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Local operations and classical communication (LOCC)

Suppose we have a multi-partite system where different subsystems are under the control of
different people with only classical communications channels between them

These individuals only have a restricted set of operations that they can perform on the system
and these are called local operations with classical communications (LOCC)

The measure of entanglement of a system cannot be increased by LOCC

Consider a system with a specific decomposition given by X = X1 ⊗ · · · ⊗ Xn

If it is possible to convert |ψ⟩ ∈ X into |ϕ⟩ ∈ X via a series of unitary transformations and
measurements which guaranteed to succeed deterministically then the conversion is said to be
done by LOCC with respect to the particular tensor decomposition

Two states are LOCC equivalent if they can be transformed into each other by LOCC

The level of entanglement cannot be increased by LOCC so an unentangled state cannot be
converted to an entangled state by LOCC alone
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Classifying bipartite states

It is possible to classify pure states of bipartite systems using a metric called majorization of
the eigenvalues of subsystem density operators

Let a and b be two vectors in the same m
dimensional space

The vectors a

→

and b

→

are reordered in such
a way that the coefficients are arranged by
magnitude

Note that a

→

and b

→

are not necessarily or-
dered in the same way!

b is said to majorize a (b ⪰ a) if for each
k , 1 ≤ k ≤ m

a = (a1, . . . , am), b = (b1, . . . , bm)

a

→

= (a

→

1, . . . , a
→

m), a

→

i ≥ a

→

i+1

b

→

= (b
→

1, . . . , b

→

m), b

→

i ≥ b

→

i+1

k∑
j=1

a

→

j ≤
k∑

j=1

b

→

j ,
m∑
j=1

a

→

j =
m∑
j=1

b

→

j

This can be applied to density matrix eigenvalues to define LOCC equivalence and relative
degrees of entanglement

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 05, 2022 3 / 16



Classifying bipartite states

It is possible to classify pure states of bipartite systems using a metric called majorization of
the eigenvalues of subsystem density operators

Let a and b be two vectors in the same m
dimensional space

The vectors a

→

and b

→

are reordered in such
a way that the coefficients are arranged by
magnitude

Note that a

→

and b

→

are not necessarily or-
dered in the same way!

b is said to majorize a (b ⪰ a) if for each
k , 1 ≤ k ≤ m

a = (a1, . . . , am), b = (b1, . . . , bm)

a

→

= (a

→

1, . . . , a
→

m), a

→

i ≥ a

→

i+1

b

→

= (b
→

1, . . . , b

→

m), b

→

i ≥ b

→

i+1

k∑
j=1

a

→

j ≤
k∑

j=1

b

→

j ,
m∑
j=1

a

→

j =
m∑
j=1

b

→

j

This can be applied to density matrix eigenvalues to define LOCC equivalence and relative
degrees of entanglement

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 05, 2022 3 / 16



Classifying bipartite states

It is possible to classify pure states of bipartite systems using a metric called majorization of
the eigenvalues of subsystem density operators

Let a and b be two vectors in the same m
dimensional space

The vectors a

→

and b

→

are reordered in such
a way that the coefficients are arranged by
magnitude

Note that a

→

and b

→

are not necessarily or-
dered in the same way!

b is said to majorize a (b ⪰ a) if for each
k , 1 ≤ k ≤ m

a = (a1, . . . , am), b = (b1, . . . , bm)

a

→

= (a

→

1, . . . , a
→

m), a

→

i ≥ a

→

i+1

b

→

= (b
→

1, . . . , b

→

m), b

→

i ≥ b

→

i+1

k∑
j=1

a

→

j ≤
k∑

j=1

b

→

j ,
m∑
j=1

a

→

j =
m∑
j=1

b

→

j

This can be applied to density matrix eigenvalues to define LOCC equivalence and relative
degrees of entanglement

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 05, 2022 3 / 16



Classifying bipartite states

It is possible to classify pure states of bipartite systems using a metric called majorization of
the eigenvalues of subsystem density operators

Let a and b be two vectors in the same m
dimensional space

The vectors a

→

and b

→

are reordered in such
a way that the coefficients are arranged by
magnitude

Note that a

→

and b

→

are not necessarily or-
dered in the same way!

