• Scattering from molecules and crystals

- Scattering from molecules and crystals
- The reciprocal lattice

- Scattering from molecules and crystals
- The reciprocal lattice
- Compton (inelastic) scattering

- Scattering from molecules and crystals
- The reciprocal lattice
- Compton (inelastic) scattering
- X-ray absorption

- Scattering from molecules and crystals
- The reciprocal lattice
- Compton (inelastic) scattering
- X-ray absorption
- Refraction and reflection of x-rays

- Scattering from molecules and crystals
- The reciprocal lattice
- Compton (inelastic) scattering
- X-ray absorption
- Refraction and reflection of x-rays
- Magnetic interactions of x-rays

- Scattering from molecules and crystals
- The reciprocal lattice
- Compton (inelastic) scattering
- X-ray absorption
- Refraction and reflection of x-rays
- Magnetic interactions of x-rays
- Coherence of x-ray sources

Scattering from an atom is built up from component quantities:

Scattering from an atom is built up from component quantities:

$$-r_o = -r_o$$

Scattering from an atom is built up from component quantities:

Thomson scattering from a single electron

atomic form factor

$$-r_o = -\frac{e^2}{4\pi\epsilon_0 mc^2}$$

$$f^{o}(\mathbf{Q}) = \int \rho(\mathbf{r}) e^{i\mathbf{Q}\cdot\mathbf{r}} d^{3}r$$

$$-r_o f(\mathbf{Q}, \hbar \omega) = -r_o \left[f^o(\mathbf{Q}) \right]$$

Scattering from an atom is built up from component quantities:

Thomson scattering from a single electron

atomic form factor

anomalous scattering terms

 $f^{o}(\mathbf{Q}) = \int \rho(\mathbf{r}) e^{i\mathbf{Q}\cdot\mathbf{r}} d^{3}r$

 $-r_o = -\frac{e^2}{4\pi\epsilon_o mc^2}$

 $f'(\hbar\omega) + if''(\hbar\omega)$

$$-r_o f(\mathbf{Q}, \hbar \omega) = -r_o \left[f^o(\mathbf{Q}) + f'(\hbar \omega) + i f''(\hbar \omega) \right]$$

Scattering from an atom is built up from component quantities:

Thomson scattering from a single electron

atomic form factor

anomalous scattering terms

polarization factor

$$f'(\hbar\omega) + if''(\hbar\omega)$$
$$P = \begin{cases} 1\\ \sin^2 \Psi\\ \frac{1}{2}(1 + \sin^2 \Psi) \end{cases}$$

 $-r_o = -\frac{e^2}{4\pi\epsilon_o mc^2}$

 $f^{o}(\mathbf{Q}) = \int \rho(\mathbf{r}) e^{i\mathbf{Q}\cdot\mathbf{r}} d^{3}r$

 $-r_o f(\mathbf{Q}, \hbar\omega) \sin^2 \Psi = -r_o \left[f^o(\mathbf{Q}) + f'(\hbar\omega) + i f''(\hbar\omega) \right] \sin^2 \Psi$

$$F^{molecule}(\mathbf{Q}) = \sum_{j} f_{j}(\mathbf{Q}) e^{i\mathbf{Q}\cdot\mathbf{r}_{j}}$$

$$\mathcal{F}^{molecule}(\mathbf{Q}) = \sum_{j} f_{j}(\mathbf{Q}) e^{i\mathbf{Q}\cdot\mathbf{r}_{j}}$$

$$F^{molecule}(\mathbf{Q}) =$$

$$\mathcal{F}^{molecule}(\mathbf{Q}) = \sum_{j} f_{j}(\mathbf{Q}) e^{i\mathbf{Q}\cdot\mathbf{r}_{j}}$$

$${\mathcal F}^{molecule}({f Q})=f_1({f Q})e^{i{f Q}\cdot{f r}_1}+$$

$$\mathcal{F}^{molecule}(\mathbf{Q}) = \sum_{i} f_{j}(\mathbf{Q}) e^{i\mathbf{Q}\cdot\mathbf{r}_{j}}$$

$$F^{molecule}(\mathbf{Q}) = f_1(\mathbf{Q})e^{i\mathbf{Q}\cdot\mathbf{r}_1} + f_2(\mathbf{Q})e^{i\mathbf{Q}\cdot\mathbf{r}_2} +$$

extending to a molecule ...

$$\mathcal{F}^{molecule}(\mathbf{Q}) = \sum_{i} f_{i}(\mathbf{Q}) e^{i\mathbf{Q}\cdot\mathbf{r}_{j}}$$

 $F^{molecule}(\mathbf{Q}) = f_1(\mathbf{Q})e^{i\mathbf{Q}\cdot\mathbf{r}_1} + f_2(\mathbf{Q})e^{i\mathbf{Q}\cdot\mathbf{r}_2} + f_3(\mathbf{Q})e^{i\mathbf{Q}\cdot\mathbf{r}_3}$

and similarly, to a crystal lattice ...

and similarly, to a crystal lattice ...

... which is simply a periodic array of molecules

and similarly, to a crystal lattice ...

... which is simply a periodic array of molecules

$$F^{crystal}(\mathbf{Q}) = F^{molecule}F^{lattice}$$

and similarly, to a crystal lattice ...

