

Today's outline - April 07, 2022

Today's outline - April 07, 2022

- Superoperators

Today's outline - April 07, 2022

- Superoperators
- Examples

Today's outline - April 07, 2022

- Superoperators
- Examples
- Operator sum decomposition

- Superoperators
- Examples
- Operator sum decomposition
- More examples

Today's outline - April 07, 2022

- Superoperators
- Examples
- Operator sum decomposition
- More examples

Reading assignment: 11.1 – 11.2

- Superoperators
- Examples
- Operator sum decomposition
- More examples

Reading assignment: 11.1 – 11.2

Quantum circuit simulator <https://algassert.com/quirk>

Superoperators

Consider a unitary operator U acting on a system X such that

Superoperators

Consider a unitary operator U acting on a system X such that

$$|\psi\rangle \mapsto U|\psi\rangle$$

Superoperators

Consider a unitary operator U acting on a system X such that

$$|\psi\rangle \mapsto U|\psi\rangle$$

Since the density operator for pure state $|\psi\rangle$ is $\rho = |\psi\rangle\langle\psi|$

Superoperators

Consider a unitary operator U acting on a system X such that

Since the density operator for pure state $|\psi\rangle$ is $\rho = |\psi\rangle\langle\psi|$

$$|\psi\rangle \mapsto U|\psi\rangle$$

$$\rho \mapsto U|\psi\rangle\langle\psi|U^\dagger$$

Superoperators

Consider a unitary operator U acting on a system X such that

Since the density operator for pure state $|\psi\rangle$ is $\rho = |\psi\rangle\langle\psi|$

$$|\psi\rangle \mapsto U|\psi\rangle$$

$$\rho \mapsto U|\psi\rangle\langle\psi|U^\dagger = U\rho U^\dagger$$

Superoperators

Consider a unitary operator U acting on a system X such that

Since the density operator for pure state $|\psi\rangle$ is $\rho = |\psi\rangle\langle\psi|$

$$|\psi\rangle \mapsto U|\psi\rangle$$

$$\rho \mapsto U|\psi\rangle\langle\psi|U^\dagger = U\rho U^\dagger$$

Things are more complicated in the general case when $X = A \otimes B$ and $|\psi\rangle \in X$, now

Superoperators

Consider a unitary operator U acting on a system X such that

Since the density operator for pure state $|\psi\rangle$ is $\rho = |\psi\rangle\langle\psi|$

Things are more complicated in the general case when $X = A \otimes B$ and $|\psi\rangle \in X$, now

$$|\psi\rangle \mapsto U|\psi\rangle$$

$$\rho \mapsto U|\psi\rangle\langle\psi|U^\dagger = U\rho U^\dagger$$

$$\rho_A = \text{Tr}(\rho) \mapsto \rho'_A = \text{Tr}(U|\psi\rangle\langle\psi|U^\dagger)$$

Superoperators

Consider a unitary operator U acting on a system X such that

Since the density operator for pure state $|\psi\rangle$ is $\rho = |\psi\rangle\langle\psi|$

Things are more complicated in the general case when $X = A \otimes B$ and $|\psi\rangle \in X$, now

In the case when $U = U_A \otimes U_B$ then the person who controls subsystem A can obtain ρ'_A directly using ρ_A and U

$$|\psi\rangle \mapsto U|\psi\rangle$$

$$\rho \mapsto U|\psi\rangle\langle\psi|U^\dagger = U\rho U^\dagger$$

$$\rho_A = \text{Tr}(\rho) \mapsto \rho'_A = \text{Tr}(U|\psi\rangle\langle\psi|U^\dagger)$$

Superoperators

Consider a unitary operator U acting on a system X such that

Since the density operator for pure state $|\psi\rangle$ is $\rho = |\psi\rangle\langle\psi|$

Things are more complicated in the general case when $X = A \otimes B$ and $|\psi\rangle \in X$, now

In the case when $U = U_A \otimes U_B$ then the person who controls subsystem A can obtain ρ'_A directly using ρ_A and U

However for a general unitary operator, it is not possible to deduce ρ'_A from ρ_A and U alone as ρ'_A depends on the initial state $|\psi\rangle$ of the entire system

$$|\psi\rangle \mapsto U|\psi\rangle$$

$$\rho \mapsto U|\psi\rangle\langle\psi|U^\dagger = U\rho U^\dagger$$

$$\rho_A = \text{Tr}(\rho) \mapsto \rho'_A = \text{Tr}(U|\psi\rangle\langle\psi|U^\dagger)$$

Superoperators

Suppose that \mathcal{D}_A is the set of all density operators for subsystem A

Superoperators

Suppose that \mathcal{D}_A is the set of all density operators for subsystem A

If A and B are not entangled and B is initially in a state $|\phi_B\rangle$ then the action of U on X is

Superoperators

Suppose that \mathcal{D}_A is the set of all density operators for subsystem A

If A and B are not entangled and B is initially in a state $|\phi_B\rangle$ then the action of U on X is

$$U : X \rightarrow X$$

Superoperators

Suppose that \mathcal{D}_A is the set of all density operators for subsystem A

If A and B are not entangled and B is initially in a state $|\phi_B\rangle$ then the action of U on X is

$$\begin{aligned} U : X &\rightarrow X \\ |\psi\rangle &\mapsto U|\psi\rangle \end{aligned}$$

Superoperators

Suppose that \mathcal{D}_A is the set of all density operators for subsystem A

If A and B are not entangled and B is initially in a state $|\phi_B\rangle$ then the action of U on X is

$$\begin{aligned} U : X &\rightarrow X \\ |\psi\rangle &\mapsto U|\psi\rangle \end{aligned}$$

which induces the action of the superoperator $S_U^{\phi_B}$

Superoperators

Suppose that \mathcal{D}_A is the set of all density operators for subsystem A

If A and B are not entangled and B is initially in a state $|\phi_B\rangle$ then the action of U on X is

$$\begin{aligned} U : X &\rightarrow X \\ |\psi\rangle &\mapsto U|\psi\rangle \end{aligned}$$

which induces the action of the superoperator $S_U^{\phi_B}$

$$S_U^{\phi_B} : \mathcal{D}_A \rightarrow \mathcal{D}_A$$

Superoperators

Suppose that \mathcal{D}_A is the set of all density operators for subsystem A

If A and B are not entangled and B is initially in a state $|\phi_B\rangle$ then the action of U on X is

$$\begin{aligned} U : X &\rightarrow X \\ |\psi\rangle &\mapsto U|\psi\rangle \end{aligned}$$

which induces the action of the superoperator $S_U^{\phi_B}$

$$\begin{aligned} S_U^{\phi_B} : \mathcal{D}_A &\rightarrow \mathcal{D}_A \\ \rho_A &\mapsto \rho'_A \end{aligned}$$

Superoperators

Suppose that \mathcal{D}_A is the set of all density operators for subsystem A

If A and B are not entangled and B is initially in a state $|\phi_B\rangle$ then the action of U on X is

$$U : X \rightarrow X$$

$$|\psi\rangle \mapsto U|\psi\rangle$$

which induces the action of the superoperator $S_U^{\phi_B}$ where

$$\rho_A = \text{Tr}(|\psi\rangle\langle\psi|) \text{ and } \rho'_A = \text{Tr}(U|\psi\rangle\langle\psi|U^\dagger)$$

$$S_U^{\phi_B} : \mathcal{D}_A \rightarrow \mathcal{D}_A$$

$$\rho_A \mapsto \rho'_A$$

Superoperators

Suppose that \mathcal{D}_A is the set of all density operators for subsystem A

If A and B are not entangled and B is initially in a state $|\phi_B\rangle$ then the action of U on X is

$$\begin{aligned} U : X &\rightarrow X \\ |\psi\rangle &\mapsto U|\psi\rangle \end{aligned}$$

which induces the action of the superoperator $S_U^{\phi_B}$ where

$$\rho_A = \text{Tr}(|\psi\rangle\langle\psi|) \text{ and } \rho'_A = \text{Tr}(U|\psi\rangle\langle\psi|U^\dagger)$$

$$\begin{aligned} S_U^{\phi_B} : \mathcal{D}_A &\rightarrow \mathcal{D}_A \\ \rho_A &\mapsto \rho'_A \end{aligned}$$

Consider a density operator that is a probabilistic mixture of other density operators

Superoperators

Suppose that \mathcal{D}_A is the set of all density operators for subsystem A

If A and B are not entangled and B is initially in a state $|\phi_B\rangle$ then the action of U on X is

$$\begin{aligned} U : X &\rightarrow X \\ |\psi\rangle &\mapsto U|\psi\rangle \end{aligned}$$

which induces the action of the superoperator $S_U^{\phi_B}$ where

$$\rho_A = \text{Tr}(|\psi\rangle\langle\psi|) \text{ and } \rho'_A = \text{Tr}(U|\psi\rangle\langle\psi|U^\dagger)$$

$$\begin{aligned} S_U^{\phi_B} : \mathcal{D}_A &\rightarrow \mathcal{D}_A \\ \rho_A &\mapsto \rho'_A \end{aligned}$$

Consider a density operator that is a probabilistic mixture of other density operators

$$\rho = \sum_i p_i \rho_i$$

Superoperators

Suppose that \mathcal{D}_A is the set of all density operators for subsystem A

If A and B are not entangled and B is initially in a state $|\phi_B\rangle$ then the action of U on X is

$$U : X \rightarrow X$$

$$|\psi\rangle \mapsto U|\psi\rangle$$

which induces the action of the superoperator $S_U^{\phi_B}$ where

$$\rho_A = \text{Tr}(|\psi\rangle\langle\psi|) \text{ and } \rho'_A = \text{Tr}(U|\psi\rangle\langle\psi|U^\dagger)$$

$$S_U^{\phi_B} : \mathcal{D}_A \rightarrow \mathcal{D}_A$$

$$\rho_A \mapsto \rho'_A$$

Consider a density operator that is a probabilistic mixture of other density operators

$$\rho = \sum_i p_i \rho_i$$

The effect of a superoperator on this mixture is the sum of its effect on the individual density operators

Superoperators

Suppose that \mathcal{D}_A is the set of all density operators for subsystem A

If A and B are not entangled and B is initially in a state $|\phi_B\rangle$ then the action of U on X is

$$\begin{aligned} U : X &\rightarrow X \\ |\psi\rangle &\mapsto U|\psi\rangle \end{aligned}$$

which induces the action of the superoperator $S_U^{\phi_B}$ where

$$\rho_A = \text{Tr}(|\psi\rangle\langle\psi|) \text{ and } \rho'_A = \text{Tr}(U|\psi\rangle\langle\psi|U^\dagger)$$

$$\begin{aligned} S_U^{\phi_B} : \mathcal{D}_A &\rightarrow \mathcal{D}_A \\ \rho_A &\mapsto \rho'_A \end{aligned}$$

Consider a density operator that is a probabilistic mixture of other density operators

$$\rho = \sum_i p_i \rho_i$$

The effect of a superoperator on this mixture is the sum of its effect on the individual density operators

$$S : \rho \mapsto \sum_i p_i S(\rho_i)$$

Example 10.4.1

Let $X = A \otimes B$, where A and B are single qubit systems

Example 10.4.1

Let $X = A \otimes B$, where A and B are single qubit systems

Define $\rho_A = |0\rangle\langle 0|$ and take $U = C_{not}$ with B as the control and A the target

Example 10.4.1

Let $X = A \otimes B$, where A and B are single qubit systems

Define $\rho_A = |0\rangle\langle 0|$ and take $U = C_{not}$ with B as the control and A the target

$$U = |00\rangle\langle 00| + |11\rangle\langle 01| + |10\rangle\langle 10| + |01\rangle\langle 11|$$

Example 10.4.1

Let $X = A \otimes B$, where A and B are single qubit systems

Define $\rho_A = |0\rangle\langle 0|$ and take $U = C_{not}$ with B as the control and A the target

$$U = |00\rangle\langle 00| + |11\rangle\langle 01| + |10\rangle\langle 10| + |01\rangle\langle 11|$$

Consider the following states, each of which is consistent with ρ_A , and compute ρ'_A

Example 10.4.1

Let $X = A \otimes B$, where A and B are single qubit systems

Define $\rho_A = |0\rangle\langle 0|$ and take $U = C_{not}$ with B as the control and A the target

$$U = |00\rangle\langle 00| + |11\rangle\langle 01| + |10\rangle\langle 10| + |01\rangle\langle 11|$$

Consider the following states, each of which is consistent with ρ_A , and compute ρ'_A

$$|\psi_0\rangle = |00\rangle,$$

Example 10.4.1

Let $X = A \otimes B$, where A and B are single qubit systems

Define $\rho_A = |0\rangle\langle 0|$ and take $U = C_{not}$ with B as the control and A the target

$$U = |00\rangle\langle 00| + |11\rangle\langle 01| + |10\rangle\langle 10| + |01\rangle\langle 11|$$

Consider the following states, each of which is consistent with ρ_A , and compute ρ'_A

$$|\psi_0\rangle = |00\rangle, \quad \rho_A = \text{Tr}_B(|00\rangle\langle 00|) = \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \langle ik|00\rangle\langle 00|jk\rangle|j\rangle\langle i|$$

Example 10.4.1

Let $X = A \otimes B$, where A and B are single qubit systems

Define $\rho_A = |0\rangle\langle 0|$ and take $U = C_{not}$ with B as the control and A the target

$$U = |00\rangle\langle 00| + |11\rangle\langle 01| + |10\rangle\langle 10| + |01\rangle\langle 11|$$

Consider the following states, each of which is consistent with ρ_A , and compute ρ'_A

$$|\psi_0\rangle = |00\rangle, \quad \rho_A = \text{Tr}_B(|00\rangle\langle 00|) = \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \langle ik|00\rangle\langle 00|jk\rangle|j\rangle\langle i| = |0\rangle\langle 0|$$

Example 10.4.1

Let $X = A \otimes B$, where A and B are single qubit systems

Define $\rho_A = |0\rangle\langle 0|$ and take $U = C_{not}$ with B as the control and A the target

$$U = |00\rangle\langle 00| + |11\rangle\langle 01| + |10\rangle\langle 10| + |01\rangle\langle 11|$$

