

Today's outline - March 31, 2022

Today's outline - March 31, 2022

- Properties of density operators

Today's outline - March 31, 2022

- Properties of density operators
- Geometry of mixed states

Today's outline - March 31, 2022

- Properties of density operators
- Geometry of mixed states
- von Neumann entropy

Today's outline - March 31, 2022

- Properties of density operators
- Geometry of mixed states
- von Neumann entropy
- Bipartite entanglement

Today's outline - March 31, 2022

- Properties of density operators
- Geometry of mixed states
- von Neumann entropy
- Bipartite entanglement
- Examples

Today's outline - March 31, 2022

- Properties of density operators
- Geometry of mixed states
- von Neumann entropy
- Bipartite entanglement
- Examples

Reading assignment: 10.2 – 10.3

Today's outline - March 31, 2022

- Properties of density operators
- Geometry of mixed states
- von Neumann entropy
- Bipartite entanglement
- Examples

Reading assignment: 10.2 – 10.3

Homework Assignment #06:

See Blackboard

Due Tuesday, April 05, 2022

Quantum circuit simulator <https://algassert.com/quirk>

More properties of density operators

Any density operator, ρ_x^A , is Hermitian and $\text{Tr}(\rho_x^A) = \sum_j \overline{x_{ij}} x_{ij} \equiv 1$ since $|x\rangle$ is a unit vector

More properties of density operators

Any density operator, ρ_x^A , is Hermitian and $\text{Tr}(\rho_x^A) = \sum_j \overline{x_{ij}}x_{ij} \equiv 1$ since $|x\rangle$ is a unit vector

For a density operator $\rho_x^A : A \rightarrow A$ and $|v\rangle \in A$, we can write

More properties of density operators

Any density operator, ρ_x^A , is Hermitian and $\text{Tr}(\rho_x^A) = \sum_j \overline{x_{ij}} x_{ij} \equiv 1$ since $|x\rangle$ is a unit vector

For a density operator $\rho_x^A : A \rightarrow A$ and $|v\rangle \in A$, we can write

$$\langle v | \rho_x^A | v \rangle = \sum_{i=0}^{M-1} \sum_{k=0}^{M-1} \sum_{j=0}^{L-1} \langle v | (\overline{x_{ij}} x_{kj} |\alpha_k\rangle \langle \alpha_i|) | v \rangle$$

More properties of density operators

Any density operator, ρ_x^A , is Hermitian and $\text{Tr}(\rho_x^A) = \sum_j \overline{x_{ij}} x_{ij} \equiv 1$ since $|x\rangle$ is a unit vector

For a density operator $\rho_x^A : A \rightarrow A$ and $|v\rangle \in A$, we can write

$$\langle v | \rho_x^A | v \rangle = \sum_{i=0}^{M-1} \sum_{k=0}^{M-1} \sum_{j=0}^{L-1} \langle v | (\overline{x_{ij}} x_{kj} |\alpha_k\rangle \langle \alpha_i|) | v \rangle = \sum_{i=0}^{M-1} \sum_{k=0}^{M-1} \sum_{j=0}^{L-1} \overline{x_{ij}} \langle \alpha_i | v \rangle x_{kj} \langle v | \alpha_k \rangle$$

More properties of density operators

Any density operator, ρ_x^A , is Hermitian and $\text{Tr}(\rho_x^A) = \sum_j \overline{x_{ij}} x_{ij} \equiv 1$ since $|x\rangle$ is a unit vector

For a density operator $\rho_x^A : A \rightarrow A$ and $|v\rangle \in A$, we can write

$$\begin{aligned}\langle v | \rho_x^A | v \rangle &= \sum_{i=0}^{M-1} \sum_{k=0}^{M-1} \sum_{j=0}^{L-1} \langle v | (\overline{x_{ij}} x_{kj} |\alpha_k\rangle \langle \alpha_i|) | v \rangle = \sum_{i=0}^{M-1} \sum_{k=0}^{M-1} \sum_{j=0}^{L-1} \overline{x_{ij}} \langle \alpha_i | v \rangle x_{kj} \langle v | \alpha_k \rangle \\ &= \sum_{j=0}^{L-1} \left(\sum_{i=0}^{M-1} \overline{x_{ij} \langle v | \alpha_i \rangle} \right) \left(\sum_{k=0}^{M-1} x_{kj} \langle v | \alpha_k \rangle \right)\end{aligned}$$

More properties of density operators

Any density operator, ρ_x^A , is Hermitian and $\text{Tr}(\rho_x^A) = \sum_j \overline{x_{ij}} x_{ij} \equiv 1$ since $|x\rangle$ is a unit vector

For a density operator $\rho_x^A : A \rightarrow A$ and $|v\rangle \in A$, we can write

$$\begin{aligned}\langle v | \rho_x^A | v \rangle &= \sum_{i=0}^{M-1} \sum_{k=0}^{M-1} \sum_{j=0}^{L-1} \langle v | (\overline{x_{ij}} x_{kj} |\alpha_k\rangle \langle \alpha_i|) | v \rangle = \sum_{i=0}^{M-1} \sum_{k=0}^{M-1} \sum_{j=0}^{L-1} \overline{x_{ij}} \langle \alpha_i | v \rangle x_{kj} \langle v | \alpha_k \rangle \\ &= \sum_{j=0}^{L-1} \left(\sum_{i=0}^{M-1} \overline{x_{ij} \langle v | \alpha_i \rangle} \right) \left(\sum_{k=0}^{M-1} x_{kj} \langle v | \alpha_k \rangle \right) = \sum_{j=0}^{L-1} \left| \sum_{i=0}^{M-1} x_{ij} \langle v | \alpha_i \rangle \right|^2 \geq 0\end{aligned}$$

More properties of density operators

Any density operator, ρ_x^A , is Hermitian and $\text{Tr}(\rho_x^A) = \sum_j \overline{x_{ij}} x_{ij} \equiv 1$ since $|x\rangle$ is a unit vector

For a density operator $\rho_x^A : A \rightarrow A$ and $|v\rangle \in A$, we can write

$$\begin{aligned}\langle v | \rho_x^A | v \rangle &= \sum_{i=0}^{M-1} \sum_{k=0}^{M-1} \sum_{j=0}^{L-1} \langle v | (\overline{x_{ij}} x_{kj} |\alpha_k\rangle \langle \alpha_i|) | v \rangle = \sum_{i=0}^{M-1} \sum_{k=0}^{M-1} \sum_{j=0}^{L-1} \overline{x_{ij}} \langle \alpha_i | v \rangle x_{kj} \langle v | \alpha_k \rangle \\ &= \sum_{j=0}^{L-1} \left(\sum_{i=0}^{M-1} \overline{x_{ij} \langle v | \alpha_i \rangle} \right) \left(\sum_{k=0}^{M-1} x_{kj} \langle v | \alpha_k \rangle \right) = \sum_{j=0}^{L-1} \left| \sum_{i=0}^{M-1} x_{ij} \langle v | \alpha_i \rangle \right|^2 \geq 0\end{aligned}$$

The fact that ρ_x^A is positive means that all its eigenvalues are real and non-negative

More properties of density operators

Any density operator, ρ_x^A , is Hermitian and $\text{Tr}(\rho_x^A) = \sum_j \overline{x_{ij}} x_{ij} \equiv 1$ since $|x\rangle$ is a unit vector

For a density operator $\rho_x^A : A \rightarrow A$ and $|v\rangle \in A$, we can write

$$\begin{aligned}\langle v | \rho_x^A | v \rangle &= \sum_{i=0}^{M-1} \sum_{k=0}^{M-1} \sum_{j=0}^{L-1} \langle v | (\overline{x_{ij}} x_{kj} |\alpha_k\rangle \langle \alpha_i|) | v \rangle = \sum_{i=0}^{M-1} \sum_{k=0}^{M-1} \sum_{j=0}^{L-1} \overline{x_{ij}} \langle \alpha_i | v \rangle x_{kj} \langle v | \alpha_k \rangle \\ &= \sum_{j=0}^{L-1} \left(\sum_{i=0}^{M-1} \overline{x_{ij} \langle v | \alpha_i \rangle} \right) \left(\sum_{k=0}^{M-1} x_{kj} \langle v | \alpha_k \rangle \right) = \sum_{j=0}^{L-1} \left| \sum_{i=0}^{M-1} x_{ij} \langle v | \alpha_i \rangle \right|^2 \geq 0\end{aligned}$$

The fact that ρ_x^A is positive means that all its eigenvalues are real and non-negative

Given an orthonormal eigenbasis

$\{|v_0\rangle, \dots, |v_{M-1}\rangle\}$ in which the matrix for ρ_x^A is diagonalized with non-negative real entries λ_i we have that

