
Today’s Outline - January 15, 2015

• Scattering from molecules and crystals

• The reciprocal lattice

• Compton (inelastic) scattering

• X-ray absorption

• Refraction and reflection of x-rays

• Magnetic interactions of x-rays

• Coherence of x-ray sources
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Scattering from atoms: all effects

Scattering from an atom is built up from component quantities:

Thomson scattering from a single electron

atomic form factor

anomalous scattering terms

polarization factor

−ro = − e2

4πε0mc2

f o(Q) =

∫
ρ(r)e iQ·rd3r

f ′(~ω) + if ′′(~ω)

P =


1

sin2 Ψ
1
2(1 + sin2 Ψ)

− ro f (Q, ~ω) sin2 Ψ = −ro
[
f o(Q)

+ f ′(~ω) + if ′′(~ω)

]
sin2 Ψ
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Scattering from molecules

extending to a molecule ...

Fmolecule(Q) =
∑
j

fj(Q)e iQ·rj

Fmolecule(Q) = f1(Q)e iQ·r1+f2(Q)e iQ·r2+f3(Q)e iQ·r3
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Scattering from a crystal

and similarly, to a crystal lattice ...

... which is simply a periodic array of molecules

F crystal(Q) = FmoleculeF lattice

F crystal(Q) =
∑
j

fj(Q)e iQ·rj
∑
n

e iQ·Rn

The lattice term,
∑

e iQ·Rn , is a sum over a large number so it is always
small unless Q · Rn = 2πm where Rn = n1a1 + n2a2 + n3a3 is a real space
lattice vector and m is an integer. This condition is fulfilled only when Q
is a reciprocal lattice vector.
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Crystal lattices

There are 7 possible real space lattices: triclinic,

monoclinic, orthorhombic,
tetragonal, hexagonal, rhombohedral, cubic
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Lattice volume

Consider the orthorhombic lattice for simplicity (the others give exactly the
same result).

a1 = ax̂, a2 = bŷ, a3 = c ẑ

a1 × a2 = abẑ

(a1 × a2) · a3 = abẑ · c ẑ

(a1 × a2) · a3 = abc = V

A simple way of calculating the volume of the unit cell!
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Reciprocal lattice

Define the reciprocal lattice vectors in terms of the real space unit vectors

a∗1 = 2π
a2 × a3

a1 · (a2 × a3)
= 2π

a2 × a3
V

a∗2 = 2π
a3 × a1

a2 · (a3 × a1)
= 2π

a3 × a1
V

a∗3 = 2π
a1 × a2

a3 · (a1 × a2)
= 2π

a1 × a2
V

In analogy to Rn, we can construct an arbitrary reciprocal space lattice
vector Ghkl

Ghkl = ha∗1 + ka∗2 + la∗3

where h, k, and l are integers called Miller indices
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Laue condition

Because of the construction of the reciprocal lattice

Ghkl · Rn = (n1a1 + n2a2 + n3a3) · (ha∗1 + ka∗2 + la∗3)

= (n1a1 + n2a2 + n3a3) · 2π
(
h
a2 × a3

V
+ k

a3 × a1
V

+ l
a1 × a2

V

)
= 2π(hn1 + kn2 + ln3) = 2πm

and therefore, the crystal scattering factor is non-zero only when

Q = Ghkl

and a significant number of molecules scatter in phase with each other
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Laue condition

A crystal is, therefore, a diffraction grating with ∼ 1020 slits!

When Q is a reciprocal lattice vector, a very strong, narrow diffraction
peak is seen at the detector.
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Compton scattering

A photon-electron collision

ϕ

θ

λ

v

λ’

p = ~k = 2π~/λ
p′ = ~k′ = 2π~/λ′

|k| 6=
∣∣k′∣∣

Treat the electron relativistically and conserve energy and momentum

mc2 +
hc

λ
=

hc

λ′
+ γmc2 (energy)

h

λ
=

h

λ′
cosφ+ γmv cos θ (x-axis)

0 =
h

λ′
sinφ+ γmv sin θ (y-axis)
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Compton scattering derivation

squaring the momentum
equations

(
h

λ
− h

λ′
cosφ

)2

= γ2m2v2 cos2 θ(
− h

λ′
sinφ

)2

= γ2m2v2 sin2 θ

now add them together, substitute sin2 θ + cos2 θ = 1, and
sin2 φ+ cos2 φ = 1, then rearrange and substitute v = βc

γ2m2v2
(
sin2 θ + cos2 θ

)
=

(
h

λ
− h

λ′
cosφ

)2

+

(
− h

λ′
sinφ

)2

γ2m2v2 =
h2

λ2
− 2h2

λλ′
cosφ+

h2

λ′2
sin2 φ+

h2

λ′2
cos2 φ

h2

λ2
− 2h2

λλ′
cosφ+

h2

λ′2
=

m2v2

1− β2

=
m2c2β2

1− β2
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Compton scattering derivation

Now take the energy equation and square it,

then solve it for β2 which is
substituted into the equation from the momenta.

