
Today’s outline - April 12, 2022

• Measurements and quantum state transformations

• Decoherence

• Single-bit bit-flip correction

• Single-bit phase-flip correction

• Error correcting framework

• Examples

Reading assignment: 11.2 – 11.3

Homework Assignment #07:
Chapter 9:2,3,4; Chapter 10:3,4,11
Due Thursday, April 21, 2022

Exam #2 - April 26, 2022

Final Exam will be 10 minute presentations
on a quantum computing journal article

Get my approval by Friday, April 15, 2022
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Measurements and quantum state transformations

Let O be an operator with M distinct eigenvalues and suppose that B is a system of
dimension M with basis {|βi ⟩}

If B is initially in the state |ϕ⟩
If U is any unitary operator on X = A ⊗ B
such that

If ρ = |ψ⟩⟨ψ| then the superoperator Sϕ
U is

Where Ai = ⟨βi |U|ϕ⟩ so that

U : |ψ⟩|ϕ⟩ 7→
M−1∑
i=0

Pi |ψ⟩|βi ⟩

Sϕ
U = TrB

(
U(ρ⊗ |ϕ⟩⟨ϕ|)U†)

=
M−1∑
i=0

AiρA
†
i =

M−1∑
i=0

Ai |ψ⟩⟨ψ|A†
i

Ai |ψ⟩ =
N−1∑
j=0

(
⟨αj |⟨βi |U|ψ⟩|ϕ⟩

)
|αj⟩ =

N−1∑
j=0

⟨αj |⟨βi |
(M−1∑

k=0

Pk |ψ⟩|βk⟩
)

|αj⟩

=
N−1∑
j=0

⟨αj |Pi |ψ⟩ |αj⟩ = Pi |ψ⟩
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Measurements and quantum state transformations

Since Ai |ψ⟩ = Pi |ψ⟩ the superoperator Sϕ
U becomes

Sϕ
U =

M−1∑
i=0

Ai |ψ⟩⟨ψ|A†
i =

M−1∑
i=0

Pi |ψ⟩⟨ψ|P†
i =

M−1∑
i=0

pi
Pi |ψ⟩⟨ψ|P†

i

Tr(Pi |ψ⟩⟨ψ|P†
i )
, pi = Tr(Pi |ψ⟩⟨ψ|P†

i )

This is just the density operator ρ′ that represents the probabilistic mixture of outcomes of a
measurement O with associated projectors Pi on system A initially represented by the mixed
state ρ = |ψ⟩⟨ψ|

Thus for any observable O on system A there exists a larger system X = A⊗ B, a unitary
operator U : X → X , and a state |ϕ⟩ such that Sϕ

U ≡ SO
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i

Tr(Pi |ψ⟩⟨ψ|P†
i )
, pi = Tr(Pi |ψ⟩⟨ψ|P†

i )

This is just the density operator ρ′ that represents the probabilistic mixture of outcomes of a
measurement O with associated projectors Pi on system A initially represented by the mixed
state ρ = |ψ⟩⟨ψ|

Thus for any observable O on system A there exists a larger system X = A⊗ B, a unitary
operator U : X → X , and a state |ϕ⟩ such that Sϕ

U ≡ SO
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Decoherence

Our understanding of how qubit systems can be manipulated and measured depends on the
ability to isolate them completely from other interactions

Unfortunately, this is never possible as quantum systems are always part of a larger system
consisting of the environment over which we have no control

When an interaction with the environment causes decoherence, information about the
computational subsystem is lost

Quantum error correction techniques depend on having a method of understanding the effect
of a subsystem interaction with other subsystem, that is operator sum decomposition

The effect of on the computational subsystem of any interaction with the environment can be
viewed as a mixture of K errors resulting in K mixed states

The discussion on error correction will start by discussing three simple codes which correct
single-qubit bit-flip errors, single-qubit phase errors, and all single-qubit errors
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Single-qubit bit-flip correction

The bit-flip error effectively applies the X gate to one of the qubits in a subsystem

The error correction requires 3 qubits for each bit
of information with an initial encoding of

|0⟩ → |000⟩
|1⟩ → |111⟩

This has the goal of correcting a bit-flip error in any of the three qubits

{X2 = X ⊗ I ⊗ I ,X1 = I ⊗ X ⊗ I ,X0 = I ⊗ I ⊗ X}

More formally, if CBF is the subspace spanned
by {|000⟩, |111⟩}, cBF is a general encoding that
takes single-qubit states into CBF

cBF :|0⟩ ⊗ |00⟩ → |000⟩ = |0̃⟩
|1⟩ ⊗ |00⟩ → |111⟩ = |1̃⟩

Where |0̃⟩ means the encoding of |0⟩ and is considered to be a logical qubit composed of three
computation qubits

3-qubit states such as |101⟩ are not legitimate logical qubit states which are referred to as
codewords
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Single-qubit bit-flip correction