More properties of density operators

Any density operator, ρ_x^A , is Hermitian and $\text{Tr}(\rho_x^A) = \sum_j \overline{x_{ij}} x_{ij} \equiv 1$ since $|x\rangle$ is a unit vector

For a density operator $\rho_x^A : A \rightarrow A$ and $|v\rangle \in A$, we can write

$$\begin{aligned}\langle v | \rho_x^A | v \rangle &= \sum_{i=0}^{M-1} \sum_{k=0}^{M-1} \sum_{j=0}^{L-1} \langle v | (\overline{x_{ij}} x_{kj} |\alpha_k\rangle \langle \alpha_i|) | v \rangle = \sum_{i=0}^{M-1} \sum_{k=0}^{M-1} \sum_{j=0}^{L-1} \overline{x_{ij}} \langle \alpha_i | v \rangle x_{kj} \langle v | \alpha_k \rangle \\ &= \sum_{j=0}^{L-1} \left(\sum_{i=0}^{M-1} \overline{x_{ij} \langle v | \alpha_i \rangle} \right) \left(\sum_{k=0}^{M-1} x_{kj} \langle v | \alpha_k \rangle \right) = \sum_{j=0}^{L-1} \left| \sum_{i=0}^{M-1} x_{ij} \langle v | \alpha_i \rangle \right|^2 \geq 0\end{aligned}$$

The fact that ρ_x^A is positive means that all its eigenvalues are real and non-negative

Given an orthonormal eigenbasis $\{|v_0\rangle, \dots, |v_{M-1}\rangle\}$ in which the matrix for ρ_x^A is diagonalized with non-negative real entries λ_i we have that

$$\sum_{i=0}^{M-1} \lambda_i \equiv 1,$$

More properties of density operators

Any density operator, ρ_x^A , is Hermitian and $\text{Tr}(\rho_x^A) = \sum_j \overline{x_{ij}} x_{ij} \equiv 1$ since $|x\rangle$ is a unit vector

For a density operator $\rho_x^A : A \rightarrow A$ and $|v\rangle \in A$, we can write

$$\begin{aligned}\langle v | \rho_x^A | v \rangle &= \sum_{i=0}^{M-1} \sum_{k=0}^{M-1} \sum_{j=0}^{L-1} \langle v | (\overline{x_{ij}} x_{kj} |\alpha_k\rangle \langle \alpha_i|) | v \rangle = \sum_{i=0}^{M-1} \sum_{k=0}^{M-1} \sum_{j=0}^{L-1} \overline{x_{ij}} \langle \alpha_i | v \rangle x_{kj} \langle v | \alpha_k \rangle \\ &= \sum_{j=0}^{L-1} \left(\sum_{i=0}^{M-1} \overline{x_{ij} \langle v | \alpha_i \rangle} \right) \left(\sum_{k=0}^{M-1} x_{kj} \langle v | \alpha_k \rangle \right) = \sum_{j=0}^{L-1} \left| \sum_{i=0}^{M-1} x_{ij} \langle v | \alpha_i \rangle \right|^2 \geq 0\end{aligned}$$

The fact that ρ_x^A is positive means that all its eigenvalues are real and non-negative

Given an orthonormal eigenbasis $\{|v_0\rangle, \dots, |v_{M-1}\rangle\}$ in which the matrix for ρ_x^A is diagonalized with non-negative real entries λ_i we have that

$$\sum_{i=0}^{M-1} \lambda_i \equiv 1, \quad \rho_x^A = \sum_{i=0}^{M-1} \lambda_i |v_i\rangle \langle v_i|$$

More properties of density operators

Any operator which satisfies the three conditions above must be a density operator

More properties of density operators

Any operator which satisfies the three conditions above must be a density operator

If ρ is an operator acting on A of dimension $M = 2^m$ with eigenbasis $\{|\psi_0\rangle, \dots, |\psi_{M-1}\rangle\}$ which satisfies all three conditions

More properties of density operators

Any operator which satisfies the three conditions above must be a density operator

If ρ is an operator acting on A of dimension $M = 2^m$ with eigenbasis $\{|\psi_0\rangle, \dots, |\psi_{M-1}\rangle\}$ which satisfies all three conditions

$$\rho = \sum_{i=0}^{M-1} \lambda_i |\psi_i\rangle\langle\psi_i|$$

More properties of density operators

Any operator which satisfies the three conditions above must be a density operator

If ρ is an operator acting on A of dimension $M = 2^m$ with eigenbasis $\{|\psi_0\rangle, \dots, |\psi_{M-1}\rangle\}$ which satisfies all three conditions

$$\rho = \sum_{i=0}^{M-1} \lambda_i |\psi_i\rangle\langle\psi_i| = \lambda_0 |\psi_0\rangle\langle\psi_0| + \dots + \lambda_{M-1} |\psi_{M-1}\rangle\langle\psi_{M-1}|$$

More properties of density operators

Any operator which satisfies the three conditions above must be a density operator

If ρ is an operator acting on A of dimension $M = 2^m$ with eigenbasis $\{|\psi_0\rangle, \dots, |\psi_{M-1}\rangle\}$ which satisfies all three conditions

$$\rho = \sum_{i=0}^{M-1} \lambda_i |\psi_i\rangle\langle\psi_i| = \lambda_0 |\psi_0\rangle\langle\psi_0| + \dots + \lambda_{M-1} |\psi_{M-1}\rangle\langle\psi_{M-1}|$$

Let B be a quantum system with a vector space of dimension $2^n > M$ and let $\{|\phi_0\rangle, \dots, |\phi_{M-1}\rangle\}$ be the first M elements of an orthonormal basis for B , define

More properties of density operators

Any operator which satisfies the three conditions above must be a density operator

If ρ is an operator acting on A of dimension $M = 2^m$ with eigenbasis $\{|\psi_0\rangle, \dots, |\psi_{M-1}\rangle\}$ which satisfies all three conditions

$$\rho = \sum_{i=0}^{M-1} \lambda_i |\psi_i\rangle\langle\psi_i| = \lambda_0 |\psi_0\rangle\langle\psi_0| + \dots + \lambda_{M-1} |\psi_{M-1}\rangle\langle\psi_{M-1}|$$

Let B be a quantum system with a vector space of dimension $2^n > M$ and let $\{|\phi_0\rangle, \dots, |\phi_{M-1}\rangle\}$ be the first M elements of an orthonormal basis for B , define

$$|x\rangle = \sqrt{\lambda_0} |\psi_0\rangle |\phi_0\rangle + \sqrt{\lambda_1} |\psi_1\rangle |\phi_1\rangle + \dots + \sqrt{\lambda_{M-1}} |\psi_{M-1}\rangle |\phi_{M-1}\rangle$$

More properties of density operators

Any operator which satisfies the three conditions above must be a density operator

If ρ is an operator acting on A of dimension $M = 2^m$ with eigenbasis $\{|\psi_0\rangle, \dots, |\psi_{M-1}\rangle\}$ which satisfies all three conditions

$$\rho = \sum_{i=0}^{M-1} \lambda_i |\psi_i\rangle\langle\psi_i| = \lambda_0 |\psi_0\rangle\langle\psi_0| + \dots + \lambda_{M-1} |\psi_{M-1}\rangle\langle\psi_{M-1}|$$

Let B be a quantum system with a vector space of dimension $2^n > M$ and let $\{|\phi_0\rangle, \dots, |\phi_{M-1}\rangle\}$ be the first M elements of an orthonormal basis for B , define

$$|x\rangle = \sqrt{\lambda_0} |\psi_0\rangle |\phi_0\rangle + \sqrt{\lambda_1} |\psi_1\rangle |\phi_1\rangle + \dots + \sqrt{\lambda_{M-1}} |\psi_{M-1}\rangle |\phi_{M-1}\rangle$$

$|x\rangle \in A \otimes B$ is a so-called pure state which satisfies $\rho_x^A = \rho$

More properties of density operators

Any operator which satisfies the three conditions above must be a density operator

If ρ is an operator acting on A of dimension $M = 2^m$ with eigenbasis $\{|\psi_0\rangle, \dots, |\psi_{M-1}\rangle\}$ which satisfies all three conditions

$$\rho = \sum_{i=0}^{M-1} \lambda_i |\psi_i\rangle\langle\psi_i| = \lambda_0 |\psi_0\rangle\langle\psi_0| + \dots + \lambda_{M-1} |\psi_{M-1}\rangle\langle\psi_{M-1}|$$