(
mc2 +

hc

λ
− hc

λ′

)2

= γ2m2c4=
m2c4

1− β2

β2 = 1− m2c4(
mc2 + hc

λ −
hc
λ′

)2
h2

λ2
− 2h2

λλ′
cosφ+

h2

λ′2
=

m2c2β2

1− β2
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Compton scattering derivation

After substitution, expansion and cancellation, we obtain

h2

λ2
+

h2

λ′2
− 2h2

λλ′
cosφ = 2m

(
hc

λ
− hc

λ′

)
+

h2

λ2
+

h2

λ′2
− 2h2

λλ′

2h2

λλ′
(1− cosφ) = 2m

(
hc

λ
− hc

λ′

)
= 2mhc

(
λ′ − λ
λλ′

)
=

2mhc∆λ

λλ′

∆λ =
h

mc
(1− cosφ)
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Compton scattering results

λc = ~/mc = 3.86× 10−3Å for an electron

Comparing to the Thomson scattering length: ro/λC = 1/137
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X-ray absorption

I
o

z

dz

µ

Absorption coefficient µ, thickness dz
x-ray intensity is attenuated as

dI = −I (z)µdz

dI/I = −µdz =⇒ I = Ioe
−µz

number of absorption events, W = I (z)ρaσadz = I (z)µdz

where ρa is atom density, σa is absorption cross section

µ = ρaσa =
(
ρmNA
A

)
σa

with mass density ρm , Avogadro’s number NA, atomic number A
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Absorption event

νh

k

• X-ray is absorbed by an atom

• Energy is transferred to a core electron

• Electron escapes atomic potential into the
continuum

• Ion remains with a core-hole
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Fluorescence emission

An ion with a core-hole is quite unstable (≈ 10−15s)

∆t

−→

νh

• After a short time a higher level
electron will drop down in energy to
fill the core hole

• Energy is liberated in the form of a
fluorescence photon

• This leaves a second hole (not core)
which is then filled from an even
higher shell

• The result is a cascade of fluorescence
photons which are characteristic of the
absorbing atom
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Auger emission

While fluorescence is the most probable method of core-hole relaxation
there are other possible mechanisms

∆t

−→

k
• In the Auger process, a higher level

electron will drop down in energy to
fill the core hole

• The energy liberated causes the
secondary emission of an electron

• This leaves two holes which then filled
from higher shells

• So that the secondary electron is
accompanied by fluorescence emissions
at lower energies
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Absorption coefficient

The absorption coefficient µ, depends strongly on the x-ray energy E , the
atomic number of the absorbing atoms Z , as well as the density ρ, and
atomic mass A:

µ ∼

ρZ 4

AE 3
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Absorption coefficient

Isolated gas atoms show a sharp jump and a smooth curve

Atoms in a solid or liquid show fine structure after the absorption edge
called XANES and EXAFS

−→
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Refraction of x-rays

X-rays can be treated like light when interaction with a medium. However,
unlike visible light, the index of refraction of x-rays in matter is very close
to unity:

α

α’

n = 1− δ + iβ

with δ ∼ 10−5

Snell’s Law

cosα = n cosα′

where α′ < α unlike for visible light
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Reflection of x-rays

Because n < 1, at a critical angle αc , we no longer have refraction but

total external reflection

α α

Since α′ = 0 when α = αc

n = cosαc

n ≈ 1− α2
c

2

1− δ + iβ ≈ 1− α2
c

2

δ =
α2
c

2
−→ αc =

√
2δ
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Uses of total external reflection

X-ray mirrors

• harmonic rejection

• focusing & collimation

Evanscent wave experiments

• studies of surfaces

• depth profiling
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Magnetic interactions

We have focused on the interaction of x-rays and charged particles.
However, electromagnetic radiation also consists of a traveling mag-
netic field. In principle, this means it should interact with magnetic
materials as well.

Indeed, x-rays do interact with magnetic materials (and electrons which
have magnetic moment and spin) but the strength of the interaction
is comparatively weak.

Amagnetic

Acharge
=

~ω
mc2

=
5.11× 103 eV

0.511× 106 eV
= 0.01

For an x-ray of energy 5.11 keV, interacting with an electron with mass
0.511 MeV. Only with the advent of synchrotron radiation sources has
magnetic x-ray scattering become a practical experimental technique.
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