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Geometry of mixed states
e von Neumann entropy

® Bipartite entanglement

Examples

Reading assignment: 10.2 — 10.3

Homework Assignment #06:
See Blackboard
Due Tuesday, April 05, 2022

Quantum circuit simulator https://algassert.com/quirk
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Ix) € A® B is a so-called pure state which satisfies pf = p

The density operator p = |x)(x| for a pure state |x) is all zeros except for a 1 in the it
diagonal element where |x) is the i element in a basis
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Density matrix and the Bloch sphere YV

det(p) = 1(1— 22— X2 — y2)

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 31, 2022 6/16



Density matrix and the Bloch sphere YV

det(p) = 11— 2 —x® —y2) = 21— ), r=1/xP + Iy + |22

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 31, 2022 6/16



Density matrix and the Bloch sphere YV

det(p) = 11— 2 —x® —y2) = 21— ), r=1/xP + Iy + |22

Because this is a density operator, its determinant must be real and non-negative so 0 < r <1

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 31, 2022 6/16



Density matrix and the Bloch sphere i

det(p) = 11— 2 —x® —y2) = 21— ), r=1/xP + Iy + |22
Because this is a density operator, its determinant must be real and non-negative so 0 < r <1

The values x, y, z can thus be interpreted
as coordinates and the density matrix given
by p = (I —xox+yoy, +z0,) can describe
a vector which lies within the Bloch sphere
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Density matrix and the Bloch sphere \ i

det(p) = 11— 2 —x® —y2) = 21— ), r=1/xP + Iy + |22
Because this is a density operator, its determinant must be real and non-negative so 0 < r <1

The values x, y, z can thus be interpreted
as coordinates and the density matrix given
by p = (I —xox+yoy, +z0,) can describe
a vector which lies within the Bloch sphere

The density matrices which fall on the sur-
face of the Bloch sphere have r = 1 and
det(p) =0

The determinant is the product of its eigen-
values so states on the surface must be pro-
jectors and thus pure states
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det(p) = 11— 2 —x® —y2) = 21— ), r=1/xP + Iy + |22
Because this is a density operator, its determinant must be real and non-negative so 0 < r <1

The values x, y, z can thus be interpreted

as coordinates and the density matrix given
1 .

by p = 5(/ —X0x+yoy + z0,) can describe (1,0,0) |4)

a vector which lies within the Bloch sphere

(x,y,z) state density matrix

(/+ax)=§(i
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=
~__

The density matrices which fall on the sur- : 1
e density matrices which fa on_ e sur (0,1,0) |/ %(/ +oy) = % ( : >
face of the Bloch sphere have r = 1 and i1
det(p) =0 2 0
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Density matrix and the Bloch sphere

det(p) = 11— 2 —x® —y2) = 21— ), r=1/xP + Iy + |22
Because this is a density operator, its determinant must be real and non-negative so 0 < r <1

The values x, y, z can thus be interpreted _ _
as coordinates and the density matrix given (x,y,2) state density matrix

by p = %(I —X0x+ Yo, +z0;) can describe 1 1 (1
1 (1 =

a vector which lies within the Bloch sphere (1,0,0) [+ 2/ +ox) =3 1

The density matrices which fall on the sur- (0,1,0) |7)

face of the Bloch sphere have r = 1 and o

det(p) =0

0,0,1 0 l4+o0,)=13
The determinant is the product of its eigen- ( )10l ) =2

values so states on the surface must be pro-

_1,_1
jectors and thus pure states (0,0,0) po=31=3

= = OO K -l = =
N— ———
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Von Neumann entropy vV

Recall the density matrix for one of the qubits of an EPR
pair, %UOO) +111))
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Von Neumann entropy

Recall the density matrix for one of the qubits of an EPR

o1
pair, %(|00> +1(11)) _1l/710
PME=35\ 0 1

This corresponds to the point in the center of the sphere,
the furthest from a pure state possible
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Von Neumann entropy

Recall the density matrix for one of the qubits of an EPR
1

L1
pair, %(|00) +111)) _1/10

This corresponds to the point in the center of the sphere,
the furthest from a pure state possible
This state is maximally uncertain and will give the two possible answers with equal probability
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This corresponds to the point in the center of the sphere,
the furthest from a pure state possible

This state is maximally uncertain and will give the two possible answers with equal probability

For a pure state there is a basis in which a measurement gives a deterministic result
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Recall the density matrix for one of the qubits of an EPR

o1

pair, 00) + |11 1/1 0
L(/00) + [11)) oue=1(10

This corresponds to the point in the center of the sphere,

the furthest from a pure state possible
This state is maximally uncertain and will give the two possible answers with equal probability
For a pure state there is a basis in which a measurement gives a deterministic result

For an n-qubit system the uncertainty of
measurement can be described by the von
Neumann entropy
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Von Neumann entropy \ 74

Recall the density matrix for one of the qubits of an EPR
o1
pair, —=(|00) + |11 1/1 0
5(100) +11)) P

This corresponds to the point in the center of the sphere, 01

the furthest from a pure state possible

This state is maximally uncertain and will give the two possible answers with equal probability
For a pure state there is a basis in which a measurement gives a deterministic result

For an n-qubit system the uncertainty of
measurement can be described by the von S(p) = —Tr(plogy p) = Z)\ logy A
Neumann entropy

