
Today’s outline - March 31, 2022

• Properties of density operators

• Geometry of mixed states

• von Neumann entropy

• Bipartite entanglement

• Examples

Reading assignment: 10.2 – 10.3
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See Blackboard
Due Tuesday, April 05, 2022
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More properties of density operators

Any density operator, ρAx , is Hermitian and Tr(ρAx ) =
∑

j xijxij ≡ 1 since |x⟩ is a unit vector

For a density operator ρAx : A → A and |v⟩ ∈ A, we can write

⟨v |ρAx |v⟩ =
M−1∑
i=0

M−1∑
k=0

L−1∑
j=0

⟨v |(xijxkj |αk⟩⟨αi |)|v⟩ =
M−1∑
i=0

M−1∑
k=0

L−1∑
j=0

xij⟨αi |v⟩xkj⟨v |αk⟩

=
L−1∑
j=0

(M−1∑
i=0

xij⟨v |αi ⟩
)(M−1∑

k=0

xkj⟨v |αk⟩
)

=
L−1∑
j=0

∣∣∣∣M−1∑
i=0

xij⟨v |αi ⟩
∣∣∣∣2 ≥ 0

The fact that ρAx is positive means that all its eigenvalues are real and non-negative

Given an orthonormal eigenbasis
{|v0⟩, . . . , |vM−1⟩} in which the matrix
for ρAx is diagonalized with non-negative
real entries λi we have that

M−1∑
i=0

λi ≡ 1, ρAx =
M−1∑
i=0

λi |vi ⟩⟨vi |
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More properties of density operators

Any operator which satisfies the three conditions above must be a density operator

If ρ is an operator acting on A of dimension M = 2m with eigenbasis {|ψ0⟩, . . . , |ψM−1⟩}
which satisfies all three conditions

ρ =
M−1∑
i=0

λi |ψi ⟩⟨ψi | = λ0|ψ0⟩⟨ψ0|+ · · ·+ λM−1|ψM−1⟩⟨ψM−1|

Let B be a quantum system with a vector space of dimension 2n > M and let
{|ϕ0⟩, . . . , |ϕM−1⟩} be the first M elements of an orthonormal basis for B, define

|x⟩ =
√
λ0|ψ0⟩|ϕ0⟩+

√
λ1|ψ1⟩|ϕ1⟩+ · · ·+

√
λM−1|ψM−1⟩|ϕM−1⟩

|x⟩ ∈ A⊗ B is a so-called pure state which satisfies ρAx = ρ

The density operator ρXx = |x⟩⟨x | for a pure state |x⟩ is all zeros except for a 1 in the i th

diagonal element where |x⟩ is the i th element in a basis

The density operator of a pure state is a projection operator, such that ρXx ρ
X
x = ρXx
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More properties of density operators

Projection operators of pure states also eliminate the issue associated with global phase
differences

Consider the density operator for |x⟩ = e iθ|y⟩

ρx = |x⟩⟨x | = e−iθ|y⟩⟨y |e iθ = |y⟩⟨y |

The density matrix for mixed and pure states are very different

For the pure state |+⟩ and the evenly mixed ensemble of |0⟩ and |1⟩ we have

ρmixed =
1

2

(
1 0
0 1

)
, ρ+ =

1

2

(
1 1
1 1

)
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Geometry of mixed states

It is possible to use the Bloch sphere to visualize single-qubit mixed states which are linear
combinations of pure states with non-negative coefficients that sum to 1

A density operator for a single qubit
must be Hermitian and self-adjoint
with trace 1 and the general form

The condition on the trace means that
the matrix can be written with only
3 real parameters: x , y , z and ex-
panded in terms of Pauli matrices

ρ =

(
a c − id

c + id b

)

=
1

2

(
1 + z x − iy
x + iy 1− z

)
=

1

2
(I + xσx + yσy + zσz)

σx = X =

(
0 1
1 0

)
, σy = −iY =

(
0 −i
i 0

)
, σz = Z =

(
1 0
0 −1

)

det(ρ) =

∣∣∣∣∣ 1+z
2

x−iy
2

x+iy
2

1−z
2

∣∣∣∣∣ = 1
4(1 + z)(1− z)− 1

4(x − iy)(x + iy) = 1
4(1− z2 − x2 − y2)
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The values x , y , z can thus be interpreted
as coordinates and the density matrix given
by ρ = 1
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a vector which lies within the Bloch sphere
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Von Neumann entropy

Recall the density matrix for one of the qubits of an EPR
pair, 1√

2
(|00⟩+ |11⟩)

This corresponds to the point in the center of the sphere,
the furthest from a pure state possible

ρME =
1

2

(
1 0
0 1

)

This state is maximally uncertain and will give the two possible answers with equal probability

For a pure state there is a basis in which a measurement gives a deterministic result

For an n-qubit system the uncertainty of
measurement can be described by the von
Neumann entropy

S(ρ) = −Tr(ρ log2 ρ) = −
∑
i

λi log2 λi

Given that 0 log(0) ≡ 0, the von Neumann entropy is zero for pure states where the density
matrix is a projector, there is only one non-zero diagonal element and the determinant is zero

A maximally uncertain state for an n-qubit system has all the diagonal elements equal to 2−n

so S(ρ) = n
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Entropy and the Bloch sphere

For a single qubit state with density operator ρ, what is the von Neumann entropy S(ρ) and
how does it relate to the Bloch sphere?

