gathered}
$$

Corrected Doppler shift

$$
\Delta t=(1-\beta \cos \alpha) \Delta t^{\prime}
$$

Since α is very small:

$$
\cos \alpha \approx 1-\frac{\alpha^{2}}{2}
$$

and γ is very large, we have

$$
\begin{gathered}
\frac{\Delta t}{\Delta t^{\prime}} \approx 1-\left(1-\frac{1}{2 \gamma^{2}}\right)\left(1-\frac{\alpha^{2}}{2}\right)=1-1+\frac{\alpha^{2}}{2}+\frac{1}{2 \gamma^{2}}-\frac{\alpha^{2}}{2 \gamma^{2}} \\
\frac{\Delta t}{\Delta t^{\prime}} \approx \frac{\alpha^{2}}{2}+\frac{1}{2 \gamma^{2}}=\frac{1+\alpha^{2} \gamma^{2}}{2 \gamma^{2}}
\end{gathered}
$$

called the time compression ratio.

Radiation opening angle

The Doppler shift is defined in terms of the time compression ratio

$$
\frac{f}{f^{\prime}}=\frac{\Delta t^{\prime}}{\Delta t}=\frac{2 \gamma^{2}}{1+\alpha^{2} \gamma^{2}}
$$

- For APS and NSLS parameters the Doppler blue shift is between 10^{7} and 10^{9}

Radiation opening angle

The Doppler shift is defined in terms of the time compression ratio

$$
\frac{f}{f^{\prime}}=\frac{\Delta t^{\prime}}{\Delta t}=\frac{2 \gamma^{2}}{1+\alpha^{2} \gamma^{2}}
$$

- For APS and NSLS parameters the Doppler blue shift is between 10^{7} and 10^{9}
- The intesection of the horizontal and vertical dashed lines indicate where
$\alpha= \pm 1 / \gamma$ and f / f^{\prime} is one half of it's maximum value

Radiation opening angle

The Doppler shift is defined in terms of the time compression ratio

$$
\frac{f}{f^{\prime}}=\frac{\Delta t^{\prime}}{\Delta t}=\frac{2 \gamma^{2}}{1+\alpha^{2} \gamma^{2}}
$$

- For APS and NSLS parameters the Doppler blue shift is between 10^{7} and 10^{9}
- The intesection of the horizontal and vertical dashed lines indicate where $\alpha= \pm 1 / \gamma$ and f / f^{\prime} is one half of it's maximum value
- The highest energy emitted radiation appears within a cone of half angle $1 / \gamma$

Curved arc emission

But in the limit, the compression ratio:

$$
\left.\frac{\Delta t}{\Delta t^{\prime}}\right|_{\Delta t \rightarrow 0}
$$

Curved arc emission

But in the limit, the compression ratio:

$$
\left.\frac{\Delta t}{\Delta t^{\prime}}\right|_{\Delta t \rightarrow 0}=\frac{d t}{d t^{\prime}}=1-\beta \cos \alpha
$$

so we need to treat the electron path as a continuous arc.

Curved arc emission

But in the limit, the compression ratio:

$$
\left.\frac{\Delta t}{\Delta t^{\prime}}\right|_{\Delta t \rightarrow 0}=\frac{d t}{d t^{\prime}}=1-\beta \cos \alpha
$$

so we need to treat the electron path as a continuous arc.
An electron moving in a constant magnetic field describes a circular path

Curved arc emission

But in the limit, the compression ratio:

$$
\left.\frac{\Delta t}{\Delta t^{\prime}}\right|_{\Delta t \rightarrow 0}=\frac{d t}{d t^{\prime}}=1-\beta \cos \alpha
$$

so we need to treat the electron path as a continuous arc.
An electron moving in a constant magnetic field describes a circular path

$$
F_{\text {Lorentz }}=e v B
$$

Curved arc emission

But in the limit, the compression ratio:

$$
\left.\frac{\Delta t}{\Delta t^{\prime}}\right|_{\Delta t \rightarrow 0}=\frac{d t}{d t^{\prime}}=1-\beta \cos \alpha
$$

so we need to treat the electron path as a continuous arc.
An electron moving in a constant magnetic field describes a circular path