Suppose a logical qubit is in a state

If a bit flip error occurs in b2 the state is not
a codeword and not in CBF

a|0̃⟩+ b|1̃⟩ = a|000⟩+ b|111⟩
−→ a|100⟩+ b|011⟩

In order to detect the non-codeword states and
transform them back to codewords, the transfor-
mation UBF , called the syndrome extraction oper-
ator is used

UBF :|b2, b1, b0, 0, 0⟩ −→ |b2, b1, b0, b2 ⊕ b1, b2 ⊕ b0⟩

The circuit for UBF is made up of 4 Cnot gates

The ancilla qubits are then measured in the stan-
dard basis to determine the correction to be ap-
plied

b
2

b
1

b
0

a
1

a
0

0

0

The correction circuit must not only repair any bit-flip errors but not corrupt valid codewords
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Single-qubit bit-flip correction

Qubit |a1⟩ will be |1⟩ if |b2⟩ ≠ |b1⟩ and qubit |a0⟩ will be |1⟩ if |b2⟩ ≠ |b0⟩

The algorithm for correction is based on majority rule, assuming that only a single qubit is
flipped

000
001
010
100

 7→ 0 ,

011
101
110
111

 7→ 1

Syndrome Bit flipped Error correction
|00⟩ – I ⊗ I ⊗ I
|01⟩ b0 X0 = I ⊗ I ⊗ X
|10⟩ b1 X1 = I ⊗ X ⊗ I
|11⟩ b2 X2 = X ⊗ I ⊗ I

Note that this correction works on any superposition of valid codewords

Furthermore, the syndrome extraction operator does not disturb the quantum state as it
merely determines if the system is in a valid codeword state, but not what state it is in

Finally, this error correction will only work for a single qubit error, a longer codeword will
permit larger number of errors to be corrected
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Example 11.1.1

A general superposition |ψ⟩ = a|0⟩+ b|1⟩ is
encoded as

If |ψ̃⟩ is subjected to the single bit-flip error
X2 = X ⊗ I ⊗ I giving

|ψ̃⟩ = a|0̃⟩+ b|1̃⟩ = a|000⟩+ b|111⟩

X2|ψ̃⟩ = a|100⟩+ b|011⟩

Applying the syndrome extraction operator we have

UBF

(
(X2|ψ̃⟩)⊗ |00⟩

)
= a|100⟩|11⟩+ b|011⟩|11⟩ = (a|100⟩+ b|011⟩)|11⟩

Applying the X2 transformation to X2|ψ̃⟩ will remove the error from the encoded qubit state

X2X2|ψ̃⟩ = |ψ̃⟩ = a|000⟩+ b|111⟩

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 12, 2022 8 / 16



Example 11.1.1

A general superposition |ψ⟩ = a|0⟩+ b|1⟩ is
encoded as

If |ψ̃⟩ is subjected to the single bit-flip error
X2 = X ⊗ I ⊗ I giving

|ψ̃⟩ = a|0̃⟩+ b|1̃⟩

= a|000⟩+ b|111⟩

X2|ψ̃⟩ = a|100⟩+ b|011⟩

Applying the syndrome extraction operator we have

UBF

(
(X2|ψ̃⟩)⊗ |00⟩

)
= a|100⟩|11⟩+ b|011⟩|11⟩ = (a|100⟩+ b|011⟩)|11⟩

Applying the X2 transformation to X2|ψ̃⟩ will remove the error from the encoded qubit state

X2X2|ψ̃⟩ = |ψ̃⟩ = a|000⟩+ b|111⟩

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 12, 2022 8 / 16



Example 11.1.1

A general superposition |ψ⟩ = a|0⟩+ b|1⟩ is
encoded as

If |ψ̃⟩ is subjected to the single bit-flip error
X2 = X ⊗ I ⊗ I giving

|ψ̃⟩ = a|0̃⟩+ b|1̃⟩ = a|000⟩+ b|111⟩

X2|ψ̃⟩ = a|100⟩+ b|011⟩

Applying the syndrome extraction operator we have

UBF

(
(X2|ψ̃⟩)⊗ |00⟩

)
= a|100⟩|11⟩+ b|011⟩|11⟩ = (a|100⟩+ b|011⟩)|11⟩

Applying the X2 transformation to X2|ψ̃⟩ will remove the error from the encoded qubit state

X2X2|ψ̃⟩ = |ψ̃⟩ = a|000⟩+ b|111⟩

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 12, 2022 8 / 16



Example 11.1.1

A general superposition |ψ⟩ = a|0⟩+ b|1⟩ is
encoded as

If |ψ̃⟩ is subjected to the single bit-flip error
X2 = X ⊗ I ⊗ I giving

|ψ̃⟩ = a|0̃⟩+ b|1̃⟩ = a|000⟩+ b|111⟩

X2|ψ̃⟩ = a|100⟩+ b|011⟩

Applying the syndrome extraction operator we have

UBF

(
(X2|ψ̃⟩)⊗ |00⟩

)
= a|100⟩|11⟩+ b|011⟩|11⟩ = (a|100⟩+ b|011⟩)|11⟩

Applying the X2 transformation to X2|ψ̃⟩ will remove the error from the encoded qubit state

