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Chapter 9:2,3,4; Chapter 10:3,4,11
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Final Exam will be 10 minute presentations
on a quantum computing journal article
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Since A;|1)) = Pj|1)) the superoperator 53 becomes

5= 3 Al = 3 Plolpl = 3 p POIEL el
Y3 = A AR I

This is just the density operator p’ that represents the probabilistic mixture of outcomes of a
measurement O with associated projectors P; on system A initially represented by the mixed

state p = 1) (V]
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5= 3 Al = 3 Plolpl = 3 p POIEL el
Y3 = A AR I

This is just the density operator p’ that represents the probabilistic mixture of outcomes of a
measurement O with associated projectors P; on system A initially represented by the mixed

state p = 1) (V]

Thus for any observable O on system A there exists a larger system X = A® B, a unitary
operator U : X — X, and a state |¢) such that 53 =5So
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Our understanding of how qubit systems can be manipulated and measured depends on the
ability to isolate them completely from other interactions

Unfortunately, this is never possible as quantum systems are always part of a larger system
consisting of the environment over which we have no control

When an interaction with the environment causes decoherence, information about the
computational subsystem is lost

Quantum error correction techniques depend on having a method of understanding the effect
of a subsystem interaction with other subsystem, that is operator sum decomposition

The effect of on the computational subsystem of any interaction with the environment can be
viewed as a mixture of K errors resulting in K mixed states

The discussion on error correction will start by discussing three simple codes which correct
single-qubit bit-flip errors, single-qubit phase errors, and all single-qubit errors
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The bit-flip error effectively applies the X gate to one of the qubits in a subsystem
The error correction requires 3 qubits for each bit |0) — [000)
of information with an initial encoding of |1) — |111)
This has the goal of correcting a bit-flip error in any of the three qubits
{Xo=X@IeLXi=1eXe, X =1®1® X}

More formally, if Cgr is the subspace spanned cer :|0) ®(00) — |000)
by {|000),|111)}, cgFr is a general encoding that

0)
takes single-qubit states into Cgr 1

)

Where |0) means the encoding of |0) and is considered to be a logical qubit composed of three
computation qubits

1) ®]00) — |111)

3-qubit states such as |101) are not legitimate logical qubit states which are referred to as
codewords
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transform them back to codewords, the transfor-
mation Ugr, called the syndrome extraction oper-
ator is used

Ugr :|b2, b1, b, 0,0) — [b2, by, by, bo © by, bo © by)

The circuit for Ugg is made up of 4 C,o: gates

The ancilla qubits are then measured in the stan-
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The correction circuit must not only repair any bit-flip errors but not corrupt valid codewords
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Single-qubit bit-flip correction

Qubit |a1) will be |1) if |by) # |b1) and qubit |ag) will be |1) if |by) # |bo)

The algorithm for correction is based on majority rule, assuming that only a single qubit is
flipped
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Single-qubit bit-flip correction

<

Qubit |a1) will be |1) if |by) # |b1) and qubit |ag) will be |1) if |by) # |bo)

The algorithm for correction is based on majority rule, assuming that only a single qubit is

flipped

000
001
010
100

Carlo Segre (lllinois Tech)
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Single-qubit bit-flip correction

Qubit |a1) will be |1) if |by) # |b1) and qubit |ag) will be |1) if |by) # |bo)

The algorithm for correction is based on majority rule, assuming that only a single qubit is
flipped

000 011 Syndrome Bit flipped Error correction

001 101 00) - oIl

N 10 (71 01) bo Xo=1l®l®X

100 111 |10) by Xi=loX®Il
|11) by Xo=XxIxI

Note that this correction works on any superposition of valid codewords
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Single-qubit bit-flip correction

Qubit |a1) will be |1) if |by) # |b1) and qubit |ag) will be |1) if |by) # |bo)

The algorithm for correction is based on majority rule, assuming that only a single qubit is
flipped