Consider the following states, each of which is consistent with ρ_A , and compute ρ'_A

$$|\psi_0\rangle = |00\rangle, \quad \rho_A = \text{Tr}_B(|00\rangle\langle 00|) = \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \langle ik|00\rangle\langle 00|jk\rangle|j\rangle\langle i| = |0\rangle\langle 0|$$

$$\rho'_A = \text{Tr}_B(U|00\rangle\langle 00|U)$$

Example 10.4.1

Let $X = A \otimes B$, where A and B are single qubit systems

Define $\rho_A = |0\rangle\langle 0|$ and take $U = C_{not}$ with B as the control and A the target

$$U = |00\rangle\langle 00| + |11\rangle\langle 01| + |10\rangle\langle 10| + |01\rangle\langle 11|$$

Consider the following states, each of which is consistent with ρ_A , and compute ρ'_A

$$|\psi_0\rangle = |00\rangle, \quad \rho_A = \text{Tr}_B(|00\rangle\langle 00|) = \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \langle ik|00\rangle\langle 00|jk\rangle|j\rangle\langle i| = |0\rangle\langle 0|$$

$$\rho'_A = \text{Tr}_B(U|00\rangle\langle 00|U) = \text{Tr}_B(|00\rangle\langle 00|) = |0\rangle\langle 0|$$

Example 10.4.1

Let $X = A \otimes B$, where A and B are single qubit systems

Define $\rho_A = |0\rangle\langle 0|$ and take $U = C_{not}$ with B as the control and A the target

$$U = |00\rangle\langle 00| + |11\rangle\langle 01| + |10\rangle\langle 10| + |01\rangle\langle 11|$$

Consider the following states, each of which is consistent with ρ_A , and compute ρ'_A

$$|\psi_0\rangle = |00\rangle, \quad \rho_A = \text{Tr}_B(|00\rangle\langle 00|) = \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \langle ik|00\rangle\langle 00|jk\rangle|j\rangle\langle i| = |0\rangle\langle 0|$$

$$\rho'_A = \text{Tr}_B(U|00\rangle\langle 00|U) = \text{Tr}_B(|00\rangle\langle 00|) = |0\rangle\langle 0|$$

$$|\psi_1\rangle = |01\rangle,$$

Example 10.4.1

Let $X = A \otimes B$, where A and B are single qubit systems

Define $\rho_A = |0\rangle\langle 0|$ and take $U = C_{not}$ with B as the control and A the target

$$U = |00\rangle\langle 00| + |11\rangle\langle 01| + |10\rangle\langle 10| + |01\rangle\langle 11|$$

Consider the following states, each of which is consistent with ρ_A , and compute ρ'_A

$$|\psi_0\rangle = |00\rangle, \quad \rho_A = \text{Tr}_B(|00\rangle\langle 00|) = \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \langle ik|00\rangle\langle 00|jk\rangle|j\rangle\langle i| = |0\rangle\langle 0|$$

$$\rho'_A = \text{Tr}_B(U|00\rangle\langle 00|U) = \text{Tr}_B(|00\rangle\langle 00|) = |0\rangle\langle 0|$$

$$|\psi_1\rangle = |01\rangle, \quad \rho_A = \text{Tr}_B(|01\rangle\langle 01|) = \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \langle ik|01\rangle\langle 01|jk\rangle|j\rangle\langle i|$$

Example 10.4.1

Let $X = A \otimes B$, where A and B are single qubit systems

Define $\rho_A = |0\rangle\langle 0|$ and take $U = C_{not}$ with B as the control and A the target

$$U = |00\rangle\langle 00| + |11\rangle\langle 01| + |10\rangle\langle 10| + |01\rangle\langle 11|$$

Consider the following states, each of which is consistent with ρ_A , and compute ρ'_A

$$|\psi_0\rangle = |00\rangle, \quad \rho_A = \text{Tr}_B(|00\rangle\langle 00|) = \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \langle ik|00\rangle\langle 00|jk\rangle|j\rangle\langle i| = |0\rangle\langle 0|$$

$$\rho'_A = \text{Tr}_B(U|00\rangle\langle 00|U) = \text{Tr}_B(|00\rangle\langle 00|) = |0\rangle\langle 0|$$

$$|\psi_1\rangle = |01\rangle, \quad \rho_A = \text{Tr}_B(|01\rangle\langle 01|) = \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \langle ik|01\rangle\langle 01|jk\rangle|j\rangle\langle i| = |0\rangle\langle 0|$$

Example 10.4.1

Let $X = A \otimes B$, where A and B are single qubit systems

Define $\rho_A = |0\rangle\langle 0|$ and take $U = C_{not}$ with B as the control and A the target

$$U = |00\rangle\langle 00| + |11\rangle\langle 01| + |10\rangle\langle 10| + |01\rangle\langle 11|$$

Consider the following states, each of which is consistent with ρ_A , and compute ρ'_A

$$|\psi_0\rangle = |00\rangle, \quad \rho_A = \text{Tr}_B(|00\rangle\langle 00|) = \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \langle ik|00\rangle\langle 00|jk\rangle|j\rangle\langle i| = |0\rangle\langle 0|$$

$$\rho'_A = \text{Tr}_B(U|00\rangle\langle 00|U) = \text{Tr}_B(|00\rangle\langle 00|) = |0\rangle\langle 0|$$

$$|\psi_1\rangle = |01\rangle, \quad \rho_A = \text{Tr}_B(|01\rangle\langle 01|) = \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \langle ik|01\rangle\langle 01|jk\rangle|j\rangle\langle i| = |0\rangle\langle 0|$$

$$\rho'_A = \text{Tr}_B(U|01\rangle\langle 01|U)$$

Example 10.4.1

Let $X = A \otimes B$, where A and B are single qubit systems

Define $\rho_A = |0\rangle\langle 0|$ and take $U = C_{not}$ with B as the control and A the target

$$U = |00\rangle\langle 00| + |11\rangle\langle 01| + |10\rangle\langle 10| + |01\rangle\langle 11|$$

Consider the following states, each of which is consistent with ρ_A , and compute ρ'_A

$$|\psi_0\rangle = |00\rangle, \quad \rho_A = \text{Tr}_B(|00\rangle\langle 00|) = \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \langle ik|00\rangle\langle 00|jk\rangle|j\rangle\langle i| = |0\rangle\langle 0|$$

$$\rho'_A = \text{Tr}_B(U|00\rangle\langle 00|U) = \text{Tr}_B(|00\rangle\langle 00|) = |0\rangle\langle 0|$$

$$|\psi_1\rangle = |01\rangle, \quad \rho_A = \text{Tr}_B(|01\rangle\langle 01|) = \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \langle ik|01\rangle\langle 01|jk\rangle|j\rangle\langle i| = |0\rangle\langle 0|$$

$$\rho'_A = \text{Tr}_B(U|01\rangle\langle 01|U) = \text{Tr}_B(|11\rangle\langle 11|)$$

Example 10.4.1

Let $X = A \otimes B$, where A and B are single qubit systems

Define $\rho_A = |0\rangle\langle 0|$ and take $U = C_{not}$ with B as the control and A the target

$$U = |00\rangle\langle 00| + |11\rangle\langle 01| + |10\rangle\langle 10| + |01\rangle\langle 11|$$

Consider the following states, each of which is consistent with ρ_A , and compute ρ'_A

$$|\psi_0\rangle = |00\rangle, \quad \rho_A = \text{Tr}_B(|00\rangle\langle 00|) = \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \langle ik|00\rangle\langle 00|jk\rangle|j\rangle\langle i| = |0\rangle\langle 0|$$

$$\rho'_A = \text{Tr}_B(U|00\rangle\langle 00|U) = \text{Tr}_B(|00\rangle\langle 00|) = |0\rangle\langle 0|$$

$$|\psi_1\rangle = |01\rangle, \quad \rho_A = \text{Tr}_B(|01\rangle\langle 01|) = \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \langle ik|01\rangle\langle 01|jk\rangle|j\rangle\langle i| = |0\rangle\langle 0|$$

$$\rho'_A = \text{Tr}_B(U|01\rangle\langle 01|U) = \text{Tr}_B(|11\rangle\langle 11|) = \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \langle ik|11\rangle\langle 11|jk\rangle|j\rangle\langle i|$$

Example 10.4.1

Let $X = A \otimes B$, where A and B are single qubit systems

Define $\rho_A = |0\rangle\langle 0|$ and take $U = C_{not}$ with B as the control and A the target

$$U = |00\rangle\langle 00| + |11\rangle\langle 01| + |10\rangle\langle 10| + |01\rangle\langle 11|$$

Consider the following states, each of which is consistent with ρ_A , and compute ρ'_A

$$|\psi_0\rangle = |00\rangle, \quad \rho_A = \text{Tr}_B(|00\rangle\langle 00|) = \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \langle ik|00\rangle\langle 00|jk\rangle|j\rangle\langle i| = |0\rangle\langle 0|$$

$$\rho'_A = \text{Tr}_B(U|00\rangle\langle 00|U) = \text{Tr}_B(|00\rangle\langle 00|) = |0\rangle\langle 0|$$

$$|\psi_1\rangle = |01\rangle, \quad \rho_A = \text{Tr}_B(|01\rangle\langle 01|) = \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \langle ik|01\rangle\langle 01|jk\rangle|j\rangle\langle i| = |0\rangle\langle 0|$$

$$\rho'_A = \text{Tr}_B(U|01\rangle\langle 01|U) = \text{Tr}_B(|11\rangle\langle 11|) = \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \langle ik|11\rangle\langle 11|jk\rangle|j\rangle\langle i| = |1\rangle\langle 1|$$

Example 10.4.1 (cont.)

$$U = |00\rangle\langle 00| + |11\rangle\langle 01| + |10\rangle\langle 10| + |01\rangle\langle 11|$$

Example 10.4.1 (cont.)

$$U = |00\rangle\langle 00| + |11\rangle\langle 01| + |10\rangle\langle 10| + |01\rangle\langle 11|$$

$$|\psi_2\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |01\rangle)$$

Example 10.4.1 (cont.)

$$U = |00\rangle\langle 00| + |11\rangle\langle 01| + |10\rangle\langle 10| + |01\rangle\langle 11|$$

$$|\psi_2\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |01\rangle)$$

$$\rho_A = \text{Tr}_B \left(\frac{1}{2} (|00\rangle\langle 00| + |00\rangle\langle 01| + |01\rangle\langle 00| + |01\rangle\langle 01|) \right)$$

Example 10.4.1 (cont.)

$$U = |00\rangle\langle 00| + |11\rangle\langle 01| + |10\rangle\langle 10| + |01\rangle\langle 11|$$

$$|\psi_2\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |01\rangle)$$

$$\rho_A = \text{Tr}_B \left(\frac{1}{2} (|00\rangle\langle 00| + |00\rangle\langle 01| + |01\rangle\langle 00| + |01\rangle\langle 01|) \right)$$

$$= \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \frac{1}{2} \langle ik| (|00\rangle\langle 00| + |00\rangle\langle 01| + |01\rangle\langle 00| + |01\rangle\langle 01|) |jk\rangle |j\rangle\langle i|$$

Example 10.4.1 (cont.)

$$U = |00\rangle\langle 00| + |11\rangle\langle 01| + |10\rangle\langle 10| + |01\rangle\langle 11|$$

$$|\psi_2\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |01\rangle)$$

$$\rho_A = \text{Tr}_B \left(\frac{1}{2} (|00\rangle\langle 00| + |00\rangle\langle 01| + |01\rangle\langle 00| + |01\rangle\langle 01|) \right)$$

$$= \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \frac{1}{2} \langle ik| (|00\rangle\langle 00| + |00\rangle\langle 01| + |01\rangle\langle 00| + |01\rangle\langle 01|) |jk\rangle |j\rangle\langle i|$$

$$= \left(\frac{1}{2} + \frac{1}{2} \right) |0\rangle\langle 0| = |0\rangle\langle 0|$$

Example 10.4.1 (cont.)

$$U = |00\rangle\langle 00| + |11\rangle\langle 01| + |10\rangle\langle 10| + |01\rangle\langle 11|$$

$$|\psi_2\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |01\rangle)$$

$$\rho_A = \text{Tr}_B \left(\frac{1}{2} (|00\rangle\langle 00| + |00\rangle\langle 01| + |01\rangle\langle 00| + |01\rangle\langle 01|) \right)$$

$$= \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \frac{1}{2} \langle ik| (|00\rangle\langle 00| + |00\rangle\langle 01| + |01\rangle\langle 00| + |01\rangle\langle 01|) |jk\rangle |j\rangle\langle i|$$

$$= \left(\frac{1}{2} + \frac{1}{2} \right) |0\rangle\langle 0| = |0\rangle\langle 0|$$

$$\rho'_A = \text{Tr}_B \left(\frac{1}{2} U (|00\rangle\langle 00| + |00\rangle\langle 01| + |01\rangle\langle 00| + |01\rangle\langle 01|) U \right)$$

Example 10.4.1 (cont.)

$$U = |00\rangle\langle 00| + |11\rangle\langle 01| + |10\rangle\langle 10| + |01\rangle\langle 11|$$

$$|\psi_2\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |01\rangle)$$

$$\rho_A = \text{Tr}_B \left(\frac{1}{2} (|00\rangle\langle 00| + |00\rangle\langle 01| + |01\rangle\langle 00| + |01\rangle\langle 01|) \right)$$

$$= \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \frac{1}{2} \langle ik| (|00\rangle\langle 00| + |00\rangle\langle 01| + |01\rangle\langle 00| + |01\rangle\langle 01|) |jk\rangle |j\rangle\langle i|$$

$$= \left(\frac{1}{2} + \frac{1}{2} \right) |0\rangle\langle 0| = |0\rangle\langle 0|$$

$$\rho'_A = \text{Tr}_B \left(\frac{1}{2} U (|00\rangle\langle 00| + |00\rangle\langle 01| + |01\rangle\langle 00| + |01\rangle\langle 01|) U \right)$$

$$= \text{Tr}_B \left(\frac{1}{2} (|00\rangle\langle 00| + |00\rangle\langle 11| + |11\rangle\langle 00| + |11\rangle\langle 11|) \right)$$

Example 10.4.1 (cont.)

