PHYS 570 - Introduction to Synchrotron Radiation

Term: Spring 2015
Meetings:  Tuesday & Thursday 17:00-18:15 Modern \Filfympef
Location: 204 Stuart Building

Instructor:  Carlo Segre

Office: 166A Life Sciences

Phone: 312.567.3498

email: segreQ@iit.edu

Book: Elements of Modern X-Ray Physics, 2? ed.,

J. Als-Nielsen and D. McMorrow (Wiley, 2011)

Web Site:  http://csrri.iit.edu/~segre/phys570/15S
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Course objectives

e Understand the means of production of synchrotron x-ray radiation

e Understand the function of various components of a synchrotron
beamline

e Be able to perform calculations in support of a synchrotron
experiment

e Understand the physics behind a variety of experimental techniques

e Be able to make an oral presentation of a synchrotron radiation
research topic

e Be able to write a General User Proposal in the format used by the
Advanced Photon Source

C. Segre (IIT) PHYS 570 - Spring 2015 January 13, 2015 2/22



Course syllabus

e Focus on applications of synchrotron radiation
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Course syllabus

e Focus on applications of synchrotron radiation

e Homework assignments
e In-class student presentations on research topics
e Choose a research article which features a synchrotron technique
e Timetable will be posted
e Final project - writing a General User Proposal
e Start thinking about a suitable project right away
e Make proposal and get approval before starting
[ ]

Visits to Advanced Photon Source (outside class, not required)

e All students who plan to attend will need to request badges from APS

e Go to the APS User Portal,
https://wwwl.aps.anl.gov/Users-Information and register as a new
user.

e Use MRCAT (Sector 10) as location of experiment

e Use Carlo Segre as local contact

e State that your beamtime will be in the first week of March
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Course grading
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Course grading

33% — Homework assignments
Weekly or bi-weekly
Due at beginning of class
May be turned in via Blackboard

33% — General User Proposal
33% — Final Exam Presentation

Grading scale
A - 80% to 100%
B - 65% to 80%
C - 50% to 65%
E - 0% to 50%
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Topics to be covered (at a minimum)

e X-rays and their interaction with matter
e Sources of x-rays

o Refraction and reflection from interfaces
o Kinematical diffraction

o Diffraction by perfect crystals

e Small angle scattering
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e Resonant scattering
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Topics to be covered (at a minimum)

e X-rays and their interaction with matter
e Sources of x-rays

o Refraction and reflection from interfaces
o Kinematical diffraction

o Diffraction by perfect crystals

e Small angle scattering

e Photoelectric absorption

e Resonant scattering

e Imaging
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e Orange x-ray data booklet:
http://xdb.lbl.gov/xdb-new.pdf
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o Center for X-Ray Optics web site:
http://cxro.Ibl.gov

e Hephaestus from the Demeter suite:
http://bruceravel.github.io/demeter/

e McMaster data on the Web:
http://csrri.iit.edu/periodic-table.html

e X-ray Oriented Programs:
http://www.esrf.eu/Instrumentation /software/data-analysis/xop2.4
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Today's outline - January 13, 2015

History of x-ray sources

X-ray interactions with matter

Thomson scattering

Atomic form factor

Reading Assignment: Chapter 1.1-1.6; 2.1-2.2
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History of x-ray sources
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The classical x-ray

The classical plane wave representation of x-rays is:
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The classical x-ray

The classical plane wave representation of x-rays is:
E(r,t) = éEoe/krt)

where € is a unit vector in the direction of the electric field, k is the
wavevector of the radiation along the propagation direction, and w is the
angular frequency of oscillation of the radiation.

If the energy, £ is in keV, the relationship among these quantities is given
by:
hw=hy=&E=c

A = hc/E
= (4.1357 x 107 1%V -5)(2.9979 x 108 m/s)/&
= (4.1357 x 107 keV - 5)(2.9979 x 10¥ A/s) /&
= 12.398A.keV/E to give units of A
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Interactions of x-rays with matter

For the purposes of this course, we care most about the interactions of
x-rays with matter.

There are four basic types of such interactions:
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Interactions of x-rays with matter

For the purposes of this course, we care most about the interactions of
x-rays with matter.

There are four basic types of such interactions:
@ Elastic scattering
@ Inelastic scattering

© Absorption
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Interactions of x-rays with matter

For the purposes of this course, we care most about the interactions of
x-rays with matter.

There are four basic types of such interactions:

@ Elastic scattering
@ Inelastic scattering
© Absorption

(4]

We will only discuss the first three.
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Elastic scattering geometry

an incident x-ray of wave number k
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Elastic scattering geometry

an incident x-ray of wave number k

scatters elastically to k’

resulting in a scattering vector Q

or in terms of momentum transfer: hQ = hk — hk’
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Thomson scattering

Assumptions:
plane wave of x-rays incident on a single electron
total scattered energy = total incoming energy
electron is a point charge
scattered intensity o 1/R?
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Thomson scattering
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Thomson scattering
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Thomson scattering
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rad (R ) 4dregc?R m "
Erad(R’ t) e2 ein/c -~
= — sin
E,'n 47T60mC2 R
C. Segre (lIT) PHYS 570 - Spring 2015 January 13, 2015

