
Today’s outline - April 14, 2022

• Quantum error correcting codes

• Correctable sets of errors

• Diagnosing errors

• Error correction across blocks

• Examples

Reading assignment: 11.3

Homework Assignment #07:
Chapter 9:2,3,4; Chapter 10:3,4,11
Due Thursday, April 21, 2022

Exam #2 - April 26, 2022

Final Exam will be 10 minute presentations
on a quantum computing journal article

Get my approval by Friday, April 15, 2022

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 14, 2022 1 / 11



Today’s outline - April 14, 2022

• Quantum error correcting codes

• Correctable sets of errors

• Diagnosing errors

• Error correction across blocks

• Examples

Reading assignment: 11.3

Homework Assignment #07:
Chapter 9:2,3,4; Chapter 10:3,4,11
Due Thursday, April 21, 2022

Exam #2 - April 26, 2022

Final Exam will be 10 minute presentations
on a quantum computing journal article

Get my approval by Friday, April 15, 2022

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 14, 2022 1 / 11



Today’s outline - April 14, 2022

• Quantum error correcting codes

• Correctable sets of errors

• Diagnosing errors

• Error correction across blocks

• Examples

Reading assignment: 11.3

Homework Assignment #07:
Chapter 9:2,3,4; Chapter 10:3,4,11
Due Thursday, April 21, 2022

Exam #2 - April 26, 2022

Final Exam will be 10 minute presentations
on a quantum computing journal article

Get my approval by Friday, April 15, 2022

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 14, 2022 1 / 11



Today’s outline - April 14, 2022

• Quantum error correcting codes

• Correctable sets of errors

• Diagnosing errors

• Error correction across blocks

• Examples

Reading assignment: 11.3

Homework Assignment #07:
Chapter 9:2,3,4; Chapter 10:3,4,11
Due Thursday, April 21, 2022

Exam #2 - April 26, 2022

Final Exam will be 10 minute presentations
on a quantum computing journal article

Get my approval by Friday, April 15, 2022

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 14, 2022 1 / 11



Today’s outline - April 14, 2022

• Quantum error correcting codes

• Correctable sets of errors

• Diagnosing errors

• Error correction across blocks

• Examples

Reading assignment: 11.3

Homework Assignment #07:
Chapter 9:2,3,4; Chapter 10:3,4,11
Due Thursday, April 21, 2022

Exam #2 - April 26, 2022

Final Exam will be 10 minute presentations
on a quantum computing journal article

Get my approval by Friday, April 15, 2022

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 14, 2022 1 / 11



Today’s outline - April 14, 2022

• Quantum error correcting codes

• Correctable sets of errors

• Diagnosing errors

• Error correction across blocks

• Examples

Reading assignment: 11.3

Homework Assignment #07:
Chapter 9:2,3,4; Chapter 10:3,4,11
Due Thursday, April 21, 2022

Exam #2 - April 26, 2022

Final Exam will be 10 minute presentations
on a quantum computing journal article

Get my approval by Friday, April 15, 2022

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 14, 2022 1 / 11



Today’s outline - April 14, 2022

• Quantum error correcting codes

• Correctable sets of errors

• Diagnosing errors

• Error correction across blocks

• Examples

Reading assignment: 11.3

Homework Assignment #07:
Chapter 9:2,3,4; Chapter 10:3,4,11
Due Thursday, April 21, 2022

Exam #2 - April 26, 2022

Final Exam will be 10 minute presentations
on a quantum computing journal article

Get my approval by Friday, April 15, 2022

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 14, 2022 1 / 11



Today’s outline - April 14, 2022

• Quantum error correcting codes

• Correctable sets of errors

• Diagnosing errors

• Error correction across blocks

• Examples

Reading assignment: 11.3

Homework Assignment #07:
Chapter 9:2,3,4; Chapter 10:3,4,11
Due Thursday, April 21, 2022

Exam #2 - April 26, 2022

Final Exam will be 10 minute presentations
on a quantum computing journal article

Get my approval by Friday, April 15, 2022

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 14, 2022 1 / 11



Today’s outline - April 14, 2022

• Quantum error correcting codes

• Correctable sets of errors

• Diagnosing errors

• Error correction across blocks

• Examples

Reading assignment: 11.3

Homework Assignment #07:
Chapter 9:2,3,4; Chapter 10:3,4,11
Due Thursday, April 21, 2022

Exam #2 - April 26, 2022

Final Exam will be 10 minute presentations
on a quantum computing journal article

Get my approval by Friday, April 15, 2022

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 14, 2022 1 / 11



Today’s outline - April 14, 2022

• Quantum error correcting codes

• Correctable sets of errors

• Diagnosing errors

• Error correction across blocks

• Examples

Reading assignment: 11.3

Homework Assignment #07:
Chapter 9:2,3,4; Chapter 10:3,4,11
Due Thursday, April 21, 2022

Exam #2 - April 26, 2022

Final Exam will be 10 minute presentations
on a quantum computing journal article

Get my approval by Friday, April 15, 2022

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 14, 2022 1 / 11



Today’s outline - April 14, 2022

• Quantum error correcting codes

• Correctable sets of errors

• Diagnosing errors

• Error correction across blocks

• Examples

Reading assignment: 11.3

Homework Assignment #07:
Chapter 9:2,3,4; Chapter 10:3,4,11
Due Thursday, April 21, 2022