$$
F_{\text {Lorentz }}=e v B \quad a=\frac{d p}{d t}=\frac{v^{2}}{\rho}
$$

Curved arc emission

$$
e v B=m \frac{v^{2}}{\rho}
$$

But in the limit, the compression ratio:

$$
\left.\frac{\Delta t}{\Delta t^{\prime}}\right|_{\Delta t \rightarrow 0}=\frac{d t}{d t^{\prime}}=1-\beta \cos \alpha
$$

so we need to treat the electron path as a continuous arc.
An electron moving in a constant magnetic field describes a circular path

$$
F_{\text {Lorentz }}=e v B \quad a=\frac{d p}{d t}=\frac{v^{2}}{\rho}
$$

Curved arc emission

But in the limit, the compression ratio:

$$
\left.\frac{\Delta t}{\Delta t^{\prime}}\right|_{\Delta t \rightarrow 0}=\frac{d t}{d t^{\prime}}=1-\beta \cos \alpha
$$

so we need to treat the electron path as a continuous arc.
An electron moving in a constant magnetic field describes a circular path

$$
F_{\text {Lorentz }}=e v B \quad a=\frac{d p}{d t}=\frac{v^{2}}{\rho}
$$

$$
e v B=m \frac{v^{2}}{\rho}
$$

$$
m v=p=\rho_{e} B
$$

Electron bending radius

$$
m v=p=\rho e B
$$

but the electron is relativistic so we must correct the momentum to retain consistent laws of physics $p \rightarrow \gamma m v$

Electron bending radius

$$
m v=p=\rho e B
$$

but the electron is relativistic so we must correct the momentum to retain consistent laws of physics $p \rightarrow \gamma m v$

$$
\gamma m v=\rho e B
$$

Electron bending radius

$$
m v=p=\rho e B
$$

but the electron is relativistic so we must correct the momentum to retain consistent laws of physics $p \rightarrow \gamma m v$

$$
\gamma m v=\rho e B
$$

at a synchrotron $\gamma \gg 1$ so $v \approx c$

Electron bending radius

$$
m v=p=\rho e B
$$

but the electron is relativistic so we must correct the momentum to retain consistent laws of physics $p \rightarrow \gamma m v$

$$
\gamma m v=\rho e B
$$

at a synchrotron $\gamma \gg 1$ so $v \approx c$
$\gamma m c \approx \rho e B$

Electron bending radius

$$
m v=p=\rho e B
$$

but the electron is relativistic so we must correct the momentum to retain consistent laws of physics $p \rightarrow \gamma m v$

$$
\gamma m v=\rho e B
$$

at a synchrotron $\gamma \gg 1$ so $v \approx c$
$\gamma m c \approx \rho e B \quad \longrightarrow \quad \gamma m c^{2} \approx \rho e c B$

Electron bending radius

$$
m v=p=\rho e B
$$

but the electron is relativistic so we must correct the momentum to retain consistent laws of physics $p \rightarrow \gamma m v$

$$
\gamma m v=\rho e B
$$

at a synchrotron $\gamma \gg 1$ so $v \approx c$
$\gamma m c \approx \rho e B \quad \longrightarrow \quad \gamma m c^{2} \approx \rho e c B$
since $\mathcal{E}=m c^{2}$ and $c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}^{2}$ we have

Electron bending radius

$$
m v=p=\rho e B
$$

but the electron is relativistic so we must correct the momentum to retain consistent laws of physics $p \rightarrow \gamma m v$

$$
\gamma m v=\rho e B
$$

at a synchrotron $\gamma \gg 1$ so $v \approx c$
$\gamma m c \approx \rho e B \quad \longrightarrow \quad \gamma m c^{2} \approx \rho e c B$
since $\mathcal{E}=m c^{2}$ and $c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}^{2}$ we have

$$
\rho=\frac{\mathcal{E}[\mathrm{J}]}{\operatorname{ecB}[\mathrm{T}]}
$$

Electron bending radius

$$
m v=p=\rho e B
$$

but the electron is relativistic so we must correct the momentum to retain consistent laws of physics $p \rightarrow \gamma m v$

$$
\gamma m v=\rho e B
$$

at a synchrotron $\gamma \gg 1$ so $v \approx c$
$\gamma m c \approx \rho e B \quad \longrightarrow \quad \gamma m c^{2} \approx \rho e c B$
since $\mathcal{E}=m c^{2}$ and $c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}^{2}$ we have

$$
\rho=\frac{\mathcal{E}[\mathrm{J}]}{\mathrm{ec} B[\mathrm{~T}]}=\frac{\mathcal{E}[\mathrm{eV}]}{c B[\mathrm{~T}]}
$$

