Today's Outline - January 15, 2015

Today's Outline - January 15, 2015

- Scattering from molecules and crystals

Today's Outline - January 15, 2015

- Scattering from molecules and crystals
- The reciprocal lattice

Today's Outline - January 15, 2015

- Scattering from molecules and crystals
- The reciprocal lattice
- Compton (inelastic) scattering

Today's Outline - January 15, 2015

- Scattering from molecules and crystals
- The reciprocal lattice
- Compton (inelastic) scattering
- X-ray absorption

Today's Outline - January 15, 2015

- Scattering from molecules and crystals
- The reciprocal lattice
- Compton (inelastic) scattering
- X-ray absorption
- Refraction and reflection of x-rays

Today's Outline - January 15, 2015

- Scattering from molecules and crystals
- The reciprocal lattice
- Compton (inelastic) scattering
- X-ray absorption
- Refraction and reflection of x-rays
- Magnetic interactions of x-rays

Today's Outline - January 15, 2015

- Scattering from molecules and crystals
- The reciprocal lattice
- Compton (inelastic) scattering
- X-ray absorption
- Refraction and reflection of x-rays
- Magnetic interactions of x-rays
- Coherence of x-ray sources

Scattering from atoms: all effects

Scattering from an atom is built up from component quantities:

Scattering from atoms: all effects

Scattering from an atom is built up from component quantities:

Thomson scattering from a single electron

$$
-r_{0}=-\frac{e^{2}}{4 \pi \epsilon_{0} m c^{2}}
$$

$-r_{0}$
$=-r_{0}$

Scattering from atoms: all effects

Scattering from an atom is built up from component quantities:

Thomson scattering from a single electron

$$
-r_{o}=-\frac{e^{2}}{4 \pi \epsilon_{0} m c^{2}}
$$

atomic form factor

$$
f^{\circ}(\mathbf{Q})=\int \rho(\mathbf{r}) e^{i \mathbf{Q} \cdot \mathbf{r}} d^{3} r
$$

$$
-r_{0} f(\mathbf{Q}, \hbar \omega) \quad=-r_{0}\left[f^{o}(\mathbf{Q})\right.
$$

Scattering from atoms: all effects

Scattering from an atom is built up from component quantities:

Thomson scattering from a single electron

$$
-r_{o}=-\frac{e^{2}}{4 \pi \epsilon_{0} m c^{2}}
$$

atomic form factor

$$
f^{o}(\mathbf{Q})=\int \rho(\mathbf{r}) e^{i \mathbf{Q} \cdot \mathbf{r}} d^{3} r
$$

anomalous scattering terms
$f^{\prime}(\hbar \omega)+i f^{\prime \prime}(\hbar \omega)$
$-r_{o} f(\mathbf{Q}, \hbar \omega) \quad=-r_{0}\left[f^{\circ}(\mathbf{Q})+f^{\prime}(\hbar \omega)+i f^{\prime \prime}(\hbar \omega)\right]$

Scattering from atoms: all effects

Scattering from an atom is built up from component quantities:

Thomson scattering from a single electron

$$
-r_{0}=-\frac{e^{2}}{4 \pi \epsilon_{0} m c^{2}}
$$

atomic form factor

$$
f^{\circ}(\mathbf{Q})=\int \rho(\mathbf{r}) e^{i \mathbf{Q} \cdot \mathbf{r}} d^{3} r
$$

anomalous scattering terms

$$
f^{\prime}(\hbar \omega)+i f^{\prime \prime}(\hbar \omega)
$$

$$
P=\left\{\begin{array}{l}
1 \\
\sin ^{2} \psi \\
\frac{1}{2}\left(1+\sin ^{2} \psi\right)
\end{array}\right.
$$

$$
-r_{o} f(\mathbf{Q}, \hbar \omega) \sin ^{2} \psi=-r_{o}\left[f^{o}(\mathbf{Q})+f^{\prime}(\hbar \omega)+i f^{\prime \prime}(\hbar \omega)\right] \sin ^{2} \psi
$$

Scattering from molecules

extending to a molecule ...

Scattering from molecules

extending to a molecule ...

Scattering from molecules

extending to a molecule ...

$$
F^{\text {molecule }}(\mathbf{Q})=\sum_{j} f_{j}(\mathbf{Q}) e^{i \mathbf{Q} \cdot \mathbf{r}_{j}}
$$

Scattering from molecules

extending to a molecule ...

$$
F^{\text {molecule }}(\mathbf{Q})=\sum_{j} f_{j}(\mathbf{Q}) e^{i \mathbf{Q} \cdot \mathbf{r}_{j}}
$$

$$
F^{\text {molecule }}(\mathbf{Q})=
$$

Scattering from molecules

extending to a molecule ...

$$
F^{\text {molecule }}(\mathbf{Q})=\sum_{j} f_{j}(\mathbf{Q}) e^{i \mathbf{Q} \cdot \mathbf{r}_{j}}
$$

$$
F^{\text {molecule }}(\mathbf{Q})=f_{1}(\mathbf{Q}) e^{i \mathbf{Q} \cdot \mathbf{r}_{1}}+
$$

Scattering from molecules

extending to a molecule ...

$$
F^{\text {molecule }}(\mathbf{Q})=\sum_{j} f_{j}(\mathbf{Q}) e^{i \mathbf{Q} \cdot \mathbf{r}_{j}}
$$

$$
F^{\text {molecule }}(\mathbf{Q})=f_{1}(\mathbf{Q}) e^{i \mathbf{Q} \cdot \mathbf{r}_{1}}+f_{2}(\mathbf{Q}) e^{i \mathbf{Q} \cdot \mathbf{r}_{2}}+
$$

Scattering from molecules

extending to a molecule ...

$$
F^{\text {molecule }}(\mathbf{Q})=\sum_{j} f_{j}(\mathbf{Q}) e^{i \mathbf{Q} \cdot \mathbf{r}_{j}}
$$

$$
F^{\text {molecule }}(\mathbf{Q})=f_{1}(\mathbf{Q}) e^{i \mathbf{Q} \cdot \mathbf{r}_{1}}+f_{2}(\mathbf{Q}) e^{i \mathbf{Q} \cdot \mathbf{r}_{2}}+f_{3}(\mathbf{Q}) e^{i \mathbf{Q} \cdot \mathbf{r}_{3}}
$$

Scattering from a crystal

and similarly, to a crystal lattice ...