... which is simply a periodic array of molecules

$$F^{crystal}(\mathbf{Q}) = F^{molecule}F^{lattice}$$

$$\mathcal{F}^{crystal}(\mathbf{Q}) = \sum_{j} f_{j}(\mathbf{Q}) e^{i\mathbf{Q}\cdot\mathbf{r}_{j}} \sum_{n} e^{i\mathbf{Q}\cdot\mathbf{R}_{n}}$$

and similarly, to a crystal lattice ...

... which is simply a periodic array of molecules

$$F^{crystal}(\mathbf{Q}) = F^{molecule}F^{lattice}$$

$$\mathcal{F}^{crystal}(\mathbf{Q}) = \sum_{j} f_{j}(\mathbf{Q}) e^{i\mathbf{Q}\cdot\mathbf{r}_{j}} \sum_{n} e^{i\mathbf{Q}\cdot\mathbf{R}_{n}}$$

The lattice term, $\sum e^{i\mathbf{Q}\cdot\mathbf{R}_n}$, is a sum over a large number

and similarly, to a crystal lattice ...

... which is simply a periodic array of molecules

$$\mathcal{L}^{crystal}(\mathbf{Q}) = \sum_{j} f_{j}(\mathbf{Q}) e^{i\mathbf{Q}\cdot\mathbf{r}_{j}} \sum_{n} e^{i\mathbf{Q}\cdot\mathbf{R}_{n}}$$

The lattice term, $\sum e^{i\mathbf{Q}\cdot\mathbf{R}_n}$, is a sum over a large number so it is always small unless $\mathbf{Q}\cdot\mathbf{R}_n = 2\pi m$ where $\mathbf{R}_n = n_1\mathbf{a}_1 + n_2\mathbf{a}_2 + n_3\mathbf{a}_3$ is a real space lattice vector and m is an integer.

ŀ

a.

and similarly, to a crystal lattice ...

... which is simply a periodic array of molecules

$$\mathcal{L}^{crystal}(\mathbf{Q}) = \sum_{j} f_{j}(\mathbf{Q}) e^{i\mathbf{Q}\cdot\mathbf{r}_{j}} \sum_{n} e^{i\mathbf{Q}\cdot\mathbf{R}_{n}}$$

The lattice term, $\sum e^{i\mathbf{Q}\cdot\mathbf{R}_n}$, is a sum over a large number so it is always small unless $\mathbf{Q}\cdot\mathbf{R}_n = 2\pi m$ where $\mathbf{R}_n = n_1\mathbf{a}_1 + n_2\mathbf{a}_2 + n_3\mathbf{a}_3$ is a real space lattice vector and m is an integer. This condition is fulfilled only when \mathbf{Q} is a reciprocal lattice vector.

ŀ

a.

There are 7 possible real space lattices: triclinic,

There are 7 possible real space lattices: triclinic, monoclinic,

There are 7 possible real space lattices: triclinic, monoclinic, orthorhombic,

There are 7 possible real space lattices: triclinic, monoclinic, orthorhombic, tetragonal,

a

There are 7 possible real space lattices: triclinic, monoclinic, orthorhombic, tetragonal, hexagonal,

There are 7 possible real space lattices: triclinic, monoclinic, orthorhombic, tetragonal, hexagonal, rhombohedral,

There are 7 possible real space lattices: triclinic, monoclinic, orthorhombic, tetragonal, hexagonal, rhombohedral, cubic

Lattice volume

Consider the orthorhombic lattice for simplicity (the others give exactly the same result).

Lattice volume

Consider the orthorhombic lattice for simplicity (the others give exactly the same result).

$$\mathbf{a}_1 = a \hat{\mathbf{x}}, \ \mathbf{a}_2 = b \hat{\mathbf{y}}, \ \mathbf{a}_3 = c \hat{\mathbf{z}}$$

Consider the orthorhombic lattice for simplicity (the others give exactly the same result).

$$\mathbf{a}_1 = a\mathbf{\hat{x}}, \ \mathbf{a}_2 = b\mathbf{\hat{y}}, \ \mathbf{a}_3 = c\mathbf{\hat{z}}$$

$$\mathbf{a}_1 \times \mathbf{a}_2 = ab\mathbf{\hat{z}}$$

Consider the orthorhombic lattice for simplicity (the others give exactly the same result).

$$\mathbf{a}_1 = a\mathbf{\hat{x}}, \quad \mathbf{a}_2 = b\mathbf{\hat{y}}, \quad \mathbf{a}_3 = c\mathbf{\hat{z}}$$
 $\mathbf{a}_1 \times \mathbf{a}_2 = ab\mathbf{\hat{z}}$ $(\mathbf{a}_1 \times \mathbf{a}_2) \cdot \mathbf{a}_3 = ab\mathbf{\hat{z}} \cdot c\mathbf{\hat{z}}$

Consider the orthorhombic lattice for simplicity (the others give exactly the same result).

 $a \neq b \neq c$

Consider the orthorhombic lattice for simplicity (the others give exactly the same result).