Given that 0log(0) = 0, the von Neumann entropy is zero for pure states where the density
matrix is a projector, there is only one non-zero diagonal element and the determinant is zero
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Von Neumann entropy \ 74

Recall the density matrix for one of the qubits of an EPR

L
pair, ﬁ(|00> +111)) v — 1 < 10 )

This corresponds to the point in the center of the sphere, 01

the furthest from a pure state possible

This state is maximally uncertain and will give the two possible answers with equal probability
For a pure state there is a basis in which a measurement gives a deterministic result

For an n-qubit system the uncertainty of
measurement can be described by the von S(p) = —Tr(plogy p) = Z)\ logy A
Neumann entropy

Given that 0log(0) = 0, the von Neumann entropy is zero for pure states where the density
matrix is a projector, there is only one non-zero diagonal element and the determinant is zero

A maximally uncertain state for an n-qubit system has all the diagonal elements equal to 27"

so 5(p) =
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Entropy and the Bloch sphere V

For a single qubit state with density operator p, what is the von Neumann entropy S(p) and
how does it relate to the Bloch sphere?
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For a single qubit state with density operator p, what is the von Neumann entropy S(p) and
how does it relate to the Bloch sphere?

Lf A1 and )X are the eigenvalues of p we Te(p) = 1 e m=1on
ave
The determinant of p is

1 \/1—4det
det(p) = Mda=M(1— A1) — XN —A+det(p)=0 — Azzize(p)

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 31, 2022 8/16



Entropy and the Bloch sphere V

For a single qubit state with density operator p, what is the von Neumann entropy S(p) and
how does it relate to the Bloch sphere?

Lf A1 and )X are the eigenvalues of p we T =1 — de=1-X
ave
The determinant of p is

1 /1 —4det
det(p) = Mo = M(1— A1) — A2—A+det(p) =0 — A= Ly ddet(p)

2 2
Since det(p) = %(1 _ r2)
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The determinant of p is
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For a single qubit state with density operator p, what is the von Neumann entropy S(p) and
how does it relate to the Bloch sphere?

Ihfaj\el and A are the eigenvalues of p we Tr() =1 — Jdo=1-X

The determinant of p is
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Entropy and the Bloch sphere YV

For a single qubit state with density operator p, what is the von Neumann entropy S(p) and
how does it relate to the Bloch sphere?

If A1 and Ax are the eigenvalues of p we

have Tr(p)=1 — Jl=1-X\

The determinant of p is
| T ddet(p)
det(p) = Mdoa = (1 —X1)) — A2 —A+det(p)=0 — A= zize(p)
Since det(p) = %(1 —r?) A = 1+r o 1—r
27 2

The entropy is therefore

S(p) = —Tr(plog, p) = Zklogz
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Entropy and the Bloch sphere YV

For a single qubit state with density operator p, what is the von Neumann entropy S(p) and
how does it relate to the Bloch sphere?

Lfaj\el and Ay are the eigenvalues of p we T =1 — Jde—1-X

The determinant of p is
| T ddet(p)
det(p) = Mdoa = (1 —X1)) — A2 —A+det(p)=0 — A= zize(p)
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Entropy and the Bloch sphere YV

For a single qubit state with density operator p, what is the von Neumann entropy S(p) and
how does it relate to the Bloch sphere?

If A1 and Ax are the eigenvalues of p we

have Tr(p)=1 — Jl=1-X\

The determinant of p is

1 1 —4det
det(p) = Ao =Ar(1— A1) — N —A+det(p)=0 — )\Zzize(p)
Since det(p) = %(1 —r?) A = 1+r M 1—r

27 2

The entropy is therefore

S(p) = = Tr(ploga p) = Z)‘ 1082 A _[<1+’) log> (1J2rr>+<1gr> |0g2<1;r)]

The von Neumann entropy for a single qubit system is just a function of the distance of the

state from the center of the Bloch sphere
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Bipartite entanglement vV

It is useful to find a good measure of entanglement for bipartite systems such as X = A® B
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system with a maximally entangled state
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It is useful to find a good measure of entanglement for bipartite systems such as X = A® B

The 2-qubit system is the simplest bipartite [¥) = J5(100) + [11))
system with a maximally entangled state
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Bipartite entanglement \ 7

It is useful to find a good measure of entanglement for bipartite systems such as X = A® B

The 2-qubit system is the simplest bipartite |v) = 12(|00> +1]11))
system with a maximally entangled state

S

For each of the two qubits, the density ma-
trix ppe has maximal von Neumann en-

tropy
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For each of the two qubits, the density ma- PME = 5 ( 0 1 >
trix ppe has maximal von Neumann en-
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It is useful to find a good measure of entanglement for bipartite systems such as X = A® B

The 2-qubit system is the simplest bipartite [¥) = J5(100) + [11))
system with a maximally entangled state

1/10
For each of the two qubits, the density ma- PME = 5 ( 0 1 >
trix ppe has maximal von Neumann en-
tropy S(p) = —2 [} log> (3)]
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It is useful to find a good measure of entanglement for bipartite systems such as X = A® B

The 2-qubit system is the simplest bipartite [¥) = J5(100) + [11))
system with a maximally entangled state
1/10
For each of the two qubits, the density ma- PME = 5 ( 0 1 >
trix ppe has maximal von Neumann en-
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It is useful to find a good measure of entanglement for bipartite systems such as X = A® B