$$U = |00\rangle\langle 00| + |11\rangle\langle 01| + |10\rangle\langle 10| + |01\rangle\langle 11|$$

$$|\psi_2\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |01\rangle)$$

$$\rho_A = \text{Tr}_B \left(\frac{1}{2} (|00\rangle\langle 00| + |00\rangle\langle 01| + |01\rangle\langle 00| + |01\rangle\langle 01|) \right)$$

$$= \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \frac{1}{2} \langle ik| (|00\rangle\langle 00| + |00\rangle\langle 01| + |01\rangle\langle 00| + |01\rangle\langle 01|) |jk\rangle |j\rangle\langle i|$$

$$= \left(\frac{1}{2} + \frac{1}{2} \right) |0\rangle\langle 0| = |0\rangle\langle 0|$$

$$\rho'_A = \text{Tr}_B \left(\frac{1}{2} U (|00\rangle\langle 00| + |00\rangle\langle 01| + |01\rangle\langle 00| + |01\rangle\langle 01|) U \right)$$

$$= \text{Tr}_B \left(\frac{1}{2} (|00\rangle\langle 00| + |00\rangle\langle 11| + |11\rangle\langle 00| + |11\rangle\langle 11|) \right)$$

$$= \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \frac{1}{2} \langle ik| (|00\rangle\langle 00| + |00\rangle\langle 11| + |11\rangle\langle 00| + |11\rangle\langle 11|) |jk\rangle |j\rangle\langle i|$$

Example 10.4.1 (cont.)

$$U = |00\rangle\langle 00| + |11\rangle\langle 01| + |10\rangle\langle 10| + |01\rangle\langle 11|$$

$$|\psi_2\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |01\rangle)$$

$$\rho_A = \text{Tr}_B \left(\frac{1}{2} (|00\rangle\langle 00| + |00\rangle\langle 01| + |01\rangle\langle 00| + |01\rangle\langle 01|) \right)$$

$$= \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \frac{1}{2} \langle ik| (|00\rangle\langle 00| + |00\rangle\langle 01| + |01\rangle\langle 00| + |01\rangle\langle 01|) |jk\rangle |j\rangle\langle i|$$

$$= \left(\frac{1}{2} + \frac{1}{2} \right) |0\rangle\langle 0| = |0\rangle\langle 0|$$

$$\rho'_A = \text{Tr}_B \left(\frac{1}{2} U (|00\rangle\langle 00| + |00\rangle\langle 01| + |01\rangle\langle 00| + |01\rangle\langle 01|) U \right)$$

$$= \text{Tr}_B \left(\frac{1}{2} (|00\rangle\langle 00| + |00\rangle\langle 11| + |11\rangle\langle 00| + |11\rangle\langle 11|) \right)$$

$$= \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \frac{1}{2} \langle ik| (|00\rangle\langle 00| + |00\rangle\langle 11| + |11\rangle\langle 00| + |11\rangle\langle 11|) |jk\rangle |j\rangle\langle i|$$

$$= \frac{1}{2} |0\rangle\langle 0| + \frac{1}{2} |1\rangle\langle 1|$$

Example 10.4.1 (cont.)

$$U = |00\rangle\langle 00| + |11\rangle\langle 01| + |10\rangle\langle 10| + |01\rangle\langle 11|$$

$$|\psi_2\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |01\rangle)$$

$$\rho_A = \text{Tr}_B \left(\frac{1}{2} (|00\rangle\langle 00| + |00\rangle\langle 01| + |01\rangle\langle 00| + |01\rangle\langle 01|) \right)$$

$$= \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \frac{1}{2} \langle ik| (|00\rangle\langle 00| + |00\rangle\langle 01| + |01\rangle\langle 00| + |01\rangle\langle 01|) |jk\rangle |j\rangle\langle i|$$

$$= \left(\frac{1}{2} + \frac{1}{2} \right) |0\rangle\langle 0| = |0\rangle\langle 0|$$

$$\rho'_A = \text{Tr}_B \left(\frac{1}{2} U (|00\rangle\langle 00| + |00\rangle\langle 01| + |01\rangle\langle 00| + |01\rangle\langle 01|) U \right)$$

$$= \text{Tr}_B \left(\frac{1}{2} (|00\rangle\langle 00| + |00\rangle\langle 11| + |11\rangle\langle 00| + |11\rangle\langle 11|) \right)$$

$$= \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \frac{1}{2} \langle ik| (|00\rangle\langle 00| + |00\rangle\langle 11| + |11\rangle\langle 00| + |11\rangle\langle 11|) |jk\rangle |j\rangle\langle i|$$

$$= \frac{1}{2} |0\rangle\langle 0| + \frac{1}{2} |1\rangle\langle 1| = \frac{1}{2} I$$

Example 10.4.2

Consider the operator $U_{switch} = |00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11|$ acting on single qubit systems A and B

Example 10.4.2

Consider the operator $U_{switch} = |00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11|$ acting on single qubit systems A and B

Suppose that system A is initially in state $\rho_A = |\psi\rangle\langle\psi|$ and system B is in state $|0\rangle\langle 0|$

Example 10.4.2

Consider the operator $U_{switch} = |00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11|$ acting on single qubit systems A and B

Suppose that system A is initially in state $\rho_A = |\psi\rangle\langle\psi|$ and system B is in state $|0\rangle\langle 0|$

Because $\rho_B = |0\rangle\langle 0|$ the state of the system initially can be described as $(a|0\rangle + b|1\rangle)|0\rangle = a|00\rangle + b|10\rangle$ where $|a|^2 + |b|^2 = 1$

Example 10.4.2

Consider the operator $U_{switch} = |00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11|$ acting on single qubit systems A and B

Suppose that system A is initially in state $\rho_A = |\psi\rangle\langle\psi|$ and system B is in state $|0\rangle\langle 0|$

Because $\rho_B = |0\rangle\langle 0|$ the state of the system initially can be described as $(a|0\rangle + b|1\rangle)|0\rangle = a|00\rangle + b|10\rangle$ where $|a|^2 + |b|^2 = 1$

$$\rho'_A = \text{Tr}_B \left(U(|a|^2|00\rangle\langle 00| + a\bar{b}|10\rangle\langle 00| + \bar{a}b|00\rangle\langle 10| + |b|^2|10\rangle\langle 10|) U^\dagger \right)$$

Example 10.4.2

Consider the operator $U_{switch} = |00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11|$ acting on single qubit systems A and B

Suppose that system A is initially in state $\rho_A = |\psi\rangle\langle\psi|$ and system B is in state $|0\rangle\langle 0|$

Because $\rho_B = |0\rangle\langle 0|$ the state of the system initially can be described as $(a|0\rangle + b|1\rangle)|0\rangle = a|00\rangle + b|10\rangle$ where $|a|^2 + |b|^2 = 1$

$$\begin{aligned}\rho'_A &= \text{Tr}_B \left(U(|a|^2|00\rangle\langle 00| + a\bar{b}|10\rangle\langle 00| + \bar{a}b|00\rangle\langle 10| + |b|^2|10\rangle\langle 10|) U \right) \\ &= \text{Tr}_B \left(|a|^2|00\rangle\langle 00| + a\bar{b}|01\rangle\langle 00| + \bar{a}b|00\rangle\langle 01| + |b|^2|01\rangle\langle 01| \right)\end{aligned}$$

Example 10.4.2

Consider the operator $U_{switch} = |00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11|$ acting on single qubit systems A and B

Suppose that system A is initially in state $\rho_A = |\psi\rangle\langle\psi|$ and system B is in state $|0\rangle\langle 0|$

Because $\rho_B = |0\rangle\langle 0|$ the state of the system initially can be described as $(a|0\rangle + b|1\rangle)|0\rangle = a|00\rangle + b|10\rangle$ where $|a|^2 + |b|^2 = 1$

$$\begin{aligned}\rho'_A &= \text{Tr}_B \left(U(|a|^2|00\rangle\langle 00| + a\bar{b}|10\rangle\langle 00| + \bar{a}b|00\rangle\langle 10| + |b|^2|10\rangle\langle 10|) U \right) \\ &= \text{Tr}_B \left(|a|^2|00\rangle\langle 00| + a\bar{b}|01\rangle\langle 00| + \bar{a}b|00\rangle\langle 01| + |b|^2|01\rangle\langle 01| \right) \\ &= \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \langle ik | (|a|^2|00\rangle\langle 00| + a\bar{b}|01\rangle\langle 00| + \bar{a}b|00\rangle\langle 01| + |b|^2|01\rangle\langle 01|) |jk \rangle |j\rangle\langle i|\end{aligned}$$

Example 10.4.2

Consider the operator $U_{switch} = |00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11|$ acting on single qubit systems A and B

Suppose that system A is initially in state $\rho_A = |\psi\rangle\langle\psi|$ and system B is in state $|0\rangle\langle 0|$

Because $\rho_B = |0\rangle\langle 0|$ the state of the system initially can be described as $(a|0\rangle + b|1\rangle)|0\rangle = a|00\rangle + b|10\rangle$ where $|a|^2 + |b|^2 = 1$

$$\begin{aligned}\rho'_A &= \text{Tr}_B \left(U(|a|^2|00\rangle\langle 00| + a\bar{b}|10\rangle\langle 00| + \bar{a}b|00\rangle\langle 10| + |b|^2|10\rangle\langle 10|) U \right) \\ &= \text{Tr}_B \left(|a|^2|00\rangle\langle 00| + a\bar{b}|01\rangle\langle 00| + \bar{a}b|00\rangle\langle 01| + |b|^2|01\rangle\langle 01| \right) \\ &= \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \langle ik| \left(|a|^2|00\rangle\langle 00| + a\bar{b}|01\rangle\langle 00| + \bar{a}b|00\rangle\langle 01| + |b|^2|01\rangle\langle 01| \right) |jk\rangle |j\rangle\langle i| \\ &= (|a|^2 + |b|^2)|0\rangle\langle 0| = |0\rangle\langle 0|\end{aligned}$$

Example 10.4.2

Consider the operator $U_{switch} = |00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11|$ acting on single qubit systems A and B

Suppose that system A is initially in state $\rho_A = |\psi\rangle\langle\psi|$ and system B is in state $|0\rangle\langle 0|$

Because $\rho_B = |0\rangle\langle 0|$ the state of the system initially can be described as $(a|0\rangle + b|1\rangle)|0\rangle = a|00\rangle + b|10\rangle$ where $|a|^2 + |b|^2 = 1$

$$\begin{aligned}\rho'_A &= \text{Tr}_B \left(U(|a|^2|00\rangle\langle 00| + a\bar{b}|10\rangle\langle 00| + \bar{a}b|00\rangle\langle 10| + |b|^2|10\rangle\langle 10|) U \right) \\ &= \text{Tr}_B \left(|a|^2|00\rangle\langle 00| + a\bar{b}|01\rangle\langle 00| + \bar{a}b|00\rangle\langle 01| + |b|^2|01\rangle\langle 01| \right) \\ &= \sum_{i=0}^1 \sum_{j=0}^1 \sum_{k=0}^1 \langle ik| \left(|a|^2|00\rangle\langle 00| + a\bar{b}|01\rangle\langle 00| + \bar{a}b|00\rangle\langle 01| + |b|^2|01\rangle\langle 01| \right) |jk\rangle |j\rangle\langle i| \\ &= (|a|^2 + |b|^2)|0\rangle\langle 0| = |0\rangle\langle 0|\end{aligned}$$

Note that U_{switch} is not reversible

Operator sum decomposition

In general superoperators are not reversible, of the form $U\rho U^\dagger$ where U is unitary or even of the form $A\rho A^\dagger$ where A is a linear operator

Operator sum decomposition

In general superoperators are not reversible, of the form $U\rho U^\dagger$ where U is unitary or even of the form $A\rho A^\dagger$ where A is a linear operator

It is, however, possible to write all superoperators as a sum of linear operators A_1, \dots, A_K

Operator sum decomposition

In general superoperators are not reversible, of the form $U\rho U^\dagger$ where U is unitary or even of the form $A\rho A^\dagger$ where A is a linear operator

It is, however, possible to write all superoperators as a sum of linear operators A_1, \dots, A_K

$$S(\rho) = \sum_{i=0}^{K-1} A_i \rho A_i^\dagger$$

Operator sum decomposition

In general superoperators are not reversible, of the form $U\rho U^\dagger$ where U is unitary or even of the form $A\rho A^\dagger$ where A is a linear operator

It is, however, possible to write all superoperators as a sum of linear operators A_1, \dots, A_K

$$S(\rho) = \sum_{i=0}^{K-1} A_i \rho A_i^\dagger$$

This sum is called an operator sum decomposition for S and is not generally unique

Operator sum decomposition

In general superoperators are not reversible, of the form $U\rho U^\dagger$ where U is unitary or even of the form $A\rho A^\dagger$ where A is a linear operator

It is, however, possible to write all superoperators as a sum of linear operators A_1, \dots, A_K

$$S(\rho) = \sum_{i=0}^{K-1} A_i \rho A_i^\dagger$$

This sum is called an operator sum decomposition for S and is not generally unique

In order to obtain the operator sum decomposition for S_U^ϕ , let $\{|\beta_i\rangle\}$ be a basis for B and let $A_i = \langle\beta_i|U|\phi\rangle : A \rightarrow A$ so we have

Operator sum decomposition

In general superoperators are not reversible, of the form $U\rho U^\dagger$ where U is unitary or even of the form $A\rho A^\dagger$ where A is a linear operator

It is, however, possible to write all superoperators as a sum of linear operators A_1, \dots, A_K

$$S(\rho) = \sum_{i=0}^{K-1} A_i \rho A_i^\dagger$$

This sum is called an operator sum decomposition for S and is not generally unique

In order to obtain the operator sum decomposition for S_U^ϕ , let $\{|\beta_i\rangle\}$ be a basis for B and let $A_i = \langle\beta_i|U|\phi\rangle : A \rightarrow A$ so we have

$$S_U^\phi(\rho) = \text{Tr}_B (U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger)$$

Operator sum decomposition

In general superoperators are not reversible, of the form $U\rho U^\dagger$ where U is unitary or even of the form $A\rho A^\dagger$ where A is a linear operator

It is, however, possible to write all superoperators as a sum of linear operators A_1, \dots, A_K

$$S(\rho) = \sum_{i=0}^{K-1} A_i \rho A_i^\dagger$$

This sum is called an operator sum decomposition for S and is not generally unique

In order to obtain the operator sum decomposition for S_U^ϕ , let $\{|\beta_i\rangle\}$ be a basis for B and let $A_i = \langle\beta_i|U|\phi\rangle : A \rightarrow A$ so we have

$$S_U^\phi(\rho) = \text{Tr}_B (U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger) = \sum_{i=0}^{K-1} \langle\beta_i|U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger|\beta_i\rangle$$

Operator sum decomposition

In general superoperators are not reversible, of the form $U\rho U^\dagger$ where U is unitary or even of the form $A\rho A^\dagger$ where A is a linear operator

It is, however, possible to write all superoperators as a sum of linear operators A_1, \dots, A_K

$$S(\rho) = \sum_{i=0}^{K-1} A_i \rho A_i^\dagger$$

This sum is called an operator sum decomposition for S and is not generally unique