If λ1 and λ2 are the eigenvalues of ρ we
have

Tr(ρ) = 1 −→ λ2 = 1− λ1

The determinant of ρ is

det(ρ) = λ1λ2 = λ1(1− λ1) −→ λ2 − λ+ det(ρ) = 0 −→ λ =
1

2
±
√
1− 4 det(ρ)

2

Since det(ρ) = 1
4(1− r2) λ1 =

1 + r

2
, λ2 =

1− r

2
The entropy is therefore

S(ρ) = −Tr(ρ log2 ρ) =
∑
i

λi log2 λi = −
[(

1 + r

2

)
log2

(
1 + r

2

)
+

(
1− r

2

)
log2

(
1− r

2

)]
The von Neumann entropy for a single qubit system is just a function of the distance of the
state from the center of the Bloch sphere
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Bipartite entanglement

It is useful to find a good measure of entanglement for bipartite systems such as X = A⊗ B

The 2-qubit system is the simplest bipartite
system with a maximally entangled state

For each of the two qubits, the density ma-
trix ρME has maximal von Neumann en-
tropy

An untangled state, such as |00⟩ has mini-
mal von Neumann entropy

|ψ⟩ = 1√
2
(|00⟩+ |11⟩)

ρME =
1

2

(
1 0
0 1

)
S(ρ) = −2

[
1
2 log2

(
1
2

)]
= 2

ρME =

(
1 0
0 0

)
−→ S(ρ) = 0

It makes sense to use the von Neumann entropy of the partial trace as a measure of the
entanglement if it can be assumed that the partial trace is the same for each of the two
subsystems, A and B
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The Schmidt decomposition

If |ψ⟩ is a pure state of the system A ⊗
B, there exists orthonormal sets of states
{|ψA

i ⟩} and {|ψB
i ⟩}

|ψ⟩ =
K−1∑
i=0

λi |ψA
i ⟩ ⊗ |ψB

i ⟩,
K−1∑
i=0

λi = 1

The λi are the Schmidt coefficients and K is the Schmidt rank of |ψ⟩ which is 1 for
unentangled states

Given |ψ⟩ ∈ X = A ⊗ B and ρ = |ψ⟩⟨ψ|
with Schmidt decomposition as above

The partial trace with respect to subsystem
B is given by

Similarly for the partial trece with respect to
subsystem A

ρ =
K−1∑
i=0

K−1∑
j=0

λiλj |ψA
i ⟩⟨ψA

j | ⊗ |ψB
i ⟩⟨ψB

j |

TrB(ρ) =
K−1∑
k=0

⟨ψB
k |ρ|ψB

k ⟩ =
K−1∑
k=0

λ2k |ψA
k ⟩⟨ψA

k |

TrA(ρ) =
K−1∑
k=0

⟨ψA
k |ρ|ψA

k ⟩ =
K−1∑
k=0

λ2k |ψB
k ⟩⟨ψB

k |
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Von Neumann entropy of bipartite systems

TrB(ρ) =
K−1∑
k=0

λ2k |ψA
k ⟩⟨ψA

k |, TrA(ρ) =
K−1∑
k=0

λ2k |ψB
k ⟩⟨ψB

k |

Given that {|ψA
k ⟩} is an orthonormal set

Similarly for the basis set {|ψB
k ⟩}

S(TrA(ρ)) = −
K−1∑
k=0

λ2k log2 λ
2
k

S(TrB(ρ)) = −
K−1∑
k=0

λ2k log2 λ
2
k

Clearly, S(TrA(ρ)) = S(TrB(ρ)) which means that the von Neumann entropy of the partial
trace of a bipartite system is consistent when measured on either subsystem

The amount of entanglement between the two parts of a pure state |ψ⟩ ∈ X = A⊗ B with
density operator ρ = |ψ⟩⟨ψ| is defined to be S(TrA(ρ)) or S(TrB(ρ))
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Example 10.2.1

Given a 2-qubit system in the maximally en-
tangled Bell state

The partial trace with respect to subsystem
B is

The von Neumann entropy is thus

|x⟩ = 1√
2
(|00⟩+ |11⟩)