b is said to majorize a (b ⪰ a) if for each
k , 1 ≤ k ≤ m

a = (a1, . . . , am), b = (b1, . . . , bm)

a

→

= (a

→

1, . . . , a
→

m), a

→

i ≥ a

→

i+1

b

→

= (b
→

1, . . . , b

→

m), b

→

i ≥ b

→

i+1

k∑
j=1

a

→

j ≤
k∑

j=1

b

→

j ,
m∑
j=1

a

→

j =
m∑
j=1

b

→

j

This can be applied to density matrix eigenvalues to define LOCC equivalence and relative
degrees of entanglement

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 05, 2022 3 / 16



Classifying bipartite states

It is possible to classify pure states of bipartite systems using a metric called majorization of
the eigenvalues of subsystem density operators

Let a and b be two vectors in the same m
dimensional space

The vectors a

→

and b

→

are reordered in such
a way that the coefficients are arranged by
magnitude

Note that a

→

and b

→

are not necessarily or-
dered in the same way!

b is said to majorize a (b ⪰ a) if for each
k , 1 ≤ k ≤ m

a = (a1, . . . , am), b = (b1, . . . , bm)

a

→

= (a

→

1, . . . , a
→

m), a

→

i ≥ a

→

i+1

b

→

= (b
→

1, . . . , b

→

m), b

→

i ≥ b

→

i+1

k∑
j=1

a

→

j ≤
k∑

j=1

b

→

j ,
m∑
j=1

a

→

j =
m∑
j=1

b

→

j

This can be applied to density matrix eigenvalues to define LOCC equivalence and relative
degrees of entanglement

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 05, 2022 3 / 16



Classifying bipartite states

It is possible to classify pure states of bipartite systems using a metric called majorization of
the eigenvalues of subsystem density operators

Let a and b be two vectors in the same m
dimensional space

The vectors a

→

and b

→

are reordered in such
a way that the coefficients are arranged by
magnitude

Note that a

→

and b

→

are not necessarily or-
dered in the same way!

b is said to majorize a (b ⪰ a) if for each
k , 1 ≤ k ≤ m

a = (a1, . . . , am), b = (b1, . . . , bm)

a

→

= (a

→

1, . . . , a
→

m), a

→

i ≥ a

→

i+1

b

→

= (b
→

1, . . . , b

→

m), b

→

i ≥ b

→

i+1

k∑
j=1

a

→

j ≤
k∑

j=1

b

→

j ,
m∑
j=1

a

→

j =
m∑
j=1

b

→

j

This can be applied to density matrix eigenvalues to define LOCC equivalence and relative
degrees of entanglement

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 05, 2022 3 / 16



Classifying bipartite states

It is possible to classify pure states of bipartite systems using a metric called majorization of
the eigenvalues of subsystem density operators

Let a and b be two vectors in the same m
dimensional space

The vectors a

→

and b

→

are reordered in such
a way that the coefficients are arranged by
magnitude

Note that a

→

and b

→

are not necessarily or-
dered in the same way!

b is said to majorize a (b ⪰ a) if for each
k , 1 ≤ k ≤ m

a = (a1, . . . , am), b = (b1, . . . , bm)

a

→

= (a

→

1, . . . , a
→

m), a

→

i ≥ a

→

i+1

b

→

= (b
→

1, . . . , b

→

m), b

→

i ≥ b

→

i+1

k∑
j=1

a

→

j ≤
k∑

j=1

b

→

j ,
m∑
j=1

a

→

j =
m∑
j=1

b

→

j

This can be applied to density matrix eigenvalues to define LOCC equivalence and relative
degrees of entanglement

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 05, 2022 3 / 16



Classifying bipartite states

It is possible to classify pure states of bipartite systems using a metric called majorization of
the eigenvalues of subsystem density operators

Let a and b be two vectors in the same m
dimensional space

The vectors a

→

and b

→

are reordered in such
a way that the coefficients are arranged by
magnitude

Note that a

→

and b

→

are not necessarily or-
dered in the same way!

b is said to majorize a (b ⪰ a) if for each
k , 1 ≤ k ≤ m

a = (a1, . . . , am), b = (b1, . . . , bm)

a

→

= (a

→

1, . . . , a
→

m), a

→

i ≥ a

→

i+1

b

→

= (b
→

1, . . . , b

→

m), b

→

i ≥ b

→

i+1

k∑
j=1

a

→

j ≤
k∑

j=1

b

→

j ,
m∑
j=1

a

→

j =
m∑
j=1

b

→

j

This can be applied to density matrix eigenvalues to define LOCC equivalence and relative
degrees of entanglement