A simple way of calculating the volume of the unit cell!

$$\mathbf{a}_1^* = 2\pi rac{\mathbf{a}_2 imes \mathbf{a}_3}{\mathbf{a}_1 \cdot (\mathbf{a}_2 imes \mathbf{a}_3)}$$

$$\mathbf{a}_1^* = 2\pi \frac{\mathbf{a}_2 \times \mathbf{a}_3}{\mathbf{a}_1 \cdot (\mathbf{a}_2 \times \mathbf{a}_3)}$$
$$\mathbf{a}_2^* = 2\pi \frac{\mathbf{a}_3 \times \mathbf{a}_1}{\mathbf{a}_2 \cdot (\mathbf{a}_3 \times \mathbf{a}_1)}$$

$$\mathbf{a}_{1}^{*} = 2\pi \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{\mathbf{a}_{1} \cdot (\mathbf{a}_{2} \times \mathbf{a}_{3})}$$
$$\mathbf{a}_{2}^{*} = 2\pi \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{\mathbf{a}_{2} \cdot (\mathbf{a}_{3} \times \mathbf{a}_{1})}$$
$$\mathbf{a}_{3}^{*} = 2\pi \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{\mathbf{a}_{3} \cdot (\mathbf{a}_{1} \times \mathbf{a}_{2})}$$

$$\mathbf{a}_{1}^{*} = 2\pi \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{\mathbf{a}_{1} \cdot (\mathbf{a}_{2} \times \mathbf{a}_{3})} = 2\pi \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{V}$$
$$\mathbf{a}_{2}^{*} = 2\pi \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{\mathbf{a}_{2} \cdot (\mathbf{a}_{3} \times \mathbf{a}_{1})} = 2\pi \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{V}$$
$$\mathbf{a}_{3}^{*} = 2\pi \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{\mathbf{a}_{3} \cdot (\mathbf{a}_{1} \times \mathbf{a}_{2})} = 2\pi \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{V}$$

Define the reciprocal lattice vectors in terms of the real space unit vectors

$$\mathbf{a}_1^* = 2\pi \frac{\mathbf{a}_2 \times \mathbf{a}_3}{\mathbf{a}_1 \cdot (\mathbf{a}_2 \times \mathbf{a}_3)} = 2\pi \frac{\mathbf{a}_2 \times \mathbf{a}_3}{V}$$
$$\mathbf{a}_2^* = 2\pi \frac{\mathbf{a}_3 \times \mathbf{a}_1}{\mathbf{a}_2 \cdot (\mathbf{a}_3 \times \mathbf{a}_1)} = 2\pi \frac{\mathbf{a}_3 \times \mathbf{a}_1}{V}$$
$$\mathbf{a}_3^* = 2\pi \frac{\mathbf{a}_1 \times \mathbf{a}_2}{\mathbf{a}_3 \cdot (\mathbf{a}_1 \times \mathbf{a}_2)} = 2\pi \frac{\mathbf{a}_1 \times \mathbf{a}_2}{V}$$

In analogy to \mathbf{R}_n , we can construct an arbitrary reciprocal space lattice vector \mathbf{G}_{hkl}

Define the reciprocal lattice vectors in terms of the real space unit vectors

$$\mathbf{a}_1^* = 2\pi \frac{\mathbf{a}_2 \times \mathbf{a}_3}{\mathbf{a}_1 \cdot (\mathbf{a}_2 \times \mathbf{a}_3)} = 2\pi \frac{\mathbf{a}_2 \times \mathbf{a}_3}{V}$$
$$\mathbf{a}_2^* = 2\pi \frac{\mathbf{a}_3 \times \mathbf{a}_1}{\mathbf{a}_2 \cdot (\mathbf{a}_3 \times \mathbf{a}_1)} = 2\pi \frac{\mathbf{a}_3 \times \mathbf{a}_1}{V}$$
$$\mathbf{a}_3^* = 2\pi \frac{\mathbf{a}_1 \times \mathbf{a}_2}{\mathbf{a}_3 \cdot (\mathbf{a}_1 \times \mathbf{a}_2)} = 2\pi \frac{\mathbf{a}_1 \times \mathbf{a}_2}{V}$$

In analogy to \mathbf{R}_n , we can construct an arbitrary reciprocal space lattice vector \mathbf{G}_{hkl}

$$\mathbf{G}_{hkl} = h\mathbf{a}_1^* + k\mathbf{a}_2^* + l\mathbf{a}_3^*$$

Define the reciprocal lattice vectors in terms of the real space unit vectors

$$\mathbf{a}_1^* = 2\pi \frac{\mathbf{a}_2 \times \mathbf{a}_3}{\mathbf{a}_1 \cdot (\mathbf{a}_2 \times \mathbf{a}_3)} = 2\pi \frac{\mathbf{a}_2 \times \mathbf{a}_3}{V}$$
$$\mathbf{a}_2^* = 2\pi \frac{\mathbf{a}_3 \times \mathbf{a}_1}{\mathbf{a}_2 \cdot (\mathbf{a}_3 \times \mathbf{a}_1)} = 2\pi \frac{\mathbf{a}_3 \times \mathbf{a}_1}{V}$$
$$\mathbf{a}_3^* = 2\pi \frac{\mathbf{a}_1 \times \mathbf{a}_2}{\mathbf{a}_3 \cdot (\mathbf{a}_1 \times \mathbf{a}_2)} = 2\pi \frac{\mathbf{a}_1 \times \mathbf{a}_2}{V}$$