000 011 Syndrome Bit flipped Error correction

001 101 00) - oIl

N 10 (71 01) bo Xo=1l®l®X

100 111 |10) by Xi=loX®Il
|11) by Xo=XxIxI

Note that this correction works on any superposition of valid codewords

Furthermore, the syndrome extraction operator does not disturb the quantum state as it
merely determines if the system is in a valid codeword state, but not what state it is in
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Single-qubit bit-flip correction

Qubit |a1) will be |1) if |by) # |b1) and qubit |ag) will be |1) if |by) # |bo)

The algorithm for correction is based on majority rule, assuming that only a single qubit is
flipped

000 011 Syndrome Bit flipped Error correction

001 101 00) - oIl

N 10 (71 01) bo Xo=1l®l®X

100 111 |10) by Xi=loX®Il
|11) by Xo=XxIxI

Note that this correction works on any superposition of valid codewords

Furthermore, the syndrome extraction operator does not disturb the quantum state as it
merely determines if the system is in a valid codeword state, but not what state it is in

Finally, this error correction will only work for a single qubit error, a longer codeword will
permit larger number of errors to be corrected
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A general superposition [¢) = a|0) + b|1) is
encoded as
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A general superposition [¢) = a|0) + b|1) is

encoded as WN’> = 3|6> + b!1>
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A general superposition [¢) = a|0) + b|1) is

encoded as i) = a|0) + b|T) = a|000) + b[111)
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Example 11.1.1 V

A general superposition [¢) = a|0) + b|1) is ~ ~ -
encoded as |1y = a|0) + b|1) = a|000) + b|111)

If |1Z> is subjected to the single bit-flip error
Xo =X®I®I giving
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Example 11.1.1 V

A general superposition [1)) = a|0) + b|1) is ~ ~ -
encoded as |1y = a|0) + b|1) = a|000) + b|111)

If |¢)) is subjected to the single bit-flip error Xo|th) = a|100) 4 b|011)
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Usr ((%|%)) ® [00)) = a[100)[11) + b[011)[11)

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing April 12, 2022 8/16



Example 11.1.1

<

A general superposition [1)) = a|0) + b|1) is ~ ~ -
encoded as |1y = a|0) + b|1) = a|000) + b|111)
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Example 11.1.1

A general superposition [1)) = a|0) + b|1) is ~ ~ -
encoded as |1y = al0) + b|1) = a|000) + b|111)

If |¢)) is subjected to the single bit-flip error Xo|th) = a|100) 4 b|011)
Xo =X®I®I giving

Applying the syndrome extraction operator we have

Ugr ((X2|))) ® |00)) = a|100)|11) + b|011)|11) = (a|100) + b|011))[11)

Applying the X, transformation to X2|zﬂ> will remove the error from the encoded qubit state
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Example 11.1.1

A general superposition [1)) = a|0) + b|1) is ~ ~ -
encoded as |1y = al0) + b|1) = a|000) + b|111)

If |¢)) is subjected to the single bit-flip error Xo|th) = a|100) 4 b|011)
Xo =X®I®I giving

Applying the syndrome extraction operator we have
Ugr ((X2|))) ® |00)) = a|100)|11) + b|011)|11) = (a|100) + b|011))[11)
Applying the X, transformation to X2|zﬂ> will remove the error from the encoded qubit state

XoXal D) = ) = 2|000) + b[111)
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Example 11.1.2 7

The state |0) is encoded as
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Example 11.1.2 V
The state |0) is encoded as |0) = |000)
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Example 11.1.2 N

The state |0) is encoded as |0) = |000)

This state is subjected to linear combination
of two single bit-flip errors, X> and X
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Example 11.1.2

<

The state |0) is encoded as |0) = |000)

This sta’Fe is su-bjecfted to linear combination E—aX®l@l+B8loX]
of two single bit-flip errors, X> and X

The resulting state is given by E|0) = |100) + £|010)

Applying the syndrome extraction operator gives

Usr ((E[6)) & [00))
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The state |0) is encoded as |0) = |000)

This sta’Fe is su-bjecfted to linear combination E—aX®l@l+B8loX]
of two single bit-flip errors, X> and X

