

Today's outline - April 14, 2022

Today's outline - April 14, 2022

- Quantum error correcting codes

Today's outline - April 14, 2022

- Quantum error correcting codes
- Correctable sets of errors

Today's outline - April 14, 2022

- Quantum error correcting codes
- Correctable sets of errors
- Diagnosing errors

Today's outline - April 14, 2022

- Quantum error correcting codes
- Correctable sets of errors
- Diagnosing errors
- Error correction across blocks

Today's outline - April 14, 2022

- Quantum error correcting codes
- Correctable sets of errors
- Diagnosing errors
- Error correction across blocks
- Examples

Today's outline - April 14, 2022

- Quantum error correcting codes
- Correctable sets of errors
- Diagnosing errors
- Error correction across blocks
- Examples

Reading assignment: 11.3

Today's outline - April 14, 2022

- Quantum error correcting codes
- Correctable sets of errors
- Diagnosing errors
- Error correction across blocks
- Examples

Reading assignment: 11.3

Homework Assignment #07:

Chapter 9:2,3,4; Chapter 10:3,4,11

Due Thursday, April 21, 2022

Today's outline - April 14, 2022

- Quantum error correcting codes
- Correctable sets of errors
- Diagnosing errors
- Error correction across blocks
- Examples

Reading assignment: 11.3

Homework Assignment #07:

Chapter 9:2,3,4; Chapter 10:3,4,11

Due Thursday, April 21, 2022

Today's outline - April 14, 2022

- Quantum error correcting codes
- Correctable sets of errors
- Diagnosing errors
- Error correction across blocks
- Examples

Reading assignment: 11.3

Exam #2 - April 26, 2022

Homework Assignment #07:

Chapter 9:2,3,4; Chapter 10:3,4,11

Due Thursday, April 21, 2022

Today's outline - April 14, 2022

- Quantum error correcting codes
- Correctable sets of errors
- Diagnosing errors
- Error correction across blocks
- Examples

Reading assignment: 11.3

Homework Assignment #07:
Chapter 9:2,3,4; Chapter 10:3,4,11
Due Thursday, April 21, 2022

Exam #2 - April 26, 2022

Final Exam will be 10 minute presentations
on a quantum computing journal article

Today's outline - April 14, 2022

- Quantum error correcting codes
- Correctable sets of errors
- Diagnosing errors
- Error correction across blocks
- Examples

Reading assignment: 11.3

Homework Assignment #07:
Chapter 9:2,3,4; Chapter 10:3,4,11
Due Thursday, April 21, 2022

Exam #2 - April 26, 2022
Final Exam will be 10 minute presentations
on a quantum computing journal article
Get my approval by Friday, April 15, 2022

Quantum error correcting codes

The formalism for quantum error correction codes is analogous to that for classical systems

Quantum error correcting codes

The formalism for quantum error correction codes is analogous to that for classical systems

A $[[n, k]]$ quantum block code C is a 2^k -dimensional subspace of the n -qubit space V with 2^n dimensions

Quantum error correcting codes

The formalism for quantum error correction codes is analogous to that for classical systems

A $[[n, k]]$ quantum block code C is a 2^k -dimensional subspace of the n -qubit space V with 2^n dimensions

Subspace W is a k -qubit message space where the first $n - k$ qubits are $|0\rangle$

Quantum error correcting codes

The formalism for quantum error correction codes is analogous to that for classical systems

A $[[n, k]]$ quantum block code C is a 2^k -dimensional subspace of the n -qubit space V with 2^n dimensions

Subspace W is a k -qubit message space where the first $n - k$ qubits are $|0\rangle$

Any unitary transformation $U_C : W \rightarrow C$ is a possible encoding operator for code C

Quantum error correcting codes

The formalism for quantum error correction codes is analogous to that for classical systems

A $[[n, k]]$ quantum block code C is a 2^k -dimensional subspace of the n -qubit space V with 2^n dimensions

Subspace W is a k -qubit message space where the first $n - k$ qubits are $|0\rangle$

Any unitary transformation $U_C : W \rightarrow C$ is a possible encoding operator for code C

Elements $|w\rangle \in W$ are called message words and elements of C are called codewords

Quantum error correcting codes

The formalism for quantum error correction codes is analogous to that for classical systems

A $[[n, k]]$ quantum block code C is a 2^k -dimensional subspace of the n -qubit space V with 2^n dimensions

Subspace W is a k -qubit message space where the first $n - k$ qubits are $|0\rangle$

Any unitary transformation $U_C : W \rightarrow C$ is a possible encoding operator for code C

Elements $|w\rangle \in W$ are called message words and elements of C are called codewords

In this terminology the $[[3, 1]]$ code is spanned by $\{|000\rangle, |111\rangle\}$ and the logical qubits are obtained by

Quantum error correcting codes

The formalism for quantum error correction codes is analogous to that for classical systems

A $[[n, k]]$ quantum block code C is a 2^k -dimensional subspace of the n -qubit space V with 2^n dimensions

Subspace W is a k -qubit message space where the first $n - k$ qubits are $|0\rangle$

Any unitary transformation $U_C : W \rightarrow C$ is a possible encoding operator for code C

Elements $|w\rangle \in W$ are called message words and elements of C are called codewords

In this terminology the $[[3, 1]]$ code is spanned by $\{|000\rangle, |111\rangle\}$ and the logical qubits are obtained by

$$U_C : |000\rangle = |0\rangle \mapsto |000\rangle = |\tilde{0}\rangle$$

Quantum error correcting codes

The formalism for quantum error correction codes is analogous to that for classical systems

A $[[n, k]]$ quantum block code C is a 2^k -dimensional subspace of the n -qubit space V with 2^n dimensions

Subspace W is a k -qubit message space where the first $n - k$ qubits are $|0\rangle$

Any unitary transformation $U_C : W \rightarrow C$ is a possible encoding operator for code C

Elements $|w\rangle \in W$ are called message words and elements of C are called codewords

In this terminology the $[[3, 1]]$ code is spanned by $\{|000\rangle, |111\rangle\}$ and the logical qubits are obtained by

$$U_C : |000\rangle = |0\rangle \mapsto |000\rangle = |\tilde{0}\rangle$$
$$|001\rangle = |1\rangle \mapsto |111\rangle = |\tilde{1}\rangle$$

Quantum error correcting codes

The formalism for quantum error correction codes is analogous to that for classical systems

A $[[n, k]]$ quantum block code C is a 2^k -dimensional subspace of the n -qubit space V with 2^n dimensions

Subspace W is a k -qubit message space where the first $n - k$ qubits are $|0\rangle$

Any unitary transformation $U_C : W \rightarrow C$ is a possible encoding operator for code C

Elements $|w\rangle \in W$ are called message words and elements of C are called codewords

In this terminology the $[[3, 1]]$ code is spanned by $\{|000\rangle, |111\rangle\}$ and the logical qubits are obtained by

$$U_C : |000\rangle = |0\rangle \mapsto |000\rangle = |\tilde{0}\rangle$$
$$|001\rangle = |1\rangle \mapsto |111\rangle = |\tilde{1}\rangle$$

Note that we have only defined the action of U_C on the states in W where only the **low order qubit** can be non-zero

Quantum error correcting codes

The formalism for quantum error correction codes is analogous to that for classical systems

A $[[n, k]]$ quantum block code C is a 2^k -dimensional subspace of the n -qubit space V with 2^n dimensions

Subspace W is a k -qubit message space where the first $n - k$ qubits are $|0\rangle$

Any unitary transformation $U_C : W \rightarrow C$ is a possible encoding operator for code C

Elements $|w\rangle \in W$ are called message words and elements of C are called codewords

In this terminology the $[[3, 1]]$ code is spanned by $\{|000\rangle, |111\rangle\}$ and the logical qubits are obtained by

$$U_C : |000\rangle = |0\rangle \mapsto |000\rangle = |\tilde{0}\rangle$$
$$|001\rangle = |1\rangle \mapsto |111\rangle = |\tilde{1}\rangle$$

Note that we have only defined the action of U_C on the states in W where only the **low order qubit** can be non-zero

U_C may well have some action on other states not in W but this is generally ignored

Correctable sets of errors

Let $B_C = \{|c_0\rangle, \dots, |c_{k-1}\rangle\}$ be an orthonormal basis for C

Correctable sets of errors

Let $B_C = \{|c_0\rangle, \dots, |c_{k-1}\rangle\}$ be an orthonormal basis for C

If \mathcal{E} is a finite set of unitary error transformations

Correctable sets of errors

Let $B_C = \{|c_0\rangle, \dots, |c_{k-1}\rangle\}$ be an orthonormal basis for C

If \mathcal{E} is a finite set of unitary error transformations

$$\mathcal{E} = \{E_1, E_2, \dots, E_L\},$$

Correctable sets of errors

Let $B_C = \{|c_0\rangle, \dots, |c_{k-1}\rangle\}$ be an orthonormal basis for C

If \mathcal{E} is a finite set of unitary error transformations

$$\mathcal{E} = \{E_1, E_2, \dots, E_L\}, \quad E_i : V \rightarrow V$$

Correctable sets of errors

Let $B_C = \{|c_0\rangle, \dots, |c_{k-1}\rangle\}$ be an orthonormal basis for C

If \mathcal{E} is a finite set of unitary error transformations

$$\mathcal{E} = \{E_1, E_2, \dots, E_L\}, \quad E_i : V \rightarrow V$$

In order to be able to correct errors, two distinct error transformations in \mathcal{E} must take different codewords to orthogonal states that can be distinguished by measurement

Correctable sets of errors

Let $B_C = \{|c_0\rangle, \dots, |c_{k-1}\rangle\}$ be an orthonormal basis for C