The 2-qubit system is the simplest bipartite [¥) = J5(100) + [11))
system with a maximally entangled state
1/10
For each of the two qubits, the density ma- PME = 5 ( 0 1 >
trix ppe has maximal von Neumann en-
tropy S(p) = -2 31082 (3)] =2

An untangled state, such as |00) has mini-
mal von Neumann entropy
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Bipartite entanglement

\d

It is useful to find a good measure of entanglement for bipartite systems such as X = A® B

The 2-qubit system is the simplest bipartite
system with a maximally entangled state

For each of the two qubits, the density ma-
trix ppe has maximal von Neumann en-
tropy

An untangled state, such as |00) has mini-
mal von Neumann entropy

¥)

PME

S(p) =

Z5(/00) +[11))
110
2 ( 0 1 >

—2[5log; (3)] =2

(5 q) — s -0
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Bipartite entanglement

\d

It is useful to find a good measure of entanglement for bipartite systems such as X = A® B

The 2-qubit system is the simplest bipartite
system with a maximally entangled state

For each of the two qubits, the density ma-
trix ppe has maximal von Neumann en-

tropy

An untangled state, such as |00) has mini-

mal von Neumann entropy

subsystems, A and B

Carlo Segre (lllinois Tech)

[¥) = J5(100) + [11))
1/10
PME = 5 (i 0 1 )

S(p) = —2[3log2 (3)] =2

PME:(é 8) — S(p)

It makes sense to use the von Neumann entropy of the partial trace as a measure of the
entanglement if it can be assumed that the partial trace is the same for each of the two

PHYS 407 - Introduction to Quantum Computing March 31, 2022
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The Schmidt decomposition A

If |¢) is a pure state of the system A ®
B, there exists orthonormal sets of states

{l¥)} and {|¥:7)}
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The Schmidt decomposition A

If |¢) is a pure state of the system A ® K-1 a 5
B, there exists orthonormal sets of states ) = Z Aili) @ [97),
{l¥f)} and {|[v7)} =0
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The Schmidt decomposition A

If |¢) is a pure state of the system A ® K-1 a 5 K-1
B, there exists orthonormal sets of states ) = Z A7) @ [¥7), Ai=1
{lvf)} and {[vF)} i=0 i=0
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The Schmidt decomposition 7

If |¢) is a pure state of the system A ® 2 K-1
B, there exists orthonormal sets of states Z i) ® W Z Ai =
{lvf)} and {[vF)} i=0 i=0

The \; are the Schmidt coefficients and K is the Schmidt rank of |¢) which is 1 for
unentangled states
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The Schmidt decomposition

If |¢) is a pure state of the system A ® 2 K-1
B, there exists orthonormal sets of states Z i) ® |¢ Z Ai =
{lvf)} and {[vF)} i=0 i=0

The \; are the Schmidt coefficients and K is the Schmidt rank of |¢) which is 1 for
unentangled states

|_l

K—1K—
Given [¢p) € X = A® B and p = |¢)(¢] p= AiAj |2 w | ® |¢F>(¢JB|
with Schmidt decomposition as above —0 i—0

|_l

.
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The Schmidt decomposition

If |¢) is a pure state of the system A ® 2 K-1
B, there exists orthonormal sets of states Z i) ® |¢ Z Ai =
{lvf)} and {[vF)} i=0 i=0

The \; are the Schmidt coefficients and K is the Schmidt rank of |¢) which is 1 for
unentangled states

Given |[¢p) € X = A® B and p = |[¢){¢|
with Schmidt decomposition as above ;

K—

X
H
._.

AN W @ [$F) (V7]

j=0

I
o
.

The partial trace with respect to subsystem
B is given by
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The Schmidt decomposition

If |¢) is a pure state of the system A ® 2 K-1
B, there exists orthonormal sets of states Z i) ® |¢ Z Ai =
{lvf)} and {[vF)} i=0 i=0

The \; are the Schmidt coefficients and K is the Schmidt rank of |¢) which is 1 for
unentangled states

K-1K-1
Given |[¢p) € X = A® B and p = |[¢)(¢| — A |12 w, |® |¢F><¢JB|
with Schmidt decomposition as above i—0 j=0
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The Schmidt decomposition

If |¢) is a pure state of the system A ® 2 K-1
B, there exists orthonormal sets of states Z i) ® |¢ Z Ai =
{lvf)} and {[vF)} i=0 i=0

The \; are the Schmidt coefficients and K is the Schmidt rank of |¢) which is 1 for
unentangled states

K-1K-1
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with Schmidt decomposition as above i—0 j=0
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The Schmidt decomposition

If |¢) is a pure state of the system A ® 2 K-1
B, there exists orthonormal sets of states Z i) ® |¢ Z Ai =
{lvf)} and {[vF)} i=0 i=0

The \; are the Schmidt coefficients and K is the Schmidt rank of |¢) which is 1 for
unentangled states

Given |[¢p) € X = A® B and p = |[¢){¢| p
with Schmidt decomposition as above

N
w
>§
._.

