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Consider the observable O where P; are pro- m
jection operators onto the subspace E;C o= Z AP
i=0

Measurement with O will give the state =

P;p' P! with probability |a;|? and will leave Pip' Pl = Ejlc)(c|E]
the system in the pure state Ej|c)

Knowing the result of the measurement, A;, means that the error can be corrected by
application of E;r thus recovering the corrected state |c)
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® Robustness to environmental noise, long decoherence times

Ability to realize high fidelity universal quantum gates

High efficiency, qubit-specific measurements
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Faithful transmission of flying qubits between locations
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ensemble of molecules which cannot be addressed individually, and the number and topology
of spins that can be built into a quantum computer is limited

The advantages of NMR technology are that it is mature and it is well-understood how to
manipulate spins in a liquid, and that the “qubits” are stable ensembles of identical qubits
which are relatively insensitive to error

The first 2-qubit NMR system was based on the (2,3)-
dibromothiophene molecule in a liquid NMR system

In a 4.7 T magnetic field, the proton spin states are separated
by 200 MHz but are slightly different because of the differing
local environment
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2-qubit NMR computer V

Assume that the state of the entire system can be described as an ensemble of non-interacting
molecules (e.g. liquid)
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The deviation from equilibrium is what is being measured as the qubit state
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The density matrix for the n = 2 spin molecule is simply p = p1 ® p

o O+~ O
o= OO

0 a1 + Qo 0 0 0

0 —i—l 0 a1 — Qo 0 0 _L

0 4 0 0 —a1 + Qo 4 pa
1 0 0 0 -1 — ap

Where the basis can be written as {|]]), [LT), [TL), [T}

The density matrix is composed of the iden-

tity plus a traceless deviation, which can be

UpU' = U[31 + pa]UT = 21+ Upp U

manipulated by a unitary transformation

The dynamics of the ensemble can be approximated by just the deviation density matrix whose
macroscopic signal has a relatively long decoherence time
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This is a pseudo-pure state, a mixed state that behaves like a pure state

For example if an RF pulse is provided that sends one of the spins in all of the molecules into
the transverse plane, the excess population in the | ||) state will produce a signal

Single spin operations are possible because each spin has a different resonant frequency and
can be manipulated individually by applying an appropriately timed RF pulse to rotate the spin

The Chor gate can be implemented due to the nonlinear interaction between spins on the same
molecule
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5-qubit NMR computer

In 2000, this was extended to a 5-qubit system using the same
principles

“Approaching five-bit NMR quantum computing,” R. Marx, A.F. Fahmy, J.M. Myers, W. Bermel, and S.J.
Glaser, Phys. Rev A 62, 012310 (2000).
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In 2021, a Chinese company announced a commercial,
low cost 2-qubit NMR quantum computer using hydro-

gen and phosphorous nuclei

“SpinQ Gemini: a desktop quantum computer for education and research,” Sh.-Y. Hao et al.,
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In 2021, a Chinese company announced a commercial,
low cost 2-qubit NMR quantum computer using hydro-

gen and phosphorous nuclei

The authors claim that this computer can demonstrate
at least 10 quantum algorithms
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