Exam #2 - April 26, 2022

Final Exam will be 10 minute presentations
on a quantum computing journal article

Get my approval by Friday, April 15, 2022

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 14, 2022 1 / 11



Today’s outline - April 14, 2022

• Quantum error correcting codes

• Correctable sets of errors

• Diagnosing errors

• Error correction across blocks

• Examples

Reading assignment: 11.3

Homework Assignment #07:
Chapter 9:2,3,4; Chapter 10:3,4,11
Due Thursday, April 21, 2022

Exam #2 - April 26, 2022

Final Exam will be 10 minute presentations
on a quantum computing journal article

Get my approval by Friday, April 15, 2022

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 14, 2022 1 / 11



Quantum error correcting codes

The formalism for quantum error correction codes is analogous to that for classical systems

A [[n, k]] quantum block code C is a 2k -dimensional subspace of the n-qubit space V with 2n

dimensions

Subspace W is a k-qubit message space where the first n − k qubits are |0⟩

Any unitary transformation UC : W → C is a possible encoding operator for code C

Elements |w⟩ ∈ W are called message words and elements of C are called codewords

In this terminology the [[3, 1]] code is
spanned by {|000⟩, |111⟩} and the logical
qubits are obtained by

UC : |000⟩ = |0⟩ 7→ |000⟩ = |0̃⟩
|001⟩ = |1⟩ 7→ |111⟩ = |1̃⟩

Note that we have only defined the action of UC on the states in W where only the low order
qubit can be non-zero

UC may well have some action on other states not in W but this is generally ignored
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Correctable sets of errors

Let BC = {|c0⟩, . . . , |ck−1⟩} be an orthonormal basis for C

If E is a finite set of unitary error transfor-
mations

E = {E1,E2, . . . ,EL}, Ei : V → V

In order to be able to correct errors, two distinct error transformations in E must take different
codewords to orthogonal states that can be distinguished by measurement

This can be written

When i = j this leads to the orthogonality
condition

Furthermore, any measurement made to de-
termine the error must not give any infor-
mation about the logical state

E is a correctable set of errors if

⟨ca|E †
i Ej |cb⟩ = 0, Ei ,Ej ∈ E ; ca, cb ∈ C

⟨ca|cb⟩ = 0

⟨ca|E †
i Ej |ca⟩ = ⟨cb|E †

i Ej |cb⟩; ca, cb ∈ C

⟨ca|E †
i Ej |cb⟩ = mijδab

Codes not satisfying this condition are said to be degenerate
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Example 11.2.6

For the [[3,1]] code and a set of errors E = {Eij} the correctable error set for a single-qubit
bit-flip error is

E00 = I ⊗ I ⊗ I , E01 = I ⊗ I ⊗ X , E10 = I ⊗ X ⊗ I , E11 = X ⊗ I ⊗ I

One of the many other correctable error sets could be E ′ = {E ′
ij} where

E ′
00 = I ⊗ I ⊗ I , E ′

01 = X ⊗ X ⊗ I , E ′
10 = X ⊗ I ⊗ X , E ′

11 = I ⊗ X ⊗ X

The latter is the correctable error set for all two-qubit bit flips

One must choose one of the two sets to correct for and generally single-qubit bit-flips are
much more probable than two-qubit bit-flips
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Diagnosing and correcting errors

Suppose that C is a [[n, k]] quantum code that is nondegenerate with respect to a correctable
error set E = {Ei}, 0 ≤ i < M

Applying the error transformation Es to a
state |v⟩

Es |v⟩ 7→ |w⟩, |v⟩ ∈ C , Es ∈ E

The subspaces EiC and EjC are orthogonal for all i ̸= j , so there is a unique mapping of Es |v⟩
to |w⟩

Once the subspace EsC which contains |w⟩ is identified, the error may be corrected by

computing E †
s |w⟩ 7→ |v⟩

Thus the goal is to measure the error sub-
space which contains |w⟩ without measuring
|w⟩ itself

W =
M−1⊕
i=0

Wi , Wi = EiC

Let WM be the subspace of V which is orthogonal to W , sincd the Wi are mutually
orthogonal there is an observable O with eigensubspaces which are the Wi
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Dignosing and correcting errors

If Pi is the projector of O onto subspace Wi

and m = log2M, UP is a unitary operator
on n +m qubits

UP :|w⟩|0⟩ 7→
M−1∑
j=0

Pj |w⟩|j⟩ =
M−1∑
j=0

bj |wj⟩|j⟩

By measuring the m ancilla qubits, the error syndrome s identifying the subspace of the error
state Ws = EsC

Thus applying the operator E †
s will recover the corrected state: E †

s |w⟩ = E †
s Es |v⟩ = |v⟩

UP is a syndrome extraction operator which places the value s into the m-qubit ancilla register

Each qubit of the m-qubit register corresponds to a binary observable

Ancilla qubits permit the conversion of non-unitary errors to unitary errors which can be
corrected

As an alternative, ancilla qubits can be used as control
qubits to directly apply the correction without needing
to be measured

VP =
M−1∑
s=0

E †
s ⊗ |s⟩⟨s|
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Example 11.2.9