In order to obtain the operator sum decomposition for S_U^ϕ , let $\{|\beta_i\rangle\}$ be a basis for B and let $A_i = \langle\beta_i|U|\phi\rangle : A \rightarrow A$ so we have

$$S_U^\phi(\rho) = \text{Tr}_B (U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger) = \sum_{i=0}^{K-1} \langle\beta_i|U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger|\beta_i\rangle$$

For the pure state $\rho = |\psi\rangle\langle\psi|$ the tensor product is separable and for a mixed state which is a probabilistic sum of pure states can be similarly separated, so

Operator sum decomposition

In general superoperators are not reversible, of the form $U\rho U^\dagger$ where U is unitary or even of the form $A\rho A^\dagger$ where A is a linear operator

It is, however, possible to write all superoperators as a sum of linear operators A_1, \dots, A_K

$$S(\rho) = \sum_{i=0}^{K-1} A_i \rho A_i^\dagger$$

This sum is called an operator sum decomposition for S and is not generally unique

In order to obtain the operator sum decomposition for S_U^ϕ , let $\{|\beta_i\rangle\}$ be a basis for B and let $A_i = \langle\beta_i|U|\phi\rangle : A \rightarrow A$ so we have

$$S_U^\phi(\rho) = \text{Tr}_B (U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger) = \sum_{i=0}^{K-1} \langle\beta_i|U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger|\beta_i\rangle$$

For the pure state $\rho = |\psi\rangle\langle\psi|$ the tensor product is separable and for a mixed state which is a probabilistic sum of pure states can be similarly separated, so

$$S_U^\phi(\rho) = \sum_{i=0}^{K-1} \langle\beta_i|U|\phi\rangle \rho \langle\phi|U^\dagger|\beta_i\rangle$$

Operator sum decomposition

In general superoperators are not reversible, of the form $U\rho U^\dagger$ where U is unitary or even of the form $A\rho A^\dagger$ where A is a linear operator

It is, however, possible to write all superoperators as a sum of linear operators A_1, \dots, A_K

$$S(\rho) = \sum_{i=0}^{K-1} A_i \rho A_i^\dagger$$

This sum is called an operator sum decomposition for S and is not generally unique

In order to obtain the operator sum decomposition for S_U^ϕ , let $\{|\beta_i\rangle\}$ be a basis for B and let $A_i = \langle\beta_i|U|\phi\rangle : A \rightarrow A$ so we have

$$S_U^\phi(\rho) = \text{Tr}_B (U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger) = \sum_{i=0}^{K-1} \langle\beta_i|U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger|\beta_i\rangle$$

For the pure state $\rho = |\psi\rangle\langle\psi|$ the tensor product is separable and for a mixed state which is a probabilistic sum of pure states can be similarly separated, so

$$S_U^\phi(\rho) = \sum_{i=0}^{K-1} \langle\beta_i|U|\phi\rangle \rho \langle\phi|U^\dagger|\beta_i\rangle = \sum_{i=0}^{K-1} A_i \rho A_i^\dagger$$

Operator sum decomposition

$$S_U^\phi(\rho) = \sum_{i=0}^{K-1} \langle \beta_i | U | \phi \rangle \rho \langle \phi | U^\dagger | \beta_i \rangle = \sum_{i=0}^{K-1} A_i \rho A_i^\dagger$$

Operator sum decomposition

$$S_U^\phi(\rho) = \sum_{i=0}^{K-1} \langle \beta_i | U | \phi \rangle \rho \langle \phi | U^\dagger | \beta_i \rangle = \sum_{i=0}^{K-1} A_i \rho A_i^\dagger$$

Each term in the operator sum decomposition is Hermitian and positive but does not necessarily have trace one

Operator sum decomposition

$$S_U^\phi(\rho) = \sum_{i=0}^{K-1} \langle \beta_i | U | \phi \rangle \rho \langle \phi | U^\dagger | \beta_i \rangle = \sum_{i=0}^{K-1} A_i \rho A_i^\dagger$$

Each term in the operator sum decomposition is Hermitian and positive but does not necessarily have trace one

$$\text{Tr}(A_i \rho A_i^\dagger) \geq 0$$

Operator sum decomposition

$$S_U^\phi(\rho) = \sum_{i=0}^{K-1} \langle \beta_i | U | \phi \rangle \rho \langle \phi | U^\dagger | \beta_i \rangle = \sum_{i=0}^{K-1} A_i \rho A_i^\dagger$$

Each term in the operator sum decomposition is Hermitian and positive but does not necessarily have trace one

$$\text{Tr}(A_i \rho A_i^\dagger) \geq 0$$

However, a density operator, ρ_{decomp} , can be constructed by normalizing

Operator sum decomposition

$$S_U^\phi(\rho) = \sum_{i=0}^{K-1} \langle \beta_i | U | \phi \rangle \rho \langle \phi | U^\dagger | \beta_i \rangle = \sum_{i=0}^{K-1} A_i \rho A_i^\dagger$$

Each term in the operator sum decomposition is Hermitian and positive but does not necessarily have trace one

$$\text{Tr}(A_i \rho A_i^\dagger) \geq 0$$

However, a density operator, ρ_{decomp} , can be constructed by normalizing

$$\rho_{decomp} = \frac{A_i \rho A_i^\dagger}{\text{Tr}(A_i \rho A_i^\dagger)}$$

Operator sum decomposition

$$S_U^\phi(\rho) = \sum_{i=0}^{K-1} \langle \beta_i | U | \phi \rangle \rho \langle \phi | U^\dagger | \beta_i \rangle = \sum_{i=0}^{K-1} A_i \rho A_i^\dagger$$

Each term in the operator sum decomposition is Hermitian and positive but does not necessarily have trace one

$$\text{Tr}(A_i \rho A_i^\dagger) \geq 0$$

$$\rho_{decomp} = \frac{A_i \rho A_i^\dagger}{\text{Tr}(A_i \rho A_i^\dagger)}$$

However, a density operator, ρ_{decomp} , can be constructed by normalizing

The trace of the associated superoperator is one so

Operator sum decomposition

$$S_U^\phi(\rho) = \sum_{i=0}^{K-1} \langle \beta_i | U | \phi \rangle \rho \langle \phi | U^\dagger | \beta_i \rangle = \sum_{i=0}^{K-1} A_i \rho A_i^\dagger$$

Each term in the operator sum decomposition is Hermitian and positive but does not necessarily have trace one

$$\text{Tr}(A_i \rho A_i^\dagger) \geq 0$$

$$\rho_{decomp} = \frac{A_i \rho A_i^\dagger}{\text{Tr}(A_i \rho A_i^\dagger)}$$

$$\text{Tr}(S_U^\phi(\rho)) = \sum_{i=0}^{K-1} \text{Tr}(A_i \rho A_i^\dagger) \equiv 1$$

However, a density operator, ρ_{decomp} , can be constructed by normalizing

The trace of the associated superoperator is one so

Operator sum decomposition

$$S_U^\phi(\rho) = \sum_{i=0}^{K-1} \langle \beta_i | U | \phi \rangle \rho \langle \phi | U^\dagger | \beta_i \rangle = \sum_{i=0}^{K-1} A_i \rho A_i^\dagger$$

Each term in the operator sum decomposition is Hermitian and positive but does not necessarily have trace one

$$\text{Tr}(A_i \rho A_i^\dagger) \geq 0$$

$$\rho_{decomp} = \frac{A_i \rho A_i^\dagger}{\text{Tr}(A_i \rho A_i^\dagger)}$$

$$\text{Tr}(S_U^\phi(\rho)) = \sum_{i=0}^{K-1} \text{Tr}(A_i \rho A_i^\dagger) \equiv 1$$

However, a density operator, ρ_{decomp} , can be constructed by normalizing

The trace of the associated superoperator is one so

Thus the superoperator is a probabilistic mixture of the normalized operators

Operator sum decomposition

$$S_U^\phi(\rho) = \sum_{i=0}^{K-1} \langle \beta_i | U | \phi \rangle \rho \langle \phi | U^\dagger | \beta_i \rangle = \sum_{i=0}^{K-1} A_i \rho A_i^\dagger$$

Each term in the operator sum decomposition is Hermitian and positive but does not necessarily have trace one

$$\text{Tr}(A_i \rho A_i^\dagger) \geq 0$$

$$\rho_{decomp} = \frac{A_i \rho A_i^\dagger}{\text{Tr}(A_i \rho A_i^\dagger)}$$

$$\text{Tr}(S_U^\phi(\rho)) = \sum_{i=0}^{K-1} \text{Tr}(A_i \rho A_i^\dagger) \equiv 1$$

$$S_U^\phi(\rho) = \sum_{i=0}^{K-1} p_i \frac{A_i \rho A_i^\dagger}{\text{Tr}(A_i \rho A_i^\dagger)}$$

However, a density operator, ρ_{decomp} , can be constructed by normalizing

The trace of the associated superoperator is one so

Thus the superoperator is a probabilistic mixture of the normalized operators

Operator sum decomposition

$$S_U^\phi(\rho) = \sum_{i=0}^{K-1} \langle \beta_i | U | \phi \rangle \rho \langle \phi | U^\dagger | \beta_i \rangle = \sum_{i=0}^{K-1} A_i \rho A_i^\dagger$$

Each term in the operator sum decomposition is Hermitian and positive but does not necessarily have trace one

$$\text{Tr}(A_i \rho A_i^\dagger) \geq 0$$

$$\rho_{decomp} = \frac{A_i \rho A_i^\dagger}{\text{Tr}(A_i \rho A_i^\dagger)}$$

$$\text{Tr}(S_U^\phi(\rho)) = \sum_{i=0}^{K-1} \text{Tr}(A_i \rho A_i^\dagger) \equiv 1$$

$$S_U^\phi(\rho) = \sum_{i=0}^{K-1} p_i \frac{A_i \rho A_i^\dagger}{\text{Tr}(A_i \rho A_i^\dagger)}$$

However, a density operator, ρ_{decomp} , can be constructed by normalizing

The trace of the associated superoperator is one so

Thus the superoperator is a probabilistic mixture of the normalized operators with $p_i = \text{Tr}(A_i \rho A_i^\dagger)$

Operator sum decomposition

$$S_U^\phi(\rho) = \sum_{i=0}^{K-1} \langle \beta_i | U | \phi \rangle \rho \langle \phi | U^\dagger | \beta_i \rangle = \sum_{i=0}^{K-1} A_i \rho A_i^\dagger$$

Each term in the operator sum decomposition is Hermitian and positive but does not necessarily have trace one

However, a density operator, ρ_{decomp} , can be constructed by normalizing

The trace of the associated superoperator is one so

Thus the superoperator is a probabilistic mixture of the normalized operators with $p_i = \text{Tr}(A_i \rho A_i^\dagger)$

This is reminiscent of the possible measurement outcomes of ρ by operator O with projectors P_j

$$\text{Tr}(A_i \rho A_i^\dagger) \geq 0$$

$$\rho_{decomp} = \frac{A_i \rho A_i^\dagger}{\text{Tr}(A_i \rho A_i^\dagger)}$$

$$\text{Tr}(S_U^\phi(\rho)) = \sum_{i=0}^{K-1} \text{Tr}(A_i \rho A_i^\dagger) \equiv 1$$

$$S_U^\phi(\rho) = \sum_{i=0}^{K-1} p_i \frac{A_i \rho A_i^\dagger}{\text{Tr}(A_i \rho A_i^\dagger)}$$

Operator sum decomposition

$$S_U^\phi(\rho) = \sum_{i=0}^{K-1} \langle \beta_i | U | \phi \rangle \rho \langle \phi | U^\dagger | \beta_i \rangle = \sum_{i=0}^{K-1} A_i \rho A_i^\dagger$$

Each term in the operator sum decomposition is Hermitian and positive but does not necessarily have trace one

However, a density operator, ρ_{decomp} , can be constructed by normalizing

The trace of the associated superoperator is one so

Thus the superoperator is a probabilistic mixture of the normalized operators with $p_i = \text{Tr}(A_i \rho A_i^\dagger)$

This is reminiscent of the possible measurement outcomes of ρ by operator O with projectors P_j

$$\text{Tr}(A_i \rho A_i^\dagger) \geq 0$$

$$\rho_{decomp} = \frac{A_i \rho A_i^\dagger}{\text{Tr}(A_i \rho A_i^\dagger)}$$

$$\text{Tr}(S_U^\phi(\rho)) = \sum_{i=0}^{K-1} \text{Tr}(A_i \rho A_i^\dagger) \equiv 1$$

$$S_U^\phi(\rho) = \sum_{i=0}^{K-1} p_i \frac{A_i \rho A_i^\dagger}{\text{Tr}(A_i \rho A_i^\dagger)}$$

$$\rho' = \sum_{j=0}^{K-1} p_j \frac{P_j \rho P_j^\dagger}{\text{Tr}(P_j \rho P_j^\dagger)}$$

Operator sum decomposition

If A_i is the operator obtained in the operator sum decomposition for S_U^ϕ when using basis $\{|\beta_i\rangle\}$ for the B subsystem

Operator sum decomposition

If A_i is the operator obtained in the operator sum decomposition for S_U^ϕ when using basis $\{|\beta_i\rangle\}$ for the B subsystem

Suppose that after $U : A \otimes B \rightarrow A \otimes B$ is applied to ρ , subsystem B were measured with respect to the projectors $P_i = |\beta_i\rangle\langle\beta_i|$ for the $K = 2^k$ basis elements of B , the best description of subsystem A after this measurement is a probabilistic mixture of mixed states

Operator sum decomposition

If A_i is the operator obtained in the operator sum decomposition for S_U^ϕ when using basis $\{|\beta_i\rangle\}$ for the B subsystem

Suppose that after $U : A \otimes B \rightarrow A \otimes B$ is applied to ρ , subsystem B were measured with respect to the projectors $P_i = |\beta_i\rangle\langle\beta_i|$ for the $K = 2^k$ basis elements of B , the best description of subsystem A after this measurement is a probabilistic mixture of mixed states

$$\rho' = \sum_{i=0}^{K-1} p_i \rho_i,$$

Operator sum decomposition

If A_i is the operator obtained in the operator sum decomposition for S_U^ϕ when using basis $\{|\beta_i\rangle\}$ for the B subsystem