Let B be a quantum system with a vector space of dimension $2^n > M$ and let $\{|\phi_0\rangle, \dots, |\phi_{M-1}\rangle\}$ be the first M elements of an orthonormal basis for B , define

$$|x\rangle = \sqrt{\lambda_0} |\psi_0\rangle |\phi_0\rangle + \sqrt{\lambda_1} |\psi_1\rangle |\phi_1\rangle + \dots + \sqrt{\lambda_{M-1}} |\psi_{M-1}\rangle |\phi_{M-1}\rangle$$

$|x\rangle \in A \otimes B$ is a so-called pure state which satisfies $\rho_x^A = \rho$

The density operator $\rho_x^X = |x\rangle\langle x|$ for a pure state $|x\rangle$ is all zeros except for a 1 in the i^{th} diagonal element where $|x\rangle$ is the i^{th} element in a basis

More properties of density operators

Any operator which satisfies the three conditions above must be a density operator

If ρ is an operator acting on A of dimension $M = 2^m$ with eigenbasis $\{|\psi_0\rangle, \dots, |\psi_{M-1}\rangle\}$ which satisfies all three conditions

$$\rho = \sum_{i=0}^{M-1} \lambda_i |\psi_i\rangle\langle\psi_i| = \lambda_0 |\psi_0\rangle\langle\psi_0| + \dots + \lambda_{M-1} |\psi_{M-1}\rangle\langle\psi_{M-1}|$$

Let B be a quantum system with a vector space of dimension $2^n > M$ and let $\{|\phi_0\rangle, \dots, |\phi_{M-1}\rangle\}$ be the first M elements of an orthonormal basis for B , define

$$|x\rangle = \sqrt{\lambda_0} |\psi_0\rangle |\phi_0\rangle + \sqrt{\lambda_1} |\psi_1\rangle |\phi_1\rangle + \dots + \sqrt{\lambda_{M-1}} |\psi_{M-1}\rangle |\phi_{M-1}\rangle$$

$|x\rangle \in A \otimes B$ is a so-called pure state which satisfies $\rho_x^A = \rho$

The density operator $\rho_x^X = |x\rangle\langle x|$ for a pure state $|x\rangle$ is all zeros except for a 1 in the i^{th} diagonal element where $|x\rangle$ is the i^{th} element in a basis

The density operator of a pure state is a projection operator, such that $\rho_x^X \rho_x^X = \rho_x^X$

More properties of density operators

Projection operators of pure states also eliminate the issue associated with global phase differences

More properties of density operators

Projection operators of pure states also eliminate the issue associated with global phase differences

Consider the density operator for $|x\rangle = e^{i\theta}|y\rangle$

More properties of density operators

Projection operators of pure states also eliminate the issue associated with global phase differences

Consider the density operator for $|x\rangle = e^{i\theta}|y\rangle$

$$\rho_x = |x\rangle\langle x|$$

More properties of density operators

Projection operators of pure states also eliminate the issue associated with global phase differences

Consider the density operator for $|x\rangle = e^{i\theta}|y\rangle$

$$\rho_x = |x\rangle\langle x| = e^{-i\theta}|y\rangle\langle y|e^{i\theta}$$

More properties of density operators

Projection operators of pure states also eliminate the issue associated with global phase differences

Consider the density operator for $|x\rangle = e^{i\theta}|y\rangle$

$$\rho_x = |x\rangle\langle x| = e^{-i\theta}|y\rangle\langle y|e^{i\theta} = |y\rangle\langle y|$$

More properties of density operators

Projection operators of pure states also eliminate the issue associated with global phase differences

Consider the density operator for $|x\rangle = e^{i\theta}|y\rangle$

$$\rho_x = |x\rangle\langle x| = e^{-i\theta}|y\rangle\langle y|e^{i\theta} = |y\rangle\langle y|$$

The density matrix for **mixed** and **pure** states are very different

More properties of density operators

Projection operators of pure states also eliminate the issue associated with global phase differences

Consider the density operator for $|x\rangle = e^{i\theta}|y\rangle$

$$\rho_x = |x\rangle\langle x| = e^{-i\theta}|y\rangle\langle y|e^{i\theta} = |y\rangle\langle y|$$

The density matrix for **mixed** and **pure** states are very different

For the pure state $|+\rangle$ and the evenly mixed ensemble of $|0\rangle$ and $|1\rangle$ we have

$$\rho_{mixed} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

More properties of density operators

Projection operators of pure states also eliminate the issue associated with global phase differences

Consider the density operator for $|x\rangle = e^{i\theta}|y\rangle$

$$\rho_x = |x\rangle\langle x| = e^{-i\theta}|y\rangle\langle y|e^{i\theta} = |y\rangle\langle y|$$

The density matrix for **mixed** and **pure** states are very different

For the pure state $|+\rangle$ and the evenly mixed ensemble of $|0\rangle$ and $|1\rangle$ we have

$$\rho_{mixed} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \rho_+ = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

Geometry of mixed states

It is possible to use the Bloch sphere to visualize single-qubit mixed states which are linear combinations of pure states with non-negative coefficients that sum to 1

Geometry of mixed states

It is possible to use the Bloch sphere to visualize single-qubit mixed states which are linear combinations of pure states with non-negative coefficients that sum to 1

A density operator for a single qubit must be Hermitian and self-adjoint with trace 1 and the general form

Geometry of mixed states

It is possible to use the Bloch sphere to visualize single-qubit mixed states which are linear combinations of pure states with non-negative coefficients that sum to 1

A density operator for a single qubit

must be Hermitian and self-adjoint

with trace 1 and the general form

$$\rho = \begin{pmatrix} a & c - id \\ c + id & b \end{pmatrix}$$

Geometry of mixed states

It is possible to use the Bloch sphere to visualize single-qubit mixed states which are linear combinations of pure states with non-negative coefficients that sum to 1

A density operator for a single qubit must be Hermitian and self-adjoint with trace 1 and the general form

$$\rho = \begin{pmatrix} a & c - id \\ c + id & b \end{pmatrix}$$

The condition on the trace means that the matrix can be written with only 3 real parameters: x, y, z

Geometry of mixed states

It is possible to use the Bloch sphere to visualize single-qubit mixed states which are linear combinations of pure states with non-negative coefficients that sum to 1

A density operator for a single qubit must be Hermitian and self-adjoint with trace 1 and the general form

$$\rho = \begin{pmatrix} a & c - id \\ c + id & b \end{pmatrix}$$

The condition on the trace means that the matrix can be written with only 3 real parameters: x, y, z

$$= \frac{1}{2} \begin{pmatrix} 1+z & x-iy \\ x+iy & 1-z \end{pmatrix}$$

Geometry of mixed states

It is possible to use the Bloch sphere to visualize single-qubit mixed states which are linear combinations of pure states with non-negative coefficients that sum to 1

A density operator for a single qubit must be Hermitian and self-adjoint with trace 1 and the general form

$$\rho = \begin{pmatrix} a & c - id \\ c + id & b \end{pmatrix}$$

The condition on the trace means that the matrix can be written with only 3 real parameters: x, y, z and expanded in terms of Pauli matrices

$$= \frac{1}{2} \begin{pmatrix} 1+z & x-iy \\ x+iy & 1-z \end{pmatrix}$$

Geometry of mixed states

It is possible to use the Bloch sphere to visualize single-qubit mixed states which are linear combinations of pure states with non-negative coefficients that sum to 1

A density operator for a single qubit must be Hermitian and self-adjoint with trace 1 and the general form

$$\rho = \begin{pmatrix} a & c - id \\ c + id & b \end{pmatrix}$$

The condition on the trace means that the matrix can be written with only 3 real parameters: x, y, z and expanded in terms of Pauli matrices

$$= \frac{1}{2} \begin{pmatrix} 1+z & x-iy \\ x+iy & 1-z \end{pmatrix} = \frac{1}{2}(I + x\sigma_x + y\sigma_y + z\sigma_z)$$

Geometry of mixed states

It is possible to use the Bloch sphere to visualize single-qubit mixed states which are linear combinations of pure states with non-negative coefficients that sum to 1

A density operator for a single qubit must be Hermitian and self-adjoint with trace 1 and the general form

$$\rho = \begin{pmatrix} a & c - id \\ c + id & b \end{pmatrix}$$

The condition on the trace means that the matrix can be written with only 3 real parameters: x, y, z and expanded in terms of Pauli matrices

$$= \frac{1}{2} \begin{pmatrix} 1+z & x-iy \\ x+iy & 1-z \end{pmatrix} = \frac{1}{2}(I + x\sigma_x + y\sigma_y + z\sigma_z)$$

$$\sigma_x = X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

Geometry of mixed states

It is possible to use the Bloch sphere to visualize single-qubit mixed states which are linear combinations of pure states with non-negative coefficients that sum to 1