Consider the bit-flip code C and the set of correctable errors E = {Eij} with

E00 = I ⊗ I ⊗ I , E01 = I ⊗ I ⊗ X , E10 = I ⊗ X ⊗ I , E11 = X ⊗ I ⊗ I

The orthogonal subspaces and bases corresponding to this error set are:

W00 = E00C

B00 = {|000⟩, |111⟩}
W01 = E01C

B01 = {|001⟩, |110⟩}
W10 = E10C

B10 = {|010⟩, |101⟩}
W11 = E11C

B00 = {|100⟩, |011⟩}

The syndrome extraction operator for C with error set E

UP :|b2, b1, b0, 0, 0⟩ → |b2, b1, b0, a1 = b2 ⊕ b1, a2 = b2 ⊕ b0⟩

Bit a1 distinguishes between eigenspaces spanned by subspaces {W00,W01} and {W10,W11}

Bit a0 distinguishes between eigenspaces spanned by subspaces {W00,W10} and {W01,W11}

Measuring a1 = i and a0 = j projects the state into Wij = EijC and E †
ij is the error corrector
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Example 11.2.10

The CBF single-qubit bit-flip correction circuit can be adapted to directly apply the correction
after applying UBF by applying VBF

VBF =
3∑

s=0

E †
s ⊗ |s⟩⟨s| = E †

0 ⊗ |00⟩⟨00|+ E †
1 ⊗ |01⟩⟨01|+ E †

2 ⊗ |10⟩⟨10|+ E †
3 ⊗ |11⟩⟨11|

E †
0 = I ⊗ I ⊗ I

E †
1 = I ⊗ I ⊗ X

E †
2 = I ⊗ X ⊗ I

E †
3 = X ⊗ I ⊗ I

b
2

b
1

b
0

a
1

a
0

0

0

U VBF BF
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Example 11.2.10 (cont.)

VBF = E †
0 ⊗ |00⟩⟨00|+ E †

1 ⊗ |01⟩⟨01|+ E †
2 ⊗ |10⟩⟨10|+ E †

3 ⊗ |11⟩⟨11|

E †
0 = E0 = I ⊗ I ⊗ I , E †

1 = E1 = I ⊗ I ⊗ X , E †
2 = E2 = I ⊗ X ⊗ I , E †

3 = E3 = X ⊗ I ⊗ I

With the above circuit, it is possible to correct linear combinations of errors

Suppose we start with a state |0̃⟩ = |000⟩ and there is an error E = αE3 + βE2

|u⟩ = UBF

[
(E |000⟩)⊗ |00⟩

]
= UBF

[
(α|100⟩+ β|010⟩)⊗ |00⟩

]
= α|100⟩|11⟩+ β|010⟩|10⟩

Now use VBF to directly correct the logical state to its initial value, noting that only one term
survives for each term of |u⟩

VBF |u⟩ =
(
E †
0 ⊗ |00⟩⟨00|+ E †

1 ⊗ |01⟩⟨01|+ E †
2 ⊗ |10⟩⟨10|+ E †

3 ⊗ |11⟩⟨11|
)
α|100⟩|11⟩+(

E †
0 ⊗ |00⟩⟨00|+ E †

1 ⊗ |01⟩⟨01|+ E †
2 ⊗ |10⟩⟨10|+ E †

3 ⊗ |11⟩⟨11|
)
β|010⟩|10⟩

= (αE †
3 |100⟩) |11⟩+ (βE †

2 |010⟩) |10⟩ = |000⟩ (α|11⟩+ β|10⟩)

The ancilla can be measured independently and transformed to |00⟩ if they need to be reused

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 14, 2022 9 / 11



Example 11.2.10 (cont.)

VBF = E †
0 ⊗ |00⟩⟨00|+ E †

1 ⊗ |01⟩⟨01|+ E †
2 ⊗ |10⟩⟨10|+ E †

3 ⊗ |11⟩⟨11|

E †
0 = E0 = I ⊗ I ⊗ I , E †

1 = E1 = I ⊗ I ⊗ X , E †
2 = E2 = I ⊗ X ⊗ I , E †

3 = E3 = X ⊗ I ⊗ I

With the above circuit, it is possible to correct linear combinations of errors

Suppose we start with a state |0̃⟩ = |000⟩ and there is an error E = αE3 + βE2

|u⟩ = UBF

[
(E |000⟩)⊗ |00⟩

]
= UBF

[
(α|100⟩+ β|010⟩)⊗ |00⟩

]
= α|100⟩|11⟩+ β|010⟩|10⟩

Now use VBF to directly correct the logical state to its initial value, noting that only one term
survives for each term of |u⟩

VBF |u⟩ =
(
E †
0 ⊗ |00⟩⟨00|+ E †

1 ⊗ |01⟩⟨01|+ E †
2 ⊗ |10⟩⟨10|+ E †

3 ⊗ |11⟩⟨11|
)
α|100⟩|11⟩+(

E †
0 ⊗ |00⟩⟨00|+ E †

1 ⊗ |01⟩⟨01|+ E †
2 ⊗ |10⟩⟨10|+ E †

3 ⊗ |11⟩⟨11|
)
β|010⟩|10⟩

= (αE †
3 |100⟩) |11⟩+ (βE †

2 |010⟩) |10⟩ = |000⟩ (α|11⟩+ β|10⟩)

The ancilla can be measured independently and transformed to |00⟩ if they need to be reused

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 14, 2022 9 / 11



Example 11.2.10 (cont.)