If \mathcal{E} is a finite set of unitary error transformations

$$\mathcal{E} = \{E_1, E_2, \dots, E_L\}, \quad E_i : V \rightarrow V$$

In order to be able to correct errors, two distinct error transformations in \mathcal{E} must take different codewords to orthogonal states that can be distinguished by measurement

This can be written

Correctable sets of errors

Let $B_C = \{|c_0\rangle, \dots, |c_{k-1}\rangle\}$ be an orthonormal basis for C

If \mathcal{E} is a finite set of unitary error transformations

$$\mathcal{E} = \{E_1, E_2, \dots, E_L\}, \quad E_i : V \rightarrow V$$

In order to be able to correct errors, two distinct error transformations in \mathcal{E} must take different codewords to orthogonal states that can be distinguished by measurement

This can be written

$$\langle c_a | E_i^\dagger E_j | c_b \rangle = 0, \quad E_i, E_j \in \mathcal{E}; \quad c_a, c_b \in C$$

Correctable sets of errors

Let $B_C = \{|c_0\rangle, \dots, |c_{k-1}\rangle\}$ be an orthonormal basis for C

If \mathcal{E} is a finite set of unitary error transformations

$$\mathcal{E} = \{E_1, E_2, \dots, E_L\}, \quad E_i : V \rightarrow V$$

In order to be able to correct errors, two distinct error transformations in \mathcal{E} must take different codewords to orthogonal states that can be distinguished by measurement

This can be written

$$\langle c_a | E_i^\dagger E_j | c_b \rangle = 0, \quad E_i, E_j \in \mathcal{E}; \quad c_a, c_b \in C$$

When $i = j$ this leads to the orthogonality condition

Correctable sets of errors

Let $B_C = \{|c_0\rangle, \dots, |c_{k-1}\rangle\}$ be an orthonormal basis for C

If \mathcal{E} is a finite set of unitary error transformations

$$\mathcal{E} = \{E_1, E_2, \dots, E_L\}, \quad E_i : V \rightarrow V$$

In order to be able to correct errors, two distinct error transformations in \mathcal{E} must take different codewords to orthogonal states that can be distinguished by measurement

This can be written

$$\langle c_a | E_i^\dagger E_j | c_b \rangle = 0, \quad E_i, E_j \in \mathcal{E}; \quad c_a, c_b \in C$$

When $i = j$ this leads to the orthogonality condition

$$\langle c_a | c_b \rangle = 0$$

Correctable sets of errors

Let $B_C = \{|c_0\rangle, \dots, |c_{k-1}\rangle\}$ be an orthonormal basis for C

If \mathcal{E} is a finite set of unitary error transformations

$$\mathcal{E} = \{E_1, E_2, \dots, E_L\}, \quad E_i : V \rightarrow V$$

In order to be able to correct errors, two distinct error transformations in \mathcal{E} must take different codewords to orthogonal states that can be distinguished by measurement

This can be written

$$\langle c_a | E_i^\dagger E_j | c_b \rangle = 0, \quad E_i, E_j \in \mathcal{E}; \quad c_a, c_b \in C$$

When $i = j$ this leads to the orthogonality condition

$$\langle c_a | c_b \rangle = 0$$

Furthermore, any measurement made to determine the error must not give any information about the logical state

Correctable sets of errors

Let $B_C = \{|c_0\rangle, \dots, |c_{k-1}\rangle\}$ be an orthonormal basis for C

If \mathcal{E} is a finite set of unitary error transformations

$$\mathcal{E} = \{E_1, E_2, \dots, E_L\}, \quad E_i : V \rightarrow V$$

In order to be able to correct errors, two distinct error transformations in \mathcal{E} must take different codewords to orthogonal states that can be distinguished by measurement

This can be written

$$\langle c_a | E_i^\dagger E_j | c_b \rangle = 0, \quad E_i, E_j \in \mathcal{E}; \quad c_a, c_b \in C$$

When $i = j$ this leads to the orthogonality condition

$$\langle c_a | c_b \rangle = 0$$

Furthermore, any measurement made to determine the error must not give any information about the logical state

$$\langle c_a | E_i^\dagger E_j | c_a \rangle = \langle c_b | E_i^\dagger E_j | c_b \rangle; \quad c_a, c_b \in C$$

Correctable sets of errors

Let $B_C = \{|c_0\rangle, \dots, |c_{k-1}\rangle\}$ be an orthonormal basis for C

If \mathcal{E} is a finite set of unitary error transformations

$$\mathcal{E} = \{E_1, E_2, \dots, E_L\}, \quad E_i : V \rightarrow V$$

In order to be able to correct errors, two distinct error transformations in \mathcal{E} must take different codewords to orthogonal states that can be distinguished by measurement

This can be written

$$\langle c_a | E_i^\dagger E_j | c_b \rangle = 0, \quad E_i, E_j \in \mathcal{E}; \quad c_a, c_b \in C$$

When $i = j$ this leads to the orthogonality condition

$$\langle c_a | c_b \rangle = 0$$

Furthermore, any measurement made to determine the error must not give any information about the logical state

$$\langle c_a | E_i^\dagger E_j | c_a \rangle = \langle c_b | E_i^\dagger E_j | c_b \rangle; \quad c_a, c_b \in C$$

\mathcal{E} is a correctable set of errors if

Correctable sets of errors

Let $B_C = \{|c_0\rangle, \dots, |c_{k-1}\rangle\}$ be an orthonormal basis for C

If \mathcal{E} is a finite set of unitary error transformations

$$\mathcal{E} = \{E_1, E_2, \dots, E_L\}, \quad E_i : V \rightarrow V$$

In order to be able to correct errors, two distinct error transformations in \mathcal{E} must take different codewords to orthogonal states that can be distinguished by measurement

This can be written

$$\langle c_a | E_i^\dagger E_j | c_b \rangle = 0, \quad E_i, E_j \in \mathcal{E}; \quad c_a, c_b \in C$$

When $i = j$ this leads to the orthogonality condition

$$\langle c_a | c_b \rangle = 0$$

Furthermore, any measurement made to determine the error must not give any information about the logical state

$$\langle c_a | E_i^\dagger E_j | c_a \rangle = \langle c_b | E_i^\dagger E_j | c_b \rangle; \quad c_a, c_b \in C$$

\mathcal{E} is a correctable set of errors if

$$\langle c_a | E_i^\dagger E_j | c_b \rangle = m_{ij} \delta_{ab}$$

Correctable sets of errors

Let $B_C = \{|c_0\rangle, \dots, |c_{k-1}\rangle\}$ be an orthonormal basis for C

If \mathcal{E} is a finite set of unitary error transformations

$$\mathcal{E} = \{E_1, E_2, \dots, E_L\}, \quad E_i : V \rightarrow V$$

In order to be able to correct errors, two distinct error transformations in \mathcal{E} must take different codewords to orthogonal states that can be distinguished by measurement

This can be written

$$\langle c_a | E_i^\dagger E_j | c_b \rangle = 0, \quad E_i, E_j \in \mathcal{E}; \quad c_a, c_b \in C$$

When $i = j$ this leads to the orthogonality condition

$$\langle c_a | c_b \rangle = 0$$

Furthermore, any measurement made to determine the error must not give any information about the logical state

$$\langle c_a | E_i^\dagger E_j | c_a \rangle = \langle c_b | E_i^\dagger E_j | c_b \rangle; \quad c_a, c_b \in C$$

\mathcal{E} is a correctable set of errors if

$$\langle c_a | E_i^\dagger E_j | c_b \rangle = m_{ij} \delta_{ab}$$

Codes not satisfying this condition are said to be degenerate

Example 11.2.6

For the $[[3,1]]$ code and a set of errors $\mathcal{E} = \{E_{ij}\}$ the correctable error set for a single-qubit bit-flip error is

Example 11.2.6

For the $[[3,1]]$ code and a set of errors $\mathcal{E} = \{E_{ij}\}$ the correctable error set for a single-qubit bit-flip error is

$$E_{00} = I \otimes I \otimes I, \quad E_{01} = I \otimes I \otimes X, \quad E_{10} = I \otimes X \otimes I, \quad E_{11} = X \otimes I \otimes I$$

Example 11.2.6

For the $[[3,1]]$ code and a set of errors $\mathcal{E} = \{E_{ij}\}$ the correctable error set for a single-qubit bit-flip error is

$$E_{00} = I \otimes I \otimes I, \quad E_{01} = I \otimes I \otimes X, \quad E_{10} = I \otimes X \otimes I, \quad E_{11} = X \otimes I \otimes I$$

One of the many other correctable error sets could be $\mathcal{E}' = \{E'_{ij}\}$ where

Example 11.2.6

For the [[3,1]] code and a set of errors $\mathcal{E} = \{E_{ij}\}$ the correctable error set for a single-qubit bit-flip error is

$$E_{00} = I \otimes I \otimes I, \quad E_{01} = I \otimes I \otimes X, \quad E_{10} = I \otimes X \otimes I, \quad E_{11} = X \otimes I \otimes I$$

One of the many other correctable error sets could be $\mathcal{E}' = \{E'_{ij}\}$ where

$$E'_{00} = I \otimes I \otimes I, \quad E'_{01} = X \otimes X \otimes I, \quad E'_{10} = X \otimes I \otimes X, \quad E'_{11} = I \otimes X \otimes X$$

Example 11.2.6

For the [[3,1]] code and a set of errors $\mathcal{E} = \{E_{ij}\}$ the correctable error set for a single-qubit bit-flip error is

$$E_{00} = I \otimes I \otimes I, \quad E_{01} = I \otimes I \otimes X, \quad E_{10} = I \otimes X \otimes I, \quad E_{11} = X \otimes I \otimes I$$

One of the many other correctable error sets could be $\mathcal{E}' = \{E'_{ij}\}$ where

$$E'_{00} = I \otimes I \otimes I, \quad E'_{01} = X \otimes X \otimes I, \quad E'_{10} = X \otimes I \otimes X, \quad E'_{11} = I \otimes X \otimes X$$