In analogy to \mathbf{R}_n , we can construct an arbitrary reciprocal space lattice vector \mathbf{G}_{hkl}

$$\mathsf{G}_{hkl} = h\mathsf{a}_1^* + k\mathsf{a}_2^* + l\mathsf{a}_3^*$$

where h, k, and l are integers called Miller indices

Because of the construction of the reciprocal lattice

 $\mathbf{G}_{hkl} \cdot \mathbf{R}_n$

$$\mathbf{G}_{hkl} \cdot \mathbf{R}_n = (n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3) \cdot (h \mathbf{a}_1^* + k \mathbf{a}_2^* + l \mathbf{a}_3^*)$$

$$\mathbf{G}_{hkl} \cdot \mathbf{R}_n = (n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3) \cdot (h \mathbf{a}_1^* + k \mathbf{a}_2^* + l \mathbf{a}_3^*) \\ = (n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3) \cdot 2\pi \left(h \frac{\mathbf{a}_2 \times \mathbf{a}_3}{V} + k \frac{\mathbf{a}_3 \times \mathbf{a}_1}{V} + l \frac{\mathbf{a}_1 \times \mathbf{a}_2}{V} \right)$$

$$\mathbf{G}_{hkl} \cdot \mathbf{R}_n = (n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3) \cdot (h \mathbf{a}_1^* + k \mathbf{a}_2^* + l \mathbf{a}_3^*)$$

= $(n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3) \cdot 2\pi \left(h \frac{\mathbf{a}_2 \times \mathbf{a}_3}{V} + k \frac{\mathbf{a}_3 \times \mathbf{a}_1}{V} + l \frac{\mathbf{a}_1 \times \mathbf{a}_2}{V} \right)$
= $2\pi (hn_1 + kn_2 + ln_3) = 2\pi m$

Because of the construction of the reciprocal lattice

$$\mathbf{G}_{hkl} \cdot \mathbf{R}_n = (n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3) \cdot (h \mathbf{a}_1^* + k \mathbf{a}_2^* + l \mathbf{a}_3^*)$$

= $(n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3) \cdot 2\pi \left(h \frac{\mathbf{a}_2 \times \mathbf{a}_3}{V} + k \frac{\mathbf{a}_3 \times \mathbf{a}_1}{V} + l \frac{\mathbf{a}_1 \times \mathbf{a}_2}{V} \right)$
= $2\pi (hn_1 + kn_2 + ln_3) = 2\pi m$

and therefore, the crystal scattering factor is non-zero $\boldsymbol{\mathsf{only}}$ when

Because of the construction of the reciprocal lattice

$$\begin{aligned} \mathbf{G}_{hkl} \cdot \mathbf{R}_n &= (n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3) \cdot (h \mathbf{a}_1^* + k \mathbf{a}_2^* + l \mathbf{a}_3^*) \\ &= (n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3) \cdot 2\pi \left(h \frac{\mathbf{a}_2 \times \mathbf{a}_3}{V} + k \frac{\mathbf{a}_3 \times \mathbf{a}_1}{V} + l \frac{\mathbf{a}_1 \times \mathbf{a}_2}{V} \right) \\ &= 2\pi (h n_1 + k n_2 + l n_3) = 2\pi m \end{aligned}$$

and therefore, the crystal scattering factor is non-zero $\boldsymbol{\mathsf{only}}$ when

$$\mathbf{Q} = \mathbf{G}_{hkl}$$

Because of the construction of the reciprocal lattice

$$\begin{aligned} \mathbf{G}_{hkl} \cdot \mathbf{R}_n &= (n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3) \cdot (h \mathbf{a}_1^* + k \mathbf{a}_2^* + l \mathbf{a}_3^*) \\ &= (n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3) \cdot 2\pi \left(h \frac{\mathbf{a}_2 \times \mathbf{a}_3}{V} + k \frac{\mathbf{a}_3 \times \mathbf{a}_1}{V} + l \frac{\mathbf{a}_1 \times \mathbf{a}_2}{V} \right) \\ &= 2\pi (h n_1 + k n_2 + l n_3) = 2\pi m \end{aligned}$$

and therefore, the crystal scattering factor is non-zero only when

$$\mathbf{Q} = \mathbf{G}_{hkl}$$

and a significant number of molecules scatter in phase with each other

A crystal is, therefore, a diffraction grating with $\sim 10^{20}$ slits!

A crystal is, therefore, a diffraction grating with $\sim 10^{20}$ slits!

When \mathbf{Q} is a reciprocal lattice vector, a very strong, narrow diffraction peak is seen at the detector.

A crystal is, therefore, a diffraction grating with $\sim 10^{20}$ slits!

When \mathbf{Q} is a reciprocal lattice vector, a very strong, narrow diffraction peak is seen at the detector.

A crystal is, therefore, a diffraction grating with $\sim 10^{20}$ slits!

When \mathbf{Q} is a reciprocal lattice vector, a very strong, narrow diffraction peak is seen at the detector.

$$\mathbf{p} = \hbar \mathbf{k} = 2\pi \hbar / \lambda$$

$$\mathbf{p} = \hbar \mathbf{k} = 2\pi \hbar / \lambda$$
$$\mathbf{p}' = \hbar \mathbf{k}' = 2\pi \hbar / \lambda'$$

$$\begin{aligned} \mathbf{p} &= \hbar \mathbf{k} = 2\pi \hbar / \lambda \\ \mathbf{p}' &= \hbar \mathbf{k}' = 2\pi \hbar / \lambda' \\ &|\mathbf{k}| \neq \left| \mathbf{k}' \right| \end{aligned}$$

A photon-electron collision

$$\begin{aligned} \mathbf{p} &= \hbar \mathbf{k} = 2\pi \hbar / \lambda \\ \mathbf{p}' &= \hbar \mathbf{k}' = 2\pi \hbar / \lambda' \\ &|\mathbf{k}| \neq \left| \mathbf{k}' \right| \end{aligned}$$