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 05, 2022 3 / 16



Classifying bipartite states

It is possible to classify pure states of bipartite systems using a metric called majorization of
the eigenvalues of subsystem density operators

Let a and b be two vectors in the same m
dimensional space

The vectors a

→

and b

→

are reordered in such
a way that the coefficients are arranged by
magnitude

Note that a

→

and b

→

are not necessarily or-
dered in the same way!

b is said to majorize a (b ⪰ a) if for each
k , 1 ≤ k ≤ m

a = (a1, . . . , am), b = (b1, . . . , bm)

a

→

= (a

→

1, . . . , a
→

m), a

→

i ≥ a

→

i+1

b

→

= (b
→

1, . . . , b

→

m), b

→

i ≥ b

→

i+1

k∑
j=1

a

→

j ≤
k∑

j=1

b

→

j ,

m∑
j=1

a

→

j =
m∑
j=1

b

→

j

This can be applied to density matrix eigenvalues to define LOCC equivalence and relative
degrees of entanglement

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 05, 2022 3 / 16



Classifying bipartite states

It is possible to classify pure states of bipartite systems using a metric called majorization of
the eigenvalues of subsystem density operators

Let a and b be two vectors in the same m
dimensional space

The vectors a

→

and b

→

are reordered in such
a way that the coefficients are arranged by
magnitude

Note that a

→

and b

→

are not necessarily or-
dered in the same way!

b is said to majorize a (b ⪰ a) if for each
k , 1 ≤ k ≤ m

a = (a1, . . . , am), b = (b1, . . . , bm)

a

→

= (a

→

1, . . . , a
→

m), a

→

i ≥ a

→

i+1

b

→

= (b
→

1, . . . , b

→

m), b

→

i ≥ b

→

i+1

k∑
j=1

a

→

j ≤
k∑

j=1

b

→

j ,

m∑
j=1

a

→

j =
m∑
j=1

b

→

j

This can be applied to density matrix eigenvalues to define LOCC equivalence and relative
degrees of entanglement

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing April 05, 2022 3 / 16



Majorization & LOCC equivalence

For states |ψ⟩ and |ϕ⟩ of a bipartite system X = A⊗ B, the partial density matrices with
respect to subsystem A are ρψ = TrB(|ψ⟩⟨ψ|) and ρϕ = TrB(|ϕ⟩⟨ϕ|)

The eigenvalues of ρψ and ρϕ are given by λψ = (λψ1 , . . . , λ
ψ
m) and λϕ = (λϕ1 , . . . , λ

ϕ
m)

It can be shown that |ψ⟩ LOCC−−−−→ |ϕ⟩ only if λϕ ⪰ λψ

An unambiguous definition of LOCC equivalence is thus λϕ ⪰ λψ and λψ ⪰ λϕ

For a bipartite system of 2 qubits let |ψ⟩ and
|ϕ⟩ be states such that

λψ = (λ, 1− λ), λϕ = (µ, 1− µ), λ, µ ≥ 1
2

|ψ⟩ can be converted to |ϕ⟩ only if µ ≥ λ so that λϕ ⪰ λψ

Furthermore it is clear that λϕ ⪰ λψ only when the von Neumann entropy satisfies
S [Tr2(|ψ⟩⟨ψ|)] ≥ S [Tr2(|ϕ⟩⟨ϕ|)]

Thus |ψ⟩ LOCC−−−−→ |ϕ⟩ is possible only when |ψ⟩ is more, or equally as, entangled as |ϕ⟩
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Larger bipartite systems

When bipartite systems have subsystems of
more than one qubit, the situation is a bit
more complex as there are states which can-
not be compared for majorization

There is an inconsistency which prevents a
a comparison

|ψ⟩ = 3
4 |0⟩|0⟩+

2
4 |1⟩|1⟩+

√
2
4 |2⟩|2⟩+

1
4 |3⟩|3⟩

|ϕ⟩ =
√
8
4 |0⟩|0⟩+

√
6
4 |1⟩|1⟩+

√
1
4 |2⟩|2⟩+

1
4 |3⟩|3⟩

λψ1 = 9
16 >

1
2 = λϕ1

λψ1 + λψ2 = 13
16 <

14
16 = λϕ1 + λϕ2

However, it is unambiguous that in any bipartite system, the vector for an unentangled state
majorizes all others and it can be shown that a maximally entangled state is majorized by all
others