The latter is the correctable error set for all two-qubit bit flips

Example 11.2.6

For the [[3,1]] code and a set of errors $\mathcal{E} = \{E_{ij}\}$ the correctable error set for a single-qubit bit-flip error is

$$E_{00} = I \otimes I \otimes I, \quad E_{01} = I \otimes I \otimes X, \quad E_{10} = I \otimes X \otimes I, \quad E_{11} = X \otimes I \otimes I$$

One of the many other correctable error sets could be $\mathcal{E}' = \{E'_{ij}\}$ where

$$E'_{00} = I \otimes I \otimes I, \quad E'_{01} = X \otimes X \otimes I, \quad E'_{10} = X \otimes I \otimes X, \quad E'_{11} = I \otimes X \otimes X$$

The latter is the correctable error set for all two-qubit bit flips

One must choose one of the two sets to correct for and generally single-qubit bit-flips are much more probable than two-qubit bit-flips

Diagnosing and correcting errors

Suppose that C is a $[[n, k]]$ quantum code that is nondegenerate with respect to a correctable error set $\mathcal{E} = \{E_i\}, 0 \leq i < M$

Diagnosing and correcting errors

Suppose that C is a $[[n, k]]$ quantum code that is nondegenerate with respect to a correctable error set $\mathcal{E} = \{E_i\}, 0 \leq i < M$

Applying the error transformation E_s to a state $|v\rangle$

Diagnosing and correcting errors

Suppose that C is a $[[n, k]]$ quantum code that is nondegenerate with respect to a correctable error set $\mathcal{E} = \{E_i\}, 0 \leq i < M$

Applying the error transformation E_s to a state $|v\rangle$

$$E_s|v\rangle \mapsto |w\rangle, \quad |v\rangle \in C, \quad E_s \in \mathcal{E}$$

Diagnosing and correcting errors

Suppose that C is a $[[n, k]]$ quantum code that is nondegenerate with respect to a correctable error set $\mathcal{E} = \{E_i\}, 0 \leq i < M$

Applying the error transformation E_s to a state $|v\rangle$

$$E_s|v\rangle \mapsto |w\rangle, \quad |v\rangle \in C, \quad E_s \in \mathcal{E}$$

The subspaces $E_i C$ and $E_j C$ are orthogonal for all $i \neq j$, so there is a unique mapping of $E_s|v\rangle$ to $|w\rangle$

Diagnosing and correcting errors

Suppose that C is a $[[n, k]]$ quantum code that is nondegenerate with respect to a correctable error set $\mathcal{E} = \{E_i\}, 0 \leq i < M$

Applying the error transformation E_s to a state $|v\rangle$

$$E_s|v\rangle \mapsto |w\rangle, \quad |v\rangle \in C, \quad E_s \in \mathcal{E}$$

The subspaces $E_i C$ and $E_j C$ are orthogonal for all $i \neq j$, so there is a unique mapping of $E_s|v\rangle$ to $|w\rangle$

Once the subspace $E_s C$ which contains $|w\rangle$ is identified, the error may be corrected by computing $E_s^\dagger |w\rangle \mapsto |v\rangle$

Diagnosing and correcting errors

Suppose that C is a $[[n, k]]$ quantum code that is nondegenerate with respect to a correctable error set $\mathcal{E} = \{E_i\}, 0 \leq i < M$

Applying the error transformation E_s to a state $|v\rangle$

$$E_s|v\rangle \mapsto |w\rangle, \quad |v\rangle \in C, \quad E_s \in \mathcal{E}$$

The subspaces $E_i C$ and $E_j C$ are orthogonal for all $i \neq j$, so there is a unique mapping of $E_s|v\rangle$ to $|w\rangle$

Once the subspace $E_s C$ which contains $|w\rangle$ is identified, the error may be corrected by computing $E_s^\dagger |w\rangle \mapsto |v\rangle$

Thus the goal is to measure the error subspace which contains $|w\rangle$ without measuring $|w\rangle$ itself

Diagnosing and correcting errors

Suppose that C is a $[[n, k]]$ quantum code that is nondegenerate with respect to a correctable error set $\mathcal{E} = \{E_i\}, 0 \leq i < M$

Applying the error transformation E_s to a state $|v\rangle$

$$E_s|v\rangle \mapsto |w\rangle, \quad |v\rangle \in C, \quad E_s \in \mathcal{E}$$

The subspaces $E_i C$ and $E_j C$ are orthogonal for all $i \neq j$, so there is a unique mapping of $E_s|v\rangle$ to $|w\rangle$

Once the subspace $E_s C$ which contains $|w\rangle$ is identified, the error may be corrected by computing $E_s^\dagger |w\rangle \mapsto |v\rangle$

Thus the goal is to measure the error subspace which contains $|w\rangle$ without measuring $|w\rangle$ itself

$$W = \bigoplus_{i=0}^{M-1} W_i, \quad W_i = E_i C$$

Diagnosing and correcting errors

Suppose that C is a $[[n, k]]$ quantum code that is nondegenerate with respect to a correctable error set $\mathcal{E} = \{E_i\}, 0 \leq i < M$

Applying the error transformation E_s to a state $|v\rangle$

$$E_s|v\rangle \mapsto |w\rangle, \quad |v\rangle \in C, \quad E_s \in \mathcal{E}$$

The subspaces $E_i C$ and $E_j C$ are orthogonal for all $i \neq j$, so there is a unique mapping of $E_s|v\rangle$ to $|w\rangle$

Once the subspace $E_s C$ which contains $|w\rangle$ is identified, the error may be corrected by computing $E_s^\dagger |w\rangle \mapsto |v\rangle$

Thus the goal is to measure the error subspace which contains $|w\rangle$ without measuring $|w\rangle$ itself

$$W = \bigoplus_{i=0}^{M-1} W_i, \quad W_i = E_i C$$

Let W_M be the subspace of V which is orthogonal to W , since the W_i are mutually orthogonal there is an observable O with eigensubspaces which are the W_i

Dignosing and correcting errors

If P_i is the projector of O onto subspace W_i
and $m = \log_2 M$, U_P is a unitary operator
on $n + m$ qubits

Dignosing and correcting errors

If P_i is the projector of O onto subspace W_i and $m = \log_2 M$, U_P is a unitary operator on $n + m$ qubits

$$U_P : |w\rangle|0\rangle \mapsto \sum_{j=0}^{M-1} P_j |w\rangle|j\rangle$$

Dignosing and correcting errors

If P_i is the projector of O onto subspace W_i and $m = \log_2 M$, U_P is a unitary operator on $n + m$ qubits

$$U_P : |w\rangle|0\rangle \mapsto \sum_{j=0}^{M-1} P_j |w\rangle|j\rangle = \sum_{j=0}^{M-1} b_j |w_j\rangle|j\rangle$$

Dignosing and correcting errors

If P_i is the projector of O onto subspace W_i and $m = \log_2 M$, U_P is a unitary operator on $n + m$ qubits

$$U_P : |w\rangle|0\rangle \mapsto \sum_{j=0}^{M-1} P_j |w\rangle|j\rangle = \sum_{j=0}^{M-1} b_j |w_j\rangle|j\rangle$$

By measuring the m ancilla qubits, the error syndrome s identifying the subspace of the error state $W_s = E_s C$

Dignosing and correcting errors

If P_i is the projector of O onto subspace W_i and $m = \log_2 M$, U_P is a unitary operator on $n + m$ qubits

$$U_P : |w\rangle|0\rangle \mapsto \sum_{j=0}^{M-1} P_j |w\rangle|j\rangle = \sum_{j=0}^{M-1} b_j |w_j\rangle|j\rangle$$

By measuring the m ancilla qubits, the error syndrome s identifying the subspace of the error state $W_s = E_s C$

Thus applying the operator E_s^\dagger will recover the corrected state:

Dignosing and correcting errors

If P_i is the projector of O onto subspace W_i and $m = \log_2 M$, U_P is a unitary operator on $n + m$ qubits

$$U_P : |w\rangle|0\rangle \mapsto \sum_{j=0}^{M-1} P_j |w\rangle|j\rangle = \sum_{j=0}^{M-1} b_j |w_j\rangle|j\rangle$$

By measuring the m ancilla qubits, the error syndrome s identifying the subspace of the error state $W_s = E_s C$

Thus applying the operator E_s^\dagger will recover the corrected state: $E_s^\dagger |w\rangle = E_s^\dagger E_s |v\rangle = |v\rangle$

Dignosing and correcting errors

If P_i is the projector of O onto subspace W_i and $m = \log_2 M$, U_P is a unitary operator on $n + m$ qubits

$$U_P : |w\rangle |0\rangle \mapsto \sum_{j=0}^{M-1} P_j |w\rangle |j\rangle = \sum_{j=0}^{M-1} b_j |w_j\rangle |j\rangle$$

By measuring the m ancilla qubits, the error syndrome s identifying the subspace of the error state $W_s = E_s C$

Thus applying the operator E_s^\dagger will recover the corrected state: $E_s^\dagger |w\rangle = E_s^\dagger E_s |v\rangle = |v\rangle$

U_P is a syndrome extraction operator which places the value s into the m -qubit ancilla register

Dignosing and correcting errors

If P_i is the projector of O onto subspace W_i and $m = \log_2 M$, U_P is a unitary operator on $n + m$ qubits

$$U_P : |w\rangle|0\rangle \mapsto \sum_{j=0}^{M-1} P_j |w\rangle|j\rangle = \sum_{j=0}^{M-1} b_j |w_j\rangle|j\rangle$$

By measuring the m ancilla qubits, the error syndrome s identifying the subspace of the error state $W_s = E_s C$