A,A W W @ [P (VP

T
Lo
-
Il
o

K-1
The partial trace with respect to subsystem Tr _ _ 3
B is given by 5(p) wk o9k ;} A

W
o

Similarly for the partial trece with respect to
subsystem A

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 31, 2022 10/16



The Schmidt decomposition

If |¢) is a pure state of the system A ® 2 K-1
B, there exists orthonormal sets of states Z i) ® |¢ Z Ai =
{lvf)} and {[vF)} i=0 i=0

The \; are the Schmidt coefficients and K is the Schmidt rank of |¢) which is 1 for
unentangled states

Given [¢) € X = A® B and p = [¢)(¢)| p

N
w
>§
._.

A,A W W @ [P (VP

with Schmidt decomposition as above i—0 j=0
Th ial ith b = =
e partial trace with respect to subsystem Tr _ _ A
B is given by (p) 2 Wk lplve ;} LA
Similarly for the partial t ith tt = =
imilarly for the partial trece with respect to Tr _ A Ay _ A2 [hBY (4B
subsystem A A(p) 2 (Wiclplvi) 2 k[0 ) (W |
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Von Neumann entropy of bipartite systems vV

X

K-1
Tra(p Z Nl i) (Wil Tra(p ZAka (Wil
k=0

k=0
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Von Neumann entropy of bipartite systems vV

X

K-1
Tra(p Z Nl i) (Wil Tra(p ZAka (Wil
k=0

k=0

Given that {|¢f)} is an orthonormal set
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Von Neumann entropy of bipartite systems \d

K— K—1
Tre(p Z kW}k 1/%‘ Tra(p Z/\ka lbk\
k=0 k=0
K—1
2 2
Given that {|¢f)} is an orthonormal set 5(Tra(p)) = — Al logy Ay
k=0
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Von Neumann entropy of bipartite systems \d

K—1 K-1
Tre(p Z )‘kW}k W\ Tra(p Z /\ka lbk ‘
k=0 k=0

X
—

2 2
Given that {|¢f)} is an orthonormal set 5(Tra(p)) = — Al logy Ay
0

=
Il

Similarly for the basis set {|¢F)}
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Von Neumann entropy of bipartite systems V

K—1 K-1
Tre(p Z )‘kW}k W\ Tra(p Z /\ka wk ‘
k=0 k=0

K—1

2 2

Given that {|¢f)} is an orthonormal set 5(Tra(p)) = — Al logy Ay
k=0
K—1

Similarly for the basis set {|¢F)} S(Tre(p)) = — At logy A}
k=0

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 31, 2022 11/16



Von Neumann entropy of bipartite systems i

K—1 K-1
Tre(p Z )\kWJk 1/Jk\ Tra(p Z /\ka wk ‘
k=0 k=0

K—1

2 2

Given that {|¢f)} is an orthonormal set 5(Tra(p)) = Z Al loga Al
=0
K—1

Similarly for the basis set {|¢F)} S(Tre(p)) = — At logy A}
k=0

Clearly, S(Tra(p)) = S(Trg(p)) which means that the von Neumann entropy of the partial
trace of a bipartite system is consistent when measured on either subsystem
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Von Neumann entropy of bipartite systems

K—1 K-1
Tre(p Z )\kWJk ¢k\ Tra(p Z /\ka wk ‘
k=0 k=0

K—1

2 2

Given that {|¢f)} is an orthonormal set 5(Tra(p)) = Z Al loga Al
=0
K—1

Similarly for the basis set {|¢F)} S(Tre(p)) = — At logy A}
k=0

Clearly, S(Tra(p)) = S(Trg(p)) which means that the von Neumann entropy of the partial
trace of a bipartite system is consistent when measured on either subsystem

The amount of entanglement between the two parts of a pure state |1)) € X = A® B with
density operator p = |1) (1| is defined to be S(Tra(p)) or S(Trg(p))
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Example 10.2.1 V

Given a 2-qubit system in the maximally en-
tangled Bell state
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Example 10.2.1 S

Given a 2-qubit system in the maximally en- x) = %000) +[11))
tangled Bell state

The partial trace with respect to subsystem
Bis
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Example 10.2.1 NG

Given a 2-qubit system in the maximally en- x) = %000) +[11))
tangled Bell state A

: . px = Tra(x){x])
The partial trace with respect to subsystem
Bis
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Example 10.2.1 S

Given a 2-qubit system in the maximally en- x) = %000) +[11))

tangled Bell state A 1
: . pi = Tre(Ix)(x[) = pme = 31

The partial trace with respect to subsystem

Bis
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Example 10.2.1 NG

Given a 2-qubit system in the maximally en- x) = %000) +[11))

tangled Bell state A 1
: . pi = Tre(Ix)(x[) = pme = 31

The partial trace with respect to subsystem

Bis

The von Neumann entropy is thus
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Example 10.2.1 N

Given a 2-qubit system in the maximally en- x) = %000) +[11))

tangled Bell state A 1
: . pi = Tre(Ix)(x[) = pme = 31

The partial trace with respect to subsystem

Bis S(pme) = —75 logs 5 %Iog22

The von Neumann entropy is thus
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Example 10.2.1 NG

1
Given a 2-qubit system in the maximally en- x) = ﬁ(|00) +[11))
tangled Bell state A 1
: . pi = Tre(Ix)(x[) = pme = 31
The partial trace with respect to subsystem
Bis S(pme) = —5logy 5 — 3 logy 3