X2X2|ψ̃⟩ = |ψ̃⟩ = a|000⟩+ b|111⟩

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 12, 2022 8 / 16



Example 11.1.1

A general superposition |ψ⟩ = a|0⟩+ b|1⟩ is
encoded as

If |ψ̃⟩ is subjected to the single bit-flip error
X2 = X ⊗ I ⊗ I giving

|ψ̃⟩ = a|0̃⟩+ b|1̃⟩ = a|000⟩+ b|111⟩

X2|ψ̃⟩ = a|100⟩+ b|011⟩

Applying the syndrome extraction operator we have

UBF

(
(X2|ψ̃⟩)⊗ |00⟩

)
= a|100⟩|11⟩+ b|011⟩|11⟩ = (a|100⟩+ b|011⟩)|11⟩

Applying the X2 transformation to X2|ψ̃⟩ will remove the error from the encoded qubit state

X2X2|ψ̃⟩ = |ψ̃⟩ = a|000⟩+ b|111⟩

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 12, 2022 8 / 16



Example 11.1.1

A general superposition |ψ⟩ = a|0⟩+ b|1⟩ is
encoded as

If |ψ̃⟩ is subjected to the single bit-flip error
X2 = X ⊗ I ⊗ I giving

|ψ̃⟩ = a|0̃⟩+ b|1̃⟩ = a|000⟩+ b|111⟩

X2|ψ̃⟩ = a|100⟩+ b|011⟩

Applying the syndrome extraction operator we have

UBF

(
(X2|ψ̃⟩)⊗ |00⟩

)
= a|100⟩|11⟩+ b|011⟩|11⟩ = (a|100⟩+ b|011⟩)|11⟩

Applying the X2 transformation to X2|ψ̃⟩ will remove the error from the encoded qubit state

X2X2|ψ̃⟩ = |ψ̃⟩ = a|000⟩+ b|111⟩

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 12, 2022 8 / 16



Example 11.1.1

A general superposition |ψ⟩ = a|0⟩+ b|1⟩ is
encoded as

If |ψ̃⟩ is subjected to the single bit-flip error
X2 = X ⊗ I ⊗ I giving

|ψ̃⟩ = a|0̃⟩+ b|1̃⟩ = a|000⟩+ b|111⟩

X2|ψ̃⟩ = a|100⟩+ b|011⟩

Applying the syndrome extraction operator we have

UBF

(
(X2|ψ̃⟩)⊗ |00⟩

)

= a|100⟩|11⟩+ b|011⟩|11⟩ = (a|100⟩+ b|011⟩)|11⟩

Applying the X2 transformation to X2|ψ̃⟩ will remove the error from the encoded qubit state

X2X2|ψ̃⟩ = |ψ̃⟩ = a|000⟩+ b|111⟩

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 12, 2022 8 / 16



Example 11.1.1

A general superposition |ψ⟩ = a|0⟩+ b|1⟩ is
encoded as

If |ψ̃⟩ is subjected to the single bit-flip error
X2 = X ⊗ I ⊗ I giving

|ψ̃⟩ = a|0̃⟩+ b|1̃⟩ = a|000⟩+ b|111⟩

X2|ψ̃⟩ = a|100⟩+ b|011⟩

Applying the syndrome extraction operator we have

UBF

(
(X2|ψ̃⟩)⊗ |00⟩

)
= a|100⟩|11⟩+ b|011⟩|11⟩

= (a|100⟩+ b|011⟩)|11⟩

Applying the X2 transformation to X2|ψ̃⟩ will remove the error from the encoded qubit state

X2X2|ψ̃⟩ = |ψ̃⟩ = a|000⟩+ b|111⟩

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 12, 2022 8 / 16



Example 11.1.1

A general superposition |ψ⟩ = a|0⟩+ b|1⟩ is
encoded as

If |ψ̃⟩ is subjected to the single bit-flip error
X2 = X ⊗ I ⊗ I giving

|ψ̃⟩ = a|0̃⟩+ b|1̃⟩ = a|000⟩+ b|111⟩

X2|ψ̃⟩ = a|100⟩+ b|011⟩

Applying the syndrome extraction operator we have

UBF

(
(X2|ψ̃⟩)⊗ |00⟩

)
= a|100⟩|11⟩+ b|011⟩|11⟩ = (a|100⟩+ b|011⟩)|11⟩

Applying the X2 transformation to X2|ψ̃⟩ will remove the error from the encoded qubit state

X2X2|ψ̃⟩ = |ψ̃⟩ = a|000⟩+ b|111⟩

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 12, 2022 8 / 16



Example 11.1.1

A general superposition |ψ⟩ = a|0⟩+ b|1⟩ is
encoded as

If |ψ̃⟩ is subjected to the single bit-flip error
X2 = X ⊗ I ⊗ I giving

|ψ̃⟩ = a|0̃⟩+ b|1̃⟩ = a|000⟩+ b|111⟩

X2|ψ̃⟩ = a|100⟩+ b|011⟩

Applying the syndrome extraction operator we have

UBF

(
(X2|ψ̃⟩)⊗ |00⟩

)
= a|100⟩|11⟩+ b|011⟩|11⟩ = (a|100⟩+ b|011⟩)|11⟩

Applying the X2 transformation to X2|ψ̃⟩ will remove the error from the encoded qubit state