Thus applying the operator E_s^\dagger will recover the corrected state: $E_s^\dagger |w\rangle = E_s^\dagger E_s |v\rangle = |v\rangle$

U_P is a syndrome extraction operator which places the value s into the m -qubit ancilla register

Each qubit of the m -qubit register corresponds to a binary observable

Dignosing and correcting errors

If P_i is the projector of O onto subspace W_i and $m = \log_2 M$, U_P is a unitary operator on $n + m$ qubits

$$U_P : |w\rangle|0\rangle \mapsto \sum_{j=0}^{M-1} P_j |w\rangle|j\rangle = \sum_{j=0}^{M-1} b_j |w_j\rangle|j\rangle$$

By measuring the m ancilla qubits, the error syndrome s identifying the subspace of the error state $W_s = E_s C$

Thus applying the operator E_s^\dagger will recover the corrected state: $E_s^\dagger |w\rangle = E_s^\dagger E_s |v\rangle = |v\rangle$

U_P is a syndrome extraction operator which places the value s into the m -qubit ancilla register

Each qubit of the m -qubit register corresponds to a binary observable

Ancilla qubits permit the conversion of non-unitary errors to unitary errors which can be corrected

Dignosing and correcting errors

If P_i is the projector of O onto subspace W_i and $m = \log_2 M$, U_P is a unitary operator on $n + m$ qubits

$$U_P : |w\rangle|0\rangle \mapsto \sum_{j=0}^{M-1} P_j |w\rangle|j\rangle = \sum_{j=0}^{M-1} b_j |w_j\rangle|j\rangle$$

By measuring the m ancilla qubits, the error syndrome s identifying the subspace of the error state $W_s = E_s C$

Thus applying the operator E_s^\dagger will recover the corrected state: $E_s^\dagger |w\rangle = E_s^\dagger E_s |v\rangle = |v\rangle$

U_P is a syndrome extraction operator which places the value s into the m -qubit ancilla register

Each qubit of the m -qubit register corresponds to a binary observable

Ancilla qubits permit the conversion of non-unitary errors to unitary errors which can be corrected

As an alternative, ancilla qubits can be used as control qubits to directly apply the correction without needing to be measured

Dignosing and correcting errors

If P_i is the projector of O onto subspace W_i and $m = \log_2 M$, U_P is a unitary operator on $n + m$ qubits

$$U_P : |w\rangle|0\rangle \mapsto \sum_{j=0}^{M-1} P_j |w\rangle|j\rangle = \sum_{j=0}^{M-1} b_j |w_j\rangle|j\rangle$$

By measuring the m ancilla qubits, the error syndrome s identifying the subspace of the error state $W_s = E_s C$

Thus applying the operator E_s^\dagger will recover the corrected state: $E_s^\dagger |w\rangle = E_s^\dagger E_s |v\rangle = |v\rangle$

U_P is a syndrome extraction operator which places the value s into the m -qubit ancilla register

Each qubit of the m -qubit register corresponds to a binary observable

Ancilla qubits permit the conversion of non-unitary errors to unitary errors which can be corrected

As an alternative, ancilla qubits can be used as control qubits to directly apply the correction without needing to be measured

$$V_P = \sum_{s=0}^{M-1} E_s^\dagger \otimes |s\rangle\langle s|$$

Example 11.2.9

Consider the bit-flip code C and the set of correctable errors $\mathcal{E} = \{E_{ij}\}$ with

Example 11.2.9

Consider the bit-flip code C and the set of correctable errors $\mathcal{E} = \{E_{ij}\}$ with

$$E_{00} = I \otimes I \otimes I, \quad E_{01} = I \otimes I \otimes X, \quad E_{10} = I \otimes X \otimes I, \quad E_{11} = X \otimes I \otimes I$$

Example 11.2.9

Consider the bit-flip code C and the set of correctable errors $\mathcal{E} = \{E_{ij}\}$ with

$$E_{00} = I \otimes I \otimes I, \quad E_{01} = I \otimes I \otimes X, \quad E_{10} = I \otimes X \otimes I, \quad E_{11} = X \otimes I \otimes I$$

The orthogonal subspaces and bases corresponding to this error set are:

Example 11.2.9

Consider the bit-flip code C and the set of correctable errors $\mathcal{E} = \{E_{ij}\}$ with

$$E_{00} = I \otimes I \otimes I, \quad E_{01} = I \otimes I \otimes X, \quad E_{10} = I \otimes X \otimes I, \quad E_{11} = X \otimes I \otimes I$$

The orthogonal subspaces and bases corresponding to this error set are:

$$W_{00} = E_{00}C$$

$$B_{00} = \{|000\rangle, |111\rangle\}$$

Example 11.2.9

Consider the bit-flip code C and the set of correctable errors $\mathcal{E} = \{E_{ij}\}$ with

$$E_{00} = I \otimes I \otimes I, \quad E_{01} = I \otimes I \otimes X, \quad E_{10} = I \otimes X \otimes I, \quad E_{11} = X \otimes I \otimes I$$

The orthogonal subspaces and bases corresponding to this error set are:

$$W_{00} = E_{00}C \quad W_{01} = E_{01}C$$

$$B_{00} = \{|000\rangle, |111\rangle\} \quad B_{01} = \{|001\rangle, |110\rangle\}$$

Example 11.2.9

Consider the bit-flip code C and the set of correctable errors $\mathcal{E} = \{E_{ij}\}$ with

$$E_{00} = I \otimes I \otimes I, \quad E_{01} = I \otimes I \otimes X, \quad E_{10} = I \otimes X \otimes I, \quad E_{11} = X \otimes I \otimes I$$

The orthogonal subspaces and bases corresponding to this error set are:

$$W_{00} = E_{00}C \quad W_{01} = E_{01}C \quad W_{10} = E_{10}C$$

$$B_{00} = \{|000\rangle, |111\rangle\} \quad B_{01} = \{|001\rangle, |110\rangle\} \quad B_{10} = \{|010\rangle, |101\rangle\}$$

Example 11.2.9

Consider the bit-flip code C and the set of correctable errors $\mathcal{E} = \{E_{ij}\}$ with

$$E_{00} = I \otimes I \otimes I, \quad E_{01} = I \otimes I \otimes X, \quad E_{10} = I \otimes X \otimes I, \quad E_{11} = X \otimes I \otimes I$$

The orthogonal subspaces and bases corresponding to this error set are:

$$\begin{array}{llll} W_{00} = E_{00}C & W_{01} = E_{01}C & W_{10} = E_{10}C & W_{11} = E_{11}C \\ B_{00} = \{|000\rangle, |111\rangle\} & B_{01} = \{|001\rangle, |110\rangle\} & B_{10} = \{|010\rangle, |101\rangle\} & B_{11} = \{|100\rangle, |011\rangle\} \end{array}$$

Example 11.2.9

Consider the bit-flip code C and the set of correctable errors $\mathcal{E} = \{E_{ij}\}$ with

$$E_{00} = I \otimes I \otimes I, \quad E_{01} = I \otimes I \otimes X, \quad E_{10} = I \otimes X \otimes I, \quad E_{11} = X \otimes I \otimes I$$

The orthogonal subspaces and bases corresponding to this error set are:

$$\begin{array}{llll} W_{00} = E_{00}C & W_{01} = E_{01}C & W_{10} = E_{10}C & W_{11} = E_{11}C \\ B_{00} = \{|000\rangle, |111\rangle\} & B_{01} = \{|001\rangle, |110\rangle\} & B_{10} = \{|010\rangle, |101\rangle\} & B_{11} = \{|100\rangle, |011\rangle\} \end{array}$$

The syndrome extraction operator for C with error set \mathcal{E}

Example 11.2.9

Consider the bit-flip code C and the set of correctable errors $\mathcal{E} = \{E_{ij}\}$ with

$$E_{00} = I \otimes I \otimes I, \quad E_{01} = I \otimes I \otimes X, \quad E_{10} = I \otimes X \otimes I, \quad E_{11} = X \otimes I \otimes I$$

The orthogonal subspaces and bases corresponding to this error set are:

$$\begin{array}{llll} W_{00} = E_{00}C & W_{01} = E_{01}C & W_{10} = E_{10}C & W_{11} = E_{11}C \\ B_{00} = \{|000\rangle, |111\rangle\} & B_{01} = \{|001\rangle, |110\rangle\} & B_{10} = \{|010\rangle, |101\rangle\} & B_{11} = \{|100\rangle, |011\rangle\} \end{array}$$

The syndrome extraction operator for C with error set \mathcal{E}

$$U_P : |b_2, b_1, b_0, 0, 0\rangle \rightarrow |b_2, b_1, b_0, a_1 = b_2 \oplus b_1, a_2 = b_2 \oplus b_0\rangle$$

Example 11.2.9

Consider the bit-flip code C and the set of correctable errors $\mathcal{E} = \{E_{ij}\}$ with

$$E_{00} = I \otimes I \otimes I, \quad E_{01} = I \otimes I \otimes X, \quad E_{10} = I \otimes X \otimes I, \quad E_{11} = X \otimes I \otimes I$$

The orthogonal subspaces and bases corresponding to this error set are:

$$\begin{array}{llll} W_{00} = E_{00}C & W_{01} = E_{01}C & W_{10} = E_{10}C & W_{11} = E_{11}C \\ B_{00} = \{|000\rangle, |111\rangle\} & B_{01} = \{|001\rangle, |110\rangle\} & B_{10} = \{|010\rangle, |101\rangle\} & B_{11} = \{|100\rangle, |011\rangle\} \end{array}$$

The syndrome extraction operator for C with error set \mathcal{E}

$$U_P : |b_2, b_1, b_0, 0, 0\rangle \rightarrow |b_2, b_1, b_0, a_1 = b_2 \oplus b_1, a_2 = b_2 \oplus b_0\rangle$$

