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0)
qubits are obtained by 001) = [1) = [111) = [1

)

Note that we have only defined the action of Uc on the states in W where only the low order
qubit can be non-zero

Uc may well have some action on other states not in W but this is generally ignored
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Codes not satisfying this condition are said to be degenerate
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Example 11.2.6

For the [[3,1]] code and a set of errors £ = {Ej;} the correctable error set for a single-qubit
bit-flip error is

E()OIIQ@I(X)I7 E01:/®I®X, E1021®X®I, E11:X®/®I
One of the many other correctable error sets could be £ = {E};} where
Eo=1®I®l, Ej=X0X&!l, E[j=X@I2X, E;=10X®X

The latter is the correctable error set for all two-qubit bit flips

One must choose one of the two sets to correct for and generally single-qubit bit-flips are
much more probable than two-qubit bit-flips
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Suppose that C is a [[n, k]| quantum code that is nondegenerate with respect to a correctable
error set £ ={E},0<i< M

Applying the error transformation Eg to a

E. C, E
state|v> 5|V>'_>|W>7 |V>€ ) s€&

The subspaces E;C and E;C are orthogonal for all i # j, so there is a unique mapping of Es|v)
to |w)

Once the subspace E;C which contains |w) is identified, the error may be corrected by
computing Ed[w) — |v)

Thus the goal is to measure the error sub- M—1

. . . . W = @ Wi, W:=EC
space which contains |w) without measuring . ’
|w) itself =0

Let W), be the subspace of V which is orthogonal to W, sincd the W; are mutually
orthogonal there is an observable O with eigensubspaces which are the W;
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If P; is the projector of O onto subspace W; M-

and m = log, M, Up is a unitary operator Up :[w)|0) Pilw)lj) = bj|w;) 1)
on n -+ m qubits '

[ay

.
I

o
.

0
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If P; is the projector of O onto subspace W; -

M—
and m = log, M, Up is a unitary operator Up :[w)|0) — Pilw)j) =
on n -+ m qubits '

|_.\

bjw;)1j)

.
I
o
.

j=0

By measuring the m ancilla qubits, the error syndrome s identifying the subspace of the error
state W5 = EsC
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.
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By measuring the m ancilla qubits, the error syndrome s identifying the subspace of the error
state W5 = EsC

Thus applying the operator ESJr will recover the corrected state:
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If P; is the projector of O onto subspace W; M-
and m = log, M, Up is a unitary operator Up :[w)|0) — Pilw)j) =
on n -+ m qubits '

|_.\

bjw;)1j)

.
I

o
.

j=0

By measuring the m ancilla qubits, the error syndrome s identifying the subspace of the error
state W5 = EsC
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The syndrome extraction operator for C with error set £
Up :|b2, by, bo,0,0) — |bo, b1, by, a1 = ba @ b1, a2 = bo @ bp)

Bit a; distinguishes between eigenspaces spanned by subspaces { Woyo, Wo1} and {Who, Wi1}
Bit ag distinguishes between eigenspaces spanned by subspaces { Woyo, Wig} and {Wo1, Wi1}

Measuring a; = i and ag = j projects the state into Wj; = E;C and E,;r- is the error corrector
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Example 11.2.10 V

The Cgr single-qubit bit-flip correction circuit can be adapted to directly apply the correction
after applying Ugr by applying Ve
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Example 11.2.10 (cont.)

Ve = E} ©100)(00] + E] ©101)(01] 4+ E] ]10)(10| + E] ® |11)(11]
El=B=10lel, El=E=1910X, El=B=19X®l, El=B=Xol®l

<

With the above circuit, it is possible to correct linear combinations of errors

Suppose we start with a state |0) = |000) and there is an error E = aE3 + 35,
|u) = Ugr [(E]000)) ® |00)] = Ugr [(a]100) + 5]010)) © [00)] = «|100)|11) 4 5]010)|10)

Now use Vpgr to directly correct the logical state to its initial value, noting that only one term
survives for each term of |u)

Vir|u) = (E] @ [00460T + £ ® J01461] + E] ® [10KI07 + Ef ® [11)(11]) a|100)[11)+
(E§ ® 1004607 + E{ ® |01461T + E] © [10)(10] + EJ ® [11141]) 5/010)[10)
= (aE{[100)) |11) + (BE}|010)) [10) = [000) (a|11) + B]10))