Consider |ψ⟩ in a bipartite system X = A ⊗ B
where A and B have dimensions N,M : N ≥ M

|ψ⟩ = 1√
M

M−1∑
i=0

|ϕAi ⟩ ⊗ |ϕBi ⟩

{|ϕAi ⟩} and {|ϕBi ⟩} are orthonormal sets and the latter must be a basis for B so λϕ ⪰ λψ
must hold for all |ϕ⟩ ∈ A⊗ B
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Example 10.2.5

Consider the two Bell states |Φ+⟩ = 1√
2
(|00⟩+ |11⟩) and |Ψ+⟩ = 1√

2
(|01⟩+ |10⟩)

The partial density matrices for each of these
states with respect to the first qubit are

The ordered eigenvalues are thus

Therefore, it is easy to see that λΦ
+ ⪰ λΨ+

and λΨ
+ ⪰ λΦ+

With von Neumann entropies of

ρΦ+ =

(
1
2 0
0 1

2

)
, ρΨ+ =

(
1
2 0
0 1

2

)
λΦ

+
= (12 ,

1
2), λΨ

+
= (12 ,

1
2)

λΦ
+

1 = λΨ
+

1 = 1
2

λΦ
+

1 + λΦ
+

2 = λΨ
+

1 + λΨ
+

2 = 1

S(ρΦ+) = −2(12 log2
1
2) = 1 = S(ρΨ+)

These two states are both maximally entangled and thus are LOCC equivalent and can be
transformed into each other using a local operation only

In this case, applying an X transformation to the first qubit will transform |Φ+⟩ X⊗I←−→ |Ψ+⟩
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Example 10.2.6

Can the Bell state |Φ+⟩ = 1√
2
(|00⟩+ |11⟩) be converted to |00⟩ using LOCC?

We know that the partial density matrices
for the two states with respect to the first
qubit are

The ordered eigenvalues are thus

Therefore since λ00 ⪰ λΦ+
we see that |00⟩

majorizes |Φ+⟩

With von Neumann entropies of

ρΦ+ =

(
1
2 0
0 1

2

)
, ρ00 =

(
1 0
0 0

)
λΦ

+
= (12 ,

1
2), λ00 = (1, 0)

λ001 = 1 > λΦ
+

1 = 1
2

λ001 + λ002 = λΦ
+

1 + λΦ
+

2 = 1

S(ρΦ+) = 1, S(ρ00) = −1 log2 1− 0 log2 0 = 0

Thus it is possible to convert |Φ+⟩ to |00⟩ using LOCC

This can be done by measuring the first qubit and and then applying X to each qubit if the
result is |1⟩ and doing nothing if the result is |0⟩
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Mixed bipartite systems

A mixed state of a quantum system is separable with respect to a particular tensor
decomposition V0 ⊗ · · · ⊗ VN−1 if it can be written as a probabilistic mixture of unentangled
states

ρ =
m∑
j=1

pj |ϕ
(0)
j ⟩⟨ϕ

(0)
j | ⊗ · · · ⊗ |ϕ

(N−1)
j ⟩⟨ϕ(N−1)

j |, |ϕ(i)j ⟩ ∈ Vi , pi ≥ 0,
N−1∑
i=0

pi = 1

For any given value of i , the |ϕ(i)j ⟩ do not need to be orthogonal

If an mixed state cannot be written in this way it is said to be entangled

A mixed state that can be written as a probabilistic mixture of entangled states can still be
separable

ρ = 1
2 |Φ

+⟩⟨Φ+|+ 1
2 |Φ

−⟩⟨Φ−| = 1
2 [(|00⟩+ |11⟩)(⟨00|+ ⟨11|)] +

1
2 [(|00⟩ − |11⟩)(⟨00| − ⟨11|)]

= 1
2 [2|00⟩⟨00|+ |00⟩⟨11|+ |11⟩⟨00|+ 2|11⟩⟨11| − |00⟩⟨11| − |11⟩⟨00|] = 1

2 [|00⟩⟨00|+ |11⟩⟨11|]
Which is separable and really just a probabilistic mixture of product states

Measuring the entropy of a bipartite mixed state is complicated and can be done in a number
of different ways
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Measurement of density operators

Let |x⟩ be an element of an N = 2n dimensional vector space X with density operator
ρx = |x⟩⟨x |