Bit a_1 distinguishes between eigenspaces spanned by subspaces $\{W_{00}, W_{01}\}$ and $\{W_{10}, W_{11}\}$

Example 11.2.9

Consider the bit-flip code C and the set of correctable errors $\mathcal{E} = \{E_{ij}\}$ with

$$E_{00} = I \otimes I \otimes I, \quad E_{01} = I \otimes I \otimes X, \quad E_{10} = I \otimes X \otimes I, \quad E_{11} = X \otimes I \otimes I$$

The orthogonal subspaces and bases corresponding to this error set are:

$$\begin{array}{llll} W_{00} = E_{00}C & W_{01} = E_{01}C & W_{10} = E_{10}C & W_{11} = E_{11}C \\ B_{00} = \{|000\rangle, |111\rangle\} & B_{01} = \{|001\rangle, |110\rangle\} & B_{10} = \{|010\rangle, |101\rangle\} & B_{11} = \{|100\rangle, |011\rangle\} \end{array}$$

The syndrome extraction operator for C with error set \mathcal{E}

$$U_P : |b_2, b_1, b_0, 0, 0\rangle \rightarrow |b_2, b_1, b_0, a_1 = b_2 \oplus b_1, a_2 = b_2 \oplus b_0\rangle$$

Bit a_1 distinguishes between eigenspaces spanned by subspaces $\{W_{00}, W_{01}\}$ and $\{W_{10}, W_{11}\}$

Bit a_0 distinguishes between eigenspaces spanned by subspaces $\{W_{00}, W_{10}\}$ and $\{W_{01}, W_{11}\}$

Example 11.2.9

Consider the bit-flip code C and the set of correctable errors $\mathcal{E} = \{E_{ij}\}$ with

$$E_{00} = I \otimes I \otimes I, \quad E_{01} = I \otimes I \otimes X, \quad E_{10} = I \otimes X \otimes I, \quad E_{11} = X \otimes I \otimes I$$

The orthogonal subspaces and bases corresponding to this error set are:

$$\begin{array}{llll} W_{00} = E_{00}C & W_{01} = E_{01}C & W_{10} = E_{10}C & W_{11} = E_{11}C \\ B_{00} = \{|000\rangle, |111\rangle\} & B_{01} = \{|001\rangle, |110\rangle\} & B_{10} = \{|010\rangle, |101\rangle\} & B_{11} = \{|100\rangle, |011\rangle\} \end{array}$$

The syndrome extraction operator for C with error set \mathcal{E}

$$U_P : |b_2, b_1, b_0, 0, 0\rangle \rightarrow |b_2, b_1, b_0, a_1 = b_2 \oplus b_1, a_2 = b_2 \oplus b_0\rangle$$

Bit a_1 distinguishes between eigenspaces spanned by subspaces $\{W_{00}, W_{01}\}$ and $\{W_{10}, W_{11}\}$

Bit a_0 distinguishes between eigenspaces spanned by subspaces $\{W_{00}, W_{10}\}$ and $\{W_{01}, W_{11}\}$

Measuring $a_1 = i$ and $a_0 = j$ projects the state into $W_{ij} = E_{ij}C$ and E_{ij}^\dagger is the error corrector

Example 11.2.10

The C_{BF} single-qubit bit-flip correction circuit can be adapted to directly apply the correction after applying U_{BF} by applying V_{BF}

Example 11.2.10

The C_{BF} single-qubit bit-flip correction circuit can be adapted to directly apply the correction after applying U_{BF} by applying V_{BF}

Example 11.2.10

The C_{BF} single-qubit bit-flip correction circuit can be adapted to directly apply the correction after applying U_{BF} by applying V_{BF}

$$V_{BF} = \sum_{s=0}^3 E_s^\dagger \otimes |s\rangle\langle s|$$

Example 11.2.10

The C_{BF} single-qubit bit-flip correction circuit can be adapted to directly apply the correction after applying U_{BF} by applying V_{BF}

$$V_{BF} = \sum_{s=0}^3 E_s^\dagger \otimes |s\rangle\langle s| = E_0^\dagger \otimes |00\rangle\langle 00| + E_1^\dagger \otimes |01\rangle\langle 01| + E_2^\dagger \otimes |10\rangle\langle 10| + E_3^\dagger \otimes |11\rangle\langle 11|$$

Example 11.2.10

The C_{BF} single-qubit bit-flip correction circuit can be adapted to directly apply the correction after applying U_{BF} by applying V_{BF}

$$V_{BF} = \sum_{s=0}^3 E_s^\dagger \otimes |s\rangle\langle s| = E_0^\dagger \otimes |00\rangle\langle 00| + E_1^\dagger \otimes |01\rangle\langle 01| + E_2^\dagger \otimes |10\rangle\langle 10| + E_3^\dagger \otimes |11\rangle\langle 11|$$

$$E_0^\dagger = I \otimes I \otimes I$$

$$E_1^\dagger = I \otimes I \otimes X$$

$$E_2^\dagger = I \otimes X \otimes I$$

$$E_3^\dagger = X \otimes I \otimes I$$

Example 11.2.10

The C_{BF} single-qubit bit-flip correction circuit can be adapted to directly apply the correction after applying U_{BF} by applying V_{BF}

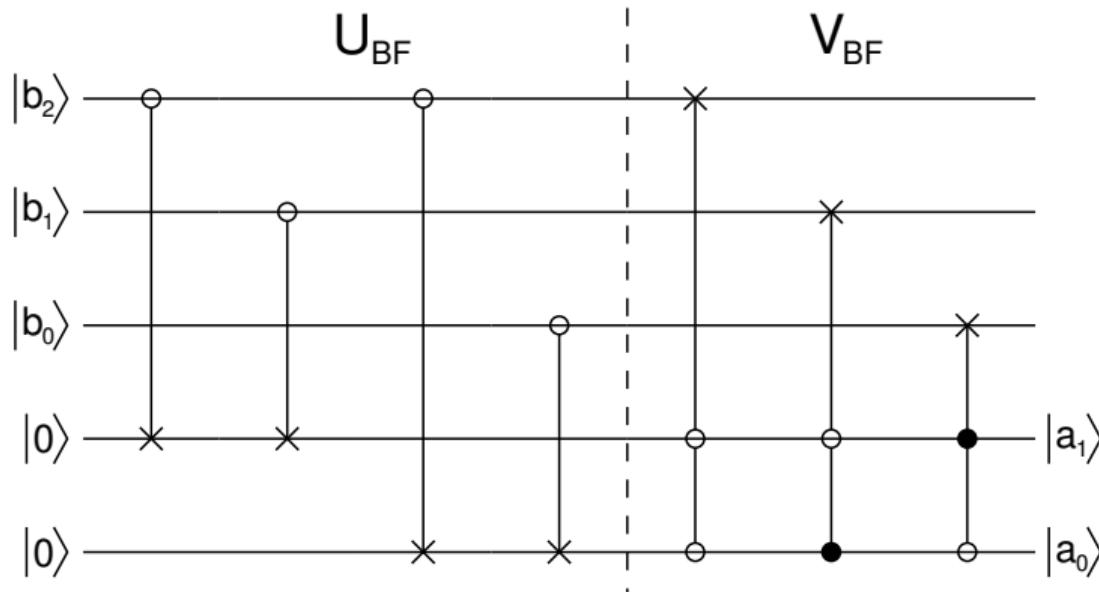
$$V_{BF} = \sum_{s=0}^3 E_s^\dagger \otimes |s\rangle\langle s| = E_0^\dagger \otimes |00\rangle\langle 00| + E_1^\dagger \otimes |01\rangle\langle 01| + E_2^\dagger \otimes |10\rangle\langle 10| + E_3^\dagger \otimes |11\rangle\langle 11|$$

$$E_0^\dagger = I \otimes I \otimes I$$

$$E_1^\dagger = I \otimes I \otimes X$$

$$E_2^\dagger = I \otimes X \otimes I$$

$$E_3^\dagger = X \otimes I \otimes I$$



Example 11.2.10 (cont.)

$$V_{BF} = E_0^\dagger \otimes |00\rangle\langle 00| + E_1^\dagger \otimes |01\rangle\langle 01| + E_2^\dagger \otimes |10\rangle\langle 10| + E_3^\dagger \otimes |11\rangle\langle 11|$$

$$E_0^\dagger = E_0 = I \otimes I \otimes I, \quad E_1^\dagger = E_1 = I \otimes I \otimes X, \quad E_2^\dagger = E_2 = I \otimes X \otimes I, \quad E_3^\dagger = E_3 = X \otimes I \otimes I$$

Example 11.2.10 (cont.)

$$V_{BF} = E_0^\dagger \otimes |00\rangle\langle 00| + E_1^\dagger \otimes |01\rangle\langle 01| + E_2^\dagger \otimes |10\rangle\langle 10| + E_3^\dagger \otimes |11\rangle\langle 11|$$

$$E_0^\dagger = E_0 = I \otimes I \otimes I, \quad E_1^\dagger = E_1 = I \otimes I \otimes X, \quad E_2^\dagger = E_2 = I \otimes X \otimes I, \quad E_3^\dagger = E_3 = X \otimes I \otimes I$$

With the above circuit, it is possible to correct linear combinations of errors

Example 11.2.10 (cont.)

$$V_{BF} = E_0^\dagger \otimes |00\rangle\langle 00| + E_1^\dagger \otimes |01\rangle\langle 01| + E_2^\dagger \otimes |10\rangle\langle 10| + E_3^\dagger \otimes |11\rangle\langle 11|$$

$$E_0^\dagger = E_0 = I \otimes I \otimes I, \quad E_1^\dagger = E_1 = I \otimes I \otimes X, \quad E_2^\dagger = E_2 = I \otimes X \otimes I, \quad E_3^\dagger = E_3 = X \otimes I \otimes I$$