The von Neumann entropy is thus =-3(-1-1)=1
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Example 10.2.1 \ 7

Given a 2-qubit system in the maximally en- x) = %000) +[11))

tangled Bell state A 1
_ _ pi = Tra(x){x]) = pme = 3/

The partial trace with respect to subsystem

Bis S(pme) = —3logy 3 — 3 loga 3

The von Neumann entropy is thus =-3(-1-1)=

What about other maximally entangled states?
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Example 10.2.1

Given a 2-qubit system in the maximally en-
tangled Bell state

The partial trace with respect to subsystem
Bis

The von Neumann entropy is thus

What about other maximally entangled states?

ly) = J5(101) +[10))

Carlo Segre (lllinois Tech)

x) = 15(/00) + [11))
ol = Trp(1x) () = pume = 31

S(pme) = —3 loga 5 — 3 logs 3
=-3(-1-1)=1
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Example 10.2.1

Given a 2-qubit system in the maximally en- x) = %000) +[11))
tangled Bell state

A 1
pi = Tre(x)(x]) = pme = 5/
The partial trace with respect to subsystem X 2

Bis S(pme) = —3logr 3 — 3 logs 5
The von Neumann entropy is thus =-3(-1-1)=1

What about other maximally entangled states?

v) = 75(101) + [10))  —  py = |y)(y| = 5(/01)(01] + |01){10] + [10){01] + [10){10])
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Example 10.2.1

Given a 2-qubit system in the maximally en-
tangled Bell state

The partial trace with respect to subsystem
Bis

The von Neumann entropy is thus

What about other maximally entangled states?

ly) = J5(101) +[10))
=Tr

8(py),
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Example 10.2.1

Given a 2-qubit system in the maximally en-
tangled Bell state

The partial trace with respect to subsystem
Bis

The von Neumann entropy is thus

What about other maximally entangled states?

ly) = J5(101) +[10))
=Tr

— py=Iyl=

x) = 15(/00) + [11))
ol = Trp(1x) () = pume = 31

S(pme) = —3 loga 5 — 3 logs 3
=-3(-1-1)=1

1(101)(01] + |01)(10] + |10)(01| + |10)(10])

1 1
5(py); = > i) ylki)

i,k=0 j=0
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Example 10.2.1

Given a 2-qubit system in the maximally en-
tangled Bell state

The partial trace with respect to subsystem
Bis

The von Neumann entropy is thus

What about other maximally entangled states?

ly) = J5(101) +[10))
=Tr

— py=Iyl=

x) = 15(/00) + [11))
ol = Trp(1x) () = pume = 31

S(pme) = —3 loga 5 — 3 logs 3
=-3(-1-1)=1

1(101)(01] + |01)(10] + |10)(01| + |10)(10])

1 1
8(py); = > i) ylki)

i,k=0 j=0

(pf,‘ )oo

= 1((oojo1) +
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Example 10.2.1

Given a 2-qubit system in the maximally en- x) = %UOO) +[11))
tangled Bell state

A 1
pi = Tre(x)(x]) = pme = 5/
The partial trace with respect to subsystem X 2

Bis S(pme) = —3logr 3 — 3 logs 5
The von Neumann entropy is thus =-3(-1-1)=1

What about other maximally entangled states?

v) = 75(101) + [10))  —  py = |y)(y| = 5(/01)(01] + |01){10] + [10){01] + [10){10])

0y =Tee(py),  (0)) = D D {iily){vlki)

i,k=0 j=0

({00{01 -+ (00167)({0360] + (10{067) + 3((01|01) + (01+167)((01/01) + (10{01))

(p;‘)oo =

NI= N

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 31, 2022 12/16



Example 10.2.1 (cont.) V

(14, = 3((00]01) + (00]10))((01|10) + (10]10)) + 3((01]01) + (01[10))({01[11) + (10]11))
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Example 10.2.1 (cont.) V

(P5})o1 = 3({00{0T} + (0007) ((OLH6] + (10]10)) + 3((01[01) + (0LF67)((OLHT] + (10417)
=0
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Example 10.2.1 (cont.) i

(P3') g1 = 3 ({00161 + (00[07) ({01207 + (10]10)) + 3((01]01) + (OHOT) ((OHFTT + (1041))
=0
(1), = 3({10[01) + (10]10))((01]00) + (10/00)) + 3({11]01) + (11]10))((01/01) + (10[01))
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Example 10.2.1 (cont.) i

() oy = 3({001BT] + (00107) ((0L26) + (10[10)) + 3((01/01) + (OXHOT) ({OLT) + (10f11))

({10{01) + (10/10)) ({01607 + (101607) + 3 ({1101} + (11107)((01/01) + (10f01))

(pf,‘ )10

Il
O v O
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Example 10.2.1 (cont.) V

(p0) o = 3({04OT) + (0OHOT) ((OHEOT + (10[10)) + 3((01]01) + (OLFHOY) ((OLFHLY + (104TY)
=0

(p0) 1 = 3({1O6T) + (10]10))({0HOOT + (104607) + 3 ((1H6T) + (11{107)((01|01) + (10{61))
=0

(,Oy) = 1((10/01) + (10]10))((01|10) + (10[10)) + ((11|01) + (11|10))((01|11) + (10|11))
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Example 10.2.1 (cont.) i