A density operator for a single qubit must be Hermitian and self-adjoint with trace 1 and the general form

$$\rho = \begin{pmatrix} a & c - id \\ c + id & b \end{pmatrix}$$

The condition on the trace means that the matrix can be written with only 3 real parameters: x, y, z and expanded in terms of Pauli matrices

$$= \frac{1}{2} \begin{pmatrix} 1+z & x-iy \\ x+iy & 1-z \end{pmatrix} = \frac{1}{2}(I + x\sigma_x + y\sigma_y + z\sigma_z)$$

$$\sigma_x = X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = -iY = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix},$$

Geometry of mixed states

It is possible to use the Bloch sphere to visualize single-qubit mixed states which are linear combinations of pure states with non-negative coefficients that sum to 1

A density operator for a single qubit must be Hermitian and self-adjoint with trace 1 and the general form

$$\rho = \begin{pmatrix} a & c - id \\ c + id & b \end{pmatrix}$$

The condition on the trace means that the matrix can be written with only 3 real parameters: x, y, z and expanded in terms of Pauli matrices

$$= \frac{1}{2} \begin{pmatrix} 1+z & x-iy \\ x+iy & 1-z \end{pmatrix} = \frac{1}{2}(I + x\sigma_x + y\sigma_y + z\sigma_z)$$

$$\sigma_x = X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = -iY = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Geometry of mixed states

It is possible to use the Bloch sphere to visualize single-qubit mixed states which are linear combinations of pure states with non-negative coefficients that sum to 1

A density operator for a single qubit must be Hermitian and self-adjoint with trace 1 and the general form

$$\rho = \begin{pmatrix} a & c - id \\ c + id & b \end{pmatrix}$$

The condition on the trace means that the matrix can be written with only 3 real parameters: x, y, z and expanded in terms of Pauli matrices

$$= \frac{1}{2} \begin{pmatrix} 1+z & x-iy \\ x+iy & 1-z \end{pmatrix} = \frac{1}{2}(I + x\sigma_x + y\sigma_y + z\sigma_z)$$

$$\sigma_x = X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = -iY = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\det(\rho) = \begin{vmatrix} \frac{1+z}{2} & \frac{x-iy}{2} \\ \frac{x+iy}{2} & \frac{1-z}{2} \end{vmatrix}$$

Geometry of mixed states

It is possible to use the Bloch sphere to visualize single-qubit mixed states which are linear combinations of pure states with non-negative coefficients that sum to 1

A density operator for a single qubit must be Hermitian and self-adjoint with trace 1 and the general form

$$\rho = \begin{pmatrix} a & c - id \\ c + id & b \end{pmatrix}$$

The condition on the trace means that the matrix can be written with only 3 real parameters: x, y, z and expanded in terms of Pauli matrices

$$= \frac{1}{2} \begin{pmatrix} 1+z & x-iy \\ x+iy & 1-z \end{pmatrix} = \frac{1}{2}(I + x\sigma_x + y\sigma_y + z\sigma_z)$$

$$\sigma_x = X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = -iY = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\det(\rho) = \begin{vmatrix} \frac{1+z}{2} & \frac{x-iy}{2} \\ \frac{x+iy}{2} & \frac{1-z}{2} \end{vmatrix} = \frac{1}{4}(1+z)(1-z) - \frac{1}{4}(x-iy)(x+iy)$$

Geometry of mixed states

It is possible to use the Bloch sphere to visualize single-qubit mixed states which are linear combinations of pure states with non-negative coefficients that sum to 1

A density operator for a single qubit must be Hermitian and self-adjoint with trace 1 and the general form

$$\rho = \begin{pmatrix} a & c - id \\ c + id & b \end{pmatrix}$$

The condition on the trace means that the matrix can be written with only 3 real parameters: x, y, z and expanded in terms of Pauli matrices

$$= \frac{1}{2} \begin{pmatrix} 1+z & x-iy \\ x+iy & 1-z \end{pmatrix} = \frac{1}{2}(I + x\sigma_x + y\sigma_y + z\sigma_z)$$

$$\sigma_x = X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = -iY = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\det(\rho) = \begin{vmatrix} \frac{1+z}{2} & \frac{x-iy}{2} \\ \frac{x+iy}{2} & \frac{1-z}{2} \end{vmatrix} = \frac{1}{4}(1+z)(1-z) - \frac{1}{4}(x-iy)(x+iy) = \frac{1}{4}(1 - z^2 - x^2 - y^2)$$

Density matrix and the Bloch sphere

$$\det(\rho) = \frac{1}{4}(1 - z^2 - x^2 - y^2)$$

Density matrix and the Bloch sphere

$$\det(\rho) = \frac{1}{4}(1 - z^2 - x^2 - y^2) = \frac{1}{4}(1 - r^2), \quad r = \sqrt{|x|^2 + |y|^2 + |z|^2}$$

Density matrix and the Bloch sphere

$$\det(\rho) = \frac{1}{4}(1 - z^2 - x^2 - y^2) = \frac{1}{4}(1 - r^2), \quad r = \sqrt{|x|^2 + |y|^2 + |z|^2}$$

Because this is a density operator, its determinant must be real and non-negative so $0 \leq r \leq 1$

Density matrix and the Bloch sphere

$$\det(\rho) = \frac{1}{4}(1 - z^2 - x^2 - y^2) = \frac{1}{4}(1 - r^2), \quad r = \sqrt{|x|^2 + |y|^2 + |z|^2}$$

Because this is a density operator, its determinant must be real and non-negative so $0 \leq r \leq 1$

The values x, y, z can thus be interpreted as coordinates and the density matrix given by $\rho = \frac{1}{2}(I - x\sigma_x + y\sigma_y + z\sigma_z)$ can describe a vector which lies within the Bloch sphere

Density matrix and the Bloch sphere

$$\det(\rho) = \frac{1}{4}(1 - z^2 - x^2 - y^2) = \frac{1}{4}(1 - r^2), \quad r = \sqrt{|x|^2 + |y|^2 + |z|^2}$$

Because this is a density operator, its determinant must be real and non-negative so $0 \leq r \leq 1$

The values x, y, z can thus be interpreted as coordinates and the density matrix given by $\rho = \frac{1}{2}(I - x\sigma_x + y\sigma_y + z\sigma_z)$ can describe a vector which lies within the Bloch sphere

The density matrices which fall on the surface of the Bloch sphere have $r = 1$ and $\det(\rho) = 0$

Density matrix and the Bloch sphere

$$\det(\rho) = \frac{1}{4}(1 - z^2 - x^2 - y^2) = \frac{1}{4}(1 - r^2), \quad r = \sqrt{|x|^2 + |y|^2 + |z|^2}$$

Because this is a density operator, its determinant must be real and non-negative so $0 \leq r \leq 1$

The values x, y, z can thus be interpreted as coordinates and the density matrix given by $\rho = \frac{1}{2}(I - x\sigma_x + y\sigma_y + z\sigma_z)$ can describe a vector which lies within the Bloch sphere

The density matrices which fall on the surface of the Bloch sphere have $r = 1$ and $\det(\rho) = 0$

The determinant is the product of its eigenvalues so states on the surface must be projectors and thus pure states

Density matrix and the Bloch sphere

$$\det(\rho) = \frac{1}{4}(1 - z^2 - x^2 - y^2) = \frac{1}{4}(1 - r^2), \quad r = \sqrt{|x|^2 + |y|^2 + |z|^2}$$

Because this is a density operator, its determinant must be real and non-negative so $0 \leq r \leq 1$

The values x, y, z can thus be interpreted as coordinates and the density matrix given by $\rho = \frac{1}{2}(I - x\sigma_x + y\sigma_y + z\sigma_z)$ can describe a vector which lies within the Bloch sphere

The density matrices which fall on the surface of the Bloch sphere have $r = 1$ and $\det(\rho) = 0$

The determinant is the product of its eigenvalues so states on the surface must be projectors and thus pure states

(x, y, z)	state	density matrix
$(1, 0, 0)$	$ +\rangle$	$\frac{1}{2}(I + \sigma_x) = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

Density matrix and the Bloch sphere

$$\det(\rho) = \frac{1}{4}(1 - z^2 - x^2 - y^2) = \frac{1}{4}(1 - r^2), \quad r = \sqrt{|x|^2 + |y|^2 + |z|^2}$$

Because this is a density operator, its determinant must be real and non-negative so $0 \leq r \leq 1$

The values x, y, z can thus be interpreted as coordinates and the density matrix given by $\rho = \frac{1}{2}(I - x\sigma_x + y\sigma_y + z\sigma_z)$ can describe a vector which lies within the Bloch sphere