X2X2|ψ̃⟩ = |ψ̃⟩ = a|000⟩+ b|111⟩

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 12, 2022 8 / 16



Example 11.1.1

A general superposition |ψ⟩ = a|0⟩+ b|1⟩ is
encoded as

If |ψ̃⟩ is subjected to the single bit-flip error
X2 = X ⊗ I ⊗ I giving

|ψ̃⟩ = a|0̃⟩+ b|1̃⟩ = a|000⟩+ b|111⟩

X2|ψ̃⟩ = a|100⟩+ b|011⟩

Applying the syndrome extraction operator we have

UBF

(
(X2|ψ̃⟩)⊗ |00⟩

)
= a|100⟩|11⟩+ b|011⟩|11⟩ = (a|100⟩+ b|011⟩)|11⟩

Applying the X2 transformation to X2|ψ̃⟩ will remove the error from the encoded qubit state

X2X2|ψ̃⟩ = |ψ̃⟩ = a|000⟩+ b|111⟩

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 12, 2022 8 / 16



Example 11.1.2

The state |0⟩ is encoded as

This state is subjected to linear combination
of two single bit-flip errors, X2 and X1

The resulting state is given by

|0̃⟩ = |000⟩

E = αX ⊗ I ⊗ I + βI ⊗ X ⊗ I

E |0̃⟩ = α|100⟩+ β|010⟩

Applying the syndrome extraction operator gives

UBF

(
(E |0̃⟩)⊗ |00⟩

)
= UBF

(
(α|100⟩+ β|010⟩)⊗ |00⟩

)
= α|100⟩|11⟩+ β|010⟩|10⟩

When the ancilla register is measured, the result is either |11⟩ or |10⟩ and the 3-qubit encoded
state is collapsed

If the ancilla is measured to be |11⟩ the encoded
state is now |100⟩ and the correction is

If the ancilla is measured to be |10⟩ the encoded
state is now |010⟩ and the correction is

X2|100⟩ = X ⊗ I ⊗ I |100⟩ = |000⟩

X1|100⟩ = I ⊗ X ⊗ I |010⟩ = |000⟩

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 12, 2022 9 / 16



Example 11.1.2

The state |0⟩ is encoded as

This state is subjected to linear combination
of two single bit-flip errors, X2 and X1

The resulting state is given by

|0̃⟩ = |000⟩

E = αX ⊗ I ⊗ I + βI ⊗ X ⊗ I

E |0̃⟩ = α|100⟩+ β|010⟩

Applying the syndrome extraction operator gives

UBF

(
(E |0̃⟩)⊗ |00⟩

)
= UBF

(
(α|100⟩+ β|010⟩)⊗ |00⟩

)
= α|100⟩|11⟩+ β|010⟩|10⟩

When the ancilla register is measured, the result is either |11⟩ or |10⟩ and the 3-qubit encoded
state is collapsed

If the ancilla is measured to be |11⟩ the encoded
state is now |100⟩ and the correction is

If the ancilla is measured to be |10⟩ the encoded
state is now |010⟩ and the correction is

X2|100⟩ = X ⊗ I ⊗ I |100⟩ = |000⟩

X1|100⟩ = I ⊗ X ⊗ I |010⟩ = |000⟩

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 12, 2022 9 / 16



Example 11.1.2

The state |0⟩ is encoded as

This state is subjected to linear combination
of two single bit-flip errors, X2 and X1

The resulting state is given by

|0̃⟩ = |000⟩

E = αX ⊗ I ⊗ I + βI ⊗ X ⊗ I

E |0̃⟩ = α|100⟩+ β|010⟩

Applying the syndrome extraction operator gives

UBF

(
(E |0̃⟩)⊗ |00⟩

)
= UBF

(
(α|100⟩+ β|010⟩)⊗ |00⟩

)
= α|100⟩|11⟩+ β|010⟩|10⟩

When the ancilla register is measured, the result is either |11⟩ or |10⟩ and the 3-qubit encoded
state is collapsed

If the ancilla is measured to be |11⟩ the encoded
state is now |100⟩ and the correction is

If the ancilla is measured to be |10⟩ the encoded
state is now |010⟩ and the correction is

X2|100⟩ = X ⊗ I ⊗ I |100⟩ = |000⟩

X1|100⟩ = I ⊗ X ⊗ I |010⟩ = |000⟩

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 12, 2022 9 / 16



Example 11.1.2

The state |0⟩ is encoded as

This state is subjected to linear combination
of two single bit-flip errors, X2 and X1