A photon-electron collision

$$\begin{aligned} \mathbf{p} &= \hbar \mathbf{k} = 2\pi \hbar / \lambda \\ \mathbf{p}' &= \hbar \mathbf{k}' = 2\pi \hbar / \lambda' \\ &|\mathbf{k}| \neq \left| \mathbf{k}' \right| \end{aligned}$$

$$mc^2 + \frac{hc}{\lambda} = \frac{hc}{\lambda'} + \gamma mc^2$$
 (energy)

A photon-electron collision

$$\begin{aligned} \mathbf{p} &= \hbar \mathbf{k} = 2\pi \hbar / \lambda \\ \mathbf{p}' &= \hbar \mathbf{k}' = 2\pi \hbar / \lambda' \\ &|\mathbf{k}| \neq \left| \mathbf{k}' \right| \end{aligned}$$

$$mc^{2} + \frac{hc}{\lambda} = \frac{hc}{\lambda'} + \gamma mc^{2} \quad \text{(energy)}$$
$$\frac{h}{\lambda} = \frac{h}{\lambda'} \cos \phi + \gamma mv \cos \theta \quad \text{(x-axis)}$$

A photon-electron collision

$$\begin{aligned} \mathbf{p} &= \hbar \mathbf{k} = 2\pi \hbar / \lambda \\ \mathbf{p}' &= \hbar \mathbf{k}' = 2\pi \hbar / \lambda' \\ &|\mathbf{k}| \neq \left| \mathbf{k}' \right| \end{aligned}$$

$$mc^{2} + \frac{hc}{\lambda} = \frac{hc}{\lambda'} + \gamma mc^{2} \quad \text{(energy)}$$
$$\frac{h}{\lambda} = \frac{h}{\lambda'} \cos \phi + \gamma mv \cos \theta \quad \text{(x-axis)}$$
$$0 = \frac{h}{\lambda'} \sin \phi + \gamma mv \sin \theta \quad \text{(y-axis)}$$

Compton scattering derivation

squaring the momentum equations

Compton scattering derivation

squaring the momentum equations

$$\left(\frac{h}{\lambda} - \frac{h}{\lambda'}\cos\phi\right)^2 = \gamma^2 m^2 v^2 \cos^2\theta$$

Compton scattering derivation

squaring the momentum equations

$$\left(\frac{h}{\lambda} - \frac{h}{\lambda'}\cos\phi\right)^2 = \gamma^2 m^2 v^2 \cos^2\theta$$
$$\left(-\frac{h}{\lambda'}\sin\phi\right)^2 = \gamma^2 m^2 v^2 \sin^2\theta$$
squaring the momentum equations

$$\left(\frac{h}{\lambda} - \frac{h}{\lambda'}\cos\phi\right)^2 = \gamma^2 m^2 v^2 \cos^2\theta$$
$$\left(-\frac{h}{\lambda'}\sin\phi\right)^2 = \gamma^2 m^2 v^2 \sin^2\theta$$

now add them together,

$$\gamma^2 m^2 v^2 \left(\sin^2 \theta + \cos^2 \theta \right) = \left(\frac{h}{\lambda} - \frac{h}{\lambda'} \cos \phi \right)^2 + \left(-\frac{h}{\lambda'} \sin \phi \right)^2$$

squaring the momentum equations

$$\left(\frac{h}{\lambda} - \frac{h}{\lambda'}\cos\phi\right)^2 = \gamma^2 m^2 v^2 \cos^2\theta$$
$$\left(-\frac{h}{\lambda'}\sin\phi\right)^2 = \gamma^2 m^2 v^2 \sin^2\theta$$

now add them together, substitute $\sin^2 \theta + \cos^2 \theta = 1$,

$$\gamma^2 m^2 v^2 \left(\sin^2 \theta + \cos^2 \theta\right) = \left(\frac{h}{\lambda} - \frac{h}{\lambda'} \cos \phi\right)^2 + \left(-\frac{h}{\lambda'} \sin \phi\right)^2$$
$$\gamma^2 m^2 v^2 = \frac{h^2}{\lambda^2} - \frac{2h^2}{\lambda\lambda'} \cos \phi + \frac{h^2}{\lambda'^2} \sin^2 \phi + \frac{h^2}{\lambda'^2} \cos^2 \phi$$

squaring the momentum equations

$$\left(\frac{h}{\lambda} - \frac{h}{\lambda'}\cos\phi\right)^2 = \gamma^2 m^2 v^2 \cos^2\theta$$
$$\left(-\frac{h}{\lambda'}\sin\phi\right)^2 = \gamma^2 m^2 v^2 \sin^2\theta$$

now add them together, substitute $\sin^2\theta+\cos^2\theta=1,$ and $\sin^2\phi+\cos^2\phi=1,$ then rearrange

$$\gamma^2 m^2 v^2 \left(\sin^2 \theta + \cos^2 \theta\right) = \left(\frac{h}{\lambda} - \frac{h}{\lambda'} \cos \phi\right)^2 + \left(-\frac{h}{\lambda'} \sin \phi\right)^2$$
$$\gamma^2 m^2 v^2 = \frac{h^2}{\lambda^2} - \frac{2h^2}{\lambda\lambda'} \cos \phi + \frac{h^2}{\lambda'^2} \sin^2 \phi + \frac{h^2}{\lambda'^2} \cos^2 \phi$$
$$\frac{h^2}{\lambda^2} - \frac{2h^2}{\lambda\lambda'} \cos \phi + \frac{h^2}{\lambda'^2} = \frac{m^2 v^2}{1 - \beta^2}$$