The density matrices which fall on the surface of the Bloch sphere have $r = 1$ and $\det(\rho) = 0$

The determinant is the product of its eigenvalues so states on the surface must be projectors and thus pure states

(x, y, z)	state	density matrix
$(1, 0, 0)$	$ +\rangle$	$\frac{1}{2}(I + \sigma_x) = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
$(0, 1, 0)$	$ i\rangle$	$\frac{1}{2}(I + \sigma_y) = \frac{1}{2} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$

Density matrix and the Bloch sphere

$$\det(\rho) = \frac{1}{4}(1 - z^2 - x^2 - y^2) = \frac{1}{4}(1 - r^2), \quad r = \sqrt{|x|^2 + |y|^2 + |z|^2}$$

Because this is a density operator, its determinant must be real and non-negative so $0 \leq r \leq 1$

The values x, y, z can thus be interpreted as coordinates and the density matrix given by $\rho = \frac{1}{2}(I - x\sigma_x + y\sigma_y + z\sigma_z)$ can describe a vector which lies within the Bloch sphere

The density matrices which fall on the surface of the Bloch sphere have $r = 1$ and $\det(\rho) = 0$

The determinant is the product of its eigenvalues so states on the surface must be projectors and thus pure states

(x, y, z)	state	density matrix
$(1, 0, 0)$	$ +\rangle$	$\frac{1}{2}(I + \sigma_x) = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
$(0, 1, 0)$	$ i\rangle$	$\frac{1}{2}(I + \sigma_y) = \frac{1}{2} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$
$(0, 0, 1)$	$ 0\rangle$	$\frac{1}{2}(I + \sigma_z) = \frac{1}{2} \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$

Density matrix and the Bloch sphere

$$\det(\rho) = \frac{1}{4}(1 - z^2 - x^2 - y^2) = \frac{1}{4}(1 - r^2), \quad r = \sqrt{|x|^2 + |y|^2 + |z|^2}$$

Because this is a density operator, its determinant must be real and non-negative so $0 \leq r \leq 1$

The values x, y, z can thus be interpreted as coordinates and the density matrix given by $\rho = \frac{1}{2}(I - x\sigma_x + y\sigma_y + z\sigma_z)$ can describe a vector which lies within the Bloch sphere

The density matrices which fall on the surface of the Bloch sphere have $r = 1$ and $\det(\rho) = 0$

The determinant is the product of its eigenvalues so states on the surface must be projectors and thus pure states

(x, y, z)	state	density matrix
$(1, 0, 0)$	$ +\rangle$	$\frac{1}{2}(I + \sigma_x) = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$
$(0, 1, 0)$	$ i\rangle$	$\frac{1}{2}(I + \sigma_y) = \frac{1}{2} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$
$(0, 0, 1)$	$ 0\rangle$	$\frac{1}{2}(I + \sigma_z) = \frac{1}{2} \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$
$(0, 0, 0)$		$\rho_0 = \frac{1}{2}I = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

Von Neumann entropy

Recall the density matrix for one of the qubits of an EPR pair, $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

Von Neumann entropy

Recall the density matrix for one of the qubits of an EPR pair,

$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$\rho_{ME} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Von Neumann entropy

Recall the density matrix for one of the qubits of an EPR pair, $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

This corresponds to the point in the center of the sphere, the furthest from a pure state possible

$$\rho_{ME} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Von Neumann entropy

Recall the density matrix for one of the qubits of an EPR pair, $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

$$\rho_{ME} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

This corresponds to the point in the center of the sphere, the furthest from a pure state possible

This state is maximally uncertain and will give the two possible answers with equal probability

Von Neumann entropy

Recall the density matrix for one of the qubits of an EPR

$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

This corresponds to the point in the center of the sphere,
the furthest from a pure state possible

This state is maximally uncertain and will give the two possible answers with equal probability

For a pure state there is a basis in which a measurement gives a deterministic result

$$\rho_{ME} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Von Neumann entropy

Recall the density matrix for one of the qubits of an EPR pair,

$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

This corresponds to the point in the center of the sphere, the furthest from a pure state possible

This state is maximally uncertain and will give the two possible answers with equal probability

For a pure state there is a basis in which a measurement gives a deterministic result

For an n -qubit system the uncertainty of measurement can be described by the von Neumann entropy

$$\rho_{ME} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Von Neumann entropy

Recall the density matrix for one of the qubits of an EPR pair,

$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

This corresponds to the point in the center of the sphere, the furthest from a pure state possible

This state is maximally uncertain and will give the two possible answers with equal probability

For a pure state there is a basis in which a measurement gives a deterministic result

For an n -qubit system the uncertainty of measurement can be described by the von Neumann entropy

$$\rho_{ME} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$S(\rho) = -\text{Tr}(\rho \log_2 \rho) = -\sum_i \lambda_i \log_2 \lambda_i$$

Von Neumann entropy

Recall the density matrix for one of the qubits of an EPR

$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

This corresponds to the point in the center of the sphere,
the furthest from a pure state possible

This state is maximally uncertain and will give the two possible answers with equal probability

For a pure state there is a basis in which a measurement gives a deterministic result

For an n -qubit system the uncertainty of
measurement can be described by the von
Neumann entropy

$$\rho_{ME} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$S(\rho) = -\text{Tr}(\rho \log_2 \rho) = -\sum_i \lambda_i \log_2 \lambda_i$$

Given that $0 \log(0) \equiv 0$, the von Neumann entropy is zero for pure states where the density matrix is a projector, there is only one non-zero diagonal element and the determinant is zero

Von Neumann entropy

Recall the density matrix for one of the qubits of an EPR pair,

$$\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

This corresponds to the point in the center of the sphere, the furthest from a pure state possible

This state is maximally uncertain and will give the two possible answers with equal probability

For a pure state there is a basis in which a measurement gives a deterministic result

For an n -qubit system the uncertainty of measurement can be described by the von Neumann entropy

$$\rho_{ME} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$S(\rho) = -\text{Tr}(\rho \log_2 \rho) = -\sum_i \lambda_i \log_2 \lambda_i$$

Given that $0 \log(0) \equiv 0$, the von Neumann entropy is zero for pure states where the density matrix is a projector, there is only one non-zero diagonal element and the determinant is zero

A maximally uncertain state for an n -qubit system has all the diagonal elements equal to 2^{-n} so $S(\rho) = n$

Entropy and the Bloch sphere

For a single qubit state with density operator ρ , what is the von Neumann entropy $S(\rho)$ and how does it relate to the Bloch sphere?

Entropy and the Bloch sphere

For a single qubit state with density operator ρ , what is the von Neumann entropy $S(\rho)$ and how does it relate to the Bloch sphere?

If λ_1 and λ_2 are the eigenvalues of ρ we have

Entropy and the Bloch sphere

For a single qubit state with density operator ρ , what is the von Neumann entropy $S(\rho)$ and how does it relate to the Bloch sphere?

If λ_1 and λ_2 are the eigenvalues of ρ we have

$$\text{Tr}(\rho) = 1$$

Entropy and the Bloch sphere

For a single qubit state with density operator ρ , what is the von Neumann entropy $S(\rho)$ and how does it relate to the Bloch sphere?

If λ_1 and λ_2 are the eigenvalues of ρ we have

$$\text{Tr}(\rho) = 1 \quad \longrightarrow \quad \lambda_2 = 1 - \lambda_1$$

Entropy and the Bloch sphere

For a single qubit state with density operator ρ , what is the von Neumann entropy $S(\rho)$ and how does it relate to the Bloch sphere?

If λ_1 and λ_2 are the eigenvalues of ρ we have

$$\text{Tr}(\rho) = 1 \quad \longrightarrow \quad \lambda_2 = 1 - \lambda_1$$

The determinant of ρ is

Entropy and the Bloch sphere

For a single qubit state with density operator ρ , what is the von Neumann entropy $S(\rho)$ and how does it relate to the Bloch sphere?

If λ_1 and λ_2 are the eigenvalues of ρ we have

$$\text{Tr}(\rho) = 1 \quad \longrightarrow \quad \lambda_2 = 1 - \lambda_1$$

The determinant of ρ is

$$\det(\rho) = \lambda_1 \lambda_2$$

Entropy and the Bloch sphere

For a single qubit state with density operator ρ , what is the von Neumann entropy $S(\rho)$ and how does it relate to the Bloch sphere?