With the above circuit, it is possible to correct linear combinations of errors

Suppose we start with a state $|\tilde{0}\rangle = |000\rangle$ and there is an error $E = \alpha E_3 + \beta E_2$

Example 11.2.10 (cont.)

$$V_{BF} = E_0^\dagger \otimes |00\rangle\langle 00| + E_1^\dagger \otimes |01\rangle\langle 01| + E_2^\dagger \otimes |10\rangle\langle 10| + E_3^\dagger \otimes |11\rangle\langle 11|$$

$$E_0^\dagger = E_0 = I \otimes I \otimes I, \quad E_1^\dagger = E_1 = I \otimes I \otimes X, \quad E_2^\dagger = E_2 = I \otimes X \otimes I, \quad E_3^\dagger = E_3 = X \otimes I \otimes I$$

With the above circuit, it is possible to correct linear combinations of errors

Suppose we start with a state $|\tilde{0}\rangle = |000\rangle$ and there is an error $E = \alpha E_3 + \beta E_2$

$$|u\rangle = U_{BF} [(E|000\rangle) \otimes |00\rangle] = U_{BF} [(\alpha|100\rangle + \beta|010\rangle) \otimes |00\rangle]$$

Example 11.2.10 (cont.)

$$V_{BF} = E_0^\dagger \otimes |00\rangle\langle 00| + E_1^\dagger \otimes |01\rangle\langle 01| + E_2^\dagger \otimes |10\rangle\langle 10| + E_3^\dagger \otimes |11\rangle\langle 11|$$

$$E_0^\dagger = E_0 = I \otimes I \otimes I, \quad E_1^\dagger = E_1 = I \otimes I \otimes X, \quad E_2^\dagger = E_2 = I \otimes X \otimes I, \quad E_3^\dagger = E_3 = X \otimes I \otimes I$$

With the above circuit, it is possible to correct linear combinations of errors

Suppose we start with a state $|\tilde{0}\rangle = |000\rangle$ and there is an error $E = \alpha E_3 + \beta E_2$

$$|u\rangle = U_{BF} [(E|000\rangle) \otimes |00\rangle] = U_{BF} [(\alpha|100\rangle + \beta|010\rangle) \otimes |00\rangle] = \alpha|100\rangle|11\rangle + \beta|010\rangle|10\rangle$$

Now use V_{BF} to directly correct the logical state to its initial value, noting that only one term survives for each term of $|u\rangle$

Example 11.2.10 (cont.)

$$V_{BF} = E_0^\dagger \otimes |00\rangle\langle 00| + E_1^\dagger \otimes |01\rangle\langle 01| + E_2^\dagger \otimes |10\rangle\langle 10| + E_3^\dagger \otimes |11\rangle\langle 11|$$

$$E_0^\dagger = E_0 = I \otimes I \otimes I, \quad E_1^\dagger = E_1 = I \otimes I \otimes X, \quad E_2^\dagger = E_2 = I \otimes X \otimes I, \quad E_3^\dagger = E_3 = X \otimes I \otimes I$$

With the above circuit, it is possible to correct linear combinations of errors

Suppose we start with a state $|\tilde{0}\rangle = |000\rangle$ and there is an error $E = \alpha E_3 + \beta E_2$

$$|u\rangle = U_{BF}[(E|000\rangle) \otimes |00\rangle] = U_{BF}[(\alpha|100\rangle + \beta|010\rangle) \otimes |00\rangle] = \alpha|100\rangle|11\rangle + \beta|010\rangle|10\rangle$$

Now use V_{BF} to directly correct the logical state to its initial value, noting that only one term survives for each term of $|u\rangle$

$$\begin{aligned} V_{BF}|u\rangle &= (E_0^\dagger \otimes |00\rangle\langle 00| + E_1^\dagger \otimes |01\rangle\langle 01| + E_2^\dagger \otimes |10\rangle\langle 10| + E_3^\dagger \otimes |11\rangle\langle 11|) \alpha|100\rangle|11\rangle + \\ &\quad (E_0^\dagger \otimes |00\rangle\langle 00| + E_1^\dagger \otimes |01\rangle\langle 01| + E_2^\dagger \otimes |10\rangle\langle 10| + E_3^\dagger \otimes |11\rangle\langle 11|) \beta|010\rangle|10\rangle \end{aligned}$$

Example 11.2.10 (cont.)

$$V_{BF} = E_0^\dagger \otimes |00\rangle\langle 00| + E_1^\dagger \otimes |01\rangle\langle 01| + E_2^\dagger \otimes |10\rangle\langle 10| + E_3^\dagger \otimes |11\rangle\langle 11|$$

$$E_0^\dagger = E_0 = I \otimes I \otimes I, \quad E_1^\dagger = E_1 = I \otimes I \otimes X, \quad E_2^\dagger = E_2 = I \otimes X \otimes I, \quad E_3^\dagger = E_3 = X \otimes I \otimes I$$

With the above circuit, it is possible to correct linear combinations of errors

Suppose we start with a state $|\tilde{0}\rangle = |000\rangle$ and there is an error $E = \alpha E_3 + \beta E_2$

$$|u\rangle = U_{BF}[(E|000\rangle) \otimes |00\rangle] = U_{BF}[(\alpha|100\rangle + \beta|010\rangle) \otimes |00\rangle] = \alpha|100\rangle|11\rangle + \beta|010\rangle|10\rangle$$

Now use V_{BF} to directly correct the logical state to its initial value, noting that only one term survives for each term of $|u\rangle$

$$\begin{aligned} V_{BF}|u\rangle &= (E_0^\dagger \otimes \cancel{|00\rangle\langle 00|} + E_1^\dagger \otimes \cancel{|01\rangle\langle 01|} + E_2^\dagger \otimes \cancel{|10\rangle\langle 10|} + E_3^\dagger \otimes |11\rangle\langle 11|) \alpha|100\rangle|11\rangle + \\ &\quad (E_0^\dagger \otimes |00\rangle\langle 00| + E_1^\dagger \otimes |01\rangle\langle 01| + E_2^\dagger \otimes |10\rangle\langle 10| + E_3^\dagger \otimes |11\rangle\langle 11|) \beta|010\rangle|10\rangle \end{aligned}$$

Example 11.2.10 (cont.)

$$V_{BF} = E_0^\dagger \otimes |00\rangle\langle 00| + E_1^\dagger \otimes |01\rangle\langle 01| + E_2^\dagger \otimes |10\rangle\langle 10| + E_3^\dagger \otimes |11\rangle\langle 11|$$

$$E_0^\dagger = E_0 = I \otimes I \otimes I, \quad E_1^\dagger = E_1 = I \otimes I \otimes X, \quad E_2^\dagger = E_2 = I \otimes X \otimes I, \quad E_3^\dagger = E_3 = X \otimes I \otimes I$$

With the above circuit, it is possible to correct linear combinations of errors

Suppose we start with a state $|\tilde{0}\rangle = |000\rangle$ and there is an error $E = \alpha E_3 + \beta E_2$

$$|u\rangle = U_{BF}[(E|000\rangle) \otimes |00\rangle] = U_{BF}[(\alpha|100\rangle + \beta|010\rangle) \otimes |00\rangle] = \alpha|100\rangle|11\rangle + \beta|010\rangle|10\rangle$$

Now use V_{BF} to directly correct the logical state to its initial value, noting that only one term survives for each term of $|u\rangle$

$$\begin{aligned} V_{BF}|u\rangle &= (E_0^\dagger \otimes \cancel{|00\rangle\langle 00|} + E_1^\dagger \otimes \cancel{|01\rangle\langle 01|} + E_2^\dagger \otimes \cancel{|10\rangle\langle 10|} + E_3^\dagger \otimes |11\rangle\langle 11|) \alpha|100\rangle|11\rangle + \\ &\quad (E_0^\dagger \otimes \cancel{|00\rangle\langle 00|} + E_1^\dagger \otimes \cancel{|01\rangle\langle 01|} + E_2^\dagger \otimes |10\rangle\langle 10| + E_3^\dagger \otimes \cancel{|11\rangle\langle 11|}) \beta|010\rangle|10\rangle \end{aligned}$$

Example 11.2.10 (cont.)

$$V_{BF} = E_0^\dagger \otimes |00\rangle\langle 00| + E_1^\dagger \otimes |01\rangle\langle 01| + E_2^\dagger \otimes |10\rangle\langle 10| + E_3^\dagger \otimes |11\rangle\langle 11|$$

$$E_0^\dagger = E_0 = I \otimes I \otimes I, \quad E_1^\dagger = E_1 = I \otimes I \otimes X, \quad E_2^\dagger = E_2 = I \otimes X \otimes I, \quad E_3^\dagger = E_3 = X \otimes I \otimes I$$

With the above circuit, it is possible to correct linear combinations of errors

Suppose we start with a state $|\tilde{0}\rangle = |000\rangle$ and there is an error $E = \alpha E_3 + \beta E_2$

$$|u\rangle = U_{BF}[(E|000\rangle) \otimes |00\rangle] = U_{BF}[(\alpha|100\rangle + \beta|010\rangle) \otimes |00\rangle] = \alpha|100\rangle|11\rangle + \beta|010\rangle|10\rangle$$

Now use V_{BF} to directly correct the logical state to its initial value, noting that only one term survives for each term of $|u\rangle$

$$\begin{aligned} V_{BF}|u\rangle &= (E_0^\dagger \otimes \cancel{|00\rangle\langle 00|} + E_1^\dagger \otimes \cancel{|01\rangle\langle 01|} + E_2^\dagger \otimes \cancel{|10\rangle\langle 10|} + E_3^\dagger \otimes |11\rangle\langle 11|) \alpha|100\rangle|11\rangle + \\ &\quad (E_0^\dagger \otimes \cancel{|00\rangle\langle 00|} + E_1^\dagger \otimes \cancel{|01\rangle\langle 01|} + E_2^\dagger \otimes |10\rangle\langle 10| + E_3^\dagger \otimes \cancel{|11\rangle\langle 11|}) \beta|010\rangle|10\rangle \\ &= (\alpha E_3^\dagger |100\rangle) |11\rangle + (\beta E_2^\dagger |010\rangle) |10\rangle \end{aligned}$$