VBF = E †
0 ⊗ |00⟩⟨00|+ E †

1 ⊗ |01⟩⟨01|+ E †
2 ⊗ |10⟩⟨10|+ E †

3 ⊗ |11⟩⟨11|

E †
0 = E0 = I ⊗ I ⊗ I , E †

1 = E1 = I ⊗ I ⊗ X , E †
2 = E2 = I ⊗ X ⊗ I , E †

3 = E3 = X ⊗ I ⊗ I

With the above circuit, it is possible to correct linear combinations of errors

Suppose we start with a state |0̃⟩ = |000⟩ and there is an error E = αE3 + βE2

|u⟩ = UBF

[
(E |000⟩)⊗ |00⟩

]
= UBF

[
(α|100⟩+ β|010⟩)⊗ |00⟩

]
= α|100⟩|11⟩+ β|010⟩|10⟩

Now use VBF to directly correct the logical state to its initial value, noting that only one term
survives for each term of |u⟩

VBF |u⟩ =
(
E †
0 ⊗ |00⟩⟨00|+ E †

1 ⊗ |01⟩⟨01|+ E †
2 ⊗ |10⟩⟨10|+ E †

3 ⊗ |11⟩⟨11|
)
α|100⟩|11⟩+(

E †
0 ⊗ |00⟩⟨00|+ E †

1 ⊗ |01⟩⟨01|+ E †
2 ⊗ |10⟩⟨10|+ E †

3 ⊗ |11⟩⟨11|
)
β|010⟩|10⟩

= (αE †
3 |100⟩) |11⟩+ (βE †

2 |010⟩) |10⟩ = |000⟩ (α|11⟩+ β|10⟩)

The ancilla can be measured independently and transformed to |00⟩ if they need to be reused

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 14, 2022 9 / 11



Example 11.2.10 (cont.)

VBF = E †
0 ⊗ |00⟩⟨00|+ E †

1 ⊗ |01⟩⟨01|+ E †
2 ⊗ |10⟩⟨10|+ E †

3 ⊗ |11⟩⟨11|

E †
0 = E0 = I ⊗ I ⊗ I , E †

1 = E1 = I ⊗ I ⊗ X , E †
2 = E2 = I ⊗ X ⊗ I , E †

3 = E3 = X ⊗ I ⊗ I

With the above circuit, it is possible to correct linear combinations of errors

Suppose we start with a state |0̃⟩ = |000⟩ and there is an error E = αE3 + βE2

|u⟩ = UBF

[
(E |000⟩)⊗ |00⟩

]
= UBF

[
(α|100⟩+ β|010⟩)⊗ |00⟩

]

= α|100⟩|11⟩+ β|010⟩|10⟩

Now use VBF to directly correct the logical state to its initial value, noting that only one term
survives for each term of |u⟩

VBF |u⟩ =
(
E †
0 ⊗ |00⟩⟨00|+ E †

1 ⊗ |01⟩⟨01|+ E †
2 ⊗ |10⟩⟨10|+ E †

3 ⊗ |11⟩⟨11|
)
α|100⟩|11⟩+(

E †
0 ⊗ |00⟩⟨00|+ E †

1 ⊗ |01⟩⟨01|+ E †
2 ⊗ |10⟩⟨10|+ E †

3 ⊗ |11⟩⟨11|
)
β|010⟩|10⟩

= (αE †
3 |100⟩) |11⟩+ (βE †

2 |010⟩) |10⟩ = |000⟩ (α|11⟩+ β|10⟩)

The ancilla can be measured independently and transformed to |00⟩ if they need to be reused

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 14, 2022 9 / 11



Example 11.2.10 (cont.)

VBF = E †
0 ⊗ |00⟩⟨00|+ E †

1 ⊗ |01⟩⟨01|+ E †
2 ⊗ |10⟩⟨10|+ E †

3 ⊗ |11⟩⟨11|

E †
0 = E0 = I ⊗ I ⊗ I , E †

1 = E1 = I ⊗ I ⊗ X , E †
2 = E2 = I ⊗ X ⊗ I , E †

3 = E3 = X ⊗ I ⊗ I

With the above circuit, it is possible to correct linear combinations of errors

Suppose we start with a state |0̃⟩ = |000⟩ and there is an error E = αE3 + βE2

|u⟩ = UBF

[
(E |000⟩)⊗ |00⟩

]
= UBF

[
(α|100⟩+ β|010⟩)⊗ |00⟩

]
= α|100⟩|11⟩+ β|010⟩|10⟩

Now use VBF to directly correct the logical state to its initial value, noting that only one term
survives for each term of |u⟩

VBF |u⟩ =
(
E †
0 ⊗ |00⟩⟨00|+ E †

1 ⊗ |01⟩⟨01|+ E †
2 ⊗ |10⟩⟨10|+ E †

3 ⊗ |11⟩⟨11|
)
α|100⟩|11⟩+(

E †
0 ⊗ |00⟩⟨00|+ E †

1 ⊗ |01⟩⟨01|+ E †
2 ⊗ |10⟩⟨10|+ E †

3 ⊗ |11⟩⟨11|
)
β|010⟩|10⟩

= (αE †
3 |100⟩) |11⟩+ (βE †

2 |010⟩) |10⟩ = |000⟩ (α|11⟩+ β|10⟩)

The ancilla can be measured independently and transformed to |00⟩ if they need to be reused

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 14, 2022 9 / 11



Example 11.2.10 (cont.)