If λ_1 and λ_2 are the eigenvalues of ρ we have

$$\text{Tr}(\rho) = 1 \quad \longrightarrow \quad \lambda_2 = 1 - \lambda_1$$

The determinant of ρ is

$$\det(\rho) = \lambda_1 \lambda_2 = \lambda_1(1 - \lambda_1)$$

Entropy and the Bloch sphere

For a single qubit state with density operator ρ , what is the von Neumann entropy $S(\rho)$ and how does it relate to the Bloch sphere?

If λ_1 and λ_2 are the eigenvalues of ρ we have

$$\text{Tr}(\rho) = 1 \quad \longrightarrow \quad \lambda_2 = 1 - \lambda_1$$

The determinant of ρ is

$$\det(\rho) = \lambda_1 \lambda_2 = \lambda_1 (1 - \lambda_1) \quad \longrightarrow \quad \lambda^2 - \lambda + \det(\rho) = 0$$

Entropy and the Bloch sphere

For a single qubit state with density operator ρ , what is the von Neumann entropy $S(\rho)$ and how does it relate to the Bloch sphere?

If λ_1 and λ_2 are the eigenvalues of ρ we have

$$\text{Tr}(\rho) = 1 \quad \longrightarrow \quad \lambda_2 = 1 - \lambda_1$$

The determinant of ρ is

$$\det(\rho) = \lambda_1 \lambda_2 = \lambda_1(1 - \lambda_1) \quad \longrightarrow \quad \lambda^2 - \lambda + \det(\rho) = 0 \quad \longrightarrow \quad \lambda = \frac{1}{2} \pm \frac{\sqrt{1 - 4 \det(\rho)}}{2}$$

Entropy and the Bloch sphere

For a single qubit state with density operator ρ , what is the von Neumann entropy $S(\rho)$ and how does it relate to the Bloch sphere?

If λ_1 and λ_2 are the eigenvalues of ρ we have

$$\text{Tr}(\rho) = 1 \quad \longrightarrow \quad \lambda_2 = 1 - \lambda_1$$

The determinant of ρ is

$$\det(\rho) = \lambda_1 \lambda_2 = \lambda_1(1 - \lambda_1) \quad \longrightarrow \quad \lambda^2 - \lambda + \det(\rho) = 0 \quad \longrightarrow \quad \lambda = \frac{1}{2} \pm \frac{\sqrt{1 - 4 \det(\rho)}}{2}$$

Since $\det(\rho) = \frac{1}{4}(1 - r^2)$

Entropy and the Bloch sphere

For a single qubit state with density operator ρ , what is the von Neumann entropy $S(\rho)$ and how does it relate to the Bloch sphere?

If λ_1 and λ_2 are the eigenvalues of ρ we have

$$\text{Tr}(\rho) = 1 \quad \longrightarrow \quad \lambda_2 = 1 - \lambda_1$$

The determinant of ρ is

$$\det(\rho) = \lambda_1 \lambda_2 = \lambda_1(1 - \lambda_1) \quad \longrightarrow \quad \lambda^2 - \lambda + \det(\rho) = 0 \quad \longrightarrow \quad \lambda = \frac{1}{2} \pm \frac{\sqrt{1 - 4 \det(\rho)}}{2}$$

Since $\det(\rho) = \frac{1}{4}(1 - r^2)$

$$\lambda_1 = \frac{1+r}{2},$$

Entropy and the Bloch sphere

For a single qubit state with density operator ρ , what is the von Neumann entropy $S(\rho)$ and how does it relate to the Bloch sphere?

If λ_1 and λ_2 are the eigenvalues of ρ we have

$$\text{Tr}(\rho) = 1 \quad \longrightarrow \quad \lambda_2 = 1 - \lambda_1$$

The determinant of ρ is

$$\det(\rho) = \lambda_1 \lambda_2 = \lambda_1(1 - \lambda_1) \quad \longrightarrow \quad \lambda^2 - \lambda + \det(\rho) = 0 \quad \longrightarrow \quad \lambda = \frac{1}{2} \pm \frac{\sqrt{1 - 4 \det(\rho)}}{2}$$

Since $\det(\rho) = \frac{1}{4}(1 - r^2)$

$$\lambda_1 = \frac{1+r}{2}, \quad \lambda_2 = \frac{1-r}{2}$$

Entropy and the Bloch sphere

For a single qubit state with density operator ρ , what is the von Neumann entropy $S(\rho)$ and how does it relate to the Bloch sphere?

If λ_1 and λ_2 are the eigenvalues of ρ we have

$$\text{Tr}(\rho) = 1 \quad \longrightarrow \quad \lambda_2 = 1 - \lambda_1$$

The determinant of ρ is

$$\det(\rho) = \lambda_1 \lambda_2 = \lambda_1(1 - \lambda_1) \quad \longrightarrow \quad \lambda^2 - \lambda + \det(\rho) = 0 \quad \longrightarrow \quad \lambda = \frac{1}{2} \pm \frac{\sqrt{1 - 4 \det(\rho)}}{2}$$

Since $\det(\rho) = \frac{1}{4}(1 - r^2)$

$$\lambda_1 = \frac{1+r}{2}, \quad \lambda_2 = \frac{1-r}{2}$$

The entropy is therefore

Entropy and the Bloch sphere

For a single qubit state with density operator ρ , what is the von Neumann entropy $S(\rho)$ and how does it relate to the Bloch sphere?

If λ_1 and λ_2 are the eigenvalues of ρ we have

$$\text{Tr}(\rho) = 1 \quad \longrightarrow \quad \lambda_2 = 1 - \lambda_1$$

The determinant of ρ is

$$\det(\rho) = \lambda_1 \lambda_2 = \lambda_1(1 - \lambda_1) \quad \longrightarrow \quad \lambda^2 - \lambda + \det(\rho) = 0 \quad \longrightarrow \quad \lambda = \frac{1}{2} \pm \frac{\sqrt{1 - 4 \det(\rho)}}{2}$$

Since $\det(\rho) = \frac{1}{4}(1 - r^2)$

$$\lambda_1 = \frac{1+r}{2}, \quad \lambda_2 = \frac{1-r}{2}$$

The entropy is therefore

$$S(\rho) = -\text{Tr}(\rho \log_2 \rho) = \sum_i \lambda_i \log_2 \lambda_i$$

Entropy and the Bloch sphere

For a single qubit state with density operator ρ , what is the von Neumann entropy $S(\rho)$ and how does it relate to the Bloch sphere?

If λ_1 and λ_2 are the eigenvalues of ρ we have

$$\text{Tr}(\rho) = 1 \quad \longrightarrow \quad \lambda_2 = 1 - \lambda_1$$

The determinant of ρ is

$$\det(\rho) = \lambda_1 \lambda_2 = \lambda_1(1 - \lambda_1) \quad \longrightarrow \quad \lambda^2 - \lambda + \det(\rho) = 0 \quad \longrightarrow \quad \lambda = \frac{1}{2} \pm \frac{\sqrt{1 - 4 \det(\rho)}}{2}$$

Since $\det(\rho) = \frac{1}{4}(1 - r^2)$

$$\lambda_1 = \frac{1+r}{2}, \quad \lambda_2 = \frac{1-r}{2}$$

The entropy is therefore

$$S(\rho) = -\text{Tr}(\rho \log_2 \rho) = \sum_i \lambda_i \log_2 \lambda_i = - \left[\left(\frac{1+r}{2} \right) \log_2 \left(\frac{1+r}{2} \right) + \left(\frac{1-r}{2} \right) \log_2 \left(\frac{1-r}{2} \right) \right]$$

Entropy and the Bloch sphere

For a single qubit state with density operator ρ , what is the von Neumann entropy $S(\rho)$ and how does it relate to the Bloch sphere?

