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Today's Outline - January 15, 2015

e Scattering from molecules and crystals
e The reciprocal lattice

e Compton (inelastic) scattering

e X-ray absorption

e Refraction and reflection of x-rays

e Magnetic interactions of x-rays

e Coherence of x-ray sources
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Scattering from atoms: all effects

Scattering from an atom is built up from component quantities:
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Scattering from atoms: all effects

Scattering from an atom is built up from component quantities:

2
e
Th ttering fi ingle elect = ——
omson scattering from a single electron ro P ——
atomic form factor (Q) = /p(r)eiq'rd3r
anomalous scattering terms f'(hw) +
1
polarization factor P =
(1 +sin? V)
— 1of(Q, hw) sin® W = —r, [F2(Q) + f'(hw) + ]
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extending to a molecule ...
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Scattering from a crystal

and similarly, to a crystal lattice ...
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Scattering from a crystal

and similarly, to a crystal lattice ...

. which is simply a periodic array of molecules
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The lattice term, 3" e’@R» is a sum over a large number so it is always
small unless Q - R, = 2wm where R, = nja; + nya, + n3as is a real space
lattice vector and m is an integer.
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Scattering from a crystal
and similarly, to a crystal lattice ...

. which is simply a periodic array of molecules

oY
vEeEE

crystal molecule lattice
ey @) = £t
a, Fcrystal(Q) — 2 : G(Q)GIQ rjz : e,Q R,

J

The lattice term, 3" e’@R» is a sum over a large number so it is always
small unless Q - R, = 2wm where R, = nja; + nya, + n3as is a real space
lattice vector and m is an integer. This condition is fulfilled only when Q
is a reciprocal lattice vector.
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Crystal lattices

There are 7 possible real space lattices: triclinic,

a, B,y #90°
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Crystal lattices
There are 7 possible real space lattices: triclinic, monoclinic, orthorhombic,
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There are 7 possible real space lattices: triclinic, monoclinic, orthorhombic,
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Crystal lattices

There are 7 possible real space lattices: triclinic, monoclinic, orthorhombic,
tetragonal, hexagonal, rhombohedral, cubic

a, B,y #90°

NI

a*c

C. Segre (lIT)
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Lattice volume

Consider the orthorhombic lattice for simplicity (the others give exactly the
same result).

a*b#c
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Lattice volume

Consider the orthorhombic lattice for simplicity (the others give exactly the

same result).
a; = af(, dy = b9, az = cz

b a; X a, = abz

p (a1 x a@2) -az3 = abz - cz

(a1 x @z) -az3 = abc =V

A simple way of calculating the volume of the unit cell!
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Reciprocal lattice

Define the reciprocal lattice vectors in terms of the real space unit vectors
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az X as

ali=2r——M—M=—
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Reciprocal lattice

Define the reciprocal lattice vectors in terms of the real space unit vectors
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aj=2r—————
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Reciprocal lattice

Define the reciprocal lattice vectors in terms of the real space unit vectors

aj =27

az X as _ 27Ta2 X as
a; - (a2 x az) Vv

a3 X ax _ 27Ta3 X a1
ar - (a3 X a1) 4

a; X ar _ 27Ta1 X az
as - (a1 x ap) Vv

In analogy to R, we can construct an arbitrary reciprocal space lattice

vector Gy
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Reciprocal lattice

Define the reciprocal lattice vectors in terms of the real space unit vectors

az X as az X az
aj =27 =27
a; - (a2 x az) Vv
a3 X ax a3z X ax
a; =2r =2
ar - (a3 X a1) 4
a; X ar a; X az
a3 =2rw =27
as - (a1 x ap) Vv

In analogy to R, we can construct an arbitrary reciprocal space lattice

vector Gy
th/ = ha>{ + ka; + /a§

where h, k, and [ are integers called Miller indices
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Laue condition

Because of the construction of the reciprocal lattice
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Laue condition

Because of the construction of the reciprocal lattice

th/ . R,, = (n1a1 + npas + n3a3) . (hai + ka; + la§)
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and therefore, the crystal scattering factor is non-zero only when
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Laue condition

Because of the construction of the reciprocal lattice

th/ . R,, = (n1a1 + npas + n3a3) . (hai + ka; + la§)

asz X a3z a3z X ax ai X az
= 27 h k /
(nay + naz + nsas) - 27 < Vv + v + v )
= 27r(hn1 + kno + /n3) =2mm
and therefore, the crystal scattering factor is non-zero only when

Q =Gpu

and a significant number of molecules scatter in phase with each other
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Laue condition

A crystal is, therefore, a diffraction grating with ~ 102 slits!
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Laue condition

A crystal is, therefore, a diffraction grating with ~ 102 slits!