Scattering from a crystal

and similarly, to a crystal lattice ...
... which is simply a periodic array of molecules

Scattering from a crystal

and similarly, to a crystal lattice ...
... which is simply a periodic array of molecules

$$
F^{\text {crystal }}(\mathbf{Q})=F^{\text {molecule }} F^{\text {lattice }}
$$

Scattering from a crystal

and similarly, to a crystal lattice ...
... which is simply a periodic array of molecules

$$
\begin{array}{r}
F^{\text {crystal }}(\mathbf{Q})=F^{\text {molecule }} F^{\text {lattice }} \\
F^{\text {crystal }}(\mathbf{Q})=\sum_{j} f_{j}(\mathbf{Q}) e^{i \mathbf{Q} \cdot \mathbf{r}_{j}} \sum_{n} e^{i \mathbf{Q} \cdot \mathbf{R}_{n}}
\end{array}
$$

Scattering from a crystal

and similarly, to a crystal lattice ...
... which is simply a periodic array of molecules

$$
\begin{array}{r}
F^{\text {crystal }}(\mathbf{Q})=F^{\text {molecule }} F^{\text {lattice }} \\
F^{\text {crystal }}(\mathbf{Q})=\sum_{j} f_{j}(\mathbf{Q}) e^{i \mathbf{Q} \cdot \mathbf{r}_{j}} \sum_{n} e^{i \mathbf{Q} \cdot \mathbf{R}_{n}}
\end{array}
$$

The lattice term, $\sum e^{i \mathbf{Q} \cdot \mathbf{R}_{n}}$, is a sum over a large number

Scattering from a crystal

and similarly, to a crystal lattice ...

... which is simply a periodic array of molecules

$$
\begin{array}{r}
F^{\text {crystal }}(\mathbf{Q})=F^{\text {molecule }} F^{\text {lattice }} \\
F^{\text {crystal }}(\mathbf{Q})=\sum_{j} f_{j}(\mathbf{Q}) e^{i \mathbf{Q} \cdot \mathbf{r}_{j}} \sum_{n} e^{i \mathbf{Q} \cdot \mathbf{R}_{n}}
\end{array}
$$

The lattice term, $\sum e^{i \mathbf{Q} \cdot \mathbf{R}_{n}}$, is a sum over a large number so it is always small unless $\mathbf{Q} \cdot \mathbf{R}_{n}=2 \pi m$ where $\mathbf{R}_{n}=n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}$ is a real space lattice vector and m is an integer.

Scattering from a crystal

and similarly, to a crystal lattice ...

... which is simply a periodic array of molecules

$$
\begin{array}{r}
F^{\text {crystal }}(\mathbf{Q})=F^{\text {molecule }} F^{\text {lattice }} \\
F^{\text {crystal }}(\mathbf{Q})=\sum_{j} f_{j}(\mathbf{Q}) e^{i \mathbf{Q} \cdot \mathbf{r}_{j}} \sum_{n} e^{i \mathbf{Q} \cdot \mathbf{R}_{n}}
\end{array}
$$

The lattice term, $\sum e^{i \mathbf{Q} \cdot \mathbf{R}_{n}}$, is a sum over a large number so it is always small unless $\mathbf{Q} \cdot \mathbf{R}_{n}=2 \pi m$ where $\mathbf{R}_{n}=n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}$ is a real space lattice vector and m is an integer. This condition is fulfilled only when \mathbf{Q} is a reciprocal lattice vector.

Crystal lattices

There are 7 possible real space lattices: triclinic,

Crystal lattices

There are 7 possible real space lattices: triclinic, monoclinic,

Crystal lattices

There are 7 possible real space lattices: triclinic, monoclinic, orthorhombic,

Crystal lattices

There are 7 possible real space lattices: triclinic, monoclinic, orthorhombic, tetragonal,

Crystal lattices

There are 7 possible real space lattices: triclinic, monoclinic, orthorhombic, tetragonal, hexagonal,

Crystal lattices

There are 7 possible real space lattices: triclinic, monoclinic, orthorhombic, tetragonal, hexagonal, rhombohedral,

Crystal lattices

There are 7 possible real space lattices: triclinic, monoclinic, orthorhombic, tetragonal, hexagonal, rhombohedral, cubic

Lattice volume

Consider the orthorhombic lattice for simplicity (the others give exactly the same result).

Lattice volume

Consider the orthorhombic lattice for simplicity (the others give exactly the same result).

$$
\mathbf{a}_{1}=a \hat{\mathbf{x}}, \quad \mathbf{a}_{2}=b \hat{\mathbf{y}}, \quad \mathbf{a}_{3}=c \hat{\mathbf{z}}
$$

Lattice volume

Consider the orthorhombic lattice for simplicity (the others give exactly the same result).

$$
\mathbf{a}_{1} \times \mathbf{a}_{2}=a b \hat{\mathbf{z}}
$$

Lattice volume

Consider the orthorhombic lattice for simplicity (the others give exactly the same result).

$$
\begin{gathered}
\mathbf{a}_{1}=a \hat{\mathbf{x}}, \quad \mathbf{a}_{2}=b \hat{\mathbf{y}}, \quad \mathbf{a}_{3}=c \hat{\mathbf{z}} \\
\mathbf{a}_{1} \times \mathbf{a}_{2}=a b \hat{\mathbf{z}} \\
\left(\mathbf{a}_{1} \times \mathbf{a}_{2}\right) \cdot \mathbf{a}_{3}=a b \hat{\mathbf{z}} \cdot c \hat{\mathbf{z}}
\end{gathered}
$$

Lattice volume

Consider the orthorhombic lattice for simplicity (the others give exactly the same result).

$$
\begin{gathered}
\mathbf{a}_{1}=a \hat{\mathbf{x}}, \quad \mathbf{a}_{2}=b \hat{\mathbf{y}}, \quad \mathbf{a}_{3}=c \hat{\mathbf{z}} \\
\mathbf{a}_{1} \times \mathbf{a}_{2}=a b \hat{\mathbf{z}}
\end{gathered}
$$

$$
\left(\mathbf{a}_{1} \times \mathbf{a}_{2}\right) \cdot \mathbf{a}_{3}=a b \hat{\mathbf{z}} \cdot c \hat{\mathbf{z}}
$$

$$
\left(\mathbf{a}_{1} \times \mathbf{a}_{2}\right) \cdot \mathbf{a}_{3}=a b c=V
$$

Lattice volume

Consider the orthorhombic lattice for simplicity (the others give exactly the same result).

$$
\begin{gathered}
\mathbf{a}_{1}=a \hat{\mathbf{x}}, \quad \mathbf{a}_{2}=b \hat{\mathbf{y}}, \quad \mathbf{a}_{3}=c \hat{\mathbf{z}} \\
\mathbf{a}_{1} \times \mathbf{a}_{2}=a b \hat{\mathbf{z}}
\end{gathered}
$$

$$
\left(\mathbf{a}_{1} \times \mathbf{a}_{2}\right) \cdot \mathbf{a}_{3}=a b \hat{\mathbf{z}} \cdot c \hat{\mathbf{z}}
$$

$$
\left(\mathbf{a}_{1} \times \mathbf{a}_{2}\right) \cdot \mathbf{a}_{3}=a b c=V
$$

A simple way of calculating the volume of the unit cell!