If λ_1 and λ_2 are the eigenvalues of ρ we have

$$\text{Tr}(\rho) = 1 \quad \longrightarrow \quad \lambda_2 = 1 - \lambda_1$$

The determinant of ρ is

$$\det(\rho) = \lambda_1 \lambda_2 = \lambda_1(1 - \lambda_1) \quad \longrightarrow \quad \lambda^2 - \lambda + \det(\rho) = 0 \quad \longrightarrow \quad \lambda = \frac{1}{2} \pm \frac{\sqrt{1 - 4 \det(\rho)}}{2}$$

Since $\det(\rho) = \frac{1}{4}(1 - r^2)$

$$\lambda_1 = \frac{1+r}{2}, \quad \lambda_2 = \frac{1-r}{2}$$

The entropy is therefore

$$S(\rho) = -\text{Tr}(\rho \log_2 \rho) = \sum_i \lambda_i \log_2 \lambda_i = - \left[\left(\frac{1+r}{2} \right) \log_2 \left(\frac{1+r}{2} \right) + \left(\frac{1-r}{2} \right) \log_2 \left(\frac{1-r}{2} \right) \right]$$

The von Neumann entropy for a single qubit system is just a function of the distance of the state from the center of the Bloch sphere

Bipartite entanglement

It is useful to find a good measure of entanglement for bipartite systems such as $X = A \otimes B$

Bipartite entanglement

It is useful to find a good measure of entanglement for bipartite systems such as $X = A \otimes B$

The 2-qubit system is the simplest bipartite system with a maximally entangled state

Bipartite entanglement

It is useful to find a good measure of entanglement for bipartite systems such as $X = A \otimes B$

The 2-qubit system is the simplest bipartite system with a maximally entangled state

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Bipartite entanglement

It is useful to find a good measure of entanglement for bipartite systems such as $X = A \otimes B$

The 2-qubit system is the simplest bipartite system with a maximally entangled state

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

For each of the two qubits, the density matrix ρ_{ME} has maximal von Neumann entropy

Bipartite entanglement

It is useful to find a good measure of entanglement for bipartite systems such as $X = A \otimes B$

The 2-qubit system is the simplest bipartite system with a maximally entangled state

For each of the two qubits, the density matrix ρ_{ME} has maximal von Neumann entropy

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$\rho_{ME} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Bipartite entanglement

It is useful to find a good measure of entanglement for bipartite systems such as $X = A \otimes B$

The 2-qubit system is the simplest bipartite system with a maximally entangled state

For each of the two qubits, the density matrix ρ_{ME} has maximal von Neumann entropy

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$\rho_{ME} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$S(\rho) = -2 \left[\frac{1}{2} \log_2 \left(\frac{1}{2} \right) \right]$$

Bipartite entanglement

It is useful to find a good measure of entanglement for bipartite systems such as $X = A \otimes B$

The 2-qubit system is the simplest bipartite system with a maximally entangled state

For each of the two qubits, the density matrix ρ_{ME} has maximal von Neumann entropy

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$\rho_{ME} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$S(\rho) = -2 \left[\frac{1}{2} \log_2 \left(\frac{1}{2} \right) \right] = 2$$

Bipartite entanglement

It is useful to find a good measure of entanglement for bipartite systems such as $X = A \otimes B$

The 2-qubit system is the simplest bipartite system with a maximally entangled state

For each of the two qubits, the density matrix ρ_{ME} has maximal von Neumann entropy

An untangled state, such as $|00\rangle$ has minimal von Neumann entropy

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$\rho_{ME} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$S(\rho) = -2 \left[\frac{1}{2} \log_2 \left(\frac{1}{2} \right) \right] = 2$$

Bipartite entanglement

It is useful to find a good measure of entanglement for bipartite systems such as $X = A \otimes B$

The 2-qubit system is the simplest bipartite system with a maximally entangled state

For each of the two qubits, the density matrix ρ_{ME} has maximal von Neumann entropy

An untangled state, such as $|00\rangle$ has minimal von Neumann entropy

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$\rho_{ME} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$S(\rho) = -2 \left[\frac{1}{2} \log_2 \left(\frac{1}{2} \right) \right] = 2$$

$$\rho_{ME} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

Bipartite entanglement

It is useful to find a good measure of entanglement for bipartite systems such as $X = A \otimes B$

The 2-qubit system is the simplest bipartite system with a maximally entangled state

For each of the two qubits, the density matrix ρ_{ME} has maximal von Neumann entropy

An untangled state, such as $|00\rangle$ has minimal von Neumann entropy

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$\rho_{ME} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$S(\rho) = -2 \left[\frac{1}{2} \log_2 \left(\frac{1}{2} \right) \right] = 2$$

$$\rho_{ME} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \rightarrow S(\rho) = 0$$

Bipartite entanglement

It is useful to find a good measure of entanglement for bipartite systems such as $X = A \otimes B$

The 2-qubit system is the simplest bipartite system with a maximally entangled state

For each of the two qubits, the density matrix ρ_{ME} has maximal von Neumann entropy

An untangled state, such as $|00\rangle$ has minimal von Neumann entropy

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$\rho_{ME} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$S(\rho) = -2 \left[\frac{1}{2} \log_2 \left(\frac{1}{2} \right) \right] = 2$$

$$\rho_{ME} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \rightarrow S(\rho) = 0$$

It makes sense to use the von Neumann entropy of the partial trace as a measure of the entanglement if it can be assumed that the partial trace is the same for each of the two subsystems, A and B

The Schmidt decomposition

If $|\psi\rangle$ is a pure state of the system $A \otimes B$, there exists orthonormal sets of states $\{|\psi_i^A\rangle\}$ and $\{|\psi_i^B\rangle\}$

The Schmidt decomposition

If $|\psi\rangle$ is a pure state of the system $A \otimes B$, there exists orthonormal sets of states $\{|\psi_i^A\rangle\}$ and $\{|\psi_i^B\rangle\}$

$$|\psi\rangle = \sum_{i=0}^{K-1} \lambda_i |\psi_i^A\rangle \otimes |\psi_i^B\rangle,$$

The Schmidt decomposition

If $|\psi\rangle$ is a pure state of the system $A \otimes B$, there exists orthonormal sets of states $\{|\psi_i^A\rangle\}$ and $\{|\psi_i^B\rangle\}$

$$|\psi\rangle = \sum_{i=0}^{K-1} \lambda_i |\psi_i^A\rangle \otimes |\psi_i^B\rangle, \quad \sum_{i=0}^{K-1} \lambda_i = 1$$

The Schmidt decomposition

If $|\psi\rangle$ is a pure state of the system $A \otimes B$, there exists orthonormal sets of states $\{|\psi_i^A\rangle\}$ and $\{|\psi_i^B\rangle\}$

$$|\psi\rangle = \sum_{i=0}^{K-1} \lambda_i |\psi_i^A\rangle \otimes |\psi_i^B\rangle, \quad \sum_{i=0}^{K-1} \lambda_i = 1$$

The λ_i are the Schmidt coefficients and K is the Schmidt rank of $|\psi\rangle$ which is 1 for unentangled states

The Schmidt decomposition

If $|\psi\rangle$ is a pure state of the system $A \otimes B$, there exists orthonormal sets of states $\{|\psi_i^A\rangle\}$ and $\{|\psi_i^B\rangle\}$

$$|\psi\rangle = \sum_{i=0}^{K-1} \lambda_i |\psi_i^A\rangle \otimes |\psi_i^B\rangle, \quad \sum_{i=0}^{K-1} \lambda_i = 1$$

The λ_i are the Schmidt coefficients and K is the Schmidt rank of $|\psi\rangle$ which is 1 for unentangled states

Given $|\psi\rangle \in X = A \otimes B$ and $\rho = |\psi\rangle\langle\psi|$ with Schmidt decomposition as above

The Schmidt decomposition

If $|\psi\rangle$ is a pure state of the system $A \otimes B$, there exists orthonormal sets of states $\{|\psi_i^A\rangle\}$ and $\{|\psi_i^B\rangle\}$

$$|\psi\rangle = \sum_{i=0}^{K-1} \lambda_i |\psi_i^A\rangle \otimes |\psi_i^B\rangle, \quad \sum_{i=0}^{K-1} \lambda_i = 1$$

The λ_i are the Schmidt coefficients and K is the Schmidt rank of $|\psi\rangle$ which is 1 for unentangled states

Given $|\psi\rangle \in X = A \otimes B$ and $\rho = |\psi\rangle\langle\psi|$ with Schmidt decomposition as above

$$\rho = \sum_{i=0}^{K-1} \sum_{j=0}^{K-1} \lambda_i \lambda_j |\psi_i^A\rangle \langle \psi_j^A| \otimes |\psi_i^B\rangle \langle \psi_j^B|$$

The Schmidt decomposition

If $|\psi\rangle$ is a pure state of the system $A \otimes B$, there exists orthonormal sets of states $\{|\psi_i^A\rangle\}$ and $\{|\psi_i^B\rangle\}$

$$|\psi\rangle = \sum_{i=0}^{K-1} \lambda_i |\psi_i^A\rangle \otimes |\psi_i^B\rangle, \quad \sum_{i=0}^{K-1} \lambda_i = 1$$

The λ_i are the Schmidt coefficients and K is the Schmidt rank of $|\psi\rangle$ which is 1 for unentangled states

Given $|\psi\rangle \in X = A \otimes B$ and $\rho = |\psi\rangle\langle\psi|$ with Schmidt decomposition as above

$$\rho = \sum_{i=0}^{K-1} \sum_{j=0}^{K-1} \lambda_i \lambda_j |\psi_i^A\rangle \langle \psi_j^A| \otimes |\psi_i^B\rangle \langle \psi_j^B|$$