When Q is a reciprocal lattice vector, a very strong, narrow diffraction
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Compton scattering

A photon-electron collision
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Compton scattering

A photon-electron collision

p = ik = 27wh/A
p = hK = 27h/N
kI # K|

Treat the electron relativistically and conserve energy and momentum

5> hc  hc
mc* + SRR +ymc?  (energy)
h .
Y= v s ¢+ ymvcosf (x-axis)
h
0= v sing +ymvsinf (y-axis)
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Compton scattering derivation

squaring the momentum
equations
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Compton scattering derivation

2

. _ 2.2 2 2
squaring the momentum (C05¢> = y"m°v* cos” 6
equations

h 2
<_)\’ sin (/5) =?m?v?sin? 0

now add them together,

h h 2 h 2
72m2v2 (sin29+c052 9) = <)\ — Xcosqb) + <—sin gb)

C. Segre (IIT) PHYS 570 - Spring 2015 January 15, 2015 11 /24



Compton scattering derivation
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h 2 2 2 2
squaring the momentum (COS¢> =~v"m“v-cos 0
equations

h 2
<_)\’ sin (/5) =?m?v?sin? 0

now add them together, substitute sin® 6 + cos? 6§ = 1,

h h 2 h 2
72m2v2 (sin29+c052 9) = <)\ — Xcosqb) + <—)\/ sin gb)
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Compton scattering derivation

2

h 2 2 2 2
squaring the momentum (COS¢> =~v"m“v-cos 0
equations

h 2
<—)\/ sin (/)) =?m?v?sin? 0

now add them together, substitute sin® 6 + cos?# = 1, and
sin® ¢ 4 cos? ¢ = 1, then rearrange

h h 2 h 2
v m?v? (sin29+c052 9) = <)\ — Xcosqb) + <—)\/ sin gb)

h?>  2h? h? h?
VP mPv? = 2w cos ¢ + 2 sin ¢ + 2 cos? ¢
h?>  2h? h? B m?v?
SO YU VR gy
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Compton scattering derivation

2

h 2 2 2 2
squaring the momentum (COS¢> =~v"m“v-cos 0
equations

h 2
<—)\/ sin (/>> =?m?v?sin? 0

now add them together, substitute sin® 6 + cos?# = 1, and
sin® ¢ 4 cos? ¢ = 1, then rearrange and substitute v = fc

h h 2 h 2
v m?v? (sin29+c052 9) = <)\ — Xcosqb) + <—)\/ sin gb)

h?>  2h? h? h?
VP mPv? = 2w cos ¢ + 2 sin ¢ + 2 cos? ¢
> 2k h? m?v? m?c? 32
— — ——COSPp+ — = =
AZ AN 21— B2 1-p2
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Compton scattering derivation

Now take the energy equation and square it,
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Compton scattering derivation

Now take the energy equation and square it, then solve it for 52

h h 2 2 4
<mC2+C_C> — A2m2c m*c

XN T 1o
2 4
Fr=1- th hc )2
2 hc _ hc
(me2+ 5 - %)
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Compton scattering derivation

Now take the energy equation and square it, then solve it for 3? which is

substituted into the equation from the momenta.

he  hc\?
2 hc hey o 2.4
< ¢ ) v 1-p2

A N
ﬁ2:1— m2ct
(mc2 + he E)2
A Y
h  2h? h?
PO VUL

C. Segre (lIT) PHYS 570 - Spring 2015
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1- 32
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Compton scattering derivation

After substitution, expansion and cancellation, we obtain
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Compton scattering derivation

After substitution, expansion and cancellation, we obtain

h? n > 2h? 6—2 hc  hc h? n > 2h?
Y — — T s =2m\ — — — - — — T
A2 N2 )N A N A2 N2\
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Compton scattering derivation

After substitution, expansion and cancellation, we obtain

A2 N2\ N A N AZ N2\

N —A 2mhc AN
W(l—cos¢)f2m (/\—X)2mhc< oV ) oV
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Compton scattering derivation

After substitution, expansion and cancellation, we obtain

A2 N2\ N A N AZ N2\

N —A 2mhc AN
W(l—cos¢)f2m (/\—X)2mhc< oV ) oV

AN = h (1 — cos¢)
mc
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Compton scattering results

Ae = hi/mc = 3.86 x 1073A for an electron

Comparing to the Thomson scattering length: ro/A¢c = 1/137
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Compton scattering results

Ae = hi/mc = 3.86 x 1073A for an electron

Comparing to the Thomson scattering length: ro/A¢c = 1/137

X-ray Intensity (arb units)
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X-ray absorption

dz )
e Absorption coefficient p, thickness dz
x-ray intensity is attenuated as

dl = —I(z)pdz
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X-ray absorption

dz ,
— Absorption coefficient p, thickness dz
> - - x-ray intensity is attenuated as

> >

—_—— —p
—_— | .