Example 11.2.10 (cont.)

$$V_{BF} = E_0^\dagger \otimes |00\rangle\langle 00| + E_1^\dagger \otimes |01\rangle\langle 01| + E_2^\dagger \otimes |10\rangle\langle 10| + E_3^\dagger \otimes |11\rangle\langle 11|$$

$$E_0^\dagger = E_0 = I \otimes I \otimes I, \quad E_1^\dagger = E_1 = I \otimes I \otimes X, \quad E_2^\dagger = E_2 = I \otimes X \otimes I, \quad E_3^\dagger = E_3 = X \otimes I \otimes I$$

With the above circuit, it is possible to correct linear combinations of errors

Suppose we start with a state $|\tilde{0}\rangle = |000\rangle$ and there is an error $E = \alpha E_3 + \beta E_2$

$$|u\rangle = U_{BF}[(E|000\rangle) \otimes |00\rangle] = U_{BF}[(\alpha|100\rangle + \beta|010\rangle) \otimes |00\rangle] = \alpha|100\rangle|11\rangle + \beta|010\rangle|10\rangle$$

Now use V_{BF} to directly correct the logical state to its initial value, noting that only one term survives for each term of $|u\rangle$

$$\begin{aligned} V_{BF}|u\rangle &= (E_0^\dagger \otimes \cancel{|00\rangle\langle 00|} + E_1^\dagger \otimes \cancel{|01\rangle\langle 01|} + E_2^\dagger \otimes \cancel{|10\rangle\langle 10|} + E_3^\dagger \otimes |11\rangle\langle 11|) \alpha|100\rangle|11\rangle + \\ &\quad (E_0^\dagger \otimes \cancel{|00\rangle\langle 00|} + E_1^\dagger \otimes \cancel{|01\rangle\langle 01|} + E_2^\dagger \otimes |10\rangle\langle 10| + E_3^\dagger \otimes \cancel{|11\rangle\langle 11|}) \beta|010\rangle|10\rangle \\ &= (\alpha E_3^\dagger |100\rangle) |11\rangle + (\beta E_2^\dagger |010\rangle) |10\rangle = |000\rangle (\alpha|11\rangle + \beta|10\rangle) \end{aligned}$$

Example 11.2.10 (cont.)

$$V_{BF} = E_0^\dagger \otimes |00\rangle\langle 00| + E_1^\dagger \otimes |01\rangle\langle 01| + E_2^\dagger \otimes |10\rangle\langle 10| + E_3^\dagger \otimes |11\rangle\langle 11|$$

$$E_0^\dagger = E_0 = I \otimes I \otimes I, \quad E_1^\dagger = E_1 = I \otimes I \otimes X, \quad E_2^\dagger = E_2 = I \otimes X \otimes I, \quad E_3^\dagger = E_3 = X \otimes I \otimes I$$

With the above circuit, it is possible to correct linear combinations of errors

Suppose we start with a state $|\tilde{0}\rangle = |000\rangle$ and there is an error $E = \alpha E_3 + \beta E_2$

$$|u\rangle = U_{BF}[(E|000\rangle) \otimes |00\rangle] = U_{BF}[(\alpha|100\rangle + \beta|010\rangle) \otimes |00\rangle] = \alpha|100\rangle|11\rangle + \beta|010\rangle|10\rangle$$

Now use V_{BF} to directly correct the logical state to its initial value, noting that only one term survives for each term of $|u\rangle$

$$\begin{aligned} V_{BF}|u\rangle &= (E_0^\dagger \otimes \cancel{|00\rangle\langle 00|} + E_1^\dagger \otimes \cancel{|01\rangle\langle 01|} + E_2^\dagger \otimes \cancel{|10\rangle\langle 10|} + E_3^\dagger \otimes |11\rangle\langle 11|) \alpha|100\rangle|11\rangle + \\ &\quad (E_0^\dagger \otimes \cancel{|00\rangle\langle 00|} + E_1^\dagger \otimes \cancel{|01\rangle\langle 01|} + E_2^\dagger \otimes |10\rangle\langle 10| + E_3^\dagger \otimes \cancel{|11\rangle\langle 11|}) \beta|010\rangle|10\rangle \\ &= (\alpha E_3^\dagger |100\rangle) |11\rangle + (\beta E_2^\dagger |010\rangle) |10\rangle = |000\rangle (\alpha|11\rangle + \beta|10\rangle) \end{aligned}$$

The ancilla can be measured independently and transformed to $|00\rangle$ if they need to be reused

Error correction across multiple blocks

A quantum $[[n, k]]$ code, C encodes $m \cdot k$ logical qubits in $m \cdot n$ computational qubits

Error correction across multiple blocks

A quantum $[[n, k]]$ code, C encodes $m \cdot k$ logical qubits in $m \cdot n$ computational qubits

A logical superposition can thus be encoded using an encoding function U_C

Error correction across multiple blocks

A quantum $[[n, k]]$ code, C encodes $m \cdot k$ logical qubits in $m \cdot n$ computational qubits

A logical superposition can thus be encoded using an encoding function U_C

$$U_C : |\psi\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} (|\textcolor{red}{w}_i\rangle \otimes |\textcolor{blue}{w}_j\rangle)$$

Error correction across multiple blocks

A quantum $[[n, k]]$ code, C encodes $m \cdot k$ logical qubits in $m \cdot n$ computational qubits

A logical superposition can thus be encoded using an encoding function U_C

$$U_C : |\psi\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} (|w_i\rangle \otimes |w_j\rangle) \rightarrow |\tilde{\psi}\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} (|c_i\rangle \otimes |c_j\rangle), \quad |c_i\rangle = U_C |w_i\rangle$$

Error correction across multiple blocks

A quantum $[[n, k]]$ code, C encodes $m \cdot k$ logical qubits in $m \cdot n$ computational qubits

A logical superposition can thus be encoded using an encoding function U_C

$$U_C : |\psi\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} (|w_i\rangle \otimes |w_j\rangle) \rightarrow |\tilde{\psi}\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} (|c_i\rangle \otimes |c_j\rangle), \quad |c_i\rangle = U_C |w_i\rangle$$

Quantum codes must be able to correct errors on such superpositions either in the form of errors on a single block, $E_i \in \mathcal{E}$ or on any number of blocks, $E_{i_1} \otimes \cdots \otimes E_{i_m}$

Error correction across multiple blocks

A quantum $[[n, k]]$ code, C encodes $m \cdot k$ logical qubits in $m \cdot n$ computational qubits

A logical superposition can thus be encoded using an encoding function U_C

$$U_C : |\psi\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} (|w_i\rangle \otimes |w_j\rangle) \rightarrow |\tilde{\psi}\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} (|c_i\rangle \otimes |c_j\rangle), \quad |c_i\rangle = U_C |w_i\rangle$$

Quantum codes must be able to correct errors on such superpositions either in the form of errors on a single block, $E_i \in \mathcal{E}$ or on any number of blocks, $E_{i_1} \otimes \cdots \otimes E_{i_m}$

Suppose the encoded state $|\tilde{\psi}\rangle$ is subjected to error $E_a \otimes E_b$ where both individual errors are correctable for code C , apply $U_P \otimes U_P$ for syndrome extraction

Error correction across multiple blocks

A quantum $[[n, k]]$ code, C encodes $m \cdot k$ logical qubits in $m \cdot n$ computational qubits

A logical superposition can thus be encoded using an encoding function U_C

$$U_C : |\psi\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} (|w_i\rangle \otimes |w_j\rangle) \rightarrow |\tilde{\psi}\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} (|c_i\rangle \otimes |c_j\rangle), \quad |c_i\rangle = U_C |w_i\rangle$$

Quantum codes must be able to correct errors on such superpositions either in the form of errors on a single block, $E_i \in \mathcal{E}$ or on any number of blocks, $E_{i_1} \otimes \cdots \otimes E_{i_m}$

Suppose the encoded state $|\tilde{\psi}\rangle$ is subjected to error $E_a \otimes E_b$ where both individual errors are correctable for code C , apply $U_P \otimes U_P$ for syndrome extraction

$$U_P \otimes U_P [(E_a \otimes E_b) |\tilde{\psi}\rangle \otimes |0\rangle |0\rangle]$$

Error correction across multiple blocks

A quantum $[[n, k]]$ code, C encodes $m \cdot k$ logical qubits in $m \cdot n$ computational qubits

A logical superposition can thus be encoded using an encoding function U_C

$$U_C : |\psi\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} (|w_i\rangle \otimes |w_j\rangle) \rightarrow |\tilde{\psi}\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} (|c_i\rangle \otimes |c_j\rangle), \quad |c_i\rangle = U_C |w_i\rangle$$

Quantum codes must be able to correct errors on such superpositions either in the form of errors on a single block, $E_i \in \mathcal{E}$ or on any number of blocks, $E_{i_1} \otimes \cdots \otimes E_{i_m}$

Suppose the encoded state $|\tilde{\psi}\rangle$ is subjected to error $E_a \otimes E_b$ where both individual errors are correctable for code C , apply $U_P \otimes U_P$ for syndrome extraction

$$U_P \otimes U_P [(E_a \otimes E_b) |\tilde{\psi}\rangle \otimes |0\rangle |0\rangle] = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [U_P(E_a |c_i\rangle |0\rangle) \otimes U_P(E_b |c_j\rangle |0\rangle)]$$

Error correction across multiple blocks

A quantum $[[n, k]]$ code, C encodes $m \cdot k$ logical qubits in $m \cdot n$ computational qubits