ρAx = TrB(|x⟩⟨x |) = ρME = 1
2 I

S(ρME ) = −1
2 log2

1
2 − 1

2 log2
1
2

= −1
2(−1− 1) = 1

What about other maximally entangled states?

|y⟩ = 1√
2
(|01⟩+ |10⟩) −→ ρy = |y⟩⟨y | = 1

2(|01⟩⟨01|+ |01⟩⟨10|+ |10⟩⟨01|+ |10⟩⟨10|)

ρAy = TrB(ρy ),
(
ρAy
)
ik
=

1∑
i ,k=0

1∑
j=0

⟨ij |y⟩⟨y |kj⟩

(
ρAy
)
00

= 1
2(⟨00|01⟩+ ⟨00|10⟩)(⟨01|00⟩+ ⟨10|00⟩) + 1

2(⟨01|01⟩+ ⟨01|10⟩)(⟨01|01⟩+ ⟨10|01⟩)
= 1

2
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2(⟨11|01⟩+ ⟨11|10⟩)(⟨01|11⟩+ ⟨10|11⟩)
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2

Thus ρAy = 1
2 I = ρBy = ρME and the entropy, S(ρME ) = 1 for this state also

Any other 2-qubit maximally entangled state will give the same results
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2

Thus ρAy = 1
2 I = ρBy = ρME and the entropy, S(ρME ) = 1 for this state also

Any other 2-qubit maximally entangled state will give the same results
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Example 10-2-2

Compute the partial density operator for the
first qubit of the state

|x⟩ = 7
10 |00⟩+

1
10 |01⟩+

1
10 |10⟩+

7
10 |11⟩

The partial density matrix is defined as ρAx = TrB(|x⟩⟨x |), a matrix which has 4 elements

1∑
j=0

⟨0j |x⟩⟨x |0j⟩|0⟩⟨0| =
[(

7
10

)2
+
(

1
10

)2] |0⟩⟨0| = 1
2 |0⟩⟨0|

1∑
j=0

⟨0j |x⟩⟨x |1j⟩|0⟩⟨1| =
[
7
10

1
10 + 1

10
7
10

]
|0⟩⟨1| = 7

50 |0⟩⟨1|

1∑
j=0

⟨1j |x⟩⟨x |0j⟩|1⟩⟨0| =
[
1
10

7
10 + 7

10
1
10

]
|1⟩⟨0| = 7

50 |1⟩⟨0|

1∑
j=0

⟨1j |x⟩⟨x |1j⟩|1⟩⟨1| =
[(

1
10

)2
+
(

7
10

)2] |1⟩⟨1| = 1
2 |1⟩⟨1|
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Example 10-2-2 (cont.)

Thus the partial density matrix becomes

ρAx = 1
2 |0⟩⟨0|+

7
50 |0⟩⟨1|+

1
10 |1⟩⟨0|+

1
2 |1⟩⟨1|

1
100

(
50 14
14 50

)
= 1

2

(
I + 14

50X
)

This corresponds to the point (0.28, 0, 0) in the Bloch sphere

To get the entropy, diagonalize the ρAx matrix

0 = det

∣∣∣∣ 1
2 − λ 7

50
7
50

1
2 − λ

∣∣∣∣ = λ2 − λ+ 1
4

[
1−

(
7
50

)2]
λ = 1

2 ± 1
2

√
1− 41

4

[
1−

(
7
50

)2]
= 16

25 ,
9
25

S(ρAx ) = −16
25 log2

16
25 − 9

25 log2
9
25 = 0.942
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Example 10-2-2 (cont.)
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Example 10.2.4

Determine the amount of entanglement in the 4-qubit state in the 2,4 and 1,2 subsystems

|ψ⟩ = 1
2(|00⟩+ |11⟩+ |22⟩+ |33⟩) = 1

2(|0000⟩+ |0101⟩+ |1010⟩+ |1111⟩)

In the 2,4 decomposition, this state is unentangled

|ψ⟩ = 1√
2
(|0⟩1|0⟩3 + |1⟩1|1⟩3)⊗ 1√

2
(|0⟩2|0⟩4 + |1⟩2|1⟩4)

Since the state is unentangled, it is a pure state in the 2,4 subsystem and S(ρ2,4ψ ) ≡ 0

In the 1,2 and 3,4 decomposition, the partial density operator becomes

ρ1,2ψ = Tr3,4(|ψ⟩⟨ψ|) =
3∑

i ,j=0

3∑
k=0

⟨j3|⟨k4||ψ⟩⟨ψ||i3⟩|k4⟩|j⟩⟨i |

The coefficient of |j⟩⟨i | is 1
4δij so

In this decomposition the state is
maximally entangled

ρ1,2ψ =

(
1
4 0

0 1
4

)
−→ S(ρ1,2ψ ) = 2
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