Suppose that after $U : A \otimes B \rightarrow A \otimes B$ is applied to ρ , subsystem B were measured with respect to the projectors $P_i = |\beta_i\rangle\langle\beta_i|$ for the $K = 2^k$ basis elements of B , the best description of subsystem A after this measurement is a probabilistic mixture of mixed states

$$\rho' = \sum_{i=0}^{K-1} p_i \rho_i, \quad \rho_i = \text{Tr}_B \left(\frac{(I \otimes P_i) U (\rho \otimes |\phi\rangle\langle\phi|) U^\dagger (I \otimes P_i^\dagger)}{\text{Tr}((I \otimes P_i) U (\rho \otimes |\phi\rangle\langle\phi|) U^\dagger (I \otimes P_i^\dagger))} \right)$$

Operator sum decomposition

If A_i is the operator obtained in the operator sum decomposition for S_U^ϕ when using basis $\{|\beta_i\rangle\}$ for the B subsystem

Suppose that after $U : A \otimes B \rightarrow A \otimes B$ is applied to ρ , subsystem B were measured with respect to the projectors $P_i = |\beta_i\rangle\langle\beta_i|$ for the $K = 2^k$ basis elements of B , the best description of subsystem A after this measurement is a probabilistic mixture of mixed states

$$\rho' = \sum_{i=0}^{K-1} p_i \rho_i, \quad \rho_i = \text{Tr}_B \left(\frac{(I \otimes P_i) U(\rho \otimes |\phi\rangle\langle\phi|) U^\dagger (I \otimes P_i^\dagger)}{\text{Tr}((I \otimes P_i) U(\rho \otimes |\phi\rangle\langle\phi|) U^\dagger (I \otimes P_i^\dagger))} \right)$$

and
$$p_i = \text{Tr}((I \otimes P_i) U(\rho \otimes |\phi\rangle\langle\phi|) U^\dagger (I \otimes P_i^\dagger))$$

Operator sum decomposition

If A_i is the operator obtained in the operator sum decomposition for S_U^ϕ when using basis $\{|\beta_i\rangle\}$ for the B subsystem

Suppose that after $U : A \otimes B \rightarrow A \otimes B$ is applied to ρ , subsystem B were measured with respect to the projectors $P_i = |\beta_i\rangle\langle\beta_i|$ for the $K = 2^k$ basis elements of B , the best description of subsystem A after this measurement is a probabilistic mixture of mixed states

$$\rho' = \sum_{i=0}^{K-1} p_i \rho_i, \quad \rho_i = \text{Tr}_B \left(\frac{(I \otimes P_i) U (\rho \otimes |\phi\rangle\langle\phi|) U^\dagger (I \otimes P_i^\dagger)}{\text{Tr}((I \otimes P_i) U (\rho \otimes |\phi\rangle\langle\phi|) U^\dagger (I \otimes P_i^\dagger))} \right)$$

$$\text{and} \quad p_i = \text{Tr}((I \otimes P_i) U (\rho \otimes |\phi\rangle\langle\phi|) U^\dagger (I \otimes P_i^\dagger))$$

$$\text{but} \quad \text{Tr}_B((I \otimes |\beta_i\rangle\langle\beta_i|) U \rho \otimes |\phi\rangle\langle\phi| U^\dagger (I \otimes k b \beta_i \beta_i)) = \langle \beta_i | U \rho \otimes |\phi\rangle\langle\phi| U^\dagger | \beta_i \rangle$$

Operator sum decomposition

If A_i is the operator obtained in the operator sum decomposition for S_U^ϕ when using basis $\{|\beta_i\rangle\}$ for the B subsystem

Suppose that after $U : A \otimes B \rightarrow A \otimes B$ is applied to ρ , subsystem B were measured with respect to the projectors $P_i = |\beta_i\rangle\langle\beta_i|$ for the $K = 2^k$ basis elements of B , the best description of subsystem A after this measurement is a probabilistic mixture of mixed states

$$\rho' = \sum_{i=0}^{K-1} p_i \rho_i, \quad \rho_i = \text{Tr}_B \left(\frac{(I \otimes P_i) U (\rho \otimes |\phi\rangle\langle\phi|) U^\dagger (I \otimes P_i^\dagger)}{\text{Tr}((I \otimes P_i) U (\rho \otimes |\phi\rangle\langle\phi|) U^\dagger (I \otimes P_i^\dagger))} \right)$$

$$\text{and} \quad p_i = \text{Tr}((I \otimes P_i) U (\rho \otimes |\phi\rangle\langle\phi|) U^\dagger (I \otimes P_i^\dagger))$$

$$\text{but} \quad \text{Tr}_B((I \otimes |\beta_i\rangle\langle\beta_i|) U \rho \otimes |\phi\rangle\langle\phi| U^\dagger (I \otimes k b \beta_i \beta_i)) = \langle \beta_i | U \rho \otimes |\phi\rangle\langle\phi| U^\dagger | \beta_i \rangle$$

So the density operator $\rho' = \sum_i p_i \rho_i \equiv S_U^\phi(\rho)$

Example 10.4.3

Find the operator sum decomposition for C_{not} and $|\phi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

Example 10.4.3

Find the operator sum decomposition for C_{not} and $|\phi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

The C_{not} operator U can be written as

Example 10.4.3

Find the operator sum decomposition for C_{not} and $|\phi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

The C_{not} operator U can be written as

$$U = X \otimes |1\rangle\langle 1| + I \otimes |0\rangle\langle 0|$$

Example 10.4.3

Find the operator sum decomposition for C_{not} and $|\phi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

The C_{not} operator U can be written as

$$U = X \otimes |1\rangle\langle 1| + I \otimes |0\rangle\langle 0|$$

If the two systems are initially unentangled and A
and B are in states

Example 10.4.3

Find the operator sum decomposition for C_{not} and $|\phi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

The C_{not} operator U can be written as

$$U = X \otimes |1\rangle\langle 1| + I \otimes |0\rangle\langle 0|$$

If the two systems are initially unentangled and A and B are in states

$$\rho = |\psi\rangle\langle\psi|, \quad \rho' = |\phi\rangle\langle\phi|$$

Example 10.4.3

Find the operator sum decomposition for C_{not} and $|\phi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

The C_{not} operator U can be written as

$$U = X \otimes |1\rangle\langle 1| + I \otimes |0\rangle\langle 0|$$

If the two systems are initially unentangled and A and B are in states

$$\rho = |\psi\rangle\langle\psi|, \quad \rho' = |\phi\rangle\langle\phi|$$

$$S_U^\phi = \text{Tr} (U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger)$$

Example 10.4.3

Find the operator sum decomposition for C_{not} and $|\phi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

The C_{not} operator U can be written as

$$U = X \otimes |1\rangle\langle 1| + I \otimes |0\rangle\langle 0|$$

If the two systems are initially unentangled and A
and B are in states

$$\rho = |\psi\rangle\langle\psi|, \quad \rho' = |\phi\rangle\langle\phi|$$

$$S_U^\phi = \text{Tr} (U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger) = A_0\rho A_0^\dagger + A_1\rho A_1^\dagger$$

Example 10.4.3

Find the operator sum decomposition for C_{not} and $|\phi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

The C_{not} operator U can be written as

$$U = X \otimes |1\rangle\langle 1| + I \otimes |0\rangle\langle 0|$$

If the two systems are initially unentangled and A
and B are in states

$$\rho = |\psi\rangle\langle\psi|, \quad \rho' = |\phi\rangle\langle\phi|$$

$$S_U^\phi = \text{Tr} (U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger) = A_0\rho A_0^\dagger + A_1\rho A_1^\dagger$$

Where $A_0 = \langle 0|U|\phi\rangle$ and $A_1 = \langle 1|U|\phi\rangle$ so applying these operators to the state of A

Example 10.4.3

Find the operator sum decomposition for C_{not} and $|\phi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

The C_{not} operator U can be written as

$$U = X \otimes |1\rangle\langle 1| + I \otimes |0\rangle\langle 0|$$

If the two systems are initially unentangled and A
and B are in states

$$\rho = |\psi\rangle\langle\psi|, \quad \rho' = |\phi\rangle\langle\phi|$$

$$S_U^\phi = \text{Tr}(U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger) = A_0\rho A_0^\dagger + A_1\rho A_1^\dagger$$

Where $A_0 = \langle 0|U|\phi\rangle$ and $A_1 = \langle 1|U|\phi\rangle$ so applying these operators to the state of A

$$A_0|\psi\rangle = \sum_{i=0}^1 \langle \alpha_i | \langle 0 | U | \psi \rangle | \phi \rangle | \alpha_i \rangle$$

Example 10.4.3

Find the operator sum decomposition for C_{not} and $|\phi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

The C_{not} operator U can be written as

$$U = X \otimes |1\rangle\langle 1| + I \otimes |0\rangle\langle 0|$$

If the two systems are initially unentangled and A
and B are in states

$$\rho = |\psi\rangle\langle\psi|, \quad \rho' = |\phi\rangle\langle\phi|$$

$$S_U^\phi = \text{Tr}(U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger) = A_0\rho A_0^\dagger + A_1\rho A_1^\dagger$$

Where $A_0 = \langle 0|U|\phi\rangle$ and $A_1 = \langle 1|U|\phi\rangle$ so applying these operators to the state of A

$$\begin{aligned} A_0|\psi\rangle &= \sum_{i=0}^1 \langle \alpha_i | \langle 0 | U | \psi \rangle | \phi \rangle | \alpha_i \rangle \\ &= \langle 0 | \langle 0 | (X \otimes |1\rangle\langle 1| + I \otimes |0\rangle\langle 0|) | \psi \rangle | \phi \rangle | 0 \rangle + \langle 1 | \langle 0 | (X \otimes |1\rangle\langle 1| + I \otimes |0\rangle\langle 0|) | \psi \rangle | \phi \rangle | 1 \rangle \end{aligned}$$

Example 10.4.3

Find the operator sum decomposition for C_{not} and $|\phi\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$

The C_{not} operator U can be written as

$$U = X \otimes |1\rangle\langle 1| + I \otimes |0\rangle\langle 0|$$

If the two systems are initially unentangled and A and B are in states

$$\rho = |\psi\rangle\langle\psi|, \quad \rho' = |\phi\rangle\langle\phi|$$

$$S_U^\phi = \text{Tr}(U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger) = A_0\rho A_0^\dagger + A_1\rho A_1^\dagger$$

Where $A_0 = \langle 0|U|\phi\rangle$ and $A_1 = \langle 1|U|\phi\rangle$ so applying these operators to the state of A

$$\begin{aligned} A_0|\psi\rangle &= \sum_{i=0}^1 \langle \alpha_i | \langle 0 | U | \psi \rangle | \phi \rangle | \alpha_i \rangle \\ &= \langle 0 | \langle 0 | (X \otimes |1\rangle\langle 1| + I \otimes |0\rangle\langle 0|) | \psi \rangle | \phi \rangle | 0 \rangle + \langle 1 | \langle 0 | (X \otimes |1\rangle\langle 1| + I \otimes |0\rangle\langle 0|) | \psi \rangle | \phi \rangle | 1 \rangle \\ &= (\langle 0 | \langle 0 | (X \otimes |1\rangle\langle 1|) | \psi \rangle | \phi \rangle + \langle 0 | \langle 0 | (I \otimes |0\rangle\langle 0|) | \psi \rangle | \phi \rangle) | 0 \rangle \\ &\quad + (\langle 1 | \langle 0 | (X \otimes |1\rangle\langle 1|) | \psi \rangle | \phi \rangle + \langle 1 | \langle 0 | (I \otimes |0\rangle\langle 0|) | \psi \rangle | \phi \rangle) | 1 \rangle \end{aligned}$$

Example 10.4.3 (cont.)

$$\begin{aligned} A_0 |\psi\rangle &= \left(\langle 0| \langle 0| (X \otimes |1\rangle \langle 1|) |\psi\rangle |\phi\rangle + \langle 0| \langle 0| (I \otimes |0\rangle \langle 0|) |\psi\rangle |\phi\rangle \right) |0\rangle \\ &\quad + \left(\langle 1| \langle 0| (X \otimes |1\rangle \langle 1|) |\psi\rangle |\phi\rangle + \langle 1| \langle 0| (I \otimes |0\rangle \langle 0|) |\psi\rangle |\phi\rangle \right) |1\rangle \end{aligned}$$

Example 10.4.3 (cont.)

$$\begin{aligned} A_0 |\psi\rangle &= \left(\langle 0| \cancel{\langle 0|} (X \otimes \cancel{|1\rangle \langle 1|}) |\psi\rangle |\phi\rangle + \langle 0| \langle 0| (I \otimes |0\rangle \langle 0|) |\psi\rangle |\phi\rangle \right) |0\rangle \\ &+ \left(\langle 1| \cancel{\langle 0|} (X \otimes \cancel{|1\rangle \langle 1|}) |\psi\rangle |\phi\rangle + \langle 1| \langle 0| (I \otimes |0\rangle \langle 0|) |\psi\rangle |\phi\rangle \right) |1\rangle \end{aligned}$$

Example 10.4.3 (cont.)

$$\begin{aligned} A_0 |\psi\rangle &= (\langle 0 | \cancel{\langle 0 |} (X \otimes \cancel{|1\rangle \langle 1|}) |\psi\rangle |\phi\rangle + \langle 0 | \langle 0 | (I \otimes |0\rangle \langle 0|) |\psi\rangle |\phi\rangle) |0\rangle \\ &\quad + (\cancel{\langle 1 | \langle 0 |} (X \otimes \cancel{|1\rangle \langle 1|}) |\psi\rangle |\phi\rangle + \langle 1 | \langle 0 | (I \otimes |0\rangle \langle 0|) |\psi\rangle |\phi\rangle) |1\rangle \\ &= \langle 0 | \langle 0 | (I \otimes |0\rangle \langle 0|) |\psi\rangle |\phi\rangle) |0\rangle + \langle 1 | \langle 0 | (I \otimes |0\rangle \langle 0|) |\psi\rangle |\phi\rangle) |1\rangle \end{aligned}$$

Example 10.4.3 (cont.)

$$\begin{aligned}A_0|\psi\rangle &= (\langle 0|\cancel{\langle 0|}(\cancel{X} \otimes \cancel{|1\rangle\langle 1|})|\psi\rangle|\phi\rangle + \langle 0|\langle 0|(\cancel{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|0\rangle \\&\quad + (\cancel{\langle 1|\langle 0|}(\cancel{X} \otimes \cancel{|1\rangle\langle 1|})|\psi\rangle|\phi\rangle + \langle 1|\langle 0|(\cancel{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|1\rangle \\&= \langle 0|\langle 0|(\cancel{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|0\rangle + \langle 1|\langle 0|(\cancel{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|1\rangle \\&= \langle 0|\psi\rangle\langle 0|\phi\rangle|0\rangle + \langle 1|\psi\rangle\langle 0|\phi\rangle|1\rangle\end{aligned}$$