(p%) oy = 3({00OTY + (0OROV) ({0107 + (10]10)) + 3((01]01) + (OLFOY)((OLFLY + (10{1))
=0

(1), = 3({10161) + (10]10))((01{O0) + (104607) + 3 ((11461) + (114107)((01/01) + (10{61))
=0

(p0),, = ({1001 + (10]10))((0HIOT + (10/10)) + L((1LOTY + (11H6))((OLEL) + (1041))
1
- 2
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Example 10.2.1 (cont.) i

() oy = 3({001BT] + (00107) ((0L26) + (10[10)) + 3((01/01) + (OXHOT) ({OLT) + (10f11))

()10 = 2({101677 + (10]10))({0L00) + (10{607) + 3 ({1161} + (11107)((01/01) + (10{61))
=0

(p)11 = 5({1016T) + (10]10))({0XH20) + (10]10)) + 3({1HOT + (1L{F07)((OLFLT + (10{11))
-1
=2

Thus pf = %I = pf = pme and the entropy, S(pme) = 1 for this state also
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Example 10.2.1 (cont.)

() oy = 3({001BT] + (00107) ((0L26) + (10[10)) + 3((01/01) + (OXHOT) ({OLT) + (10f11))

%) 10 = 3({1016] + (10]10)) (014667 + (10{667) + 3 ({11617 + (1L07)((01[01) + (10{61})

D

—
X,
<X

({10161} + (10/10))({0X0) + (10]10)) + 5 ({1181} + (11167) ((0LFT} + (10117)

—
e
<>
N= N~ O N

Thus pf = %I = pf = pme and the entropy, S(pme) = 1 for this state also

Any other 2-qubit maximally entangled state will give the same results
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Example 10-2-2 vV

Compute the partial density operator for the
first qubit of the state
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Example 10-2-2 vV

Compute the partial density operator for the

7 1 1 7
= ==100 =01 =10 =11
first qubit of the state x) = 15100) + 15101) + 55[10) + 15/11)
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Example 10-2-2 V

Compute the partial density operator for the 7 1 1 7
= -5[00) 4+ =|01) + = |10) + 5|11
first qubit of the state X) = 16100) + 5/01) + 15110} + 5511)

The partial density matrix is defined as p2 = Trg(|x)(x|), a matrix which has 4 elements
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Example 10-2-2 V

Compute the partial density operator for the

7 1 1 7
= #£00) + 75/01) 4+ 55/10) + 75[11
first qubit of the state X) = 16100) + 5/01) + 15110} + 5511)
The partial density matrix is defined as p2 = Trg(|x)(x|), a matrix which has 4 elements
1
. . 2 2
>0 {x107)[0)(0] = | (35)° + (35)°] 100
j=0
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Example 10-2-2 V

Compute the partial density operator for the

7 1 1 7
= #-]00) + 75/01) + 75/10) + 55|11
first qubit of the state ) = 10100) + 36101) + 5/10) + 55[11)
The partial density matrix is defined as p2 = Trg(|x)(x|), a matrix which has 4 elements
1
. . 2 2
S0 (<107} 0)0] = [()* + (35)7] Io) 0] = 3l0)ol
j=0
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Example 10-2-2 V

Compute the partial density operator for the

7 1 1 7
= #-]00) + 75/01) + 75/10) + 55|11
first qubit of the state X) = 16100) + 5/01) + 15110} + 5511)
The partial density matrix is defined as p2 = Trg(|x)(x|), a matrix which has 4 elements
s 2 2
S0 (<107} 0)0] = [()* + (35)7] Io) 0] = 3l0)ol
j=0
1
> _{0ilx) (xI1)10) (1] = [{G15 + 510] 10)(1]
j=0
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Example 10-2-2 V

Compute the partial density operator for the

7 1 1 7
= #-]00) + 75/01) + 75/10) + 55|11
first qubit of the state X) = 16100) + 5/01) + 15110} + 5511)
The partial density matrix is defined as p2 = Trg(|x)(x|), a matrix which has 4 elements
s 2 2
S0 (<107} 0)0] = [()* + (35)7] Io) 0] = 3l0)ol
j=0
1
> _{0ix)(x[1/)[0)(1] = [ 15 + 110 [0){1] = g510)(1]
j=0
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Example 10-2-2

Compute the partial density operator for the

7 1 1 7
= Z£100) 4+ =5|01) + =|10) 4+ =511
first qubit of the state X) = 16100) + 5/01) + 15110} + 5511)

The partial density matrix is defined as p2 = Trg(|x)(x|), a matrix which has 4 elements

1
> (0j1x)(x]07)[0)(0] = [(%)2 + (%of] 10)(0] = 10)(0|
j=0

1
D (0j1x)(x[17)0)(1] = [{515 + 1515 10)(1] = 5510)(1]
j=0

1
D (1jx)(x|0)[1)(0] = [ + G515 [1)(0)
j=0
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Example 10-2-2

Compute the partial density operator for the

7 1 1 7
= Z£100) 4+ =5|01) + =|10) 4+ =511
first qubit of the state X) = 16100) + 5/01) + 15110} + 5511)

The partial density matrix is defined as p2 = Trg(|x)(x|), a matrix which has 4 elements