The resulting state is given by

|0̃⟩ = |000⟩

E = αX ⊗ I ⊗ I + βI ⊗ X ⊗ I

E |0̃⟩ = α|100⟩+ β|010⟩

Applying the syndrome extraction operator gives

UBF

(
(E |0̃⟩)⊗ |00⟩

)
= UBF

(
(α|100⟩+ β|010⟩)⊗ |00⟩

)
= α|100⟩|11⟩+ β|010⟩|10⟩

When the ancilla register is measured, the result is either |11⟩ or |10⟩ and the 3-qubit encoded
state is collapsed

If the ancilla is measured to be |11⟩ the encoded
state is now |100⟩ and the correction is

If the ancilla is measured to be |10⟩ the encoded
state is now |010⟩ and the correction is

X2|100⟩ = X ⊗ I ⊗ I |100⟩ = |000⟩

X1|100⟩ = I ⊗ X ⊗ I |010⟩ = |000⟩

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 12, 2022 9 / 16



Example 11.1.2

The state |0⟩ is encoded as

This state is subjected to linear combination
of two single bit-flip errors, X2 and X1

The resulting state is given by

|0̃⟩ = |000⟩

E = αX ⊗ I ⊗ I + βI ⊗ X ⊗ I

E |0̃⟩ = α|100⟩+ β|010⟩

Applying the syndrome extraction operator gives

UBF

(
(E |0̃⟩)⊗ |00⟩

)
= UBF

(
(α|100⟩+ β|010⟩)⊗ |00⟩

)
= α|100⟩|11⟩+ β|010⟩|10⟩

When the ancilla register is measured, the result is either |11⟩ or |10⟩ and the 3-qubit encoded
state is collapsed

If the ancilla is measured to be |11⟩ the encoded
state is now |100⟩ and the correction is

If the ancilla is measured to be |10⟩ the encoded
state is now |010⟩ and the correction is

X2|100⟩ = X ⊗ I ⊗ I |100⟩ = |000⟩

X1|100⟩ = I ⊗ X ⊗ I |010⟩ = |000⟩

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 12, 2022 9 / 16



Example 11.1.2

The state |0⟩ is encoded as

This state is subjected to linear combination
of two single bit-flip errors, X2 and X1

The resulting state is given by

|0̃⟩ = |000⟩

E = αX ⊗ I ⊗ I + βI ⊗ X ⊗ I

E |0̃⟩ = α|100⟩+ β|010⟩

Applying the syndrome extraction operator gives

UBF

(
(E |0̃⟩)⊗ |00⟩

)
= UBF

(
(α|100⟩+ β|010⟩)⊗ |00⟩

)
= α|100⟩|11⟩+ β|010⟩|10⟩

When the ancilla register is measured, the result is either |11⟩ or |10⟩ and the 3-qubit encoded
state is collapsed

If the ancilla is measured to be |11⟩ the encoded
state is now |100⟩ and the correction is

If the ancilla is measured to be |10⟩ the encoded
state is now |010⟩ and the correction is

X2|100⟩ = X ⊗ I ⊗ I |100⟩ = |000⟩

X1|100⟩ = I ⊗ X ⊗ I |010⟩ = |000⟩

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 12, 2022 9 / 16



Example 11.1.2

The state |0⟩ is encoded as

This state is subjected to linear combination
of two single bit-flip errors, X2 and X1

The resulting state is given by

|0̃⟩ = |000⟩

E = αX ⊗ I ⊗ I + βI ⊗ X ⊗ I

E |0̃⟩ = α|100⟩+ β|010⟩

Applying the syndrome extraction operator gives

UBF

(
(E |0̃⟩)⊗ |00⟩

)
= UBF

(
(α|100⟩+ β|010⟩)⊗ |00⟩

)
= α|100⟩|11⟩+ β|010⟩|10⟩

When the ancilla register is measured, the result is either |11⟩ or |10⟩ and the 3-qubit encoded
state is collapsed

If the ancilla is measured to be |11⟩ the encoded
state is now |100⟩ and the correction is

If the ancilla is measured to be |10⟩ the encoded
state is now |010⟩ and the correction is

X2|100⟩ = X ⊗ I ⊗ I |100⟩ = |000⟩

X1|100⟩ = I ⊗ X ⊗ I |010⟩ = |000⟩

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 12, 2022 9 / 16



Example 11.1.2

The state |0⟩ is encoded as

This state is subjected to linear combination
of two single bit-flip errors, X2 and X1

The resulting state is given by

|0̃⟩ = |000⟩

E = αX ⊗ I ⊗ I + βI ⊗ X ⊗ I

E |0̃⟩ = α|100⟩+ β|010⟩

Applying the syndrome extraction operator gives

UBF

(
(E |0̃⟩)⊗ |00⟩

)

= UBF

(
(α|100⟩+ β|010⟩)⊗ |00⟩

)
= α|100⟩|11⟩+ β|010⟩|10⟩

When the ancilla register is measured, the result is either |11⟩ or |10⟩ and the 3-qubit encoded
state is collapsed