Example 10.4.3 (cont.)

$$\begin{aligned} A_0 |\psi\rangle &= (\langle 0| \cancel{\langle 0|} (X \otimes \cancel{|1\rangle \langle 1|}) |\psi\rangle |\phi\rangle + \langle 0| \langle 0| (I \otimes |0\rangle \langle 0|) |\psi\rangle |\phi\rangle) |0\rangle \\ &\quad + (\cancel{\langle 1|} \cancel{\langle 0|} (X \otimes \cancel{|1\rangle \langle 1|}) |\psi\rangle |\phi\rangle + \langle 1| \langle 0| (I \otimes |0\rangle \langle 0|) |\psi\rangle |\phi\rangle) |1\rangle \\ &= \langle 0| \langle 0| (I \otimes |0\rangle \langle 0|) |\psi\rangle |\phi\rangle) |0\rangle + \langle 1| \langle 0| (I \otimes |0\rangle \langle 0|) |\psi\rangle |\phi\rangle) |1\rangle \\ &= \langle 0| \psi \rangle \langle 0| \phi \rangle |0\rangle + \langle 1| \psi \rangle \langle 0| \phi \rangle |1\rangle = a_0 \langle 0| \phi \rangle |0\rangle + a_1 \langle 0| \phi \rangle |1\rangle = \langle 0| \phi \rangle |\psi\rangle \end{aligned}$$

Example 10.4.3 (cont.)

$$\begin{aligned} A_0|\psi\rangle &= (\langle 0|\cancel{\langle 0|}(X \otimes \cancel{|1\rangle\langle 1|})|\psi\rangle|\phi\rangle + \langle 0|\langle 0|(\mathcal{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|0\rangle \\ &\quad + (\cancel{\langle 1|\langle 0|}(X \otimes \cancel{|1\rangle\langle 1|})|\psi\rangle|\phi\rangle + \langle 1|\langle 0|(\mathcal{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|1\rangle) \\ &= \langle 0|\langle 0|(\mathcal{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|0\rangle + \langle 1|\langle 0|(\mathcal{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|1\rangle \\ &= \langle 0|\psi\rangle\langle 0|\phi\rangle|0\rangle + \langle 1|\psi\rangle\langle 0|\phi\rangle|1\rangle = a_0\langle 0|\phi\rangle|0\rangle + a_1\langle 0|\phi\rangle|1\rangle = \langle 0|\phi\rangle|\psi\rangle \end{aligned}$$

Recall that $|\phi\rangle \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ so

$$A_0|\psi\rangle = \langle 0|\phi\rangle|\psi\rangle = \frac{1}{\sqrt{2}}|\psi\rangle$$

Example 10.4.3 (cont.)

$$\begin{aligned} A_0 |\psi\rangle &= (\langle 0| \cancel{\langle 0|} (X \otimes \cancel{|1\rangle \langle 1|}) |\psi\rangle |\phi\rangle + \langle 0| \langle 0| (I \otimes |0\rangle \langle 0|) |\psi\rangle |\phi\rangle) |0\rangle \\ &\quad + (\cancel{\langle 1|} \cancel{\langle 0|} (X \otimes \cancel{|1\rangle \langle 1|}) |\psi\rangle |\phi\rangle + \langle 1| \langle 0| (I \otimes |0\rangle \langle 0|) |\psi\rangle |\phi\rangle) |1\rangle \\ &= \langle 0| \langle 0| (I \otimes |0\rangle \langle 0|) |\psi\rangle |\phi\rangle) |0\rangle + \langle 1| \langle 0| (I \otimes |0\rangle \langle 0|) |\psi\rangle |\phi\rangle) |1\rangle \\ &= \langle 0|\psi\rangle \langle 0|\phi\rangle |0\rangle + \langle 1|\psi\rangle \langle 0|\phi\rangle |1\rangle = a_0 \langle 0|\phi\rangle |0\rangle + a_1 \langle 0|\phi\rangle |1\rangle = \langle 0|\phi\rangle |\psi\rangle \end{aligned}$$

Recall that $|\phi\rangle \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ so

$$A_0 |\psi\rangle = \langle 0|\phi\rangle |\psi\rangle = \frac{1}{\sqrt{2}} |\psi\rangle \quad \longrightarrow \quad A_0 = \frac{1}{\sqrt{2}} I$$

Example 10.4.3 (cont.)

$$\begin{aligned} A_0|\psi\rangle &= (\langle 0|\cancel{\langle 0|}(X \otimes \cancel{|1\rangle\langle 1|})|\psi\rangle|\phi\rangle + \langle 0|\langle 0|(\mathcal{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|0\rangle \\ &\quad + (\cancel{\langle 1|\langle 0|}(X \otimes \cancel{|1\rangle\langle 1|})|\psi\rangle|\phi\rangle + \langle 1|\langle 0|(\mathcal{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|1\rangle \\ &= \langle 0|\langle 0|(\mathcal{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|0\rangle + \langle 1|\langle 0|(\mathcal{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|1\rangle \\ &= \langle 0|\psi\rangle\langle 0|\phi\rangle|0\rangle + \langle 1|\psi\rangle\langle 0|\phi\rangle|1\rangle = a_0\langle 0|\phi\rangle|0\rangle + a_1\langle 0|\phi\rangle|1\rangle = \langle 0|\phi\rangle|\psi\rangle \end{aligned}$$

Recall that $|\phi\rangle \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ so

$$A_0|\psi\rangle = \langle 0|\phi\rangle|\psi\rangle = \frac{1}{\sqrt{2}}|\psi\rangle \quad \longrightarrow \quad A_0 = \frac{1}{\sqrt{2}}\mathcal{I}$$

Similarly for A_1 we have

Example 10.4.3 (cont.)

$$\begin{aligned} A_0|\psi\rangle &= (\langle 0|\cancel{\langle 0|}(\cancel{X} \otimes \cancel{|1\rangle\langle 1|})|\psi\rangle|\phi\rangle + \langle 0|\langle 0|(\cancel{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|0\rangle \\ &\quad + (\cancel{\langle 1|\langle 0|}(\cancel{X} \otimes \cancel{|1\rangle\langle 1|})|\psi\rangle|\phi\rangle + \langle 1|\langle 0|(\cancel{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|1\rangle) \\ &= \langle 0|\langle 0|(\cancel{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|0\rangle + \langle 1|\langle 0|(\cancel{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|1\rangle \\ &= \langle 0|\psi\rangle\langle 0|\phi\rangle|0\rangle + \langle 1|\psi\rangle\langle 0|\phi\rangle|1\rangle = a_0\langle 0|\phi\rangle|0\rangle + a_1\langle 0|\phi\rangle|1\rangle = \langle 0|\phi\rangle|\psi\rangle \end{aligned}$$

Recall that $|\phi\rangle \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ so

$$A_0|\psi\rangle = \langle 0|\phi\rangle|\psi\rangle = \frac{1}{\sqrt{2}}|\psi\rangle \quad \longrightarrow \quad A_0 = \frac{1}{\sqrt{2}}I$$

Similarly for A_1 we have

$$A_1|\psi\rangle = \langle 0|\langle 1|(\cancel{X} \otimes |1\rangle\langle 1|)|\psi\rangle|\phi\rangle)|0\rangle + \langle 1|\langle 1|(\cancel{X} \otimes |1\rangle\langle 1|)|\psi\rangle|\phi\rangle)|1\rangle$$

Example 10.4.3 (cont.)

$$\begin{aligned} A_0|\psi\rangle &= (\langle 0|\cancel{\langle 0|}(X \otimes \cancel{|1\rangle\langle 1|})|\psi\rangle|\phi\rangle + \langle 0|\langle 0|(\mathcal{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|0\rangle \\ &\quad + (\cancel{\langle 1|\langle 0|}(X \otimes \cancel{|1\rangle\langle 1|})|\psi\rangle|\phi\rangle + \langle 1|\langle 0|(\mathcal{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|1\rangle) \\ &= \langle 0|\langle 0|(\mathcal{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|0\rangle + \langle 1|\langle 0|(\mathcal{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|1\rangle \\ &= \langle 0|\psi\rangle\langle 0|\phi\rangle|0\rangle + \langle 1|\psi\rangle\langle 0|\phi\rangle|1\rangle = a_0\langle 0|\phi\rangle|0\rangle + a_1\langle 0|\phi\rangle|1\rangle = \langle 0|\phi\rangle|\psi\rangle \end{aligned}$$

Recall that $|\phi\rangle \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ so

$$A_0|\psi\rangle = \langle 0|\phi\rangle|\psi\rangle = \frac{1}{\sqrt{2}}|\psi\rangle \quad \longrightarrow \quad A_0 = \frac{1}{\sqrt{2}}\mathcal{I}$$

Similarly for A_1 we have

$$\begin{aligned} A_1|\psi\rangle &= \langle 0|\langle 1|(X \otimes |1\rangle\langle 1|)|\psi\rangle|\phi\rangle)|0\rangle + \langle 1|\langle 1|(X \otimes |1\rangle\langle 1|)|\psi\rangle|\phi\rangle)|1\rangle \\ &= \langle 0|X|\psi\rangle\langle 1|\phi\rangle|0\rangle + \langle 1|X|\psi\rangle\langle 1|\phi\rangle|1\rangle \end{aligned}$$

Example 10.4.3 (cont.)

$$\begin{aligned} A_0|\psi\rangle &= (\langle 0|\cancel{\langle 0|}(X \otimes \cancel{|1\rangle\langle 1|})|\psi\rangle|\phi\rangle + \langle 0|\langle 0|(\mathbb{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|0\rangle \\ &\quad + (\cancel{\langle 1|\langle 0|}(X \otimes \cancel{|1\rangle\langle 1|})|\psi\rangle|\phi\rangle + \langle 1|\langle 0|(\mathbb{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|1\rangle) \\ &= \langle 0|\langle 0|(\mathbb{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|0\rangle + \langle 1|\langle 0|(\mathbb{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|1\rangle \\ &= \langle 0|\psi\rangle\langle 0|\phi\rangle|0\rangle + \langle 1|\psi\rangle\langle 0|\phi\rangle|1\rangle = a_0\langle 0|\phi\rangle|0\rangle + a_1\langle 0|\phi\rangle|1\rangle = \langle 0|\phi\rangle|\psi\rangle \end{aligned}$$

Recall that $|\phi\rangle \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ so

$$A_0|\psi\rangle = \langle 0|\phi\rangle|\psi\rangle = \frac{1}{\sqrt{2}}|\psi\rangle \quad \longrightarrow \quad A_0 = \frac{1}{\sqrt{2}}\mathbb{I}$$

Similarly for A_1 we have

$$\begin{aligned} A_1|\psi\rangle &= \langle 0|\langle 1|(X \otimes |1\rangle\langle 1|)|\psi\rangle|\phi\rangle)|0\rangle + \langle 1|\langle 1|(X \otimes |1\rangle\langle 1|)|\psi\rangle|\phi\rangle)|1\rangle \\ &= \langle 0|X|\psi\rangle\langle 1|\phi\rangle|0\rangle + \langle 1|X|\psi\rangle\langle 1|\phi\rangle|1\rangle = a_1\langle 1|\phi\rangle|0\rangle + a_0\langle 1|\phi\rangle|1\rangle \end{aligned}$$

Example 10.4.3 (cont.)

$$\begin{aligned} A_0|\psi\rangle &= (\langle 0|\cancel{\langle 0|}(X \otimes \cancel{|1\rangle\langle 1|})|\psi\rangle|\phi\rangle + \langle 0|\langle 0|(\mathbb{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|0\rangle \\ &\quad + (\cancel{\langle 1|\langle 0|}(X \otimes \cancel{|1\rangle\langle 1|})|\psi\rangle|\phi\rangle + \langle 1|\langle 0|(\mathbb{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|1\rangle) \\ &= \langle 0|\langle 0|(\mathbb{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|0\rangle + \langle 1|\langle 0|(\mathbb{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|1\rangle \\ &= \langle 0|\psi\rangle\langle 0|\phi\rangle|0\rangle + \langle 1|\psi\rangle\langle 0|\phi\rangle|1\rangle = a_0\langle 0|\phi\rangle|0\rangle + a_1\langle 0|\phi\rangle|1\rangle = \langle 0|\phi\rangle|\psi\rangle \end{aligned}$$

Recall that $|\phi\rangle \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ so

$$A_0|\psi\rangle = \langle 0|\phi\rangle|\psi\rangle = \frac{1}{\sqrt{2}}|\psi\rangle \quad \longrightarrow \quad A_0 = \frac{1}{\sqrt{2}}\mathbb{I}$$

Similarly for A_1 we have

$$\begin{aligned} A_1|\psi\rangle &= \langle 0|\langle 1|(X \otimes |1\rangle\langle 1|)|\psi\rangle|\phi\rangle)|0\rangle + \langle 1|\langle 1|(X \otimes |1\rangle\langle 1|)|\psi\rangle|\phi\rangle)|1\rangle \\ &= \langle 0|X|\psi\rangle\langle 1|\phi\rangle|0\rangle + \langle 1|X|\psi\rangle\langle 1|\phi\rangle|1\rangle = a_1\langle 1|\phi\rangle|0\rangle + a_0\langle 1|\phi\rangle|1\rangle = \langle 1|\phi\rangle X|\psi\rangle \end{aligned}$$

Example 10.4.3 (cont.)

$$\begin{aligned} A_0|\psi\rangle &= (\langle 0|\cancel{\langle 0|}(\cancel{X} \otimes \cancel{|1\rangle\langle 1|})|\psi\rangle|\phi\rangle + \langle 0|\langle 0|(\cancel{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|0\rangle \\ &\quad + (\cancel{\langle 1|\langle 0|}(\cancel{X} \otimes \cancel{|1\rangle\langle 1|})|\psi\rangle|\phi\rangle + \cancel{\langle 1|}\langle 0|(\cancel{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|1\rangle) \\ &= \langle 0|\langle 0|(\cancel{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|0\rangle + \cancel{\langle 1|}\langle 0|(\cancel{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|1\rangle \\ &= \langle 0|\psi\rangle\langle 0|\phi\rangle|0\rangle + \langle 1|\psi\rangle\langle 0|\phi\rangle|1\rangle = a_0\langle 0|\phi\rangle|0\rangle + a_1\langle 0|\phi\rangle|1\rangle = \langle 0|\phi\rangle|\psi\rangle \end{aligned}$$