squaring the momentum equations

$$\left(\frac{h}{\lambda} - \frac{h}{\lambda'}\cos\phi\right)^2 = \gamma^2 m^2 v^2 \cos^2\theta$$
$$\left(-\frac{h}{\lambda'}\sin\phi\right)^2 = \gamma^2 m^2 v^2 \sin^2\theta$$

now add them together, substitute $\sin^2 \theta + \cos^2 \theta = 1$, and $\sin^2 \phi + \cos^2 \phi = 1$, then rearrange and substitute $v = \beta c$

$$\gamma^2 m^2 v^2 \left(\sin^2 \theta + \cos^2 \theta\right) = \left(\frac{h}{\lambda} - \frac{h}{\lambda'} \cos \phi\right)^2 + \left(-\frac{h}{\lambda'} \sin \phi\right)^2$$
$$\gamma^2 m^2 v^2 = \frac{h^2}{\lambda^2} - \frac{2h^2}{\lambda\lambda'} \cos \phi + \frac{h^2}{\lambda'^2} \sin^2 \phi + \frac{h^2}{\lambda'^2} \cos^2 \phi$$
$$\frac{h^2}{\lambda^2} - \frac{2h^2}{\lambda\lambda'} \cos \phi + \frac{h^2}{\lambda'^2} = \frac{m^2 v^2}{1 - \beta^2} = \frac{m^2 c^2 \beta^2}{1 - \beta^2}$$

C. Segre (IIT)

Now take the energy equation and square it,

$$\left(mc^{2} + \frac{hc}{\lambda} - \frac{hc}{\lambda'}\right)^{2} = \gamma^{2}m^{2}c^{4} = \frac{m^{2}c^{4}}{1 - \beta^{2}}$$

Now take the energy equation and square it, then solve it for β^2

$$\left(mc^{2} + \frac{hc}{\lambda} - \frac{hc}{\lambda'}\right)^{2} = \gamma^{2}m^{2}c^{4} = \frac{m^{2}c^{4}}{1 - \beta^{2}}$$

$$eta^2 = 1 - rac{m^2 c^4}{\left(mc^2 + rac{hc}{\lambda} - rac{hc}{\lambda'}
ight)^2}$$

Now take the energy equation and square it, then solve it for β^2 which is substituted into the equation from the momenta.

$$\left(mc^{2} + \frac{hc}{\lambda} - \frac{hc}{\lambda'}\right)^{2} = \gamma^{2}m^{2}c^{4} = \frac{m^{2}c^{4}}{1 - \beta^{2}}$$

$$eta^2 = 1 - rac{m^2 c^4}{\left(mc^2 + rac{hc}{\lambda} - rac{hc}{\lambda}
ight)^2}$$

$$\frac{h^2}{\lambda^2} - \frac{2h^2}{\lambda\lambda'}\cos\phi + \frac{h^2}{\lambda'^2} = \frac{m^2c^2\beta^2}{1-\beta^2}$$

$$\frac{h^2}{\lambda^2} + \frac{h^2}{\lambda'^2} - \frac{2h^2}{\lambda\lambda'}\cos\phi = 2m\left(\frac{hc}{\lambda} - \frac{hc}{\lambda'}\right) + \frac{h^2}{\lambda^2} + \frac{h^2}{\lambda'^2} - \frac{2h^2}{\lambda\lambda'}$$

$$\frac{h^2}{\lambda^2} + \frac{h^2}{\lambda'^2} - \frac{2h^2}{\lambda\lambda'}\cos\phi = 2m\left(\frac{hc}{\lambda} - \frac{hc}{\lambda'}\right) + \frac{h^2}{\lambda^2} + \frac{h^2}{\lambda'^2} - \frac{2h^2}{\lambda\lambda'}$$

$$\frac{2h^2}{\lambda\lambda'}\left(1-\cos\phi\right) = 2m\left(\frac{hc}{\lambda}-\frac{hc}{\lambda'}\right) = 2mhc\left(\frac{\lambda'-\lambda}{\lambda\lambda'}\right) = \frac{2mhc\Delta\lambda}{\lambda\lambda'}$$

$$\frac{h^2}{\lambda^2} + \frac{h^2}{\lambda'^2} - \frac{2h^2}{\lambda\lambda'}\cos\phi = 2m\left(\frac{hc}{\lambda} - \frac{hc}{\lambda'}\right) + \frac{h^2}{\lambda^2} + \frac{h^2}{\lambda'^2} - \frac{2h^2}{\lambda\lambda'}$$

$$\frac{2h^2}{\lambda\lambda'}\left(1-\cos\phi\right) = 2m\left(\frac{hc}{\lambda}-\frac{hc}{\lambda'}\right) = 2mhc\left(\frac{\lambda'-\lambda}{\lambda\lambda'}\right) = \frac{2mhc\Delta\lambda}{\lambda\lambda'}$$