The resulting state is given by E|0) = |100) + £|010)
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Example 11.1.2
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The state |0) is encoded as |0) = |000)

This sta’Fe is su-bjecfted to linear combination E—aX®l@l+B8loX]
of two single bit-flip errors, X> and X

The resulting state is given by E|0) = |100) + £|010)

Applying the syndrome extraction operator gives

Usr ((EI0)) ©100)) = U ((a]100) + 5]010)) & [00}) = a[100)|11) + 5]010}[10)
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Example 11.1.2
The state |0) is encoded as |0) = |000)

This state is subjected to linear combination
of two single bit-flip errors, X> and X

The resulting state is given by E|0) = |100) + £|010)

E=aX®I®+BlaX®I

Applying the syndrome extraction operator gives
Usr ((E16))  100)) = Uer ((a]100) + 5/010)) ©[00)) = a]100)[11) + 5|010}|10)

When the ancilla register is measured, the result is either |11) or |10) and the 3-qubit encoded
state is collapsed
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Applying the syndrome extraction operator gives
Usr ((E16))  100)) = Uer ((a]100) + 5/010)) ©[00)) = a]100)[11) + 5|010}|10)

When the ancilla register is measured, the result is either |11) or |10) and the 3-qubit encoded
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If the ancilla is measured to be |11) the encoded
state is now |100) and the correction is
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Example 11.1.2
The state |0) is encoded as |0) = |000)

This state is subjected to linear combination
of two single bit-flip errors, X> and X

The resulting state is given by E|0) = |100) + £|010)

E=aX®I®+BlaX®I

Applying the syndrome extraction operator gives
Usr ((E16))  100)) = Uer ((a]100) + 5/010)) ©[00)) = a]100)[11) + 5|010}|10)

When the ancilla register is measured, the result is either |11) or |10) and the 3-qubit encoded
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The state |0) is encoded as |0) = |000)

This state is subjected to linear combination
of two single bit-flip errors, X> and X

E=aX®II+8lX®Il
The resulting state is given by E|0) = |100) + £|010)
Applying the syndrome extraction operator gives
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The state |0) is encoded as |0) = |000)

This state is subjected to linear combination
of two single bit-flip errors, X> and X

E=aX®II+8lX®Il
The resulting state is given by E|0) = |100) + £|010)
Applying the syndrome extraction operator gives
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Example 11.1.2
The state |0) is encoded as |0) = |000)

This state is subjected to linear combination
of two single bit-flip errors, X> and X

E=aX®II+8lX®Il
The resulting state is given by E|0) = |100) + £|010)
Applying the syndrome extraction operator gives

Usr ((EIB)) ® [00)) = Usr ((0]100) + 5/010)) @ 00)) = a]100)]11) + 5]010)|10)

When the ancilla register is measured, the result is either |11) or |10) and the 3-qubit encoded
state is collapsed

If the ancilla is measured to be |11) the encoded

state is now |100) and the correction is X|100) = X @ I 1]100) = |000)

If the ancilla is measured to be |10) the encoded

_ S X1/100) = I ® X ® 1|010) = |000)
state is now |010) and the correction is
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Example 11.1.3 7

The quantum state |+) is encoded as
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Example 11.1.3 V

The quantum state |+) is encoded as 1) = i(|000> 1)
V2
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Example 11.1.3 N

Th t tat [ ded ~

e quantum state |+) I% enco. ed as 1) = %(|OOO> +111))
Suppose that the state is subjected by an
phase error
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Th t tat [ ded ~
e quantum state |+) I% enco. ed as 1) = %(|OOO> +111))
Suppose that the state is subjected by an
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Example 11.1.3

-

Th t tat [ ded ~
e quantum state |+) I% enco. ed as 17 = %(|OOO> +[111))
Suppose that the state is subjected by an
phase error E=7ZxIxI
The initial |+) state becomes -
E|+) = J5(/000) —[111))