Recall that $|\phi\rangle \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ so

$$A_0|\psi\rangle = \langle 0|\phi\rangle|\psi\rangle = \frac{1}{\sqrt{2}}|\psi\rangle \quad \longrightarrow \quad A_0 = \frac{1}{\sqrt{2}}I$$

Similarly for A_1 we have

$$\begin{aligned} A_1|\psi\rangle &= \langle 0|\langle 1|(\cancel{X} \otimes |1\rangle\langle 1|)|\psi\rangle|\phi\rangle)|0\rangle + \langle 1|\langle 1|(\cancel{X} \otimes |1\rangle\langle 1|)|\psi\rangle|\phi\rangle)|1\rangle \\ &= \langle 0|X|\psi\rangle\langle 1|\phi\rangle|0\rangle + \langle 1|X|\psi\rangle\langle 1|\phi\rangle|1\rangle = a_1\langle 1|\phi\rangle|0\rangle + a_0\langle 1|\phi\rangle|1\rangle = \langle 1|\phi\rangle X|\psi\rangle \\ &= \frac{1}{\sqrt{2}}X|\psi\rangle \end{aligned}$$

Example 10.4.3 (cont.)

$$\begin{aligned} A_0|\psi\rangle &= (\langle 0|\langle 0|(\cancel{X} \otimes \cancel{I})\langle 1|)|\psi\rangle|\phi\rangle + \langle 0|\langle 0|(\cancel{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|0\rangle \\ &\quad + (\langle 1|\langle 0|(\cancel{X} \otimes \cancel{I})\langle 1|)|\psi\rangle|\phi\rangle + \langle 1|\langle 0|(\cancel{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|1\rangle) \\ &= \langle 0|\langle 0|(\cancel{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|0\rangle + \langle 1|\langle 0|(\cancel{I} \otimes |0\rangle\langle 0|)|\psi\rangle|\phi\rangle)|1\rangle \\ &= \langle 0|\psi\rangle\langle 0|\phi\rangle|0\rangle + \langle 1|\psi\rangle\langle 0|\phi\rangle|1\rangle = a_0\langle 0|\phi\rangle|0\rangle + a_1\langle 0|\phi\rangle|1\rangle = \langle 0|\phi\rangle|\psi\rangle \end{aligned}$$

Recall that $|\phi\rangle \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ so

$$A_0|\psi\rangle = \langle 0|\phi\rangle|\psi\rangle = \frac{1}{\sqrt{2}}|\psi\rangle \quad \longrightarrow \quad A_0 = \frac{1}{\sqrt{2}}I$$

Similarly for A_1 we have

$$\begin{aligned} A_1|\psi\rangle &= \langle 0|\langle 1|(\cancel{X} \otimes |1\rangle\langle 1|)|\psi\rangle|\phi\rangle)|0\rangle + \langle 1|\langle 1|(\cancel{X} \otimes |1\rangle\langle 1|)|\psi\rangle|\phi\rangle)|1\rangle \\ &= \langle 0|X|\psi\rangle\langle 1|\phi\rangle|0\rangle + \langle 1|X|\psi\rangle\langle 1|\phi\rangle|1\rangle = a_1\langle 1|\phi\rangle|0\rangle + a_0\langle 1|\phi\rangle|1\rangle = \langle 1|\phi\rangle X|\psi\rangle \\ &= \frac{1}{\sqrt{2}}X|\psi\rangle \quad \longrightarrow \quad A_1 = \frac{1}{\sqrt{2}}X \end{aligned}$$

Example 10.4.4

Find the operator sum decomposition
for U_{switch} and $|\phi\rangle = |0\rangle$

$$U_{switch} = |00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11|$$

Example 10.4.4

Find the operator sum decomposition
for U_{switch} and $|\phi\rangle = |0\rangle$

$$U_{switch} = |00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11|$$

$$S_U^\phi = \text{Tr}_{\mathcal{B}} (U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger)$$

Example 10.4.4

Find the operator sum decomposition
for U_{switch} and $|\phi\rangle = |0\rangle$

$$U_{switch} = |00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11|$$

$$S_U^\phi = \text{Tr}_B (U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger) = A_0\rho A_0^\dagger + A_1\rho A_1^\dagger, \quad A_i = \langle i|U|\phi\rangle$$

Example 10.4.4

Find the operator sum decomposition
for U_{switch} and $|\phi\rangle = |0\rangle$

$$U_{switch} = |00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11|$$

$$S_U^\phi = \text{Tr}_B (U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger) = A_0\rho A_0^\dagger + A_1\rho A_1^\dagger, \quad A_i = \langle i|U|\phi\rangle$$

$$A_0|\psi\rangle = \sum_{i=0}^1 \langle\alpha_i|\langle 0|U|\psi\rangle|\phi\rangle|\alpha_i\rangle$$

Example 10.4.4

Find the operator sum decomposition
for U_{switch} and $|\phi\rangle = |0\rangle$

$$U_{switch} = |00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11|$$

$$S_U^\phi = \text{Tr}_B (U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger) = A_0\rho A_0^\dagger + A_1\rho A_1^\dagger, \quad A_i = \langle i|U|\phi\rangle$$

$$A_0|\psi\rangle = \sum_{i=0}^1 \langle \alpha_i | \langle 0 | U | \psi \rangle | \phi \rangle | \alpha_i \rangle = \langle 00 | (|00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11|) | \psi \phi \rangle | 0 \rangle \\ + \langle 10 | (|00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11|) | \psi \phi \rangle | 1 \rangle$$

Example 10.4.4

Find the operator sum decomposition
for U_{switch} and $|\phi\rangle = |0\rangle$

$$U_{switch} = |00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11|$$

$$S_U^\phi = \text{Tr}_B (U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger) = A_0\rho A_0^\dagger + A_1\rho A_1^\dagger, \quad A_i = \langle i|U|\phi\rangle$$

$$A_0|\psi\rangle = \sum_{i=0}^1 \langle \alpha_i | \langle 0 | U | \psi \rangle | \phi \rangle | \alpha_i \rangle = \langle 00 | (|00\rangle\langle 00| + \cancel{|10\rangle\langle 01|} + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) |\psi\phi\rangle |0\rangle$$
$$+ \langle 10 | (\cancel{|00\rangle\langle 00|} + |10\rangle\langle 01| + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) |\psi\phi\rangle |1\rangle$$

Example 10.4.4

Find the operator sum decomposition
for U_{switch} and $|\phi\rangle = |0\rangle$

$$U_{switch} = |00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11|$$

$$S_U^\phi = \text{Tr}_B (U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger) = A_0\rho A_0^\dagger + A_1\rho A_1^\dagger, \quad A_i = \langle i|U|\phi\rangle$$

$$\begin{aligned} A_0|\psi\rangle &= \sum_{i=0}^1 \langle \alpha_i | \langle 0 | U | \psi \rangle | \phi \rangle | \alpha_i \rangle = \langle 00 | (|00\rangle\langle 00| + \cancel{|10\rangle\langle 01|} + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) |\psi\phi\rangle |0\rangle \\ &\quad + \langle 10 | (\cancel{|00\rangle\langle 00|} + |10\rangle\langle 01| + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) |\psi\phi\rangle |1\rangle \\ &= \langle 00 | \psi\phi \rangle |0\rangle + \langle 01 | \psi\phi \rangle |1\rangle \end{aligned}$$

Example 10.4.4

Find the operator sum decomposition
for U_{switch} and $|\phi\rangle = |0\rangle$

$$U_{switch} = |00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11|$$

$$S_U^\phi = \text{Tr}_B (U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger) = A_0\rho A_0^\dagger + A_1\rho A_1^\dagger, \quad A_i = \langle i|U|\phi\rangle$$

$$\begin{aligned} A_0|\psi\rangle &= \sum_{i=0}^1 \langle \alpha_i | \langle 0 | U | \psi \rangle | \phi \rangle | \alpha_i \rangle = \langle 00 | (|00\rangle\langle 00| + \cancel{|10\rangle\langle 01|} + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) |\psi\phi\rangle |0\rangle \\ &\quad + \langle 10 | (\cancel{|00\rangle\langle 00|} + |10\rangle\langle 01| + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) |\psi\phi\rangle |1\rangle \\ &= \langle 00 | \psi\phi \rangle |0\rangle + \langle 01 | \psi\phi \rangle |1\rangle = \langle 0 | \psi \rangle \langle 0 | \phi \rangle |0\rangle + \langle 0 | \psi \rangle \langle 1 | \phi \rangle |1\rangle \end{aligned}$$

Example 10.4.4

Find the operator sum decomposition
for U_{switch} and $|\phi\rangle = |0\rangle$

$$U_{switch} = |00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11|$$

$$S_U^\phi = \text{Tr}_B (U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger) = A_0\rho A_0^\dagger + A_1\rho A_1^\dagger, \quad A_i = \langle i|U|\phi\rangle$$

$$\begin{aligned} A_0|\psi\rangle &= \sum_{i=0}^1 \langle \alpha_i | \langle 0 | U | \psi \rangle | \phi \rangle | \alpha_i \rangle = \langle 00 | (|00\rangle\langle 00| + \cancel{|10\rangle\langle 01|} + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) |\psi\phi\rangle |0\rangle \\ &\quad + \langle 10 | (\cancel{|00\rangle\langle 00|} + |10\rangle\langle 01| + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) |\psi\phi\rangle |1\rangle \\ &= \langle 00 | \psi\phi \rangle |0\rangle + \langle 01 | \psi\phi \rangle |1\rangle = \langle 0 | \psi \rangle \langle 0 | \phi \rangle |0\rangle + \langle 0 | \psi \rangle \cancel{\langle 1 | \phi \rangle} |1\rangle \end{aligned}$$

Example 10.4.4

Find the operator sum decomposition
for U_{switch} and $|\phi\rangle = |0\rangle$

$$U_{switch} = |00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11|$$

$$S_U^\phi = \text{Tr}_B (U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger) = A_0\rho A_0^\dagger + A_1\rho A_1^\dagger, \quad A_i = \langle i|U|\phi\rangle$$

$$\begin{aligned} A_0|\psi\rangle &= \sum_{i=0}^1 \langle \alpha_i | \langle 0 | U | \psi \rangle | \phi \rangle | \alpha_i \rangle = \langle 00 | (|00\rangle\langle 00| + \cancel{|10\rangle\langle 01|} + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) |\psi\phi\rangle |0\rangle \\ &\quad + \langle 10 | (\cancel{|00\rangle\langle 00|} + |10\rangle\langle 01| + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) |\psi\phi\rangle |1\rangle \\ &= \langle 00 | \psi\phi \rangle |0\rangle + \langle 01 | \psi\phi \rangle |1\rangle = \langle 0 | \psi \rangle \langle 0 | \phi \rangle |0\rangle + \langle 0 | \psi \rangle \cancel{\langle 1 | \phi \rangle} |1\rangle = |0\rangle \langle 0 | \psi \rangle \end{aligned}$$

Example 10.4.4

Find the operator sum decomposition for U_{switch} and $|\phi\rangle = |0\rangle$

$$U_{switch} = |00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11|$$

$$S_U^\phi = \text{Tr}_B (U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger) = A_0\rho A_0^\dagger + A_1\rho A_1^\dagger, \quad A_i = \langle i|U|\phi\rangle$$

$$\begin{aligned} A_0|\psi\rangle &= \sum_{i=0}^1 \langle \alpha_i | \langle 0 | U | \psi \rangle | \phi \rangle | \alpha_i \rangle = \langle 00 | (|00\rangle\langle 00| + \cancel{|10\rangle\langle 01|} + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) |\psi\phi\rangle |0\rangle \\ &\quad + \langle 10 | (\cancel{|00\rangle\langle 00|} + |10\rangle\langle 01| + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) |\psi\phi\rangle |1\rangle \\ &= \langle 00 | \psi\phi \rangle |0\rangle + \langle 01 | \psi\phi \rangle |1\rangle = \langle 0 | \psi \rangle \langle 0 | \phi \rangle |0\rangle + \langle 0 | \psi \rangle \cancel{\langle 1 | \phi \rangle} |1\rangle = |0\rangle \langle 0 | \psi \rangle \longrightarrow A_0 = |0\rangle \langle 0| \end{aligned}$$

Example 10.4.4

Find the operator sum decomposition
for U_{switch} and $|\phi\rangle = |0\rangle$

$$U_{switch} = |00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11|$$

$$S_U^\phi = \text{Tr}_B (U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger) = A_0\rho A_0^\dagger + A_1\rho A_1^\dagger, \quad A_i = \langle i|U|\phi\rangle$$

$$\begin{aligned} A_0|\psi\rangle &= \sum_{i=0}^1 \langle \alpha_i | \langle 0 | U | \psi \rangle | \phi \rangle | \alpha_i \rangle = \langle 00 | (|00\rangle\langle 00| + \cancel{|10\rangle\langle 01|} + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) |\psi\phi\rangle |0\rangle \\ &\quad + \langle 10 | (\cancel{|00\rangle\langle 00|} + |10\rangle\langle 01| + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) |\psi\phi\rangle |1\rangle \\ &= \langle 00 | \psi\phi \rangle |0\rangle + \langle 01 | \psi\phi \rangle |1\rangle = \langle 0 | \psi \rangle \langle 0 | \phi \rangle |0\rangle + \langle 0 | \psi \rangle \cancel{\langle 1 | \phi \rangle} |1\rangle = |0\rangle \langle 0 | \psi \rangle \longrightarrow A_0 = |0\rangle \langle 0| \end{aligned}$$

$$A_1|\psi\rangle = \sum_{i=0}^1 \langle \alpha_i | \langle 1 | U | \psi \rangle | \phi \rangle | \alpha_i \rangle$$

Example 10.4.4

Find the operator sum decomposition for U_{switch} and $|\phi\rangle = |0\rangle$

$$U_{switch} = |00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11|$$

$$S_U^\phi = \text{Tr}_B (U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger) = A_0\rho A_0^\dagger + A_1\rho A_1^\dagger, \quad A_i = \langle i|U|\phi\rangle$$

$$\begin{aligned} A_0|\psi\rangle &= \sum_{i=0}^1 \langle \alpha_i | \langle 0 | U | \psi \rangle | \phi \rangle | \alpha_i \rangle = \langle 00 | (|00\rangle\langle 00| + \cancel{|10\rangle\langle 01|} + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) |\psi\phi\rangle |0\rangle \\ &\quad + \langle 10 | (\cancel{|00\rangle\langle 00|} + |10\rangle\langle 01| + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) |\psi\phi\rangle |1\rangle \\ &= \langle 00 | \psi\phi \rangle |0\rangle + \langle 01 | \psi\phi \rangle |1\rangle = \langle 0 | \psi \rangle \langle 0 | \phi \rangle |0\rangle + \langle 0 | \psi \rangle \cancel{\langle 1 | \phi \rangle} |1\rangle = |0\rangle \langle 0 | \psi \rangle \longrightarrow A_0 = |0\rangle \langle 0| \end{aligned}$$

$$\begin{aligned} A_1|\psi\rangle &= \sum_{i=0}^1 \langle \alpha_i | \langle 1 | U | \psi \rangle | \phi \rangle | \alpha_i \rangle = \langle 01 | (|00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11|) |\psi\phi\rangle |0\rangle \\ &\quad + \langle 11 | (|00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11|) |\psi\phi\rangle |1\rangle \end{aligned}$$