1
> (0j1x)(x]07)[0)(0] = [(%)2 + (%of] 10)(0] = 10)(0|
j=0

1
D (0j1x)(x[17)0)(1] = [{515 + 1515 10)(1] = 5510)(1]
j=0

1
D (11X (x]0/)[1)(0] = [515 + 1515 [1)(0] = 55/1)(0]
j=0
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Example 10-2-2

Compute the partial density operator for the

7 1 1 7
= Z£100) 4+ =5|01) + =|10) 4+ =511
first qubit of the state X) = 16100) + 5/01) + 15110} + 5511)

The partial density matrix is defined as p2 = Trg(|x)(x|), a matrix which has 4 elements
1

> (0slx) (x|00)10)(0] = [ (5)* + (35)°] 10)0l = 30} 0]
j=0

1
>0 (xI10)10) (11 = [555 + 5535] 10) (1] = [0y (1]
j=0

1
2P0 1) (0] = [g515 + f35] [1)(0 = 55/1)(0]
j=0

1
> WKL) L = [(35)° + (3)°] 1D
j=0
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Example 10-2-2

Compute the partial density operator for the

7 1 1 7
= Z£100) 4+ =5|01) + =|10) 4+ =511
first qubit of the state X) = 16100) + 5/01) + 15110} + 5511)

The partial density matrix is defined as p2 = Trg(|x)(x|), a matrix which has 4 elements
1

> (0j1x)(x]07)[0)(0] = [(%)2 + (%of] 10)(0] = 10)(0|
j=0

1
D (0j1x)(x[17)0)(1] = [{515 + 1515 10)(1] = 5510)(1]
j=0

1
D (L) (x10/)[1)(0] = [f515 + 1515) 11)(0] = 55/1)(0]
j=0

1
S W) (L)1) = [(%0)2 + (%)2] 1)(1] = 1) (1]
j=0
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Example 10-2-2 (cont.) V

Thus the partial density matrix becomes
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Example 10-2-2 (cont.) V
Thus the partial density matrix becomes

p% = 310)(0] + 5510) (1] + 15/1)(0] + 3[1)(1]
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Example 10-2-2 (cont.) V
Thus the partial density matrix becomes

50 14
pA = 110)(0] + L[0)(1] + & [1)(0] + 1)(1| ks < 0 18 >
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Example 10-2-2 (cont.) N

Thus the partial density matrix becomes

50 14
ol = HOY0l+ Fi0) 11+ iyl + 3ty ( 35 2o ) =30+ E)
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Example 10-2-2 (cont.) i
Thus the partial density matrix becomes
50 14
ol = HOY0l+ Fi0) 11+ iyl + 3ty ( 35 2o ) =30+ E)

This corresponds to the point (0.28,0,0) in the Bloch sphere
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Example 10-2-2 (cont.) N
Thus the partial density matrix becomes

50 14
ol = HOY0l+ Fi0) 11+ iyl + 3ty ( 35 2o ) =30+ E)

This corresponds to the point (0.28,0,0) in the Bloch sphere

To get the entropy, diagonalize the p2 matrix
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Example 10-2-2 (cont.)

Thus the partial density matrix becomes

50 14
P = 310)(0] + 510} (1] + 5/1){0] + 3|1)(Ll 55 < > =3 (I +5%X)

14 50

This corresponds to the point (0.28,0,0) in the Bloch sphere

To get the entropy, diagonalize the p2 matrix

1 Y 7
— 2 _ 50
50 2
Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 31, 2022
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Example 10-2-2 (cont.) N

Thus the partial density matrix becomes

50 14
ol = HOY0l+ Fi0) 11+ iyl + 3ty ( 35 2o ) =30+ E)
This corresponds to the point (0.28,0,0) in the Bloch sphere

To get the entropy, diagonalize the p2 matrix

1
0 =det]| 2 A

| g~

S =2 A+ 11— (L)?
% % )\' 4[ (50)}
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Example 10-2-2 (cont.) N

Thus the partial density matrix becomes

50 14
Pl = 310101+ o)1+ 01+ B aisdy ( 3 zg ) =401+ 8%

This corresponds to the point (0.28,0,0) in the Bloch sphere

To get the entropy, diagonalize the p2 matrix

1\ L 212
2 50
0=det| 25" 1% | =X-A+1[1- ()]
50 2
141 1 1)2
- 2 2 4 50
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Example 10-2-2 (cont.)

<

Thus the partial density matrix becomes

50 14
Pl = 310101+ o)1+ 01+ B aisdy ( 3 zg ) =401+ 8%

This corresponds to the point (0.28,0,0) in the Bloch sphere

To get the entropy, diagonalize the p2 matrix

A

N[

0 = det

Nl
| &~
>/
>/
_|_
|_|
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Example 10-2-2 (cont.)