Reciprocal lattice

Define the reciprocal lattice vectors in terms of the real space unit vectors

Reciprocal lattice

Define the reciprocal lattice vectors in terms of the real space unit vectors

$$
\mathbf{a}_{1}^{*}=2 \pi \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{\mathbf{a}_{1} \cdot\left(\mathbf{a}_{2} \times \mathbf{a}_{3}\right)}
$$

Reciprocal lattice

Define the reciprocal lattice vectors in terms of the real space unit vectors

$$
\begin{aligned}
& \mathbf{a}_{1}^{*}=2 \pi \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{\mathbf{a}_{1} \cdot\left(\mathbf{a}_{2} \times \mathbf{a}_{3}\right)} \\
& \mathbf{a}_{2}^{*}=2 \pi \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{\mathbf{a}_{2} \cdot\left(\mathbf{a}_{3} \times \mathbf{a}_{1}\right)}
\end{aligned}
$$

Reciprocal lattice

Define the reciprocal lattice vectors in terms of the real space unit vectors

$$
\begin{aligned}
& \mathbf{a}_{1}^{*}=2 \pi \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{\mathbf{a}_{1} \cdot\left(\mathbf{a}_{2} \times \mathbf{a}_{3}\right)} \\
& \mathbf{a}_{2}^{*}=2 \pi \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{\mathbf{a}_{2} \cdot\left(\mathbf{a}_{3} \times \mathbf{a}_{1}\right)} \\
& \mathbf{a}_{3}^{*}=2 \pi \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{\mathbf{a}_{3} \cdot\left(\mathbf{a}_{1} \times \mathbf{a}_{2}\right)}
\end{aligned}
$$

Reciprocal lattice

Define the reciprocal lattice vectors in terms of the real space unit vectors

$$
\begin{aligned}
& \mathbf{a}_{1}^{*}=2 \pi \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{\mathbf{a}_{1} \cdot\left(\mathbf{a}_{2} \times \mathbf{a}_{3}\right)}=2 \pi \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{V} \\
& \mathbf{a}_{2}^{*}=2 \pi \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{\mathbf{a}_{2} \cdot\left(\mathbf{a}_{3} \times \mathbf{a}_{1}\right)}=2 \pi \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{V} \\
& \mathbf{a}_{3}^{*}=2 \pi \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{\mathbf{a}_{3} \cdot\left(\mathbf{a}_{1} \times \mathbf{a}_{2}\right)}=2 \pi \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{V}
\end{aligned}
$$

Reciprocal lattice

Define the reciprocal lattice vectors in terms of the real space unit vectors

$$
\begin{aligned}
& \mathbf{a}_{1}^{*}=2 \pi \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{\mathbf{a}_{1} \cdot\left(\mathbf{a}_{2} \times \mathbf{a}_{3}\right)}=2 \pi \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{V} \\
& \mathbf{a}_{2}^{*}=2 \pi \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{\mathbf{a}_{2} \cdot\left(\mathbf{a}_{3} \times \mathbf{a}_{1}\right)}=2 \pi \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{V} \\
& \mathbf{a}_{3}^{*}=2 \pi \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{\mathbf{a}_{3} \cdot\left(\mathbf{a}_{1} \times \mathbf{a}_{2}\right)}=2 \pi \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{V}
\end{aligned}
$$

In analogy to \mathbf{R}_{n}, we can construct an arbitrary reciprocal space lattice vector $\mathbf{G}_{h k l}$

Reciprocal lattice

Define the reciprocal lattice vectors in terms of the real space unit vectors

$$
\begin{aligned}
& \mathbf{a}_{1}^{*}=2 \pi \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{\mathbf{a}_{1} \cdot\left(\mathbf{a}_{2} \times \mathbf{a}_{3}\right)}=2 \pi \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{V} \\
& \mathbf{a}_{2}^{*}=2 \pi \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{\mathbf{a}_{2} \cdot\left(\mathbf{a}_{3} \times \mathbf{a}_{1}\right)}=2 \pi \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{V} \\
& \mathbf{a}_{3}^{*}=2 \pi \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{\mathbf{a}_{3} \cdot\left(\mathbf{a}_{1} \times \mathbf{a}_{2}\right)}=2 \pi \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{V}
\end{aligned}
$$

In analogy to \mathbf{R}_{n}, we can construct an arbitrary reciprocal space lattice vector $\mathbf{G}_{h k l}$

$$
\mathbf{G}_{h k l}=h \mathbf{a}_{1}^{*}+k \mathbf{a}_{2}^{*}+l \mathbf{a}_{3}^{*}
$$

Reciprocal lattice

Define the reciprocal lattice vectors in terms of the real space unit vectors

$$
\begin{aligned}
& \mathbf{a}_{1}^{*}=2 \pi \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{\mathbf{a}_{1} \cdot\left(\mathbf{a}_{2} \times \mathbf{a}_{3}\right)}=2 \pi \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{V} \\
& \mathbf{a}_{2}^{*}=2 \pi \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{\mathbf{a}_{2} \cdot\left(\mathbf{a}_{3} \times \mathbf{a}_{1}\right)}=2 \pi \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{V} \\
& \mathbf{a}_{3}^{*}=2 \pi \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{\mathbf{a}_{3} \cdot\left(\mathbf{a}_{1} \times \mathbf{a}_{2}\right)}=2 \pi \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{V}
\end{aligned}
$$

In analogy to \mathbf{R}_{n}, we can construct an arbitrary reciprocal space lattice vector $\mathbf{G}_{h k l}$

$$
\mathbf{G}_{h k l}=h \mathbf{a}_{1}^{*}+k \mathbf{a}_{2}^{*}+l \mathbf{a}_{3}^{*}
$$

where h, k, and I are integers called Miller indices

Laue condition

Because of the construction of the reciprocal lattice

Laue condition

Because of the construction of the reciprocal lattice
$\mathbf{G}_{n k l} \cdot \mathbf{R}_{n}$