The syndrome extraction operator is now applied to the corrupted state
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The initial |+) state becomes -
E|+) = J5(/000) —[111))

The syndrome extraction operator is now applied to the corrupted state

Usr ((E|F)) ®100)) = UBF\%(UOOO) — [111)) ®]00))

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing April 12, 2022 10/16



Example 11.1.3

Th t tat [ ded ~
e quantum state |+) I% enco. ed as 1) = %(|OOO> +111))
Suppose that the state is subjected by an

phase error E=7ZxIx]

The initial |+) state becomes -
E|+) = J5(/000) —[111))

The syndrome extraction operator is now applied to the corrupted state

Use ((E]T)) ©100)) = Usr 5((1000) — [111)) ©[00)) = 1(]000)[00) — [111}[00))
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Example 11.1.3

Th t tat [ ded ~
e quantum state |+) I% enco. ed as 1) = %(|OOO> +111))
Suppose that the state is subjected by an

phase error E=7ZxIx]

The initial |+) state becomes -
E|+) = J5(/000) —[111))

The syndrome extraction operator is now applied to the corrupted state

Use ((E]T)) ©100)) = Usr 5((1000) — [111)) ©[00)) = 1(]000)[00) — [111}[00))

Since the ancilla register is |00) for both terms no error is detected with this scheme
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Single-qubit phase-flip correction \id

The three possible single-qubit phase-flip errors are
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Single-qubit phase-flip correction \id

The three possible single-qubit phase-flip errors are

{ZL=2Z2I11,1=1Z1,)=1x1xZ}
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Single-qubit phase-flip correction vV
The three possible single-qubit phase-flip errors are

{ZL=2Z2I11,1=1Z1,)=1x1xZ}

A phase-flip error in the standard basis is simply a bit-flip error in the Hadamard basis,
{|4+),|-)} since Z = HXH
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Single-qubit phase-flip correction

<

The three possible single-qubit phase-flip errors are
{ZL=2Z2I11,1=1Z1,)=1x1xZ}

A phase-flip error in the standard basis is simply a bit-flip error in the Hadamard basis,
{|4+),|-)} since Z = HXH

This suggests that a code Cpr with elements {| + ++),| — ——)} for phase-flip correction can

be generated by applying the Walsh-Hadamard transformation W®) = H® H ® H to the Cgr
code to be able to detect phase-flip errors
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Once in the Hadamard basis, the usual syn-
drome extraction operator can be used to
obtain the ancilla code
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Single-qubit phase-flip correction 7

The three possible single-qubit phase-flip errors are
{ZL=2Z2I11,1=1Z1,)=1x1xZ}

A phase-flip error in the standard basis is simply a bit-flip error in the Hadamard basis,
{|4+),|-)} since Z = HXH

This suggests that a code Cpr with elements {| + ++),| — ——)} for phase-flip correction can
be generated by applying the Walsh-Hadamard transformation W®) = H® H ® H to the Cgr
code to be able to detect phase-flip errors

Once in the Hadamard basis, the usual syn-
drome extraction operator can be used to
obtain the ancilla code

The correction is applied after returning to
the standard basis with a second W trans-
formation
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Single-qubit phase-flip correction

The three possible single-qubit phase-flip errors are
{ZL=2Z2I11,1=1Z1,)=1x1xZ}

A phase-flip error in the standard basis is simply a bit-flip error in the Hadamard basis,
{|4+),|-)} since Z = HXH

This suggests that a code Cpr with elements {| + ++),| — ——)} for phase-flip correction can
be generated by applying the Walsh-Hadamard transformation W®) = H® H ® H to the Cgr
code to be able to detect phase-flip errors

Once in the Hadamard basis, the usual syn-
drome extraction operator can be used to
obtain the ancilla code

Syndrome Bit shifted Error correction
|00) - 1l

The correction is applied after returning to
the standard basis with a second W trans-
formation
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Single-qubit phase-flip correction