$$\Delta \lambda = \frac{h}{mc} \left(1 - \cos \phi \right)$$

Compton scattering results

 $\lambda_c = \hbar/mc = 3.86 imes 10^{-3}$ Å for an electron

Comparing to the Thomson scattering length: $r_o/\lambda_C = 1/137$

Compton scattering results

 $\lambda_c = \hbar/mc = 3.86 imes 10^{-3}$ Å for an electron

Comparing to the Thomson scattering length: $r_o/\lambda_C = 1/137$

Absorption coefficient $\mu,$ thickness dz x-ray intensity is attenuated as

$$dI = -I(z)\mu dz$$

Absorption coefficient μ , thickness dz x-ray intensity is attenuated as

$$dI = -I(z)\mu dz$$

$$dI/I = -\mu dz \implies I = I_o e^{-\mu z}$$

Absorption coefficient μ , thickness dzx-ray intensity is attenuated as

$$dI = -I(z)\mu dz$$

$$dI/I = -\mu dz \implies I = I_o e^{-\mu z}$$

number of absorption events, $W = I(z)\rho_a\sigma_a dz = I(z)\mu dz$

where ρ_a is atom density, σ_a is absorption cross section

Absorption coefficient μ , thickness dzx-ray intensity is attenuated as

$$dI = -I(z)\mu dz$$

$$dI/I = -\mu dz \implies I = I_o e^{-\mu z}$$

number of absorption events, $W = I(z)\rho_a\sigma_a dz = I(z)\mu dz$

where ρ_a is atom density, σ_a is absorption cross section

$$\mu = \rho_{\mathsf{a}}\sigma_{\mathsf{a}} = \left(\frac{\rho_{\mathsf{m}}\mathsf{N}_{\mathsf{A}}}{\mathsf{A}}\right)\sigma_{\mathsf{a}}$$

with mass density ho_m , Avogadro's number N_A , atomic number A

• X-ray is absorbed by an atom

- X-ray is absorbed by an atom
- Energy is transferred to a core electron

- X-ray is absorbed by an atom
- Energy is transferred to a core electron
- Electron escapes atomic potential into the continuum

- X-ray is absorbed by an atom
- Energy is transferred to a core electron
- Electron escapes atomic potential into the continuum
- Ion remains with a core-hole

An ion with a core-hole is quite unstable $(\approx 10^{-15} {\rm s})$

An ion with a core-hole is quite unstable ($\approx 10^{-15}$ s)

• After a short time a higher level electron will drop down in energy to fill the core hole

An ion with a core-hole is quite unstable ($\approx 10^{-15}$ s)

- After a short time a higher level electron will drop down in energy to fill the core hole
- Energy is liberated in the form of a fluorescence photon

An ion with a core-hole is quite unstable ($\approx 10^{-15}$ s)

- After a short time a higher level electron will drop down in energy to fill the core hole
- Energy is liberated in the form of a fluorescence photon
- This leaves a second hole (not core) which is then filled from an even higher shell

An ion with a core-hole is quite unstable ($\approx 10^{-15}$ s)

- After a short time a higher level electron will drop down in energy to fill the core hole
- Energy is liberated in the form of a fluorescence photon
- This leaves a second hole (not core) which is then filled from an even higher shell
- The result is a cascade of fluorescence photons which are characteristic of the absorbing atom

While fluorescence is the most probable method of core-hole relaxation there are other possible mechanisms

• In the Auger process, a higher level electron will drop down in energy to fill the core hole

- In the Auger process, a higher level electron will drop down in energy to fill the core hole
- The energy liberated causes the secondary emission of an electron

- In the Auger process, a higher level electron will drop down in energy to fill the core hole
- The energy liberated causes the secondary emission of an electron
- This leaves two holes which then filled from higher shells

- In the Auger process, a higher level electron will drop down in energy to fill the core hole
- The energy liberated causes the secondary emission of an electron
- This leaves two holes which then filled from higher shells
- So that the secondary electron is accompanied by fluorescence emissions at lower energies

The absorption coefficient μ , depends strongly on the x-ray energy *E*, the atomic number of the absorbing atoms *Z*, as well as the density ρ , and atomic mass *A*:

 $\mu \sim -$

The absorption coefficient μ , depends strongly on the x-ray energy *E*, the atomic number of the absorbing atoms *Z*, as well as the density ρ , and atomic mass *A*:

$$\mu \sim -\overline{E^3}$$

The absorption coefficient μ , depends strongly on the x-ray energy *E*, the atomic number of the absorbing atoms *Z*, as well as the density ρ , and atomic mass *A*:

 $\mu \sim \frac{Z^4}{E^3}$

The absorption coefficient μ , depends strongly on the x-ray energy *E*, the atomic number of the absorbing atoms *Z*, as well as the density ρ , and atomic mass *A*:

$$\mu \sim \frac{\rho Z^4}{E^3}$$

The absorption coefficient μ , depends strongly on the x-ray energy *E*, the atomic number of the absorbing atoms *Z*, as well as the density ρ , and atomic mass *A*:

$$\mu \sim \frac{\rho Z^4}{AE^3}$$
Absorption coefficient

The absorption coefficient μ , depends strongly on the x-ray energy E, the atomic number of the absorbing atoms Z, as well as the density ρ , and atomic mass A:

Absorption coefficient

Isolated gas atoms show a sharp jump and a smooth curve

Absorption coefficient

Isolated gas atoms show a sharp jump and a smooth curve Atoms in a solid or liquid show fine structure after the absorption edge called XANES and EXAFS

$$n=1-\delta+ieta$$
 with $\delta\sim 10^{-5}$

$$n=1-\delta+ieta$$
 with $\delta\sim 10^{-5}$

X-rays can be treated like light when interaction with a medium. However, unlike visible light, the index of refraction of x-rays in matter is very close to unity:

$$n=1-\delta+ieta$$
 with $\delta\sim 10^{-5}$

Snell's Law

 $\cos\alpha = n\cos\alpha'$

where $\alpha' < \alpha$ unlike for visible light

C. Segre (IIT)

PHYS 570 - Spring 2015

Because n < 1, at a critical angle α_c , we no longer have refraction but

Because n < 1, at a critical angle α_c , we no longer have refraction but total external reflection

Because n < 1, at a critical angle α_c , we no longer have refraction but *total external reflection*

Since $\alpha' = 0$ when $\alpha = \alpha_c$

Because n < 1, at a critical angle α_c , we no longer have refraction but *total external reflection*

Since $\alpha' = 0$ when $\alpha = \alpha_c$

 $n = \cos \alpha_c$

Because n < 1, at a critical angle α_c , we no longer have refraction but total external reflection

Since $\alpha' = 0$ when $\alpha = \alpha_c$

 $n = \cos \alpha_c$

Because n < 1, at a critical angle α_c , we no longer have refraction but total external reflection

Since $\alpha' = 0$ when $\alpha = \alpha_c$

$$n \approx 1 - \frac{\alpha_c^2}{2}$$
$$-\delta + i\beta \approx 1 - \frac{\alpha_c^2}{2}$$

1

Because n < 1, at a critical angle α_c , we no longer have refraction but total external reflection

Since $\alpha' = 0$ when $\alpha = \alpha_c$

PHYS 570 - Spring 2015

X-ray mirrors

X-ray mirrors

• harmonic rejection

X-ray mirrors

- harmonic rejection
- focusing & collimation

X-ray mirrors

- harmonic rejection
- focusing & collimation

Evanscent wave experiments

X-ray mirrors

- harmonic rejection
- focusing & collimation

Evanscent wave experiments

• studies of surfaces

X-ray mirrors

- harmonic rejection
- focusing & collimation

Evanscent wave experiments

- studies of surfaces
- depth profiling

We have focused on the interaction of x-rays and charged particles. However, electromagnetic radiation also consists of a traveling magnetic field. In principle, this means it should interact with magnetic materials as well.

We have focused on the interaction of x-rays and charged particles. However, electromagnetic radiation also consists of a traveling magnetic field. In principle, this means it should interact with magnetic materials as well.

Indeed, x-rays do interact with magnetic materials (and electrons which have magnetic moment and spin) but the strength of the interaction is comparatively weak.

We have focused on the interaction of x-rays and charged particles. However, electromagnetic radiation also consists of a traveling magnetic field. In principle, this means it should interact with magnetic materials as well.

Indeed, x-rays do interact with magnetic materials (and electrons which have magnetic moment and spin) but the strength of the interaction is comparatively weak.

$$\frac{A_{magnetic}}{A_{charge}} = \frac{\hbar\omega}{mc^2}$$

We have focused on the interaction of x-rays and charged particles. However, electromagnetic radiation also consists of a traveling magnetic field. In principle, this means it should interact with magnetic materials as well.

Indeed, x-rays do interact with magnetic materials (and electrons which have magnetic moment and spin) but the strength of the interaction is comparatively weak.

$$\frac{A_{magnetic}}{A_{charge}} = \frac{\hbar\omega}{mc^2}$$

For an x-ray of energy 5.11 keV, interacting with an electron with mass 0.511 MeV.

We have focused on the interaction of x-rays and charged particles. However, electromagnetic radiation also consists of a traveling magnetic field. In principle, this means it should interact with magnetic materials as well.

Indeed, x-rays do interact with magnetic materials (and electrons which have magnetic moment and spin) but the strength of the interaction is comparatively weak.

$$rac{A_{magnetic}}{A_{charge}} = rac{\hbar\omega}{mc^2} = rac{5.11 imes 10^3 ext{ eV}}{0.511 imes 10^6 ext{ eV}}$$

For an x-ray of energy 5.11 keV, interacting with an electron with mass 0.511 MeV.

We have focused on the interaction of x-rays and charged particles. However, electromagnetic radiation also consists of a traveling magnetic field. In principle, this means it should interact with magnetic materials as well.

Indeed, x-rays do interact with magnetic materials (and electrons which have magnetic moment and spin) but the strength of the interaction is comparatively weak.

$$rac{A_{magnetic}}{A_{charge}} = rac{\hbar\omega}{mc^2} = rac{5.11 imes 10^3 ext{ eV}}{0.511 imes 10^6 ext{ eV}} = 0.01$$

For an x-ray of energy 5.11 keV, interacting with an electron with mass 0.511 MeV.

We have focused on the interaction of x-rays and charged particles. However, electromagnetic radiation also consists of a traveling magnetic field. In principle, this means it should interact with magnetic materials as well.

Indeed, x-rays do interact with magnetic materials (and electrons which have magnetic moment and spin) but the strength of the interaction is comparatively weak.

$$rac{A_{magnetic}}{A_{charge}} = rac{\hbar\omega}{mc^2} = rac{5.11 imes 10^3 ext{ eV}}{0.511 imes 10^6 ext{ eV}} = 0.01$$

For an x-ray of energy 5.11 keV, interacting with an electron with mass 0.511 MeV. Only with the advent of synchrotron radiation sources has magnetic x-ray scattering become a practical experimental technique.