Laue condition

Because of the construction of the reciprocal lattice

$$
\mathbf{G}_{h k l} \cdot \mathbf{R}_{n}=\left(n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}\right) \cdot\left(h \mathbf{a}_{1}^{*}+k \mathbf{a}_{2}^{*}+l \mathbf{a}_{3}^{*}\right)
$$

Laue condition

Because of the construction of the reciprocal lattice

$$
\begin{aligned}
\mathbf{G}_{h k l} \cdot \mathbf{R}_{n} & =\left(n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}\right) \cdot\left(h \mathbf{a}_{1}^{*}+k \mathbf{a}_{2}^{*}+l \mathbf{a}_{3}^{*}\right) \\
& =\left(n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}\right) \cdot 2 \pi\left(h \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{V}+k \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{V}+l \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{V}\right)
\end{aligned}
$$

Laue condition

Because of the construction of the reciprocal lattice

$$
\begin{aligned}
\mathbf{G}_{h k l} \cdot \mathbf{R}_{n} & =\left(n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}\right) \cdot\left(h \mathbf{a}_{1}^{*}+k \mathbf{a}_{2}^{*}+l \mathbf{a}_{3}^{*}\right) \\
& =\left(n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}\right) \cdot 2 \pi\left(h \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{V}+k \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{V}+l \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{V}\right) \\
& =2 \pi\left(h n_{1}+k n_{2}+l n_{3}\right)=2 \pi m
\end{aligned}
$$

Laue condition

Because of the construction of the reciprocal lattice

$$
\begin{aligned}
\mathbf{G}_{h k l} \cdot \mathbf{R}_{n} & =\left(n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}\right) \cdot\left(h \mathbf{a}_{1}^{*}+k \mathbf{a}_{2}^{*}+l \mathbf{a}_{3}^{*}\right) \\
& =\left(n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}\right) \cdot 2 \pi\left(h \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{V}+k \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{V}+l \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{V}\right) \\
& =2 \pi\left(h n_{1}+k n_{2}+l n_{3}\right)=2 \pi m
\end{aligned}
$$

and therefore, the crystal scattering factor is non-zero only when

Laue condition

Because of the construction of the reciprocal lattice

$$
\begin{aligned}
\mathbf{G}_{h k l} \cdot \mathbf{R}_{n} & =\left(n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}\right) \cdot\left(h \mathbf{a}_{1}^{*}+k \mathbf{a}_{2}^{*}+l \mathbf{a}_{3}^{*}\right) \\
& =\left(n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}\right) \cdot 2 \pi\left(h \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{V}+k \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{V}+l \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{V}\right) \\
& =2 \pi\left(h n_{1}+k n_{2}+l n_{3}\right)=2 \pi m
\end{aligned}
$$

and therefore, the crystal scattering factor is non-zero only when

$$
\mathbf{Q}=\mathbf{G}_{h k l}
$$

Laue condition

Because of the construction of the reciprocal lattice

$$
\begin{aligned}
\mathbf{G}_{h k l} \cdot \mathbf{R}_{n} & =\left(n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}\right) \cdot\left(h \mathbf{a}_{1}^{*}+k \mathbf{a}_{2}^{*}+l \mathbf{a}_{3}^{*}\right) \\
& =\left(n_{1} \mathbf{a}_{1}+n_{2} \mathbf{a}_{2}+n_{3} \mathbf{a}_{3}\right) \cdot 2 \pi\left(h \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{V}+k \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{V}+l \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{V}\right) \\
& =2 \pi\left(h n_{1}+k n_{2}+l n_{3}\right)=2 \pi m
\end{aligned}
$$

and therefore, the crystal scattering factor is non-zero only when

$$
\mathbf{Q}=\mathbf{G}_{h k l}
$$

and a significant number of molecules scatter in phase with each other

Laue condition

A crystal is, therefore, a diffraction grating with $\sim 10^{20}$ slits!

Laue condition

A crystal is, therefore, a diffraction grating with $\sim 10^{20}$ slits!
When \mathbf{Q} is a reciprocal lattice vector, a very strong, narrow diffraction peak is seen at the detector.

Laue condition

A crystal is, therefore, a diffraction grating with $\sim 10^{20}$ slits!
When \mathbf{Q} is a reciprocal lattice vector, a very strong, narrow diffraction peak is seen at the detector.

Laue condition

A crystal is, therefore, a diffraction grating with $\sim 10^{20}$ slits!

When \mathbf{Q} is a reciprocal lattice vector, a very strong, narrow diffraction peak is seen at the detector.

Compton scattering

A photon-electron collision

Compton scattering

A photon-electron collision

Compton scattering

A photon-electron collision

$$
\mathbf{p}=\hbar \mathbf{k}=2 \pi \hbar / \lambda
$$

Compton scattering

A photon-electron collision

$$
\begin{array}{r}
\mathbf{p}=\hbar \mathbf{k}=2 \pi \hbar / \lambda \\
\mathbf{p}^{\prime}=\hbar \mathbf{k}^{\prime}=2 \pi \hbar / \lambda^{\prime}
\end{array}
$$

Compton scattering

A photon-electron collision

$$
\begin{array}{r}
\mathbf{p}=\hbar \mathbf{k}=2 \pi \hbar / \lambda \\
\mathbf{p}^{\prime}=\hbar \mathbf{k}^{\prime}=2 \pi \hbar / \lambda^{\prime} \\
|\mathbf{k}| \neq\left|\mathbf{k}^{\prime}\right|
\end{array}
$$

Compton scattering

A photon-electron collision

$$
\begin{array}{r}
\mathbf{p}=\hbar \mathbf{k}=2 \pi \hbar / \lambda \\
\mathbf{p}^{\prime}=\hbar \mathbf{k}^{\prime}=2 \pi \hbar / \lambda^{\prime} \\
|\mathbf{k}| \neq\left|\mathbf{k}^{\prime}\right|
\end{array}
$$

Treat the electron relativistically and conserve energy and momentum

Compton scattering

A photon-electron collision

$$
\begin{array}{r}
\mathbf{p}=\hbar \mathbf{k}=2 \pi \hbar / \lambda \\
\mathbf{p}^{\prime}=\hbar \mathbf{k}^{\prime}=2 \pi \hbar / \lambda^{\prime} \\
|\mathbf{k}| \neq\left|\mathbf{k}^{\prime}\right|
\end{array}
$$

Treat the electron relativistically and conserve energy and momentum

$$
m c^{2}+\frac{h c}{\lambda}=\frac{h c}{\lambda^{\prime}}+\gamma m c^{2} \quad(\text { energy })
$$