If |x⟩ is measured with an operator O that
has K associated projectors Pj the result, with
probability pj is

The density operator for each of these states is

The density operator for O which summarizes
the possible outcomes of the measurement is

Let {|αi ⟩} be an eigenbasis of the operator O
that contains the result of the measurement of
|x⟩ by Pj as the first K elements of the N-
element basis
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Measurement of density operators

We can now write the density operator ρx in terms of this eigenbasis

ρx = |x⟩⟨x | =
( N−1∑

i=0

xi |αi ⟩
)( N−1∑

j=0

xj |αj⟩
)†

=
N−1∑
j=0

N−1∑
i=0

xixj |αi ⟩⟨αj |

The ij th entry of the matrix ρx in the {|αk⟩} basis is just xixj
The density operator ρOx is thus

ρOx =
N−1∑
j=0

xjxj |αj⟩⟨αj | =
N−1∑
j=0

Pj |x⟩⟨x |P†
j

So ρOx in the {|αk⟩} basis is simply ρx with all the off-diagonal elements set to zero
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Measurement of mixed states

Let ρ be a density operator representing a mixed state
which can be written as a probabilstic mixture of pure
states |ψi ⟩

The outcomes of measuring the mixed state can be writ-
ten as a probabilistic mixture of the density operators

ρ =
∑
i

qi |ψi ⟩⟨ψi |

ρ′i =
∑
j

Pj |ψi ⟩⟨ψi |P†
j

The density operator for the possible outcomes of measuring the mixed state ρ is

ρ′ =
∑
i

qi
∑
j

Pj |ψi ⟩⟨ψi |P†
j =

∑
j

Pj

(∑
i

qi |ψi ⟩⟨ψi |
)
P†
j =

∑
j

PjρP
†
j

The term PjρP
†
j is not necessarily a density operator but is positive and Hermitian with a

trace Tr(PjρP
†
j ) ≤ 1

ρ′ may be viewed as a probabilistic mixture of den-
sity operators ρj = PjρP

†
j /Tr(PjρP

†
j ) with weight-

ing pj = Tr(PjρP
†
j )

ρ′ =
∑
j

pjρj =
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MRCAT

• Materials Research Collaborative Access Team

• Specializing in x-ray absorption spectroscopy for
local structure & electronic measurements

• Focus on in situ experiments at time scales from
10 s to 2 min

Current active membership

Illinois Tech

Argonne Chem. Sci. & Eng.

Argonne Biosciences

EPA Cincinnati

UOP Honeywell

BP Ventures
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A bit about my research. . .

Mechanistic studies of catalysts
by EXAFS

0 1 2 3 4 5

R [Å]

0

0.2

0.4

0.6

0.8

1

|χ
(R

)|
 [Å

-3
]

-225 mV

+175 mV

+375 mV

+575 mV

+675 mV

“In situ Ru K-edge x-ray absorption spectroscopy study of methanol oxidation mechanisms on model
submonolayer Ru on Pt nanoparticle electrocatalyst,” C.J. Pelliccione, E.V. Timofeeva, J.P. Katsoudas, and
C.U. Segre, J. Phys. Chem. C 117, 18904-18912 (2013).
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. . . and a little more

EXAFS studies of battery ma-
terials

0 20 40 60 80 100
0

200

400

600

800

1000

1200

Sp
ec

ifi
c 

C
ap

ac
ity

 (m
Ah

 g
-1
)

Cycle Number

0

1

2

a
ed

cb

Po
te

nt
ia

l (
V)

Lithiation Delithiation

SnPx Sn LiySn

0 200 400 6000 200 400 600
0

1

2

3

4

f

Capacity (mAh g-1)

R
 (Å

)

0.00

0.05

0.10

0.15

0.19

0.24

0.29

0.34

0.39

| (R)|(Å-3)

“In situ EXAFS-derived mechanism of highly reversible tin phosphide/graphite composite anode for Li-ion
batteries,” Y. Ding, Z. Li, E.V. Timofeeva, and C.U. Segre, Adv. Energy Mater. 1702134 (2018).
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“In situ EXAFS-derived mechanism of highly reversible tin phosphide/graphite composite anode for Li-ion
batteries,” Y. Ding, Z. Li, E.V. Timofeeva, and C.U. Segre, Adv. Energy Mater. 1702134 (2018).
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