If the ancilla is measured to be |11⟩ the encoded
state is now |100⟩ and the correction is

If the ancilla is measured to be |10⟩ the encoded
state is now |010⟩ and the correction is

X2|100⟩ = X ⊗ I ⊗ I |100⟩ = |000⟩

X1|100⟩ = I ⊗ X ⊗ I |010⟩ = |000⟩

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 12, 2022 9 / 16



Example 11.1.2

The state |0⟩ is encoded as

This state is subjected to linear combination
of two single bit-flip errors, X2 and X1

The resulting state is given by

|0̃⟩ = |000⟩

E = αX ⊗ I ⊗ I + βI ⊗ X ⊗ I

E |0̃⟩ = α|100⟩+ β|010⟩

Applying the syndrome extraction operator gives

UBF

(
(E |0̃⟩)⊗ |00⟩

)
= UBF

(
(α|100⟩+ β|010⟩)⊗ |00⟩

)

= α|100⟩|11⟩+ β|010⟩|10⟩

When the ancilla register is measured, the result is either |11⟩ or |10⟩ and the 3-qubit encoded
state is collapsed

If the ancilla is measured to be |11⟩ the encoded
state is now |100⟩ and the correction is

If the ancilla is measured to be |10⟩ the encoded
state is now |010⟩ and the correction is

X2|100⟩ = X ⊗ I ⊗ I |100⟩ = |000⟩

X1|100⟩ = I ⊗ X ⊗ I |010⟩ = |000⟩

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 12, 2022 9 / 16



Example 11.1.2

The state |0⟩ is encoded as

This state is subjected to linear combination
of two single bit-flip errors, X2 and X1

The resulting state is given by

|0̃⟩ = |000⟩

E = αX ⊗ I ⊗ I + βI ⊗ X ⊗ I

E |0̃⟩ = α|100⟩+ β|010⟩

Applying the syndrome extraction operator gives

UBF

(
(E |0̃⟩)⊗ |00⟩

)
= UBF

(
(α|100⟩+ β|010⟩)⊗ |00⟩

)
= α|100⟩|11⟩+ β|010⟩|10⟩

When the ancilla register is measured, the result is either |11⟩ or |10⟩ and the 3-qubit encoded
state is collapsed

If the ancilla is measured to be |11⟩ the encoded
state is now |100⟩ and the correction is

If the ancilla is measured to be |10⟩ the encoded
state is now |010⟩ and the correction is

X2|100⟩ = X ⊗ I ⊗ I |100⟩ = |000⟩

X1|100⟩ = I ⊗ X ⊗ I |010⟩ = |000⟩

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 12, 2022 9 / 16



Example 11.1.2

The state |0⟩ is encoded as

This state is subjected to linear combination
of two single bit-flip errors, X2 and X1

The resulting state is given by

|0̃⟩ = |000⟩

E = αX ⊗ I ⊗ I + βI ⊗ X ⊗ I

E |0̃⟩ = α|100⟩+ β|010⟩

Applying the syndrome extraction operator gives

UBF

(
(E |0̃⟩)⊗ |00⟩

)
= UBF

(
(α|100⟩+ β|010⟩)⊗ |00⟩

)
= α|100⟩|11⟩+ β|010⟩|10⟩

When the ancilla register is measured, the result is either |11⟩ or |10⟩ and the 3-qubit encoded
state is collapsed

If the ancilla is measured to be |11⟩ the encoded
state is now |100⟩ and the correction is

If the ancilla is measured to be |10⟩ the encoded
state is now |010⟩ and the correction is

X2|100⟩ = X ⊗ I ⊗ I |100⟩ = |000⟩

X1|100⟩ = I ⊗ X ⊗ I |010⟩ = |000⟩

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 12, 2022 9 / 16



Example 11.1.2

The state |0⟩ is encoded as

This state is subjected to linear combination
of two single bit-flip errors, X2 and X1

The resulting state is given by

|0̃⟩ = |000⟩

E = αX ⊗ I ⊗ I + βI ⊗ X ⊗ I

E |0̃⟩ = α|100⟩+ β|010⟩

Applying the syndrome extraction operator gives

UBF

(
(E |0̃⟩)⊗ |00⟩

)
= UBF

(
(α|100⟩+ β|010⟩)⊗ |00⟩

)
= α|100⟩|11⟩+ β|010⟩|10⟩

When the ancilla register is measured, the result is either |11⟩ or |10⟩ and the 3-qubit encoded
state is collapsed

If the ancilla is measured to be |11⟩ the encoded
state is now |100⟩ and the correction is

If the ancilla is measured to be |10⟩ the encoded
state is now |010⟩ and the correction is

X2|100⟩ = X ⊗ I ⊗ I |100⟩ = |000⟩

X1|100⟩ = I ⊗ X ⊗ I |010⟩ = |000⟩

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 12, 2022 9 / 16



Example 11.1.2

The state |0⟩ is encoded as

This state is subjected to linear combination
of two single bit-flip errors, X2 and X1