14 / 22



Thomson scattering
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Thomson scattering
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Thomson scattering

E (Rt 2 ikR ikR
rad( ) ):_ e € Sinw:_roLsinW
E;, 4regmc? R R
o2
fp=-— =282 x 1075A
4megmc?
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Scattering cross-section
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Scattering cross-section

e |
—777

y

Detector of solid angle A() at a distance R from electron

Cross-section of incoming beam = A,
Cross section of scattered beam (into detector) = R2A0)

lscatt _ |Erad|2 RzAQ
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Scattering cross-section
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Differential cross-section is obtained by normalizing
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Total cross-section

0 |
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Y

Integrate to obtain the total Thomson scattering cross-section from an
electron.
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Total cross-section
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Integrate to obtain the total Thomson scattering cross-section from an
electron. If displacement is in vertical direction, sin W term is replaced
by unity and if the source is unpolarized, it is a combination.
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=0.665 x 107%* cm?
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Total cross-section

2 |

Integrate to obtain the total Thomson scattering cross-section from an
electron. If displacement is in vertical direction, sin W term is replaced
by unity and if the source is unpolarized, it is a combination.

8
o= ?ﬂrg o 1
" ) Polarization factor = { sin2 ¥
= 0.665 x 107" cm

= 0.665 barn % (1 o+ sin® \U)
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Atomic scattering

phase shift arises from scattering off different
portions of extended electron distribution

Ap(r)=(k—k) r=Q-r
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Atomic scattering

phase shift arises from scattering off different
portions of extended electron distribution

Ap(r)=(k—k) r=Q-r

Q| = 2 |k| sin = 4= sinf
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Atomic form factor

the volume element at r contributes —r,p(r)d*r with phase factor e’@"
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Atomic form factor

the volume element at r contributes —r,p(r)d*r with phase factor e’@"
for an entire atom, integrate to get the atomic form factor f°(Q):
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Atomic form factor

the volume element at r contributes —r,p(r)d*r with phase factor e’@"
for an entire atom, integrate to get the atomic form factor f°(Q):

—rf°(Q) = —ro/,o(r)eiQ”d3r

Electrons which are tightly bound cannot respond like a free electron. This
results in a depression of the atomic form factor, called f’ and a lossy term

near an ionization energy, called . Together these are the anomalous
corrections to the atomic form factor.
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Atomic form factor

the volume element at r contributes —r,p(r)d*r with phase factor e’@"
for an entire atom, integrate to get the atomic form factor f°(Q):

—rf°(Q) = —ro/,o(r)eiQ”d3r

Electrons which are tightly bound cannot respond like a free electron. This
results in a depression of the atomic form factor, called f’ and a lossy term
near an ionization energy, called . Together these are the anomalous
corrections to the atomic form factor.
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Atomic form factor

the volume element at r contributes —r,p(r)d*r with phase factor e’@"
for an entire atom, integrate to get the atomic form factor f°(Q):

—rf°(Q) = —ro/,o(r)eiQ”d3r

Electrons which are tightly bound cannot respond like a free electron. This
results in a depression of the atomic form factor, called f’ and a lossy term
near an ionization energy, called . Together these are the anomalous
corrections to the atomic form factor.
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\J\ the total atomic scattering factor is
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Atomic form factor

the volume element at r contributes —r,p(r)d*r with phase factor e’@"
for an entire atom, integrate to get the atomic form factor f°(Q):

—rf°(Q) = —ro/,o(r)eiQ”d3r

Electrons which are tightly bound cannot respond like a free electron. This
results in a depression of the atomic form factor, called f’ and a lossy term

near an ionization energy, called . Together these are the anomalous
corrections to the atomic form factor.

T T T

-
\J\ the total atomic scattering factor is

f(Q, hw) = f°(Q) + f'(hw) + if" (hw)
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Atomic form factor

20

The atomic form factor has an angular
dependence
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Atomic form factor
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The atomic form factor has an angular
dependence

Q=477Tsin9
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Atomic form factor

20

The atomic form factor has an angular
dependence

Q:%sinﬂ

1 (clectrons)

] Lighter atoms (blue is oxygen) have
wider form factor
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Scattering from atoms: all effects

Scattering from an atom is built up from component quantities:
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Scattering from atoms: all effects

Scattering from an atom is built up from component quantities:

2
. . €
Thomson scattering from a single electron —fo=—7T—"—">5
dmegmce
— ro = —/o
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Scattering from atoms: all effects

Scattering from an atom is built up from component quantities:

2
. . e
Thomson scattering from a single electron o=
dmegmce
atomic form factor (Q) = /p(r)eiq'rd3r
— rof(Q, fw) =—r, [fO(Q) ]
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Scattering from an atom is built up from component quantities:

2
e
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dmegmce
atomic form factor °(Q) = /p(r)eiq"d3r
anomalous scattering terms f'(hw) +
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Scattering from atoms: all effects

Scattering from an atom is built up from component quantities:

2
e
Th ttering fi ingle elect = ——
omson scattering from a single electron ro P ——

atomic form factor (Q) = /p(r)eiq'rd3r
anomalous scattering terms f'(hw) +

1
polarization factor P =

(1 +sin? V)

— 1of(Q, hw) sin® W = —r, [F2(Q) + f'(hw) + ]
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