< B

0

dl = —I(z)pdz

dl/l = —pdz - | =l,e™H
number of absorption events, W = /(z)p,0.dz = I(z)pdz

where p, is atom density, o, is absorption cross section

mN,
U= Palda = (pAA>0'a
with mass density p,, , Avogadro's number Ny, atomic number A
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Absorption event

£ e X-ray is absorbed by an atom
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hv
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Absorption event

C. Segre (IIT)

X-ray is absorbed by an atom

Energy is transferred to a core electron

Electron escapes atomic potential into the

continuum

lon remains with a core-hole
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Fluorescence emission

An ion with a core-hole is quite unstable (=~ 1071%s)
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Fluorescence emission

An ion with a core-hole is quite unstable (=~ 1071%s)

e After a short time a higher level

hv electron will drop down in energy to
~ fill the core hole
4
-—0- -0,50- e Energy is liberated in the form of a
== A T fluorescence photon
o __, 00 e This leaves a second hole (not core)
which is then filled from an even
higher shell

e The result is a cascade of fluorescence
photons which are characteristic of the
absorbing atom
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Auger emission

While fluorescence is the most probable method of core-hole relaxation
there are other possible mechanisms
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Auger emission

While fluorescence is the most probable method of core-hole relaxation
there are other possible mechanisms

At
-—0-

C. Segre (IIT)

7
8-

k e In the Auger process, a higher level
electron will drop down in energy to
fill the core hole

e The energy liberated causes the
secondary emission of an electron

e This leaves two holes which then filled
from higher shells

e So that the secondary electron is
accompanied by fluorescence emissions
at lower energies
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Absorption coefficient

The absorption coefficient y, depends strongly on the x-ray energy E, the
atomic number of the absorbing atoms Z, as well as the density p, and
atomic mass A:
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Absorption coefficient

The absorption coefficient y, depends strongly on the x-ray energy £, the
atomic number of the absorbing atoms Z, as well as the density p, and
atomic mass A:

107 — T
100 E
105 B
10* F
103 F

u/p (barns/atom)

102 F

10! F

1 10 100

100 L
E (keV)

C. Segre (lIT) PHYS 570 - Spring 2015 January 15, 2015 19 / 24



Absorption coefficient

Isolated gas atoms show a sharp jump and a smooth curve

Xenon gas

u (arb. units)
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Absorption coefficient

Isolated gas atoms show a sharp jump and a smooth curve

Atoms in a solid or liquid show fine structure after the absorption edge
called XANES and EXAFS

T T T
2 1 2 1 7
S — S
el xenon gas o krypton in coal
s s
EY EY
0.5 - ———’J
1 1 1 1 05 1 | ]
4700 4800 4900 5000 4000 4200 4400
Energy (eV) Energy (eV)
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Refraction of x-rays

X-rays can be treated like light when interaction with a medium. However,

unlike visible light, the index of refraction of x-rays in matter is very close
to unity:
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Refraction of x-rays

X-rays can be treated like light when interaction with a medium. However,

unlike visible light, the index of refraction of x-rays in matter is very close
to unity:

n=1—-0+i6

with § ~ 107°

Snell's Law

COS & = ncos a'

where o/ < « unlike for visible light

C. Segre (IIT)
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Reflection of x-rays

Because n < 1, at a critical angle a, we no longer have refraction but
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Reflection of x-rays

Because n < 1, at a critical angle a, we no longer have refraction but
total external reflection

Since o = 0 when a = ar

n = cos ¢
2
(8
~1-— =5
" 2
2
1—5+i5z1—%
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Reflection of x-rays

Because n < 1, at a critical angle a, we no longer have refraction but

total external reflection

C. Segre (IIT)

Since o = 0 when a = ar
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Uses of total external reflection

X-ray mirrors
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Uses of total external reflection

X-ray mirrors

e harmonic rejection

e focusing & collimation

§ 2 Evanscent wave experiments

e studies of surfaces

e depth profiling
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Magnetic interactions

We have focused on the interaction of x-rays and charged particles.
However, electromagnetic radiation also consists of a traveling mag-

netic field. In principle, this means it should interact with magnetic
materials as well.
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For an x-ray of energy 5.11 keV, interacting with an electron with mass
0.511 MeV.
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Magnetic interactions

We have focused on the interaction of x-rays and charged particles.
However, electromagnetic radiation also consists of a traveling mag-
netic field. In principle, this means it should interact with magnetic
materials as well.

Indeed, x-rays do interact with magnetic materials (and electrons which
have magnetic moment and spin) but the strength of the interaction
is comparatively weak.

Amagnetic o hw - 5.11 x 103 eV — 001
Acharge ~ mc2 0511 x 100 eV~

For an x-ray of energy 5.11 keV, interacting with an electron with mass
0.511 MeV. Only with the advent of synchrotron radiation sources has
magnetic x-ray scattering become a practical experimental technique.
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