<

Thus the partial density matrix becomes

50 14
ol = HOY0l+ Fi0) 11+ iyl + 3ty ( 35 2o ) =30+ E)

This corresponds to the point (0.28,0,0) in the Bloch sphere

To get the entropy, diagonalize the p2 matrix

i-X & 2 1 72
— 2 50 — _ 1 _ (L
0=det| 2 1_)\'_)\ A+ i- (&)
50 2
=141 /1 _4l|1_ (1) =16 9
=g =52
Ay _ 16 16 9 9 _
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Example 10.2.4 V

Determine the amount of entanglement in the 4-qubit state in the 2,4 and 1,2 subsystems
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Example 10.2.4 V

Determine the amount of entanglement in the 4-qubit state in the 2,4 and 1,2 subsystems
) = 3(]00) + |11) + [22) + [33)) = £(]|0000) + |0101) + [1010) + |1111))
In the 2,4 decomposition, this state is unentangled

) = 2(10)1]0)s + [1)111)3) @ L5(10)2[0)a + [1)2[1)s)
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Example 10.2.4

-

Determine the amount of entanglement in the 4-qubit state in the 2,4 and 1,2 subsystems

1) = 4(]00) + |11) + [22) + [33)) = 3(|0000) + [0101) + [1010) + |1111))

In the 2,4 decomposition, this state is unentangled
[¥) = 5(100110)3 + [1)1]1)3) ® J5(10)2[0)4 + [1)2]1)a)

Since the state is unentangled, it is a pure state in the 2,4 subsystem and S(pi"‘) =0
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Example 10.2.4

Determine the amount of entanglement in the 4-qubit state in the 2,4 and 1,2 subsystems

1) = 4(]00) + |11) + [22) + [33)) = 3(|0000) + [0101) + [1010) + |1111))

In the 2,4 decomposition, this state is unentangled
[¥) = 5(100110)3 + [1)1]1)3) ® J5(10)2[0)4 + [1)2]1)a)

Since the state is unentangled, it is a pure state in the 2,4 subsystem and S(pi"‘) =0

In the 1,2 and 3,4 decomposition, the partial density operator becomes

py? = Traa(l¥)(¥))
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Example 10.2.4

Determine the amount of entanglement in the 4-qubit state in the 2,4 and 1,2 subsystems
) = 3(]00) + |11) + [22) + [33)) = £(]|0000) + |0101) + [1010) + |1111))
In the 2,4 decomposition, this state is unentangled
[¥) = 5(100110)3 + [1)1]1)3) ® J5(10)2[0)4 + [1)2]1)a)

Since the state is unentangled, it is a pure state in the 2,4 subsystem and S(pi"‘) =0

In the 1,2 and 3,4 decomposition, the partial density operator becomes

3 3
Py = Trsa(0) (W) = > D Ual(kal ) (w3 [ka) i) (i

ij=0 k=0
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Example 10.2.4

Determine the amount of entanglement in the 4-qubit state in the 2,4 and 1,2 subsystems
) = 3(]00) + |11) + [22) + [33)) = £(]|0000) + |0101) + [1010) + |1111))
In the 2,4 decomposition, this state is unentangled
) = 25001103 + [1)1]1)3) © L5 (10)210) + [1)2]1)a)
Since the state is unentangled, it is a pure state in the 2,4 subsystem and S(pi’4) =0

In the 1,2 and 3,4 decomposition, the partial density operator becomes

3 3
Py = Trsa(0) (W) = > D Ual(kal ) (w3 [ka) i) (i

ij=0 k=0

The coefficient of |j)(i| is +8; so
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Example 10.2.4

Determine the amount of entanglement in the 4-qubit state in the 2,4 and 1,2 subsystems
) = 3(]00) + |11) + [22) + [33)) = £(]|0000) + |0101) + [1010) + |1111))

In the 2,4 decomposition, this state is unentangled
1) = (10011003 + [1)1/1)3) © 2(102000 + 12 [1)s)
Since the state is unentangled, it is a pure state in the 2,4 subsystem and S(pi’4) =0

In the 1,2 and 3,4 decomposition, the partial density operator becomes

3 3
Py = Trsa(0) (W) = > D Ual(kal ) (w3 [ka) i) (i

ij=0 k=0
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Determine the amount of entanglement in the 4-qubit state in the 2,4 and 1,2 subsystems
) = 3(]00) + |11) + [22) + [33)) = £(]|0000) + |0101) + [1010) + |1111))
In the 2,4 decomposition, this state is unentangled
) = 25001103 + [1)1]1)3) © L5 (10)210) + [1)2]1)a)
Since the state is unentangled, it is a pure state in the 2,4 subsystem and S(pi’4) =0

In the 1,2 and 3,4 decomposition, the partial density operator becomes

3 3
Py = Trsa(0) (W) = > D Ual(kal ) (w3 [ka) i) (i

ij=0 k=0

INT

The coefficient of |j)(i| is +8; so L L
Py = ( ) — 5(p1/; ) =2

A= O

0
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Example 10.2.4
Determine the amount of entanglement in the 4-qubit state in the 2,4 and 1,2 subsystems
) = 3(]00) + |11) + [22) + [33)) = £(]|0000) + |0101) + [1010) + |1111))
In the 2,4 decomposition, this state is unentangled
) = 25001103 + [1)1]1)3) © L5 (10)210) + [1)2]1)a)
Since the state is unentangled, it is a pure state in the 2,4 subsystem and S(pi’4) =0

In the 1,2 and 3,4 decomposition, the partial density operator becomes

3 3
Py = Trsa(0) (W) = > D Ual(kal ) (w3 [ka) i) (i

ij=0 k=0

INT

The coefficient of |j)(i| is +8; so L L
Py = ( ) — 5(p1/; ) =2

o
= O

In this decomposition the state is

maximally entangled
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