The three possible single-qubit phase-flip errors are
{ZL=2Z2I11,1=1Z1,)=1x1xZ}

A phase-flip error in the standard basis is simply a bit-flip error in the Hadamard basis,
{|4+),|-)} since Z = HXH

This suggests that a code Cpg with elements {| + ++),| — ——)} for phase-flip correction can
be generated by applying the Walsh-Hadamard transformation W®) = H® H ® H to the Cgr
code to be able to detect phase-flip errors

Once in the Hadamard basis, the usual syn-
drome extraction operator can be used to
obtain the ancilla code
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The correction is applied after returning to

the standard basis with a second W trans-
formation
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be generated by applying the Walsh-Hadamard transformation W®) = H® H ® H to the Cgr
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Single-qubit phase-flip correction

The syndrome extraction operator for the

phase-flip error is thus Upr = WUgrW
and has a circuit diagram
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Single-qubit phase-flip correction \id

The syndrome extraction operator for the by 4 H H -

phase-flip error is thus Upr = WUgrW

and has a circuit diagram |b1>— H Hr
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Single-qubit phase-flip correction 7

The syndrome extraction operator for the by 4 H H -
phase-flip error is thus Upr = WUgrW
and has a circuit diagram |b1>— H Hr
Note that. the .CPF code corrects. all by H HE
single-qubit relative phase errors, not just
the phase-flip error, because any single 10) B
qubit phase error is a linear combination
of Z and | up to an irrelevant global l0) lag)

phase factor
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The syndrome extraction operator for the by 4 H H -
phase-flip error is thus Upr = WUgrW
and has a circuit diagram |b1>— H Hr
Note that. the .CPF code corrects. all by H HE
single-qubit relative phase errors, not just
the phase-flip error, because any single 10) B
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Complete single-qubit error correction V

As will be shown later, a quantum code that can correct X and Z single-qubit errors can be
used to correct any single-qubit error
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Complete single-qubit error correction
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As will be shown later, a quantum code that can correct X and Z single-qubit errors can be
used to correct any single-qubit error

By combining the Cgr and Cpg codes it is possible to catch both types of errors at the cost of
additional qubits
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Complete single-qubit error correction \ i

As will be shown later, a quantum code that can correct X and Z single-qubit errors can be
used to correct any single-qubit error

By combining the Cgr and Cpg codes it is possible to catch both types of errors at the cost of
additional qubits

The algorithm is to first encode using Cpr and then with Cgg using 9-qubits per initial qubit
0) — |0) = %(|ooo> +]111)) ® (]000) + [111)) ® (|000) + |111)) = %(\ooo) +]111))
1) = |1) = %(yoom —|111)) ® (|000) — |111)) ® (|000) — [111)) = %(\000) —[111))*?

Error correction is performed on each block of 3 qubits to correct for X errors

Then phase shifts are corrected using a variant of Upr applied to the three blocks as a
codeword

In this implementation each logical qubit is made up of 9 physical qubits and gates are
implemented to act on the logical qubits
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Error correcting framework A

The general theory behind error correcting codes comes from classical error correction
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A [n, k] block code C is a 2¥ subset of the 2" possible n-bit strings which form a group, Z
under bitwise addition modulo 2
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The general theory behind error correcting codes comes from classical error correction
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under bitwise addition modulo 2

The code is linear when the 2% subset C is a subgroup of Z3

A specific (but non-unique) encoding function ¢ : Z5 — Z3 is chosen to take the message
space (all k-bit strings) into the n-bit code space C
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The general theory behind error correcting codes comes from classical error correction

A [n, k] block code C is a 2¥ subset of the 2" possible n-bit strings which form a group, Z
under bitwise addition modulo 2

The code is linear when the 2% subset C is a subgroup of Z3

A specific (but non-unique) encoding function ¢ : Z5 — Z3 is chosen to take the message
space (all k-bit strings) into the n-bit code space C

An m - k length message is encoded by separately encoding each of the m k-bit blocks with ¢
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The general theory behind error correcting codes comes from classical error correction

A [n, k] block code C is a 2¥ subset of the 2" possible n-bit strings which form a group, Z
under bitwise addition modulo 2