A logical superposition can thus be encoded using an encoding function U_C

$$U_C : |\psi\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} (|w_i\rangle \otimes |w_j\rangle) \rightarrow |\tilde{\psi}\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} (|c_i\rangle \otimes |c_j\rangle), \quad |c_i\rangle = U_C |w_i\rangle$$

Quantum codes must be able to correct errors on such superpositions either in the form of errors on a single block, $E_i \in \mathcal{E}$ or on any number of blocks, $E_{i_1} \otimes \cdots \otimes E_{i_m}$

Suppose the encoded state $|\tilde{\psi}\rangle$ is subjected to error $E_a \otimes E_b$ where both individual errors are correctable for code C , apply $U_P \otimes U_P$ for syndrome extraction

$$\begin{aligned} U_P \otimes U_P [(E_a \otimes E_b) |\tilde{\psi}\rangle \otimes |0\rangle |0\rangle] &= \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [U_P(E_a |c_i\rangle |0\rangle) \otimes U_P(E_b |c_j\rangle |0\rangle)] \\ &= \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [E_a |c_i\rangle |a\rangle \otimes E_b |c_j\rangle |b\rangle] \end{aligned}$$

Error correction across multiple blocks

$$U_P \otimes U_P [(E_a \otimes E_b |\tilde{\psi}\rangle) \otimes |0\rangle |0\rangle] = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [E_a |c_i\rangle |a\rangle \otimes E_b |c_j\rangle |b\rangle]$$

Error correction across multiple blocks

$$U_P \otimes U_P [(E_a \otimes E_b |\tilde{\psi}\rangle) \otimes |0\rangle |0\rangle] = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [E_a |c_i\rangle |a\rangle \otimes E_b |c_j\rangle |b\rangle]$$

Measurement of the two ancilla give $|a\rangle$ and $|b\rangle$ with the computation qubits in state $|\phi\rangle$

Error correction across multiple blocks

$$U_P \otimes U_P [(E_a \otimes E_b |\tilde{\psi}\rangle) \otimes |0\rangle |0\rangle] = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [E_a |c_i\rangle |a\rangle \otimes E_b |c_j\rangle |b\rangle]$$

Measurement of the two ancilla give $|a\rangle$ and $|b\rangle$ with the computation qubits in state $|\phi\rangle$

$$|\phi\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [E_a |c_i\rangle \otimes E_b |c_j\rangle]$$

Error correction across multiple blocks

$$U_P \otimes U_P [(E_a \otimes E_b |\tilde{\psi}\rangle) \otimes |0\rangle |0\rangle] = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [E_a |c_i\rangle |a\rangle \otimes E_b |c_j\rangle |b\rangle]$$

Measurement of the two ancilla give $|a\rangle$ and $|b\rangle$ with the computation qubits in state $|\phi\rangle$

$$|\phi\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [E_a |c_i\rangle \otimes E_b |c_j\rangle]$$

The syndrome $|a\rangle |b\rangle$ indicates that the error can be corrected with $E_a^\dagger \otimes E_b^\dagger$

Error correction across multiple blocks

$$U_P \otimes U_P [(E_a \otimes E_b |\tilde{\psi}\rangle) \otimes |0\rangle |0\rangle] = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [E_a |c_i\rangle |a\rangle \otimes E_b |c_j\rangle |b\rangle]$$

Measurement of the two ancilla give $|a\rangle$ and $|b\rangle$ with the computation qubits in state $|\phi\rangle$

$$|\phi\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [E_a |c_i\rangle \otimes E_b |c_j\rangle]$$

The syndrome $|a\rangle |b\rangle$ indicates that the error can be corrected with $E_a^\dagger \otimes E_b^\dagger$

$$E_a^\dagger \otimes E_b^\dagger |\phi\rangle = E_a^\dagger \otimes E_b^\dagger \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [E_a |c_i\rangle \otimes E_b |c_j\rangle]$$

Error correction across multiple blocks

$$U_P \otimes U_P [(E_a \otimes E_b |\tilde{\psi}\rangle) \otimes |0\rangle |0\rangle] = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [E_a |c_i\rangle |a\rangle \otimes E_b |c_j\rangle |b\rangle]$$

Measurement of the two ancilla give $|a\rangle$ and $|b\rangle$ with the computation qubits in state $|\phi\rangle$

$$|\phi\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [E_a |c_i\rangle \otimes E_b |c_j\rangle]$$

The syndrome $|a\rangle |b\rangle$ indicates that the error can be corrected with $E_a^\dagger \otimes E_b^\dagger$

$$E_a^\dagger \otimes E_b^\dagger |\phi\rangle = E_a^\dagger \otimes E_b^\dagger \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [E_a |c_i\rangle \otimes E_b |c_j\rangle] = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [|c_i\rangle \otimes |c_j\rangle] = |\tilde{\psi}\rangle$$

Error correction across multiple blocks

$$U_P \otimes U_P [(E_a \otimes E_b |\tilde{\psi}\rangle) \otimes |0\rangle |0\rangle] = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [E_a |c_i\rangle |a\rangle \otimes E_b |c_j\rangle |b\rangle]$$

Measurement of the two ancilla give $|a\rangle$ and $|b\rangle$ with the computation qubits in state $|\phi\rangle$

$$|\phi\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [E_a |c_i\rangle \otimes E_b |c_j\rangle]$$

The syndrome $|a\rangle |b\rangle$ indicates that the error can be corrected with $E_a^\dagger \otimes E_b^\dagger$

$$E_a^\dagger \otimes E_b^\dagger |\phi\rangle = E_a^\dagger \otimes E_b^\dagger \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [E_a |c_i\rangle \otimes E_b |c_j\rangle] = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [|c_i\rangle \otimes |c_j\rangle] = |\tilde{\psi}\rangle$$

When using logical states it is important to be able to directly perform computations

Error correction across multiple blocks

$$U_P \otimes U_P [(E_a \otimes E_b |\tilde{\psi}\rangle) \otimes |0\rangle |0\rangle] = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [E_a |c_i\rangle |a\rangle \otimes E_b |c_j\rangle |b\rangle]$$

Measurement of the two ancilla give $|a\rangle$ and $|b\rangle$ with the computation qubits in state $|\phi\rangle$

$$|\phi\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [E_a |c_i\rangle \otimes E_b |c_j\rangle]$$

The syndrome $|a\rangle |b\rangle$ indicates that the error can be corrected with $E_a^\dagger \otimes E_b^\dagger$

$$E_a^\dagger \otimes E_b^\dagger |\phi\rangle = E_a^\dagger \otimes E_b^\dagger \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [E_a |c_i\rangle \otimes E_b |c_j\rangle] = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [|c_i\rangle \otimes |c_j\rangle] = |\tilde{\psi}\rangle$$

When using logical states it is important to be able to directly perform computations

Let C be a $[[n, k]]$ quantum code with $U_C : W \rightarrow C$ encoding function

Error correction across multiple blocks

$$U_P \otimes U_P [(E_a \otimes E_b |\tilde{\psi}\rangle) \otimes |0\rangle |0\rangle] = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [E_a |c_i\rangle |a\rangle \otimes E_b |c_j\rangle |b\rangle]$$

Measurement of the two ancilla give $|a\rangle$ and $|b\rangle$ with the computation qubits in state $|\phi\rangle$

$$|\phi\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [E_a |c_i\rangle \otimes E_b |c_j\rangle]$$

The syndrome $|a\rangle |b\rangle$ indicates that the error can be corrected with $E_a^\dagger \otimes E_b^\dagger$

$$E_a^\dagger \otimes E_b^\dagger |\phi\rangle = E_a^\dagger \otimes E_b^\dagger \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [E_a |c_i\rangle \otimes E_b |c_j\rangle] = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [|c_i\rangle \otimes |c_j\rangle] = |\tilde{\psi}\rangle$$

When using logical states it is important to be able to directly perform computations

Let C be a $[[n, k]]$ quantum code with $U_C : W \rightarrow C$ encoding function

In order to compute on the encoded states with a function $U : W \rightarrow W$, there must be an analogous unitary operator \tilde{U} acting on the encoded states such that for all $|w\rangle \in W$ sends $U_C|w\rangle$ to $U_C(U|w\rangle)$

Error correction across multiple blocks

$$U_P \otimes U_P [(E_a \otimes E_b |\tilde{\psi}\rangle) \otimes |0\rangle |0\rangle] = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [E_a |c_i\rangle |a\rangle \otimes E_b |c_j\rangle |b\rangle]$$

Measurement of the two ancilla give $|a\rangle$ and $|b\rangle$ with the computation qubits in state $|\phi\rangle$

$$|\phi\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [E_a |c_i\rangle \otimes E_b |c_j\rangle]$$

The syndrome $|a\rangle |b\rangle$ indicates that the error can be corrected with $E_a^\dagger \otimes E_b^\dagger$

$$E_a^\dagger \otimes E_b^\dagger |\phi\rangle = E_a^\dagger \otimes E_b^\dagger \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [E_a |c_i\rangle \otimes E_b |c_j\rangle] = \sum_{i=0}^{M-1} \sum_{j=0}^{M-1} \alpha_{ij} [|c_i\rangle \otimes |c_j\rangle] = |\tilde{\psi}\rangle$$

When using logical states it is important to be able to directly perform computations

Let C be a $[[n, k]]$ quantum code with $U_C : W \rightarrow C$ encoding function

In order to compute on the encoded states with a function $U : W \rightarrow W$, there must be an analogous unitary operator \tilde{U} acting on the encoded states such that for all $|w\rangle \in W$ sends $U_C|w\rangle$ to $U_C(U|w\rangle)$

The operator $\tilde{U} = U_C(U \otimes I)U_C^\dagger$ is one such (inefficient) operator