The resulting state is given by

|0̃⟩ = |000⟩

E = αX ⊗ I ⊗ I + βI ⊗ X ⊗ I

E |0̃⟩ = α|100⟩+ β|010⟩

Applying the syndrome extraction operator gives

UBF

(
(E |0̃⟩)⊗ |00⟩

)
= UBF

(
(α|100⟩+ β|010⟩)⊗ |00⟩

)
= α|100⟩|11⟩+ β|010⟩|10⟩

When the ancilla register is measured, the result is either |11⟩ or |10⟩ and the 3-qubit encoded
state is collapsed

If the ancilla is measured to be |11⟩ the encoded
state is now |100⟩ and the correction is

If the ancilla is measured to be |10⟩ the encoded
state is now |010⟩ and the correction is

X2|100⟩ = X ⊗ I ⊗ I |100⟩

= |000⟩

X1|100⟩ = I ⊗ X ⊗ I |010⟩ = |000⟩

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 12, 2022 9 / 16



Example 11.1.2

The state |0⟩ is encoded as

This state is subjected to linear combination
of two single bit-flip errors, X2 and X1

The resulting state is given by

|0̃⟩ = |000⟩

E = αX ⊗ I ⊗ I + βI ⊗ X ⊗ I

E |0̃⟩ = α|100⟩+ β|010⟩

Applying the syndrome extraction operator gives

UBF

(
(E |0̃⟩)⊗ |00⟩

)
= UBF

(
(α|100⟩+ β|010⟩)⊗ |00⟩

)
= α|100⟩|11⟩+ β|010⟩|10⟩

When the ancilla register is measured, the result is either |11⟩ or |10⟩ and the 3-qubit encoded
state is collapsed

If the ancilla is measured to be |11⟩ the encoded
state is now |100⟩ and the correction is

If the ancilla is measured to be |10⟩ the encoded
state is now |010⟩ and the correction is

X2|100⟩ = X ⊗ I ⊗ I |100⟩ = |000⟩

X1|100⟩ = I ⊗ X ⊗ I |010⟩ = |000⟩

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 12, 2022 9 / 16



Example 11.1.2

The state |0⟩ is encoded as

This state is subjected to linear combination
of two single bit-flip errors, X2 and X1

The resulting state is given by

|0̃⟩ = |000⟩

E = αX ⊗ I ⊗ I + βI ⊗ X ⊗ I

E |0̃⟩ = α|100⟩+ β|010⟩

Applying the syndrome extraction operator gives

UBF

(
(E |0̃⟩)⊗ |00⟩

)
= UBF

(
(α|100⟩+ β|010⟩)⊗ |00⟩

)
= α|100⟩|11⟩+ β|010⟩|10⟩

When the ancilla register is measured, the result is either |11⟩ or |10⟩ and the 3-qubit encoded
state is collapsed

If the ancilla is measured to be |11⟩ the encoded
state is now |100⟩ and the correction is

If the ancilla is measured to be |10⟩ the encoded
state is now |010⟩ and the correction is

X2|100⟩ = X ⊗ I ⊗ I |100⟩ = |000⟩

X1|100⟩ = I ⊗ X ⊗ I |010⟩ = |000⟩

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 12, 2022 9 / 16



Example 11.1.2

The state |0⟩ is encoded as

This state is subjected to linear combination
of two single bit-flip errors, X2 and X1

The resulting state is given by

|0̃⟩ = |000⟩

E = αX ⊗ I ⊗ I + βI ⊗ X ⊗ I

E |0̃⟩ = α|100⟩+ β|010⟩

Applying the syndrome extraction operator gives

UBF

(
(E |0̃⟩)⊗ |00⟩

)
= UBF

(
(α|100⟩+ β|010⟩)⊗ |00⟩

)
= α|100⟩|11⟩+ β|010⟩|10⟩

When the ancilla register is measured, the result is either |11⟩ or |10⟩ and the 3-qubit encoded
state is collapsed

If the ancilla is measured to be |11⟩ the encoded
state is now |100⟩ and the correction is

If the ancilla is measured to be |10⟩ the encoded
state is now |010⟩ and the correction is

X2|100⟩ = X ⊗ I ⊗ I |100⟩ = |000⟩

X1|100⟩ = I ⊗ X ⊗ I |010⟩

= |000⟩

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 12, 2022 9 / 16



Example 11.1.2

The state |0⟩ is encoded as

This state is subjected to linear combination
of two single bit-flip errors, X2 and X1

The resulting state is given by

|0̃⟩ = |000⟩

E = αX ⊗ I ⊗ I + βI ⊗ X ⊗ I

E |0̃⟩ = α|100⟩+ β|010⟩

Applying the syndrome extraction operator gives

UBF

(
(E |0̃⟩)⊗ |00⟩

)
= UBF

(
(α|100⟩+ β|010⟩)⊗ |00⟩

)
= α|100⟩|11⟩+ β|010⟩|10⟩

When the ancilla register is measured, the result is either |11⟩ or |10⟩ and the 3-qubit encoded
state is collapsed