Example 10.4.4

Find the operator sum decomposition for U_{switch} and $|\phi\rangle = |0\rangle$

$$U_{switch} = |00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11|$$

$$S_U^\phi = \text{Tr}_B (U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger) = A_0\rho A_0^\dagger + A_1\rho A_1^\dagger, \quad A_i = \langle i|U|\phi\rangle$$

$$\begin{aligned} A_0|\psi\rangle &= \sum_{i=0}^1 \langle \alpha_i | \langle 0 | U | \psi \rangle | \phi \rangle | \alpha_i \rangle = \langle 00 | (\cancel{|00\rangle\langle 00|} + \cancel{|10\rangle\langle 01|} + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) | \psi \phi \rangle | 0 \rangle \\ &\quad + \langle 10 | (\cancel{|00\rangle\langle 00|} + \cancel{|10\rangle\langle 01|} + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) | \psi \phi \rangle | 1 \rangle \\ &= \langle 00 | \psi \phi \rangle | 0 \rangle + \langle 01 | \psi \phi \rangle | 1 \rangle = \langle 0 | \psi \rangle \langle 0 | \phi \rangle | 0 \rangle + \langle 0 | \psi \rangle \cancel{\langle 1 | \phi \rangle} | 1 \rangle = | 0 \rangle \langle 0 | \psi \rangle \longrightarrow A_0 = | 0 \rangle \langle 0 | \end{aligned}$$

$$\begin{aligned} A_1|\psi\rangle &= \sum_{i=0}^1 \langle \alpha_i | \langle 1 | U | \psi \rangle | \phi \rangle | \alpha_i \rangle = \langle 01 | (\cancel{|00\rangle\langle 00|} + \cancel{|10\rangle\langle 01|} + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) | \psi \phi \rangle | 0 \rangle \\ &\quad + \langle 11 | (\cancel{|00\rangle\langle 00|} + \cancel{|10\rangle\langle 01|} + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) | \psi \phi \rangle | 1 \rangle \end{aligned}$$

Example 10.4.4

Find the operator sum decomposition for U_{switch} and $|\phi\rangle = |0\rangle$

$$U_{switch} = |00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11|$$

$$S_U^\phi = \text{Tr}_B (U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger) = A_0\rho A_0^\dagger + A_1\rho A_1^\dagger, \quad A_i = \langle i|U|\phi\rangle$$

$$\begin{aligned} A_0|\psi\rangle &= \sum_{i=0}^1 \langle \alpha_i | \langle 0 | U | \psi \rangle | \phi \rangle | \alpha_i \rangle = \langle 00 | (\cancel{|00\rangle\langle 00|} + \cancel{|10\rangle\langle 01|} + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) | \psi \phi \rangle | 0 \rangle \\ &\quad + \langle 10 | (\cancel{|00\rangle\langle 00|} + \cancel{|10\rangle\langle 01|} + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) | \psi \phi \rangle | 1 \rangle \\ &= \langle 00 | \psi \phi \rangle | 0 \rangle + \langle 01 | \psi \phi \rangle | 1 \rangle = \langle 0 | \psi \rangle \langle 0 | \phi \rangle | 0 \rangle + \langle 0 | \psi \rangle \cancel{\langle 1 | \phi \rangle} | 1 \rangle = | 0 \rangle \langle 0 | \psi \rangle \longrightarrow A_0 = | 0 \rangle \langle 0 | \end{aligned}$$

$$\begin{aligned} A_1|\psi\rangle &= \sum_{i=0}^1 \langle \alpha_i | \langle 1 | U | \psi \rangle | \phi \rangle | \alpha_i \rangle = \langle 01 | (\cancel{|00\rangle\langle 00|} + \cancel{|10\rangle\langle 01|} + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) | \psi \phi \rangle | 0 \rangle \\ &\quad + \langle 11 | (\cancel{|00\rangle\langle 00|} + \cancel{|10\rangle\langle 01|} + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) | \psi \phi \rangle | 1 \rangle \\ &= \langle 10 | \psi \phi \rangle | 0 \rangle + \langle 11 | \psi \phi \rangle | 1 \rangle \end{aligned}$$

Example 10.4.4

Find the operator sum decomposition for U_{switch} and $|\phi\rangle = |0\rangle$

$$U_{switch} = |00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11|$$

$$S_U^\phi = \text{Tr}_B (U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger) = A_0\rho A_0^\dagger + A_1\rho A_1^\dagger, \quad A_i = \langle i|U|\phi\rangle$$

$$\begin{aligned} A_0|\psi\rangle &= \sum_{i=0}^1 \langle \alpha_i | \langle 0 | U | \psi \rangle | \phi \rangle | \alpha_i \rangle = \langle 00 | (\cancel{|00\rangle\langle 00|} + \cancel{|10\rangle\langle 01|} + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) | \psi \phi \rangle | 0 \rangle \\ &\quad + \langle 10 | (\cancel{|00\rangle\langle 00|} + \cancel{|10\rangle\langle 01|} + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) | \psi \phi \rangle | 1 \rangle \\ &= \langle 00 | \psi \phi \rangle | 0 \rangle + \langle 01 | \psi \phi \rangle | 1 \rangle = \langle 0 | \psi \rangle \langle 0 | \phi \rangle | 0 \rangle + \langle 0 | \psi \rangle \cancel{\langle 1 | \phi \rangle} | 1 \rangle = | 0 \rangle \langle 0 | \psi \rangle \longrightarrow A_0 = | 0 \rangle \langle 0 | \end{aligned}$$

$$\begin{aligned} A_1|\psi\rangle &= \sum_{i=0}^1 \langle \alpha_i | \langle 1 | U | \psi \rangle | \phi \rangle | \alpha_i \rangle = \langle 01 | (\cancel{|00\rangle\langle 00|} + \cancel{|10\rangle\langle 01|} + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) | \psi \phi \rangle | 0 \rangle \\ &\quad + \langle 11 | (\cancel{|00\rangle\langle 00|} + \cancel{|10\rangle\langle 01|} + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) | \psi \phi \rangle | 1 \rangle \\ &= \langle 10 | \psi \phi \rangle | 0 \rangle + \langle 11 | \psi \phi \rangle | 1 \rangle = \langle 1 | \psi \rangle \langle 0 | \phi \rangle | 0 \rangle + \langle 1 | \psi \rangle \langle 1 | \phi \rangle | 1 \rangle \end{aligned}$$

Example 10.4.4

Find the operator sum decomposition for U_{switch} and $|\phi\rangle = |0\rangle$

$$U_{switch} = |00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11|$$

$$S_U^\phi = \text{Tr}_B (U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger) = A_0\rho A_0^\dagger + A_1\rho A_1^\dagger, \quad A_i = \langle i|U|\phi\rangle$$

$$\begin{aligned} A_0|\psi\rangle &= \sum_{i=0}^1 \langle \alpha_i | \langle 0 | U | \psi \rangle | \phi \rangle | \alpha_i \rangle = \langle 00 | (|00\rangle\langle 00| + \cancel{|10\rangle\langle 01|} + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) | \psi \phi \rangle | 0 \rangle \\ &\quad + \langle 10 | (\cancel{|00\rangle\langle 00|} + |10\rangle\langle 01| + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) | \psi \phi \rangle | 1 \rangle \\ &= \langle 00 | \psi \phi \rangle | 0 \rangle + \langle 01 | \psi \phi \rangle | 1 \rangle = \langle 0 | \psi \rangle \langle 0 | \phi \rangle | 0 \rangle + \langle 0 | \psi \rangle \cancel{\langle 1 | \phi \rangle} | 1 \rangle = | 0 \rangle \langle 0 | \psi \rangle \longrightarrow A_0 = | 0 \rangle \langle 0 | \end{aligned}$$

$$\begin{aligned} A_1|\psi\rangle &= \sum_{i=0}^1 \langle \alpha_i | \langle 1 | U | \psi \rangle | \phi \rangle | \alpha_i \rangle = \langle 01 | (\cancel{|00\rangle\langle 00|} + \cancel{|10\rangle\langle 01|} + |01\rangle\langle 10| + \cancel{|11\rangle\langle 11|}) | \psi \phi \rangle | 0 \rangle \\ &\quad + \langle 11 | (\cancel{|00\rangle\langle 00|} + \cancel{|10\rangle\langle 01|} + \cancel{|01\rangle\langle 10|} + |11\rangle\langle 11|) | \psi \phi \rangle | 1 \rangle \\ &= \langle 10 | \psi \phi \rangle | 0 \rangle + \langle 11 | \psi \phi \rangle | 1 \rangle = \langle 1 | \psi \rangle \langle 0 | \phi \rangle | 0 \rangle + \langle 1 | \psi \rangle \cancel{\langle 1 | \phi \rangle} | 1 \rangle \end{aligned}$$

Example 10.4.4

Find the operator sum decomposition for U_{switch} and $|\phi\rangle = |0\rangle$

$$U_{switch} = |00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11|$$

$$S_U^\phi = \text{Tr}_B (U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger) = A_0\rho A_0^\dagger + A_1\rho A_1^\dagger, \quad A_i = \langle i|U|\phi\rangle$$

$$\begin{aligned} A_0|\psi\rangle &= \sum_{i=0}^1 \langle \alpha_i | \langle 0 | U | \psi \rangle | \phi \rangle | \alpha_i \rangle = \langle 00 | (\cancel{|00\rangle\langle 00|} + \cancel{|10\rangle\langle 01|} + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) | \psi \phi \rangle | 0 \rangle \\ &\quad + \langle 10 | (\cancel{|00\rangle\langle 00|} + \cancel{|10\rangle\langle 01|} + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) | \psi \phi \rangle | 1 \rangle \\ &= \langle 00 | \psi \phi \rangle | 0 \rangle + \langle 01 | \psi \phi \rangle | 1 \rangle = \langle 0 | \psi \rangle \langle 0 | \phi \rangle | 0 \rangle + \langle 0 | \psi \rangle \cancel{\langle 1 | \phi \rangle} | 1 \rangle = | 0 \rangle \langle 0 | \psi \rangle \longrightarrow A_0 = | 0 \rangle \langle 0 | \end{aligned}$$

$$\begin{aligned} A_1|\psi\rangle &= \sum_{i=0}^1 \langle \alpha_i | \langle 1 | U | \psi \rangle | \phi \rangle | \alpha_i \rangle = \langle 01 | (\cancel{|00\rangle\langle 00|} + \cancel{|10\rangle\langle 01|} + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) | \psi \phi \rangle | 0 \rangle \\ &\quad + \langle 11 | (\cancel{|00\rangle\langle 00|} + \cancel{|10\rangle\langle 01|} + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) | \psi \phi \rangle | 1 \rangle \\ &= \langle 10 | \psi \phi \rangle | 0 \rangle + \langle 11 | \psi \phi \rangle | 1 \rangle = \langle 1 | \psi \rangle \langle 0 | \phi \rangle | 0 \rangle + \langle 1 | \psi \rangle \cancel{\langle 1 | \phi \rangle} | 1 \rangle = | 0 \rangle \langle 1 | \psi \rangle \end{aligned}$$

Example 10.4.4

Find the operator sum decomposition for U_{switch} and $|\phi\rangle = |0\rangle$

$$U_{switch} = |00\rangle\langle 00| + |10\rangle\langle 01| + |01\rangle\langle 10| + |11\rangle\langle 11|$$

$$S_U^\phi = \text{Tr}_B (U(\rho \otimes |\phi\rangle\langle\phi|)U^\dagger) = A_0\rho A_0^\dagger + A_1\rho A_1^\dagger, \quad A_i = \langle i|U|\phi\rangle$$

$$\begin{aligned} A_0|\psi\rangle &= \sum_{i=0}^1 \langle \alpha_i | \langle 0 | U | \psi \rangle | \phi \rangle | \alpha_i \rangle = \langle 00 | (\cancel{|00\rangle\langle 00|} + \cancel{|10\rangle\langle 01|} + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) | \psi \phi \rangle | 0 \rangle \\ &\quad + \langle 10 | (\cancel{|00\rangle\langle 00|} + \cancel{|10\rangle\langle 01|} + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) | \psi \phi \rangle | 1 \rangle \\ &= \langle 00 | \psi \phi \rangle | 0 \rangle + \langle 01 | \psi \phi \rangle | 1 \rangle = \langle 0 | \psi \rangle \langle 0 | \phi \rangle | 0 \rangle + \langle 0 | \psi \rangle \cancel{\langle 1 | \phi \rangle} | 1 \rangle = | 0 \rangle \langle 0 | \psi \rangle \longrightarrow A_0 = | 0 \rangle \langle 0 | \end{aligned}$$

$$\begin{aligned} A_1|\psi\rangle &= \sum_{i=0}^1 \langle \alpha_i | \langle 1 | U | \psi \rangle | \phi \rangle | \alpha_i \rangle = \langle 01 | (\cancel{|00\rangle\langle 00|} + \cancel{|10\rangle\langle 01|} + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) | \psi \phi \rangle | 0 \rangle \\ &\quad + \langle 11 | (\cancel{|00\rangle\langle 00|} + \cancel{|10\rangle\langle 01|} + \cancel{|01\rangle\langle 10|} + \cancel{|11\rangle\langle 11|}) | \psi \phi \rangle | 1 \rangle \\ &= \langle 10 | \psi \phi \rangle | 0 \rangle + \langle 11 | \psi \phi \rangle | 1 \rangle = \langle 1 | \psi \rangle \langle 0 | \phi \rangle | 0 \rangle + \langle 1 | \psi \rangle \cancel{\langle 1 | \phi \rangle} | 1 \rangle = | 0 \rangle \langle 1 | \psi \rangle \longrightarrow A_1 = | 0 \rangle \langle 1 | \end{aligned}$$