The code is linear when the 2% subset C is a subgroup of Z3

A specific (but non-unique) encoding function ¢ : Z5 — Z3 is chosen to take the message
space (all k-bit strings) into the n-bit code space C

An m - k length message is encoded by separately encoding each of the m k-bit blocks with ¢
to give an m - n length ciphertext

The encoding function, ¢ can be represented by an n x k generator matrix, G whose k
columns form a linearly independent set of binary words

For example for the [3,1] 1 1 0
repetition code we have al- G=|( 1], 1 10)={o0[,
ready seen 1 1 0
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The general theory behind error correcting codes comes from classical error correction

A [n, k] block code C is a 2¥ subset of the 2" possible n-bit strings which form a group, Z
under bitwise addition modulo 2

The code is linear when the 2% subset C is a subgroup of Z3

A specific (but non-unique) encoding function ¢ : Z5 — Z3 is chosen to take the message
space (all k-bit strings) into the n-bit code space C

An m - k length message is encoded by separately encoding each of the m k-bit blocks with ¢
to give an m - n length ciphertext

The encoding function, ¢ can be represented by an n x k generator matrix, G whose k
columns form a linearly independent set of binary words

For example for the [3,1] 1 1 0 1 1
repetition code we have al- G=1|11, 1 )10)={0], L)1@)=11
ready seen 1 1 0 1 1
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Example 11.2.2 i

The [7,4] Hamming code encodes 4-bit strings, elements of Z3, into 7-bit
strings, elements of Z}
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Example 11.2.2

The [7,4] Hamming code encodes 4-bit strings, elements of Z3, into 7-bit
strings, elements of ZJ

One possible encoding is with generating matrix
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One possible encoding is with generating matrix
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Example 11.2.2

The [7,4] Hamming code encodes 4-bit strings, elements of Z3, into 7-bit
strings, elements of ZJ

One possible encoding is with generating matrix

1000 — 1110100 1111
1101

0100 ~— 1101010 101 1
G=|l0111

0010 ~— 1011001 100 1
0101

0001 s 1111111 00 1 1
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Example 11.2.2 i

An alternative encoding could be

()

Il
R R R, OOO-HR
OoORr P OOKF O
H O, OMFL OO
== O, OOOoO
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Example 11.2.2

An alternative encoding could be

()

Il
R R R, OOO-HR
OoORr P OOKF O
H O, OMFL OO
== O, OOOoO

1000 — 1000111

The single "1" bit values are mapped to the values of the individual columns
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Example 11.2.2

An alternative encoding could be

0100 — 0100110
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1000 — 1000111

The single "1" bit values are mapped to the values of the individual columns
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Example 11.2.2

An alternative encoding could be
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0100 — 0100110
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The single "1" bit values are mapped to the values of the individual columns
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Example 11.2.2

An alternative encoding could be
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Example 11.2.2

An alternative encoding could be
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R R R, OOO-HR
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== O, OOOoO

1000 — 1000111

The single "1" bit values are mapped to the values of the individual columns

The other values are just sums of columns modulo 2
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0001 — 0001011

0010 — 0010101
0011 — 0011110
0100 — 0100110
0101 — 0101100
0110 — 0110011

()

Il
R R R, OOO-HR
OoORr P OOKF O
H O, OMFL OO
== O, OOOoO

1000 — 1000111

The single "1" bit values are mapped to the values of the individual columns

The other values are just sums of columns modulo 2
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Example 11.2.2

An alternative encoding could be
0001 — 0001011

0010 — 0010101

1000 0011 — 0011110
0100 0100 ~— 0100110
. 8 8 (1) ? 0101 > 0101100
1110 0110+ 0110011
1101 0111 — 0111001
1011 1000 > 1000111

The single "1" bit values are mapped to the values of the individual columns

The other values are just sums of columns modulo 2
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Example 11.2.2