Electron bending radius

$$
m v=p=\rho e B
$$

but the electron is relativistic so we must correct the momentum to retain consistent laws of physics $p \rightarrow \gamma m v$

$$
\gamma m v=\rho e B
$$

at a synchrotron $\gamma \gg 1$ so $v \approx c$
$\gamma m c \approx \rho e B \quad \longrightarrow \quad \gamma m c^{2} \approx \rho e c B$
since $\mathcal{E}=m c^{2}$ and $c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}^{2}$ we have

$$
\rho=\frac{\mathcal{E}[\mathrm{J}]}{e c B[\mathrm{~T}]}=\frac{\mathcal{E}[\mathrm{eV}]}{c B[\mathrm{~T}]}=3.3 \frac{\mathcal{E}[\mathrm{GeV}]}{B[\mathrm{~T}]}
$$

Curved arc emission

The observer, looking in the plane of the circular trajectory,

Curved arc emission

The observer, looking in the plane of the circular trajectory, "sees" the electron oscillate over a half period

Curved arc emission

The observer, looking in the plane of the circular trajectory, "sees" the electron oscillate over a half period in a time Δt (observer's frame).

Curved arc emission

The observer, looking in the plane of the circular trajectory, "sees" the electron oscillate over a half period in a time Δt (observer's frame). The electron, in the laboratory frame, travels this arc in:

$$
\Delta t^{\prime}=\frac{(1 / \gamma) \rho}{v}
$$

Curved arc emission

The observer, looking in the plane of the circular trajectory, "sees" the electron oscillate over a half period in a time Δt (observer's frame). The electron, in the laboratory frame, travels this arc in:

$$
\Delta t^{\prime}=\frac{(1 / \gamma) \rho}{v}=\frac{1}{\gamma \omega_{o}}
$$

Curved arc emission

The observer, looking in the plane of the circular trajectory, "sees" the electron oscillate over a half period in a time Δt (observer's frame). The electron, in the laboratory frame, travels this arc in:

$$
\Delta t^{\prime}=\frac{(1 / \gamma) \rho}{v}=\frac{1}{\gamma \omega_{0}}
$$

Because of the Doppler shift, the observer sees the electron emitting a pulse of radiation of length

Curved arc emission

The observer, looking in the plane of the circular trajectory, "sees" the electron oscillate over a half period in a time Δt (observer's frame). The electron, in the laboratory frame, travels this arc in:

$$
\Delta t^{\prime}=\frac{(1 / \gamma) \rho}{v}=\frac{1}{\gamma \omega_{o}}
$$

Because of the Doppler shift, the observer sees the electron emitting a pulse of radiation of length

$$
\Delta t \propto \frac{\Delta t^{\prime}}{\gamma^{2}}
$$

Curved arc emission

The observer, looking in the plane of the circular trajectory, "sees" the electron oscillate over a half period in a time Δt (observer's frame). The electron, in the laboratory frame, travels this arc in:

$$
\Delta t^{\prime}=\frac{(1 / \gamma) \rho}{v}=\frac{1}{\gamma \omega_{o}}
$$

Because of the Doppler shift, the observer sees the electron emitting a pulse of radiation of length

$$
\Delta t \propto \frac{\Delta t^{\prime}}{\gamma^{2}}=\frac{1}{\gamma^{3} \omega_{0}}
$$

Curved arc emission

The observer, looking in the plane of the circular trajectory, "sees" the electron oscillate over a half period in a time Δt (observer's frame). The electron, in the laboratory frame, travels this arc in:

$$
\Delta t^{\prime}=\frac{(1 / \gamma) \rho}{v}=\frac{1}{\gamma \omega_{0}}
$$

Because of the Doppler shift, the observer sees the electron emitting a pulse of radiation of length

$$
\Delta t \propto \frac{\Delta t^{\prime}}{\gamma^{2}}=\frac{1}{\gamma^{3} \omega_{o}}
$$

The Fourier transform of this pulse is the spectrum of the radiation from the bending magnet.