Compton scattering

A photon-electron collision

$$
\begin{array}{r}
\mathbf{p}=\hbar \mathbf{k}=2 \pi \hbar / \lambda \\
\mathbf{p}^{\prime}=\hbar \mathbf{k}^{\prime}=2 \pi \hbar / \lambda^{\prime} \\
|\mathbf{k}| \neq\left|\mathbf{k}^{\prime}\right|
\end{array}
$$

Treat the electron relativistically and conserve energy and momentum

$$
\begin{array}{ll}
m c^{2}+\frac{h c}{\lambda}=\frac{h c}{\lambda^{\prime}}+\gamma m c^{2} & \text { (energy) } \\
\frac{h}{\lambda}=\frac{h}{\lambda^{\prime}} \cos \phi+\gamma m v \cos \theta & (x \text {-axis) }
\end{array}
$$

Compton scattering

A photon-electron collision

$$
\begin{array}{r}
\mathbf{p}=\hbar \mathbf{k}=2 \pi \hbar / \lambda \\
\mathbf{p}^{\prime}=\hbar \mathbf{k}^{\prime}=2 \pi \hbar / \lambda^{\prime} \\
|\mathbf{k}| \neq\left|\mathbf{k}^{\prime}\right|
\end{array}
$$

Treat the electron relativistically and conserve energy and momentum

$$
\begin{array}{cc}
m c^{2}+\frac{h c}{\lambda}=\frac{h c}{\lambda^{\prime}}+\gamma m c^{2} & \text { (energy) } \\
\frac{h}{\lambda}=\frac{h}{\lambda^{\prime}} \cos \phi+\gamma m v \cos \theta & (\text { x-axis }) \\
0=\frac{h}{\lambda^{\prime}} \sin \phi+\gamma m v \sin \theta & (y \text {-axis })
\end{array}
$$

Compton scattering derivation

squaring the momentum equations

Compton scattering derivation

squaring the momentum $\quad\left(\frac{h}{\lambda}-\frac{h}{\lambda^{\prime}} \cos \phi\right)^{2}=\gamma^{2} m^{2} v^{2} \cos ^{2} \theta$
equations

Compton scattering derivation

squaring the momentum

$$
\begin{aligned}
\left(\frac{h}{\lambda}-\frac{h}{\lambda^{\prime}} \cos \phi\right)^{2} & =\gamma^{2} m^{2} v^{2} \cos ^{2} \theta \\
\left(-\frac{h}{\lambda^{\prime}} \sin \phi\right)^{2} & =\gamma^{2} m^{2} v^{2} \sin ^{2} \theta
\end{aligned}
$$

Compton scattering derivation

squaring the momentum

$$
\begin{aligned}
\left(\frac{h}{\lambda}-\frac{h}{\lambda^{\prime}} \cos \phi\right)^{2} & =\gamma^{2} m^{2} v^{2} \cos ^{2} \theta \\
\left(-\frac{h}{\lambda^{\prime}} \sin \phi\right)^{2} & =\gamma^{2} m^{2} v^{2} \sin ^{2} \theta
\end{aligned}
$$

now add them together,

$$
\gamma^{2} m^{2} v^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)=\left(\frac{h}{\lambda}-\frac{h}{\lambda^{\prime}} \cos \phi\right)^{2}+\left(-\frac{h}{\lambda^{\prime}} \sin \phi\right)^{2}
$$

Compton scattering derivation

squaring the momentum equations

$$
\begin{aligned}
\left(\frac{h}{\lambda}-\frac{h}{\lambda^{\prime}} \cos \phi\right)^{2} & =\gamma^{2} m^{2} v^{2} \cos ^{2} \theta \\
\left(-\frac{h}{\lambda^{\prime}} \sin \phi\right)^{2} & =\gamma^{2} m^{2} v^{2} \sin ^{2} \theta
\end{aligned}
$$

now add them together, substitute $\sin ^{2} \theta+\cos ^{2} \theta=1$,

$$
\begin{aligned}
\gamma^{2} m^{2} v^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right) & =\left(\frac{h}{\lambda}-\frac{h}{\lambda^{\prime}} \cos \phi\right)^{2}+\left(-\frac{h}{\lambda^{\prime}} \sin \phi\right)^{2} \\
\gamma^{2} m^{2} v^{2} & =\frac{h^{2}}{\lambda^{2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}} \cos \phi+\frac{h^{2}}{\lambda^{\prime 2}} \sin ^{2} \phi+\frac{h^{2}}{\lambda^{\prime 2}} \cos ^{2} \phi
\end{aligned}
$$

Compton scattering derivation

squaring the momentum equations

$$
\begin{aligned}
\left(\frac{h}{\lambda}-\frac{h}{\lambda^{\prime}} \cos \phi\right)^{2} & =\gamma^{2} m^{2} v^{2} \cos ^{2} \theta \\
\left(-\frac{h}{\lambda^{\prime}} \sin \phi\right)^{2} & =\gamma^{2} m^{2} v^{2} \sin ^{2} \theta
\end{aligned}
$$

now add them together, substitute $\sin ^{2} \theta+\cos ^{2} \theta=1$, and $\sin ^{2} \phi+\cos ^{2} \phi=1$, then rearrange

$$
\begin{aligned}
\gamma^{2} m^{2} v^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right) & =\left(\frac{h}{\lambda}-\frac{h}{\lambda^{\prime}} \cos \phi\right)^{2}+\left(-\frac{h}{\lambda^{\prime}} \sin \phi\right)^{2} \\
\gamma^{2} m^{2} v^{2} & =\frac{h^{2}}{\lambda^{2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}} \cos \phi+\frac{h^{2}}{\lambda^{\prime 2}} \sin ^{2} \phi+\frac{h^{2}}{\lambda^{\prime 2}} \cos ^{2} \phi \\
\frac{h^{2}}{\lambda^{2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}} \cos \phi+\frac{h^{2}}{\lambda^{\prime 2}} & =\frac{m^{2} v^{2}}{1-\beta^{2}}
\end{aligned}
$$