The ancilla can be measured independently and transformed to |00) if they need to be reused
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Error correction across multiple blocks Y

A quantum [[n, k]] code, C encodes m - k logical qubits in m - n computational qubits

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing April 14, 2022 10/11



Error correction across multiple blocks 7
A quantum [[n, k]] code, C encodes m - k logical qubits in m - n computational qubits

A logical superposition can thus be encoded using an encoding function U¢

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing April 14, 2022 10/11



Error correction across multiple blocks 7
A quantum [[n, k]] code, C encodes m - k logical qubits in m - n computational qubits

A logical superposition can thus be encoded using an encoding function U¢
M—1M—-1

Uc: )= > ayllwi) ® wy))

i=0 j=0
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A quantum [[n, k]] code, C encodes m - k logical qubits in m - n computational qubits

A logical superposition can thus be encoded using an encoding function U¢
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i=0 j=0 i=0 j=0

Quantum codes must be able to correct errors on such superpositions either in the form of
errors on a single block, E; € £ or on any number of blocks, E; @ --- ® E;_

Suppose the encoded state |@Z) is subjected to error E; ® Ep, where both individual errors are
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A quantum [[n, k]] code, C encodes m - k logical qubits in m - n computational qubits

A logical superposition can thus be encoded using an encoding function U¢
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i=0 j=0 i=0 j=0

Quantum codes must be able to correct errors on such superpositions either in the form of
errors on a single block, E; € £ or on any number of blocks, E; @ --- ® E;_

Suppose the encoded state |@Z) is subjected to error E; ® Ep, where both individual errors are
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i=0 j=0
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Error correction across multiple blocks VY
A quantum [[n, k]] code, C encodes m - k logical qubits in m - n computational qubits

A logical superposition can thus be encoded using an encoding function U¢

M-1M-1 M—-1M-1
=2 > ey @lw) — )= > aila) ®lg)). o) = Uclw)
i=0 j=0 i=0 j=0

Quantum codes must be able to correct errors on such superpositions either in the form of
errors on a single block, E; € £ or on any number of blocks, E; @ --- ® E;_

Suppose the encoded state |@Z) is subjected to error E; ® Ep, where both individual errors are
correctable for code C, apply Up ® Up for syndrome extraction

M—-1M-1

a;i[Up(EJ|ci)]0)) ® Up(Ep|c))|0))]
=0

Up @ Up[(E, ® Esl))  [0)[0)]

P
M—

52
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Error correction across multiple blocks YV
M—

Up ® Up[(Ea®Eb|1,ZJ> ® [0)[0)] ajj|Eslciy|a) ® Ep|cj)|b)]
i=0 j

i

-
Il
<)
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Error correction across multiple blocks A
M—

Up ® Up[(Es ® Ep|i)) ®10)]0)] ajj|Eslciy|a) ® Ep|cj)|b)]
i=0 j

i

-
Il
<)

Measurement of the two ancilla give |a) and
|b) with the computation qubits in state |¢)
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Error correction across multiple blocks A
Up ® Up[(E> ® Ep|¢))) ®|0)|0)] = a;[Eslci)la) ® Es|c)|h)]
=0 Jj M—1

Measurement of the two ancilla give |a) and
= aji | Eslci) ® Eplcj
|b) with the computation qubits in state |¢) 19) i Ealci) @ Evl)]
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Error correction across multiple blocks

M—1M-1
Up ® Up|[(E> @ Ep|)) ® |0)] aj[Eslci)]a) ® Ep| )| )]
M t of the t ill |a) and = FO =~
easurement of the two ancilla give |a) an _ ai[Elc) @ Eilc:
|b) with the computation qubits in state |¢) l.z; s U[ o|ci) b J>]

The syndrome |a)|b) indicates that the error can be corrected with E,f @ E,!
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Error correction across multiple blocks '

M—1M—1
Up ® Up[(Es ® Ep|i)) ® (0)] ajj|Eslciy|a) ® Ep|cj)|b)]
M t of the t ill |a) and - FO e,
easurement of the two ancilla give |a) an _ ailElle) @ Esle:
|b) with the computation qubits in state |¢) lz; s ilEol<i) © Bul)]
The syndrome |a)|b) indicates that the error can be corrected with E,f @ E,!
M—1M-1
E'®El|o) = £ @ B aj|Eslci) ® Eplc))]
i=0 j=0
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Error correction across multiple blocks '