Characteristic Energy of a Bending Magnet

The radiation from a bending magnet is defined by it's characteristic frequency, ω_{c} which, when the calculation is performed rigorously is:

Characteristic Energy of a Bending Magnet

The radiation from a bending magnet is defined by it's characteristic frequency, ω_{c} which, when the calculation is performed rigorously is:

$$
\omega_{c}=\frac{3}{2} \gamma^{3} \omega_{o}
$$

Characteristic Energy of a Bending Magnet

The radiation from a bending magnet is defined by it's characteristic frequency, ω_{c} which, when the calculation is performed rigorously is:

$$
\omega_{c}=\frac{3}{2} \gamma^{3} \omega_{o}
$$

but since T is the period of the rotation through the full circle of radius ρ

Characteristic Energy of a Bending Magnet

The radiation from a bending magnet is defined by it's characteristic frequency, ω_{c} which, when the calculation is performed rigorously is:

$$
\omega_{c}=\frac{3}{2} \gamma^{3} \omega_{o}
$$

but since T is the period of the rotation through the full circle of radius ρ

$$
\omega_{o}=\frac{2 \pi}{T}
$$

Characteristic Energy of a Bending Magnet

The radiation from a bending magnet is defined by it's characteristic frequency, ω_{c} which, when the calculation is performed rigorously is:

$$
\omega_{c}=\frac{3}{2} \gamma^{3} \omega_{o}
$$

but since T is the period of the rotation through the full circle of radius ρ

$$
\omega_{o}=\frac{2 \pi}{T}=2 \pi \frac{c}{2 \pi \rho}
$$

Characteristic Energy of a Bending Magnet

The radiation from a bending magnet is defined by it's characteristic frequency, ω_{c} which, when the calculation is performed rigorously is:

$$
\omega_{c}=\frac{3}{2} \gamma^{3} \omega_{o}
$$

but since T is the period of the rotation through the full circle of radius ρ

$$
\omega_{o}=\frac{2 \pi}{T}=2 \pi \frac{c}{2 \pi \rho}=\frac{c}{\rho}=\frac{c e B}{\gamma m c}
$$

Characteristic Energy of a Bending Magnet

The radiation from a bending magnet is defined by it's characteristic frequency, ω_{c} which, when the calculation is performed rigorously is:

$$
\omega_{c}=\frac{3}{2} \gamma^{3} \omega_{o}
$$

but since T is the period of the rotation through the full circle of radius ρ

$$
\omega_{o}=\frac{2 \pi}{T}=2 \pi \frac{c}{2 \pi \rho}=\frac{c}{\rho}=\frac{c e B}{\gamma m c}
$$

we can therefore calculate the characteristic energy \mathcal{E}_{c}

Characteristic Energy of a Bending Magnet

The radiation from a bending magnet is defined by it's characteristic frequency, ω_{c} which, when the calculation is performed rigorously is:

$$
\omega_{c}=\frac{3}{2} \gamma^{3} \omega_{o}
$$

but since T is the period of the rotation through the full circle of radius ρ

$$
\omega_{o}=\frac{2 \pi}{T}=2 \pi \frac{c}{2 \pi \rho}=\frac{c}{\rho}=\frac{c e B}{\gamma m c}
$$

we can therefore calculate the characteristic energy \mathcal{E}_{c}

$$
\mathcal{E}_{c}=\hbar \omega_{c}=\frac{3}{2} \gamma^{3} \frac{c e B}{\gamma m c}
$$

Characteristic Energy of a Bending Magnet

The radiation from a bending magnet is defined by it's characteristic frequency, ω_{c} which, when the calculation is performed rigorously is:

$$
\omega_{c}=\frac{3}{2} \gamma^{3} \omega_{o}
$$

but since T is the period of the rotation through the full circle of radius ρ

$$
\omega_{o}=\frac{2 \pi}{T}=2 \pi \frac{c}{2 \pi \rho}=\frac{c}{\rho}=\frac{c e B}{\gamma m c}
$$

we can therefore calculate the characteristic energy \mathcal{E}_{c}

$$
\mathcal{E}_{c}=\hbar \omega_{c}=\frac{3}{2} \gamma^{3} \frac{c e B}{\gamma m c}=\frac{3}{2} c e B \frac{\gamma^{2}}{m c}
$$