Compton scattering derivation

squaring the momentum equations

$$
\begin{aligned}
\left(\frac{h}{\lambda}-\frac{h}{\lambda^{\prime}} \cos \phi\right)^{2} & =\gamma^{2} m^{2} v^{2} \cos ^{2} \theta \\
\left(-\frac{h}{\lambda^{\prime}} \sin \phi\right)^{2} & =\gamma^{2} m^{2} v^{2} \sin ^{2} \theta
\end{aligned}
$$

now add them together, substitute $\sin ^{2} \theta+\cos ^{2} \theta=1$, and $\sin ^{2} \phi+\cos ^{2} \phi=1$, then rearrange and substitute $v=\beta c$

$$
\begin{aligned}
\gamma^{2} m^{2} v^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right) & =\left(\frac{h}{\lambda}-\frac{h}{\lambda^{\prime}} \cos \phi\right)^{2}+\left(-\frac{h}{\lambda^{\prime}} \sin \phi\right)^{2} \\
\gamma^{2} m^{2} v^{2} & =\frac{h^{2}}{\lambda^{2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}} \cos \phi+\frac{h^{2}}{\lambda^{\prime 2}} \sin ^{2} \phi+\frac{h^{2}}{\lambda^{\prime 2}} \cos ^{2} \phi \\
\frac{h^{2}}{\lambda^{2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}} \cos \phi+\frac{h^{2}}{\lambda^{\prime 2}} & =\frac{m^{2} v^{2}}{1-\beta^{2}}=\frac{m^{2} c^{2} \beta^{2}}{1-\beta^{2}}
\end{aligned}
$$

Compton scattering derivation

Now take the energy equation and square it,

$$
\left(m c^{2}+\frac{h c}{\lambda}-\frac{h c}{\lambda^{\prime}}\right)^{2}=\gamma^{2} m^{2} c^{4}=\frac{m^{2} c^{4}}{1-\beta^{2}}
$$

Compton scattering derivation

Now take the energy equation and square it, then solve it for β^{2}

$$
\begin{aligned}
& \left(m c^{2}+\frac{h c}{\lambda}-\frac{h c}{\lambda^{\prime}}\right)^{2}=\gamma^{2} m^{2} c^{4}=\frac{m^{2} c^{4}}{1-\beta^{2}} \\
& \beta^{2}=1-\frac{m^{2} c^{4}}{\left(m c^{2}+\frac{h c}{\lambda}-\frac{h c}{\lambda^{\prime}}\right)^{2}}
\end{aligned}
$$

Compton scattering derivation

Now take the energy equation and square it, then solve it for β^{2} which is substituted into the equation from the momenta.

$$
\begin{gathered}
\left(m c^{2}+\frac{h c}{\lambda}-\frac{h c}{\lambda^{\prime}}\right)^{2}=\gamma^{2} m^{2} c^{4}=\frac{m^{2} c^{4}}{1-\beta^{2}} \\
\beta^{2}=1-\frac{m^{2} c^{4}}{\left(m c^{2}+\frac{h c}{\lambda}-\frac{h c}{\lambda^{\prime}}\right)^{2}} \\
\frac{h^{2}}{\lambda^{2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}} \cos \phi+\frac{h^{2}}{\lambda^{\prime 2}}=\frac{m^{2} c^{2} \beta^{2}}{1-\beta^{2}}
\end{gathered}
$$

Compton scattering derivation

After substitution, expansion and cancellation, we obtain

Compton scattering derivation

After substitution, expansion and cancellation, we obtain

$$
\frac{h^{2}}{\lambda^{2}}+\frac{h^{2}}{\lambda^{\prime 2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}} \cos \phi=2 m\left(\frac{h c}{\lambda}-\frac{h c}{\lambda^{\prime}}\right)+\frac{h^{2}}{\lambda^{2}}+\frac{h^{2}}{\lambda^{\prime 2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}}
$$

Compton scattering derivation

After substitution, expansion and cancellation, we obtain

$$
\frac{h^{2}}{\lambda^{2}}+\frac{h^{2}}{\lambda^{\prime 2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}} \cos \phi=2 m\left(\frac{h c}{\lambda}-\frac{h c}{\lambda^{\prime}}\right)+\frac{h^{2}}{\lambda^{2}}+\frac{h^{2}}{\lambda^{\prime 2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}}
$$

$$
\frac{2 h^{2}}{\lambda \lambda^{\prime}}(1-\cos \phi)=2 m\left(\frac{h c}{\lambda}-\frac{h c}{\lambda^{\prime}}\right)=2 m h c\left(\frac{\lambda^{\prime}-\lambda}{\lambda \lambda^{\prime}}\right)=\frac{2 m h c \Delta \lambda}{\lambda \lambda^{\prime}}
$$

Compton scattering derivation

After substitution, expansion and cancellation, we obtain

$$
\begin{gathered}
\frac{h^{2}}{\lambda^{2}}+\frac{h^{2}}{\lambda^{\prime 2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}} \cos \phi=2 m\left(\frac{h c}{\lambda}-\frac{h c}{\lambda^{\prime}}\right)+\frac{h^{2}}{\lambda^{2}}+\frac{h^{2}}{\lambda^{\prime 2}}-\frac{2 h^{2}}{\lambda \lambda^{\prime}} \\
\frac{2 h^{2}}{\lambda \lambda^{\prime}}(1-\cos \phi)=2 m\left(\frac{h c}{\lambda}-\frac{h c}{\lambda^{\prime}}\right)=2 m h c\left(\frac{\lambda^{\prime}-\lambda}{\lambda \lambda^{\prime}}\right)=\frac{2 m h c \Delta \lambda}{\lambda \lambda^{\prime}} \\
\Delta \lambda=\frac{h}{m c}(1-\cos \phi)
\end{gathered}
$$

Compton scattering results

$$
\lambda_{c}=\hbar / m c=3.86 \times 10^{-3} \AA \text { for an electron }
$$

Comparing to the Thomson scattering length: $r_{0} / \lambda_{C}=1 / 137$

Compton scattering results

$$
\lambda_{c}=\hbar / m c=3.86 \times 10^{-3} \AA \text { for an electron }
$$

Comparing to the Thomson scattering length: $r_{o} / \lambda_{C}=1 / 137$

X-ray absorption

Absorption coefficient μ, thickness $d z$ x-ray intensity is attenuated as

$$
d l=-l(z) \mu d z
$$

X-ray absorption

Absorption coefficient μ, thickness $d z$ x-ray intensity is attenuated as

$$
d I / I=-\mu d z \quad \Longrightarrow \quad I=I_{o} e^{-\mu z}
$$

X-ray absorption

Absorption coefficient μ, thickness $d z$ x-ray intensity is attenuated as

$$
d l=-l(z) \mu d z
$$

$$
d I / I=-\mu d z \quad \Longrightarrow \quad I=I_{o} e^{-\mu z}
$$

number of absorption events, $W=I(z) \rho_{a} \sigma_{a} d z=I(z) \mu d z$
where ρ_{a} is atom density, σ_{a} is absorption cross section