VBF = E †
0 ⊗ |00⟩⟨00|+ E †

1 ⊗ |01⟩⟨01|+ E †
2 ⊗ |10⟩⟨10|+ E †

3 ⊗ |11⟩⟨11|

E †
0 = E0 = I ⊗ I ⊗ I , E †

1 = E1 = I ⊗ I ⊗ X , E †
2 = E2 = I ⊗ X ⊗ I , E †

3 = E3 = X ⊗ I ⊗ I

With the above circuit, it is possible to correct linear combinations of errors

Suppose we start with a state |0̃⟩ = |000⟩ and there is an error E = αE3 + βE2

|u⟩ = UBF

[
(E |000⟩)⊗ |00⟩

]
= UBF

[
(α|100⟩+ β|010⟩)⊗ |00⟩

]
= α|100⟩|11⟩+ β|010⟩|10⟩

Now use VBF to directly correct the logical state to its initial value, noting that only one term
survives for each term of |u⟩

VBF |u⟩ =
(
E †
0 ⊗ |00⟩⟨00|+ E †

1 ⊗ |01⟩⟨01|+ E †
2 ⊗ |10⟩⟨10|+ E †

3 ⊗ |11⟩⟨11|
)
α|100⟩|11⟩+(

E †
0 ⊗ |00⟩⟨00|+ E †

1 ⊗ |01⟩⟨01|+ E †
2 ⊗ |10⟩⟨10|+ E †

3 ⊗ |11⟩⟨11|
)
β|010⟩|10⟩

= (αE †
3 |100⟩) |11⟩+ (βE †

2 |010⟩) |10⟩ = |000⟩ (α|11⟩+ β|10⟩)

The ancilla can be measured independently and transformed to |00⟩ if they need to be reused

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 14, 2022 9 / 11



Example 11.2.10 (cont.)

VBF = E †
0 ⊗ |00⟩⟨00|+ E †

1 ⊗ |01⟩⟨01|+ E †
2 ⊗ |10⟩⟨10|+ E †

3 ⊗ |11⟩⟨11|

E †
0 = E0 = I ⊗ I ⊗ I , E †

1 = E1 = I ⊗ I ⊗ X , E †
2 = E2 = I ⊗ X ⊗ I , E †

3 = E3 = X ⊗ I ⊗ I

With the above circuit, it is possible to correct linear combinations of errors

Suppose we start with a state |0̃⟩ = |000⟩ and there is an error E = αE3 + βE2

|u⟩ = UBF

[
(E |000⟩)⊗ |00⟩

]
= UBF

[
(α|100⟩+ β|010⟩)⊗ |00⟩

]
= α|100⟩|11⟩+ β|010⟩|10⟩

Now use VBF to directly correct the logical state to its initial value, noting that only one term
survives for each term of |u⟩

VBF |u⟩ =
(
E †
0 ⊗����|00⟩⟨00|+ E †

1 ⊗����|01⟩⟨01|+ E †
2 ⊗����|10⟩⟨10|+ E †

3 ⊗ |11⟩⟨11|
)
α|100⟩|11⟩+(

E †
0 ⊗ |00⟩⟨00|+ E †

1 ⊗ |01⟩⟨01|+ E †
2 ⊗ |10⟩⟨10|+ E †

3 ⊗ |11⟩⟨11|
)
β|010⟩|10⟩

= (αE †
3 |100⟩) |11⟩+ (βE †

2 |010⟩) |10⟩ = |000⟩ (α|11⟩+ β|10⟩)

The ancilla can be measured independently and transformed to |00⟩ if they need to be reused

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 14, 2022 9 / 11



Example 11.2.10 (cont.)

VBF = E †
0 ⊗ |00⟩⟨00|+ E †

1 ⊗ |01⟩⟨01|+ E †
2 ⊗ |10⟩⟨10|+ E †

3 ⊗ |11⟩⟨11|

E †
0 = E0 = I ⊗ I ⊗ I , E †

1 = E1 = I ⊗ I ⊗ X , E †
2 = E2 = I ⊗ X ⊗ I , E †

3 = E3 = X ⊗ I ⊗ I

With the above circuit, it is possible to correct linear combinations of errors

Suppose we start with a state |0̃⟩ = |000⟩ and there is an error E = αE3 + βE2

|u⟩ = UBF

[
(E |000⟩)⊗ |00⟩

]
= UBF

[
(α|100⟩+ β|010⟩)⊗ |00⟩

]
= α|100⟩|11⟩+ β|010⟩|10⟩

Now use VBF to directly correct the logical state to its initial value, noting that only one term
survives for each term of |u⟩

VBF |u⟩ =
(
E †
0 ⊗����|00⟩⟨00|+ E †

1 ⊗����|01⟩⟨01|+ E †
2 ⊗����|10⟩⟨10|+ E †

3 ⊗ |11⟩⟨11|
)
α|100⟩|11⟩+(

E †
0 ⊗����|00⟩⟨00|+ E †

1 ⊗����|01⟩⟨01|+ E †
2 ⊗ |10⟩⟨10|+ E †

3 ⊗����|11⟩⟨11|
)
β|010⟩|10⟩

= (αE †
3 |100⟩) |11⟩+ (βE †

2 |010⟩) |10⟩ = |000⟩ (α|11⟩+ β|10⟩)

The ancilla can be measured independently and transformed to |00⟩ if they need to be reused

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 14, 2022 9 / 11



Example 11.2.10 (cont.)