If the ancilla is measured to be |11⟩ the encoded
state is now |100⟩ and the correction is

If the ancilla is measured to be |10⟩ the encoded
state is now |010⟩ and the correction is

X2|100⟩ = X ⊗ I ⊗ I |100⟩ = |000⟩

X1|100⟩ = I ⊗ X ⊗ I |010⟩ = |000⟩

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 12, 2022 9 / 16



Example 11.1.3

The quantum state |+⟩ is encoded as

Suppose that the state is subjected by an
phase error

The initial |+̃⟩ state becomes

|+̃⟩ = 1√
2
(|000⟩+ |111⟩)

E = Z ⊗ I ⊗ I

E |+̃⟩ = 1√
2
(|000⟩ − |111⟩)

The syndrome extraction operator is now applied to the corrupted state

UBF

(
(E |+̃⟩)⊗ |00⟩

)
= UBF

1√
2

(
(|000⟩ − |111⟩)⊗ |00⟩

)
= 1√

2
(|000⟩|00⟩ − |111⟩|00⟩)

Since the ancilla register is |00⟩ for both terms no error is detected with this scheme
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Single-qubit phase-flip correction

The three possible single-qubit phase-flip errors are

{Z2 = Z ⊗ I ⊗ I ,Z1 = I ⊗ Z ⊗ I ,Z0 = I ⊗ I ⊗ Z}

A phase-flip error in the standard basis is simply a bit-flip error in the Hadamard basis,
{|+⟩, |−⟩} since Z = HXH

This suggests that a code CPF with elements {|+++⟩, | − −−⟩} for phase-flip correction can
be generated by applying the Walsh-Hadamard transformation W (3) = H ⊗ H ⊗ H to the CBF

code to be able to detect phase-flip errors

Once in the Hadamard basis, the usual syn-
drome extraction operator can be used to
obtain the ancilla code

The correction is applied after returning to
the standard basis with a second W trans-
formation

Syndrome Bit shifted Error correction
|00⟩ – I ⊗ I ⊗ I
|01⟩ b0 Z0 = I ⊗ I ⊗ Z
|10⟩ b1 Z1 = I ⊗ Z ⊗ I
|11⟩ b2 Z2 = Z ⊗ I ⊗ I
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Single-qubit phase-flip correction

The syndrome extraction operator for the
phase-flip error is thus UPF = WUBFW
and has a circuit diagram

Note that the CPF code corrects all
single-qubit relative phase errors, not just
the phase-flip error, because any single
qubit phase error is a linear combination
of Z and I up to an irrelevant global
phase factor
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Complete single-qubit error correction

As will be shown later, a quantum code that can correct X and Z single-qubit errors can be
used to correct any single-qubit error

By combining the CBF and CPF codes it is possible to catch both types of errors at the cost of
additional qubits

The algorithm is to first encode using CPF and then with CBF using 9-qubits per initial qubit

|0⟩ → |0̃⟩ = 1√
8

(
|000⟩+ |111⟩

)
⊗
(
|000⟩+ |111⟩

)
⊗
(
|000⟩+ |111⟩

)
= 1√

8

(
|000⟩+ |111⟩

)⊗3

|1⟩ → |1̃⟩ = 1√
8

(
|000⟩ − |111⟩

)
⊗
(
|000⟩ − |111⟩

)
⊗
(
|000⟩ − |111⟩

)
= 1√

8

(
|000⟩ − |111⟩

)⊗3

Error correction is performed on each block of 3 qubits to correct for X errors

Then phase shifts are corrected using a variant of UPF applied to the three blocks as a
codeword

In this implementation each logical qubit is made up of 9 physical qubits and gates are
implemented to act on the logical qubits
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Error correcting framework

The general theory behind error correcting codes comes from classical error correction

A [n, k] block code C is a 2k subset of the 2n possible n-bit strings which form a group, Zn
2

under bitwise addition modulo 2

The code is linear when the 2k subset C is a subgroup of Zn
2

A specific (but non-unique) encoding function c : Zk
2 → Zn

2 is chosen to take the message
space (all k-bit strings) into the n-bit code space C

An m · k length message is encoded by separately encoding each of the m k-bit blocks with c
to give an m · n length ciphertext

The encoding function, c can be represented by an n × k generator matrix, G whose k
columns form a linearly independent set of binary words

For example for the [3, 1]
repetition code we have al-
ready seen

G =

 1
1
1

 ,

 1
1
1

 (0) =

 0
0
0

 ,

 1
1
1

 (1) =

 1
1
1


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Example 11.2.2

The [7, 4] Hamming code encodes 4-bit strings, elements of Z4
2, into 7-bit

strings, elements of Z7
2

One possible encoding is with generating matrix

1000 7→ 1110100

0100 7→ 1101010

0010 7→ 1011001

0001 7→ 1111111

G =



1 1 1 1
1 1 0 1
1 0 1 1
0 1 1 1
1 0 0 1
0 1 0 1
0 0 1 1


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