X-ray absorption

Absorption coefficient μ, thickness $d z$ x-ray intensity is attenuated as

$$
d l=-l(z) \mu d z
$$

$$
d I / I=-\mu d z \quad \Longrightarrow \quad I=I_{o} e^{-\mu z}
$$

number of absorption events, $W=I(z) \rho_{a} \sigma_{a} d z=I(z) \mu d z$
where ρ_{a} is atom density, σ_{a} is absorption cross section

$$
\mu=\rho_{\mathrm{a}} \sigma_{\mathrm{a}}=\left(\frac{\rho_{m} N_{A}}{A}\right) \sigma_{\mathrm{a}}
$$

with mass density ρ_{m}, Avogadro's number N_{A}, atomic number A

Absorption event

- X-ray is absorbed by an atom

Absorption event

- X-ray is absorbed by an atom
- Energy is transferred to a core electron

Absorption event

- X-ray is absorbed by an atom
- Energy is transferred to a core electron
- Electron escapes atomic potential into the continuum

Absorption event

- X-ray is absorbed by an atom
- Energy is transferred to a core electron
- Electron escapes atomic potential into the continuum
- Ion remains with a core-hole

Fluorescence emission

An ion with a core-hole is quite unstable $\left(\approx 10^{-15}\right.$ s)

Fluorescence emission

An ion with a core-hole is quite unstable ($\approx 10^{-15}$ s)

- After a short time a higher level electron will drop down in energy to fill the core hole

Fluorescence emission

An ion with a core-hole is quite unstable $\left(\approx 10^{-15}\right.$ s)

- After a short time a higher level
 electron will drop down in energy to fill the core hole
- Energy is liberated in the form of a fluorescence photon

Fluorescence emission

An ion with a core-hole is quite unstable $\left(\approx 10^{-15}\right.$ s)

- After a short time a higher level
 electron will drop down in energy to fill the core hole
- Energy is liberated in the form of a fluorescence photon
- This leaves a second hole (not core) which is then filled from an even higher shell

Fluorescence emission

An ion with a core-hole is quite unstable $\left(\approx 10^{-15}\right.$ s)

- After a short time a higher level
 electron will drop down in energy to fill the core hole
- Energy is liberated in the form of a fluorescence photon
- This leaves a second hole (not core) which is then filled from an even higher shell
- The result is a cascade of fluorescence photons which are characteristic of the absorbing atom

Auger emission

While fluorescence is the most probable method of core-hole relaxation there are other possible mechanisms

Auger emission

While fluorescence is the most probable method of core-hole relaxation there are other possible mechanisms

- In the Auger process, a higher level electron will drop down in energy to fill the core hole

Auger emission

While fluorescence is the most probable method of core-hole relaxation there are other possible mechanisms

- In the Auger process, a higher level electron will drop down in energy to fill the core hole
- The energy liberated causes the secondary emission of an electron

Auger emission

While fluorescence is the most probable method of core-hole relaxation there are other possible mechanisms

- In the Auger process, a higher level electron will drop down in energy to fill the core hole
- The energy liberated causes the secondary emission of an electron
- This leaves two holes which then filled from higher shells

Auger emission

While fluorescence is the most probable method of core-hole relaxation there are other possible mechanisms

- In the Auger process, a higher level electron will drop down in energy to fill the core hole
- The energy liberated causes the secondary emission of an electron
- This leaves two holes which then filled from higher shells
- So that the secondary electron is accompanied by fluorescence emissions at lower energies

Absorption coefficient

The absorption coefficient μ, depends strongly on the x-ray energy E, the atomic number of the absorbing atoms Z, as well as the density ρ, and atomic mass A :
$\mu \sim$

Absorption coefficient

The absorption coefficient μ, depends strongly on the x-ray energy E, the atomic number of the absorbing atoms Z, as well as the density ρ, and atomic mass A :
$\mu \sim \overline{E^{3}}$

Absorption coefficient

The absorption coefficient μ, depends strongly on the x-ray energy E, the atomic number of the absorbing atoms Z, as well as the density ρ, and atomic mass A :
$\mu \sim \frac{Z^{4}}{E^{3}}$

Absorption coefficient

The absorption coefficient μ, depends strongly on the x-ray energy E, the atomic number of the absorbing atoms Z, as well as the density ρ, and atomic mass A :
$\mu \sim \frac{\rho Z^{4}}{E^{3}}$

Absorption coefficient

The absorption coefficient μ, depends strongly on the x-ray energy E, the atomic number of the absorbing atoms Z, as well as the density ρ, and atomic mass A :
$\mu \sim \frac{\rho Z^{4}}{A E^{3}}$

Absorption coefficient

The absorption coefficient μ, depends strongly on the x-ray energy E, the atomic number of the absorbing atoms Z, as well as the density ρ, and atomic mass A :

Absorption coefficient

Isolated gas atoms show a sharp jump and a smooth curve

Absorption coefficient

Isolated gas atoms show a sharp jump and a smooth curve Atoms in a solid or liquid show fine structure after the absorption edge called XANES and EXAFS

Refraction of x-rays

X-rays can be treated like light when interaction with a medium. However, unlike visible light, the index of refraction of x-rays in matter is very close to unity:

Refraction of x-rays

X-rays can be treated like light when interaction with a medium. However, unlike visible light, the index of refraction of x-rays in matter is very close to unity:

$$
\begin{aligned}
& n=1-\delta+i \beta \\
& \text { with } \delta \sim 10^{-5}
\end{aligned}
$$

Refraction of x-rays

X-rays can be treated like light when interaction with a medium. However, unlike visible light, the index of refraction of x-rays in matter is very close to unity:

$$
\begin{aligned}
& n=1-\delta+i \beta \\
& \text { with } \delta \sim 10^{-5}
\end{aligned}
$$

Refraction of x-rays

X-rays can be treated like light when interaction with a medium. However, unlike visible light, the index of refraction of x-rays in matter is very close to unity:

$$
\begin{aligned}
& n=1-\delta+i \beta \\
& \text { with } \delta \sim 10^{-5}
\end{aligned}
$$

Snell's Law

$$
\cos \alpha=n \cos \alpha^{\prime}
$$

Refraction of x-rays

X-rays can be treated like light when interaction with a medium. However, unlike visible light, the index of refraction of x-rays in matter is very close to unity:

$$
\begin{aligned}
& n=1-\delta+i \beta \\
& \text { with } \delta \sim 10^{-5}
\end{aligned}
$$