VBF = E †
0 ⊗ |00⟩⟨00|+ E †

1 ⊗ |01⟩⟨01|+ E †
2 ⊗ |10⟩⟨10|+ E †

3 ⊗ |11⟩⟨11|

E †
0 = E0 = I ⊗ I ⊗ I , E †

1 = E1 = I ⊗ I ⊗ X , E †
2 = E2 = I ⊗ X ⊗ I , E †

3 = E3 = X ⊗ I ⊗ I

With the above circuit, it is possible to correct linear combinations of errors

Suppose we start with a state |0̃⟩ = |000⟩ and there is an error E = αE3 + βE2

|u⟩ = UBF

[
(E |000⟩)⊗ |00⟩

]
= UBF

[
(α|100⟩+ β|010⟩)⊗ |00⟩

]
= α|100⟩|11⟩+ β|010⟩|10⟩

Now use VBF to directly correct the logical state to its initial value, noting that only one term
survives for each term of |u⟩

VBF |u⟩ =
(
E †
0 ⊗����|00⟩⟨00|+ E †

1 ⊗����|01⟩⟨01|+ E †
2 ⊗����|10⟩⟨10|+ E †

3 ⊗ |11⟩⟨11|
)
α|100⟩|11⟩+(

E †
0 ⊗����|00⟩⟨00|+ E †

1 ⊗����|01⟩⟨01|+ E †
2 ⊗ |10⟩⟨10|+ E †

3 ⊗����|11⟩⟨11|
)
β|010⟩|10⟩

= (αE †
3 |100⟩) |11⟩+ (βE †

2 |010⟩) |10⟩

= |000⟩ (α|11⟩+ β|10⟩)

The ancilla can be measured independently and transformed to |00⟩ if they need to be reused

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 14, 2022 9 / 11



Example 11.2.10 (cont.)

VBF = E †
0 ⊗ |00⟩⟨00|+ E †

1 ⊗ |01⟩⟨01|+ E †
2 ⊗ |10⟩⟨10|+ E †

3 ⊗ |11⟩⟨11|

E †
0 = E0 = I ⊗ I ⊗ I , E †

1 = E1 = I ⊗ I ⊗ X , E †
2 = E2 = I ⊗ X ⊗ I , E †

3 = E3 = X ⊗ I ⊗ I

With the above circuit, it is possible to correct linear combinations of errors

Suppose we start with a state |0̃⟩ = |000⟩ and there is an error E = αE3 + βE2

|u⟩ = UBF

[
(E |000⟩)⊗ |00⟩

]
= UBF

[
(α|100⟩+ β|010⟩)⊗ |00⟩

]
= α|100⟩|11⟩+ β|010⟩|10⟩

Now use VBF to directly correct the logical state to its initial value, noting that only one term
survives for each term of |u⟩

VBF |u⟩ =
(
E †
0 ⊗����|00⟩⟨00|+ E †

1 ⊗����|01⟩⟨01|+ E †
2 ⊗����|10⟩⟨10|+ E †

3 ⊗ |11⟩⟨11|
)
α|100⟩|11⟩+(

E †
0 ⊗����|00⟩⟨00|+ E †

1 ⊗����|01⟩⟨01|+ E †
2 ⊗ |10⟩⟨10|+ E †

3 ⊗����|11⟩⟨11|
)
β|010⟩|10⟩

= (αE †
3 |100⟩) |11⟩+ (βE †

2 |010⟩) |10⟩ = |000⟩ (α|11⟩+ β|10⟩)

The ancilla can be measured independently and transformed to |00⟩ if they need to be reused

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 14, 2022 9 / 11



Example 11.2.10 (cont.)
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Error correction across multiple blocks

A quantum [[n, k]] code, C encodes m · k logical qubits in m · n computational qubits

A logical superposition can thus be encoded using an encoding function UC

UC : |ψ⟩ =
M−1∑
i=0

M−1∑
j=0

αij(|wi ⟩ ⊗ |wj⟩) −→ |ψ̃⟩ =
M−1∑
i=0

M−1∑
j=0

αij(|ci ⟩ ⊗ |cj⟩), |ci ⟩ = UC |wi ⟩

Quantum codes must be able to correct errors on such superpositions either in the form of
errors on a single block, Ei ∈ E or on any number of blocks, Ei1 ⊗ · · · ⊗ Eim

Suppose the encoded state |ψ̃⟩ is subjected to error Ea ⊗ Eb where both individual errors are
correctable for code C , apply UP ⊗ UP for syndrome extraction

UP ⊗ UP

[
(Ea ⊗ Eb|ψ̃⟩)⊗ |0⟩|0⟩

]
=

M−1∑
i=0

M−1∑
j=0

αij

[
UP(Ea|ci ⟩|0⟩)⊗ UP(Eb|cj⟩|0⟩)