M—1M—1
Up ® Up [(Es ® Epld))) ® [0)] ajj[Ealci)|a) ® Ep|cj)|b)]
) =0 FO M—1M—1
Meas.urement of the two anC|I_Ia glve |a) and _ Z oy Eslc) ® Eslc))]
|b) with the computation qubits in state |¢) =0 =0
The syndrome |a)|b) indicates that the error can be corrected with E,f @ E,!
M—1M-1 M-1M-1
' © Epl|¢) = EsT @ B! ajj|Eslci) ® Eplg)] = Z Zau <) @ |g;)] )] =19)
i=0 j=0 i=0 j=0
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Error correction across multiple blocks 7

M—1M-1
Up ® Up|[(E> @ Ep|)) ® |0)] aj[Eslci)]a) ® Ep| )| )]
M t of the t ill |a) and = FO =~
easurement of the two ancilla give |a) an _ ai[Elc) @ Eilc:
|b) with the computation qubits in state |¢) l.z; s U[ o|ci) b J>]

The syndrome |a)|b) indicates that the error can be corrected with E,f @ E,!

M—1M-1 M—1M-1
E.' @ Ep'|g) = ET@EbTZZO‘UE’q ® Eblqj)] Zzau i) @ )] = v b
i=0 j=0 i=0 j=0
When using logical states it is important to be able to directly perform computations
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Error correction across multiple blocks 7

M—1M-1
Up ® Up|[(E> @ Ep|)) ® |0)] aj[Eslci)]a) ® Ep| )| )]
M t of the t ill |a) and = FO =~
easurement of the two ancilla give |a) an _ ai[Elc) @ Eilc:
|b) with the computation qubits in state |¢) l.z; s U[ o|ci) b J>]

The syndrome |a)|b) indicates that the error can be corrected with E,f @ E,!
M—1M—1 M—1M-1

EleBg)=ET0 6 Y Y ailEla) @ Blg)] = Y 3 agfla) @ g)] = 14)
i=0 j=0 i=0 j=0
When using logical states it is important to be able to directly perform computations

Let C be a [[n, k]] quantum code with Uc : W — C encoding function
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Error correction across multiple blocks

M—1M-1
Up ® Up|[(E> @ Ep|)) ® |0)] aj[Eslci)]a) ® Ep| )| )]
M t of the t ill |a) and = FO =~
easurement of the two ancilla give |a) an _ ai[Elc) @ Eilc:
|b) with the computation qubits in state |¢) lz; s U[ o|ci) b J>]

The syndrome |a)|b) indicates that the error can be corrected with E,f @ E,!

M—-1M-1 M-1M-1
EaT®EbT’¢> ET@EbTZ ZQ’J E’C: ®Eb‘cj Z Zau ’C, ®’CJ ] :‘ >
i=0 j=0 i=0 j=0

When using logical states it is important to be able to directly perform computations
Let C be a [[n, k]] quantum code with Uc : W — C encoding function

In order to compute on the encoded states with a function U : W — W, there must be an
analogous unitary operator U acting on the encoded states such that for all |w) € W sends
Uc|w) to Uc(U|w))
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Error correction across multiple blocks

M—1M-1
Up ® Up|[(E> @ Ep|)) ® |0)] aj[Eslci)]a) ® Ep| )| )]
M t of the t ill |a) and = FO =~
easurement of the two ancilla give |a) an _ ai[Elc) @ Eilc:
|b) with the computation qubits in state |¢) lz; s U[ o|ci) b J>]

The syndrome |a)|b) indicates that the error can be corrected with E,f @ E,!

M—-1M-1 M-1M-1
EaT®EbT’¢> ET@EbTZ ZQ’J E’C: ®Eb‘cj Z Zau ’C, ®’CJ ] :‘ >
i=0 j=0 i=0 j=0

When using logical states it is important to be able to directly perform computations
Let C be a [[n, k]] quantum code with Uc : W — C encoding function

In order to compute on the encoded states with a function U : W — W, there must be an
analogous unitary operator U acting on the encoded states such that for all |w) € W sends
Uc|w) to Uc(U|w))

The operator U = U (U ® I)UTC is one such (inefficient) operator
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