An alternative encoding could be
0001 ~ 0001011 1001 — 1001100

0010 — 0010101

1000 0011 — 0011110
0100 0100 ~— 0100110
. 8 8 (1) ? 0101 > 0101100
1110 0110+ 0110011
1101 0111 — 0111001
1011 1000 > 1000111

The single "1" bit values are mapped to the values of the individual columns

The other values are just sums of columns modulo 2
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Example 11.2.2

An alternative encoding could be

0001 + 0001011 1001 +~ 1001100
0010 ~ 0010101 1010 — 1010010
1000 0011 s 0011110
0100 0100 — 0100110
c_ 8 8 (1) ? 0101 + 0101100
1110 0110 ~ 0110011
1101 0111 + 0111001
1011 1000 — 1000111

The single "1" bit values are mapped to the values of the individual columns

The other values are just sums of columns modulo 2
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Example 11.2.2

An alternative encoding could be

0001 + 0001011 1001 +~ 1001100

0010 ~ 0010101 1010 — 1010010

1000 0011 s 0011110 1011 s 1011001
0100 0100 — 0100110
c_ 8 8 (1) ? 0101 + 0101100
1110 0110 ~ 0110011
1101 0111 + 0111001
1011 1000 — 1000111

The single "1" bit values are mapped to the values of the individual columns

The other values are just sums of columns modulo 2
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Example 11.2.2

An alternative encoding could be

el U A M e S e S =

OoORr P OOKF O

H O, OMFL OO

= = O Rr O OO

0001 — 0001011
0010 — 0010101
0011 — 0011110
0100 — 0100110
0101 — 0101100
0110 — 0110011
0111 — 0111001
1000 — 1000111

1001 — 1001100
1010 — 1010010
1011 — 1011001
1100 — 1100001

The single "1" bit values are mapped to the values of the individual columns

The other values are just sums of columns modulo 2
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Example 11.2.2

An alternative encoding could be

el U A M e S e S =

OoORr P OOKF O

H O, OMFL OO

= = O Rr O OO

0001 — 0001011
0010 — 0010101
0011 — 0011110
0100 — 0100110
0101 — 0101100
0110 — 0110011
0111 — 0111001
1000 — 1000111

1001 — 1001100
1010 — 1010010
1011 — 1011001
1100 — 1100001
1101 — 1101010

The single "1" bit values are mapped to the values of the individual columns

The other values are just sums of columns modulo 2
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Example 11.2.2

An alternative encoding could be
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0001 — 0001011
0010 — 0010101
0011 — 0011110
0100 — 0100110
0101 — 0101100
0110 — 0110011
0111 — 0111001
1000 — 1000111

1001 — 1001100
1010 — 1010010
1011 — 1011001
1100 — 1100001
1101 — 1101010
1110 — 1110100

The single "1" bit values are mapped to the values of the individual columns

The other values are just sums of columns modulo 2
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Example 11.2.2

An alternative encoding could be

10
01
00
G=]100
11
11
10

H O, OMFL OO

= = O Rr O OO

0001 — 0001011
0010 — 0010101
0011 — 0011110
0100 — 0100110
0101 — 0101100
0110 — 0110011
0111 — 0111001
1000 — 1000111

1001 — 1001100
1010 — 1010010
1011 — 1011001
1100 — 1100001
1101 — 1101010
1110 — 1110100
1111 — 1111111

The single "1" bit values are mapped to the values of the individual columns

The other values are just sums of columns modulo 2
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Example 11.2.2

An alternative encoding could be

()

Il
R R R, OOO-HR
OoORr P OOKF O
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0001 — 0001011
0010 — 0010101
0011 — 0011110
0100 — 0100110
0101 — 0101100
0110 — 0110011
0111 — 0111001
1000 — 1000111

1001 — 1001100
1010 — 1010010
1011 — 1011001
1100 — 1100001
1101 — 1101010
1110 — 1110100
1111 — 1111111
0000 — 0000000

The single “1" bit values are mapped to the values of the individual columns

The other values are just sums of columns modulo 2

All m zeroes always maps to n zeroes
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