]
=

M−1∑
i=0

M−1∑
j=0

αij

[
Ea|ci ⟩|a⟩ ⊗ Eb|cj⟩|b⟩

]
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UP ⊗ UP

[
(Ea ⊗ Eb|ψ̃⟩)⊗ |0⟩|0⟩

]
=

M−1∑
i=0

M−1∑
j=0

αij

[
UP(Ea|ci ⟩|0⟩)⊗ UP(Eb|cj⟩|0⟩)

]
=

M−1∑
i=0

M−1∑
j=0

αij

[
Ea|ci ⟩|a⟩ ⊗ Eb|cj⟩|b⟩

]

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 14, 2022 10 / 11



Error correction across multiple blocks

A quantum [[n, k]] code, C encodes m · k logical qubits in m · n computational qubits

A logical superposition can thus be encoded using an encoding function UC

UC : |ψ⟩ =
M−1∑
i=0

M−1∑
j=0

αij(|wi ⟩ ⊗ |wj⟩) −→ |ψ̃⟩ =
M−1∑
i=0

M−1∑
j=0

αij(|ci ⟩ ⊗ |cj⟩), |ci ⟩ = UC |wi ⟩

Quantum codes must be able to correct errors on such superpositions either in the form of
errors on a single block, Ei ∈ E or on any number of blocks, Ei1 ⊗ · · · ⊗ Eim

Suppose the encoded state |ψ̃⟩ is subjected to error Ea ⊗ Eb where both individual errors are
correctable for code C , apply UP ⊗ UP for syndrome extraction

UP ⊗ UP

[
(Ea ⊗ Eb|ψ̃⟩)⊗ |0⟩|0⟩

]
=

M−1∑
i=0

M−1∑
j=0

αij

[
UP(Ea|ci ⟩|0⟩)⊗ UP(Eb|cj⟩|0⟩)

]
=

M−1∑
i=0

M−1∑
j=0

αij

[
Ea|ci ⟩|a⟩ ⊗ Eb|cj⟩|b⟩

]

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 14, 2022 10 / 11



Error correction across multiple blocks

A quantum [[n, k]] code, C encodes m · k logical qubits in m · n computational qubits

A logical superposition can thus be encoded using an encoding function UC

UC : |ψ⟩ =
M−1∑
i=0

M−1∑
j=0

αij(|wi ⟩ ⊗ |wj⟩) −→ |ψ̃⟩ =
M−1∑
i=0

M−1∑
j=0

αij(|ci ⟩ ⊗ |cj⟩), |ci ⟩ = UC |wi ⟩

Quantum codes must be able to correct errors on such superpositions either in the form of
errors on a single block, Ei ∈ E or on any number of blocks, Ei1 ⊗ · · · ⊗ Eim

Suppose the encoded state |ψ̃⟩ is subjected to error Ea ⊗ Eb where both individual errors are
correctable for code C , apply UP ⊗ UP for syndrome extraction

UP ⊗ UP

[
(Ea ⊗ Eb|ψ̃⟩)⊗ |0⟩|0⟩

]
=

M−1∑
i=0

M−1∑
j=0

αij

[
UP(Ea|ci ⟩|0⟩)⊗ UP(Eb|cj⟩|0⟩)

]
=

M−1∑
i=0

M−1∑
j=0

αij

[
Ea|ci ⟩|a⟩ ⊗ Eb|cj⟩|b⟩

]

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 14, 2022 10 / 11



Error correction across multiple blocks

A quantum [[n, k]] code, C encodes m · k logical qubits in m · n computational qubits

A logical superposition can thus be encoded using an encoding function UC

UC : |ψ⟩ =
M−1∑
i=0

M−1∑
j=0

αij(|wi ⟩ ⊗ |wj⟩) −→ |ψ̃⟩ =
M−1∑
i=0

M−1∑
j=0

αij(|ci ⟩ ⊗ |cj⟩), |ci ⟩ = UC |wi ⟩

Quantum codes must be able to correct errors on such superpositions either in the form of
errors on a single block, Ei ∈ E or on any number of blocks, Ei1 ⊗ · · · ⊗ Eim

Suppose the encoded state |ψ̃⟩ is subjected to error Ea ⊗ Eb where both individual errors are
correctable for code C , apply UP ⊗ UP for syndrome extraction

UP ⊗ UP

[
(Ea ⊗ Eb|ψ̃⟩)⊗ |0⟩|0⟩

]

=
M−1∑
i=0

M−1∑
j=0

αij

[
UP(Ea|ci ⟩|0⟩)⊗ UP(Eb|cj⟩|0⟩)

]
=

M−1∑
i=0

M−1∑
j=0

αij

[
Ea|ci ⟩|a⟩ ⊗ Eb|cj⟩|b⟩

]

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 14, 2022 10 / 11



Error correction across multiple blocks

A quantum [[n, k]] code, C encodes m · k logical qubits in m · n computational qubits