Snell's Law

$$
\cos \alpha=n \cos \alpha^{\prime}
$$

where $\alpha^{\prime}<\alpha$ unlike for visible light

Reflection of x-rays

Because $n<1$, at a critical angle α_{c}, we no longer have refraction but

Reflection of x-rays

Because $n<1$, at a critical angle α_{c}, we no longer have refraction but total external reflection

Reflection of x-rays

Because $n<1$, at a critical angle α_{c}, we no longer have refraction but total external reflection

Since $\alpha^{\prime}=0$ when $\alpha=\alpha_{c}$

Reflection of x-rays

Because $n<1$, at a critical angle α_{c}, we no longer have refraction but total external reflection

Since $\alpha^{\prime}=0$ when $\alpha=\alpha_{c}$

$$
n=\cos \alpha_{c}
$$

Reflection of x-rays

Because $n<1$, at a critical angle α_{c}, we no longer have refraction but total external reflection

Since $\alpha^{\prime}=0$ when $\alpha=\alpha_{c}$

$$
\begin{gathered}
n=\cos \alpha_{c} \\
n \approx 1-\frac{\alpha_{c}^{2}}{2}
\end{gathered}
$$

Reflection of x-rays

Because $n<1$, at a critical angle α_{c}, we no longer have refraction but total external reflection

Since $\alpha^{\prime}=0$ when $\alpha=\alpha_{c}$

$$
\begin{gathered}
n=\cos \alpha_{c} \\
n \approx 1-\frac{\alpha_{c}^{2}}{2} \\
1-\delta+i \beta \approx 1-\frac{\alpha_{c}^{2}}{2}
\end{gathered}
$$

Reflection of x-rays

Because $n<1$, at a critical angle α_{c}, we no longer have refraction but total external reflection

Since $\alpha^{\prime}=0$ when $\alpha=\alpha_{c}$

$$
\begin{gathered}
n=\cos \alpha_{c} \\
n \approx 1-\frac{\alpha_{c}^{2}}{2} \\
1-\delta+i \beta \approx 1-\frac{\alpha_{c}^{2}}{2} \\
\delta=\frac{\alpha_{c}^{2}}{2} \quad \longrightarrow \quad \alpha_{c}=\sqrt{2 \delta}
\end{gathered}
$$

Uses of total external reflection

X-ray mirrors

Uses of total external reflection

X-ray mirrors

- harmonic rejection

Uses of total external reflection

X-ray mirrors

- harmonic rejection
- focusing \& collimation

Uses of total external reflection

X-ray mirrors

- harmonic rejection
- focusing \& collimation

Evanscent wave experiments

Uses of total external reflection

X-ray mirrors

- harmonic rejection
- focusing \& collimation

Evanscent wave experiments

- studies of surfaces

Uses of total external reflection

X-ray mirrors

- harmonic rejection
- focusing \& collimation

Evanscent wave experiments

- studies of surfaces
- depth profiling

Magnetic interactions

We have focused on the interaction of x-rays and charged particles. However, electromagnetic radiation also consists of a traveling magnetic field. In principle, this means it should interact with magnetic materials as well.

Magnetic interactions

We have focused on the interaction of x-rays and charged particles. However, electromagnetic radiation also consists of a traveling magnetic field. In principle, this means it should interact with magnetic materials as well.

Indeed, x -rays do interact with magnetic materials (and electrons which have magnetic moment and spin) but the strength of the interaction is comparatively weak.

Magnetic interactions

We have focused on the interaction of x-rays and charged particles. However, electromagnetic radiation also consists of a traveling magnetic field. In principle, this means it should interact with magnetic materials as well.

Indeed, x-rays do interact with magnetic materials (and electrons which have magnetic moment and spin) but the strength of the interaction is comparatively weak.

$$
\frac{A_{\text {magnetic }}}{A_{\text {charge }}}=\frac{\hbar \omega}{m c^{2}}
$$

Magnetic interactions

We have focused on the interaction of x-rays and charged particles. However, electromagnetic radiation also consists of a traveling magnetic field. In principle, this means it should interact with magnetic materials as well.

Indeed, x-rays do interact with magnetic materials (and electrons which have magnetic moment and spin) but the strength of the interaction is comparatively weak.

$$
\frac{A_{\text {magnetic }}}{A_{\text {charge }}}=\frac{\hbar \omega}{m c^{2}}
$$

For an x-ray of energy 5.11 keV , interacting with an electron with mass 0.511 MeV .

Magnetic interactions

We have focused on the interaction of x-rays and charged particles. However, electromagnetic radiation also consists of a traveling magnetic field. In principle, this means it should interact with magnetic materials as well.

Indeed, x-rays do interact with magnetic materials (and electrons which have magnetic moment and spin) but the strength of the interaction is comparatively weak.

$$
\frac{A_{\text {magnetic }}}{A_{\text {charge }}}=\frac{\hbar \omega}{m c^{2}}=\frac{5.11 \times 10^{3} \mathrm{eV}}{0.511 \times 10^{6} \mathrm{eV}}
$$

For an x-ray of energy 5.11 keV , interacting with an electron with mass 0.511 MeV .

Magnetic interactions

We have focused on the interaction of x-rays and charged particles. However, electromagnetic radiation also consists of a traveling magnetic field. In principle, this means it should interact with magnetic materials as well.

Indeed, x-rays do interact with magnetic materials (and electrons which have magnetic moment and spin) but the strength of the interaction is comparatively weak.

$$
\frac{A_{\text {magnetic }}}{A_{\text {charge }}}=\frac{\hbar \omega}{m c^{2}}=\frac{5.11 \times 10^{3} \mathrm{eV}}{0.511 \times 10^{6} \mathrm{eV}}=0.01
$$

For an x-ray of energy 5.11 keV , interacting with an electron with mass 0.511 MeV .

Magnetic interactions

We have focused on the interaction of x-rays and charged particles. However, electromagnetic radiation also consists of a traveling magnetic field. In principle, this means it should interact with magnetic materials as well.

Indeed, x-rays do interact with magnetic materials (and electrons which have magnetic moment and spin) but the strength of the interaction is comparatively weak.

$$
\frac{A_{\text {magnetic }}}{A_{\text {charge }}}=\frac{\hbar \omega}{m c^{2}}=\frac{5.11 \times 10^{3} \mathrm{eV}}{0.511 \times 10^{6} \mathrm{eV}}=0.01
$$

For an x-ray of energy 5.11 keV , interacting with an electron with mass 0.511 MeV . Only with the advent of synchrotron radiation sources has magnetic x-ray scattering become a practical experimental technique.