Characteristic Energy of a Bending Magnet

The radiation from a bending magnet is defined by it's characteristic frequency, ω_{c} which, when the calculation is performed rigorously is:

$$
\omega_{c}=\frac{3}{2} \gamma^{3} \omega_{o}
$$

but since T is the period of the rotation through the full circle of radius ρ

$$
\omega_{o}=\frac{2 \pi}{T}=2 \pi \frac{c}{2 \pi \rho}=\frac{c}{\rho}=\frac{c e B}{\gamma m c}
$$

we can therefore calculate the characteristic energy \mathcal{E}_{C}

$$
\mathcal{E}_{c}=\hbar \omega_{c}=\frac{3}{2} \gamma^{3} \frac{c e B}{\gamma m c}=\frac{3}{2} c e B \frac{\gamma^{2}}{m c}=\frac{3 e B}{2 m} \frac{\mathcal{E}^{2}}{\left(m c^{2}\right)^{2}}
$$

Characteristic Energy of a Bending Magnet

The radiation from a bending magnet is defined by it's characteristic frequency, ω_{c} which, when the calculation is performed rigorously is:

$$
\omega_{c}=\frac{3}{2} \gamma^{3} \omega_{o}
$$

but since T is the period of the rotation through the full circle of radius ρ

$$
\omega_{o}=\frac{2 \pi}{T}=2 \pi \frac{c}{2 \pi \rho}=\frac{c}{\rho}=\frac{c e B}{\gamma m c}
$$

we can therefore calculate the characteristic energy \mathcal{E}_{C}

$$
\mathcal{E}_{c}=\hbar \omega_{c}=\frac{3}{2} \gamma^{3} \frac{c e B}{\gamma m c}=\frac{3}{2} c e B \frac{\gamma^{2}}{m c}=\frac{3 e B}{2 m} \frac{\mathcal{E}^{2}}{\left(m c^{2}\right)^{2}}
$$

converting to storage ring units

Characteristic Energy of a Bending Magnet

The radiation from a bending magnet is defined by it's characteristic frequency, ω_{c} which, when the calculation is performed rigorously is:

$$
\omega_{c}=\frac{3}{2} \gamma^{3} \omega_{o}
$$

but since T is the period of the rotation through the full circle of radius ρ

$$
\omega_{o}=\frac{2 \pi}{T}=2 \pi \frac{c}{2 \pi \rho}=\frac{c}{\rho}=\frac{c e B}{\gamma m c}
$$

we can therefore calculate the characteristic energy \mathcal{E}_{C}

$$
\mathcal{E}_{c}=\hbar \omega_{c}=\frac{3}{2} \gamma^{3} \frac{c e B}{\gamma m c}=\frac{3}{2} c e B \frac{\gamma^{2}}{m c}=\frac{3 e B}{2 m} \frac{\mathcal{E}^{2}}{\left(m c^{2}\right)^{2}}
$$

converting to storage ring units

$$
\mathcal{E}_{c}[\mathrm{keV}]=0.665 \mathcal{E}^{2}[\mathrm{GeV}] B[\mathrm{~T}]
$$

Bending magnet spectrum

When the radiation pulse time is Fourier transformed, we obtain the spectrum of a bending magnet.

Bending magnet spectrum

When the radiation pulse time is Fourier transformed, we obtain the spectrum of a bending magnet.

Scaling by the characteristic energy, gives a universal curve

Bending magnet spectrum

When the radiation pulse time is Fourier transformed, we obtain the spectrum of a bending magnet.

Scaling by the characteristic energy, gives a universal curve

Bending magnet spectrum

When the radiation pulse time is Fourier transformed, we obtain the spectrum of a bending magnet.

Scaling by the characteristic energy, gives a universal curve
$1.33 \times 10^{13} \mathcal{E}^{2} I\left(\frac{\omega}{\omega_{c}}\right)^{2} K_{2 / 3}^{2}\left(\frac{\omega}{2 \omega_{c}}\right)$
where $K_{2 / 3}$ is a modified Bessel function of the second kind.