A logical superposition can thus be encoded using an encoding function UC

UC : |ψ⟩ =
M−1∑
i=0

M−1∑
j=0

αij(|wi ⟩ ⊗ |wj⟩) −→ |ψ̃⟩ =
M−1∑
i=0

M−1∑
j=0

αij(|ci ⟩ ⊗ |cj⟩), |ci ⟩ = UC |wi ⟩

Quantum codes must be able to correct errors on such superpositions either in the form of
errors on a single block, Ei ∈ E or on any number of blocks, Ei1 ⊗ · · · ⊗ Eim

Suppose the encoded state |ψ̃⟩ is subjected to error Ea ⊗ Eb where both individual errors are
correctable for code C , apply UP ⊗ UP for syndrome extraction

UP ⊗ UP

[
(Ea ⊗ Eb|ψ̃⟩)⊗ |0⟩|0⟩

]
=

M−1∑
i=0

M−1∑
j=0

αij

[
UP(Ea|ci ⟩|0⟩)⊗ UP(Eb|cj⟩|0⟩)

]

=
M−1∑
i=0

M−1∑
j=0

αij

[
Ea|ci ⟩|a⟩ ⊗ Eb|cj⟩|b⟩

]

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 14, 2022 10 / 11



Error correction across multiple blocks

A quantum [[n, k]] code, C encodes m · k logical qubits in m · n computational qubits

A logical superposition can thus be encoded using an encoding function UC

UC : |ψ⟩ =
M−1∑
i=0

M−1∑
j=0

αij(|wi ⟩ ⊗ |wj⟩) −→ |ψ̃⟩ =
M−1∑
i=0

M−1∑
j=0

αij(|ci ⟩ ⊗ |cj⟩), |ci ⟩ = UC |wi ⟩

Quantum codes must be able to correct errors on such superpositions either in the form of
errors on a single block, Ei ∈ E or on any number of blocks, Ei1 ⊗ · · · ⊗ Eim

Suppose the encoded state |ψ̃⟩ is subjected to error Ea ⊗ Eb where both individual errors are
correctable for code C , apply UP ⊗ UP for syndrome extraction

UP ⊗ UP

[
(Ea ⊗ Eb|ψ̃⟩)⊗ |0⟩|0⟩

]
=

M−1∑
i=0

M−1∑
j=0

αij

[
UP(Ea|ci ⟩|0⟩)⊗ UP(Eb|cj⟩|0⟩)

]
=

M−1∑
i=0

M−1∑
j=0

αij

[
Ea|ci ⟩|a⟩ ⊗ Eb|cj⟩|b⟩

]
Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 14, 2022 10 / 11



Error correction across multiple blocks

UP ⊗ UP

[
(Ea ⊗ Eb|ψ̃⟩)⊗ |0⟩|0⟩

]
=

M−1∑
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M−1∑
j=0

αij

[
Ea|ci ⟩|a⟩ ⊗ Eb|cj⟩|b⟩

]

Measurement of the two ancilla give |a⟩ and
|b⟩ with the computation qubits in state |ϕ⟩

|ϕ⟩ =
M−1∑
i=0

M−1∑
j=0

αij

[
Ea|ci ⟩ ⊗ Eb|cj⟩

]
The syndrome |a⟩|b⟩ indicates that the error can be corrected with Ea

† ⊗ Eb
†

Ea
† ⊗ Eb

†|ϕ⟩ = Ea
† ⊗ Eb

†
M−1∑
i=0

M−1∑
j=0

αij

[
Ea|ci ⟩ ⊗ Eb|cj⟩

]
=

M−1∑
i=0

M−1∑
j=0

αij

[
|ci ⟩ ⊗ |cj⟩

]
= |ψ̃⟩

When using logical states it is important to be able to directly perform computations

Let C be a [[n, k]] quantum code with UC : W → C encoding function

In order to compute on the encoded states with a function U : W → W , there must be an
analogous unitary operator Ũ acting on the encoded states such that for all |w⟩ ∈ W sends
UC |w⟩ to UC (U|w⟩)
The operator Ũ = Uc(U ⊗ I )U†

C is one such (inefficient) operator
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The operator Ũ = Uc(U ⊗ I )U†

C is one such (inefficient) operator

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 14, 2022 11 / 11



Error correction across multiple blocks

UP ⊗ UP

[
(Ea ⊗ Eb|ψ̃⟩)⊗ |0⟩|0⟩

]
=

M−1∑
i=0

M−1∑
j=0

αij

[
Ea|ci ⟩|a⟩ ⊗ Eb|cj⟩|b⟩

]
Measurement of the two ancilla give |a⟩ and
|b⟩ with the computation qubits in state |ϕ⟩

|ϕ⟩ =
M−1∑
i=0

M−1∑
j=0

αij

[
Ea|ci ⟩ ⊗ Eb|cj⟩

]
The syndrome |a⟩|b⟩ indicates that the error can be corrected with Ea

† ⊗ Eb
†

Ea
† ⊗ Eb

†|ϕ⟩ = Ea
† ⊗ Eb

†
M−1∑
i=0

M−1∑
j=0

αij

[
Ea|ci ⟩ ⊗ Eb|cj⟩

]

=
M−1∑
i=0

M−1∑
j=0

αij

[
|ci ⟩ ⊗ |cj⟩

]
= |ψ̃⟩

When using logical states it is important to be able to directly perform computations

Let C be a [[n, k]] quantum code with UC : W → C encoding function

In order to compute on the encoded states with a function U : W → W , there must be an
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