The partial trace with respect to subsystem B is given by

The Schmidt decomposition

If $|\psi\rangle$ is a pure state of the system $A \otimes B$, there exists orthonormal sets of states $\{|\psi_i^A\rangle\}$ and $\{|\psi_i^B\rangle\}$

$$|\psi\rangle = \sum_{i=0}^{K-1} \lambda_i |\psi_i^A\rangle \otimes |\psi_i^B\rangle, \quad \sum_{i=0}^{K-1} \lambda_i = 1$$

The λ_i are the Schmidt coefficients and K is the Schmidt rank of $|\psi\rangle$ which is 1 for unentangled states

Given $|\psi\rangle \in X = A \otimes B$ and $\rho = |\psi\rangle\langle\psi|$ with Schmidt decomposition as above

$$\rho = \sum_{i=0}^{K-1} \sum_{j=0}^{K-1} \lambda_i \lambda_j |\psi_i^A\rangle \langle \psi_j^A| \otimes |\psi_i^B\rangle \langle \psi_j^B|$$

The partial trace with respect to subsystem B is given by

$$\text{Tr}_B(\rho) = \sum_{k=0}^{K-1} \langle \psi_k^B | \rho | \psi_k^B \rangle$$

The Schmidt decomposition

If $|\psi\rangle$ is a pure state of the system $A \otimes B$, there exists orthonormal sets of states $\{|\psi_i^A\rangle\}$ and $\{|\psi_i^B\rangle\}$

$$|\psi\rangle = \sum_{i=0}^{K-1} \lambda_i |\psi_i^A\rangle \otimes |\psi_i^B\rangle, \quad \sum_{i=0}^{K-1} \lambda_i = 1$$

The λ_i are the Schmidt coefficients and K is the Schmidt rank of $|\psi\rangle$ which is 1 for unentangled states

Given $|\psi\rangle \in X = A \otimes B$ and $\rho = |\psi\rangle\langle\psi|$ with Schmidt decomposition as above

$$\rho = \sum_{i=0}^{K-1} \sum_{j=0}^{K-1} \lambda_i \lambda_j |\psi_i^A\rangle \langle \psi_j^A| \otimes |\psi_i^B\rangle \langle \psi_j^B|$$

The partial trace with respect to subsystem B is given by

$$\text{Tr}_B(\rho) = \sum_{k=0}^{K-1} \langle \psi_k^B | \rho | \psi_k^B \rangle = \sum_{k=0}^{K-1} \lambda_k^2 |\psi_k^A\rangle \langle \psi_k^A|$$

The Schmidt decomposition

If $|\psi\rangle$ is a pure state of the system $A \otimes B$, there exists orthonormal sets of states $\{|\psi_i^A\rangle\}$ and $\{|\psi_i^B\rangle\}$

$$|\psi\rangle = \sum_{i=0}^{K-1} \lambda_i |\psi_i^A\rangle \otimes |\psi_i^B\rangle, \quad \sum_{i=0}^{K-1} \lambda_i = 1$$

The λ_i are the Schmidt coefficients and K is the Schmidt rank of $|\psi\rangle$ which is 1 for unentangled states

Given $|\psi\rangle \in X = A \otimes B$ and $\rho = |\psi\rangle\langle\psi|$ with Schmidt decomposition as above

$$\rho = \sum_{i=0}^{K-1} \sum_{j=0}^{K-1} \lambda_i \lambda_j |\psi_i^A\rangle \langle \psi_j^A| \otimes |\psi_i^B\rangle \langle \psi_j^B|$$

The partial trace with respect to subsystem B is given by

$$\text{Tr}_B(\rho) = \sum_{k=0}^{K-1} \langle \psi_k^B | \rho | \psi_k^B \rangle = \sum_{k=0}^{K-1} \lambda_k^2 |\psi_k^A\rangle \langle \psi_k^A|$$

Similarly for the partial trace with respect to subsystem A

The Schmidt decomposition

If $|\psi\rangle$ is a pure state of the system $A \otimes B$, there exists orthonormal sets of states $\{|\psi_i^A\rangle\}$ and $\{|\psi_i^B\rangle\}$

$$|\psi\rangle = \sum_{i=0}^{K-1} \lambda_i |\psi_i^A\rangle \otimes |\psi_i^B\rangle, \quad \sum_{i=0}^{K-1} \lambda_i = 1$$

The λ_i are the Schmidt coefficients and K is the Schmidt rank of $|\psi\rangle$ which is 1 for unentangled states

Given $|\psi\rangle \in X = A \otimes B$ and $\rho = |\psi\rangle\langle\psi|$ with Schmidt decomposition as above

The partial trace with respect to subsystem B is given by

Similarly for the partial trace with respect to subsystem A

$$\rho = \sum_{i=0}^{K-1} \sum_{j=0}^{K-1} \lambda_i \lambda_j |\psi_i^A\rangle \langle \psi_j^A| \otimes |\psi_i^B\rangle \langle \psi_j^B|$$

$$\text{Tr}_B(\rho) = \sum_{k=0}^{K-1} \langle \psi_k^B | \rho | \psi_k^B \rangle = \sum_{k=0}^{K-1} \lambda_k^2 |\psi_k^A\rangle \langle \psi_k^A|$$

$$\text{Tr}_A(\rho) = \sum_{k=0}^{K-1} \langle \psi_k^A | \rho | \psi_k^A \rangle = \sum_{k=0}^{K-1} \lambda_k^2 |\psi_k^B\rangle \langle \psi_k^B|$$

Von Neumann entropy of bipartite systems

$$\text{Tr}_B(\rho) = \sum_{k=0}^{K-1} \lambda_k^2 |\psi_k^A\rangle\langle\psi_k^A|, \quad \text{Tr}_A(\rho) = \sum_{k=0}^{K-1} \lambda_k^2 |\psi_k^B\rangle\langle\psi_k^B|$$

Von Neumann entropy of bipartite systems

$$\text{Tr}_B(\rho) = \sum_{k=0}^{K-1} \lambda_k^2 |\psi_k^A\rangle\langle\psi_k^A|, \quad \text{Tr}_A(\rho) = \sum_{k=0}^{K-1} \lambda_k^2 |\psi_k^B\rangle\langle\psi_k^B|$$

Given that $\{|\psi_k^A\rangle\}$ is an orthonormal set

Von Neumann entropy of bipartite systems

$$\text{Tr}_B(\rho) = \sum_{k=0}^{K-1} \lambda_k^2 |\psi_k^A\rangle\langle\psi_k^A|, \quad \text{Tr}_A(\rho) = \sum_{k=0}^{K-1} \lambda_k^2 |\psi_k^B\rangle\langle\psi_k^B|$$

Given that $\{|\psi_k^A\rangle\}$ is an orthonormal set

$$S(\text{Tr}_A(\rho)) = - \sum_{k=0}^{K-1} \lambda_k^2 \log_2 \lambda_k^2$$

Von Neumann entropy of bipartite systems

$$\text{Tr}_B(\rho) = \sum_{k=0}^{K-1} \lambda_k^2 |\psi_k^A\rangle\langle\psi_k^A|, \quad \text{Tr}_A(\rho) = \sum_{k=0}^{K-1} \lambda_k^2 |\psi_k^B\rangle\langle\psi_k^B|$$

Given that $\{|\psi_k^A\rangle\}$ is an orthonormal set

$$S(\text{Tr}_A(\rho)) = - \sum_{k=0}^{K-1} \lambda_k^2 \log_2 \lambda_k^2$$

Similarly for the basis set $\{|\psi_k^B\rangle\}$

Von Neumann entropy of bipartite systems

$$\text{Tr}_B(\rho) = \sum_{k=0}^{K-1} \lambda_k^2 |\psi_k^A\rangle\langle\psi_k^A|, \quad \text{Tr}_A(\rho) = \sum_{k=0}^{K-1} \lambda_k^2 |\psi_k^B\rangle\langle\psi_k^B|$$

Given that $\{|\psi_k^A\rangle\}$ is an orthonormal set

Similarly for the basis set $\{|\psi_k^B\rangle\}$

$$S(\text{Tr}_A(\rho)) = - \sum_{k=0}^{K-1} \lambda_k^2 \log_2 \lambda_k^2$$

$$S(\text{Tr}_B(\rho)) = - \sum_{k=0}^{K-1} \lambda_k^2 \log_2 \lambda_k^2$$

Von Neumann entropy of bipartite systems

$$\text{Tr}_B(\rho) = \sum_{k=0}^{K-1} \lambda_k^2 |\psi_k^A\rangle\langle\psi_k^A|, \quad \text{Tr}_A(\rho) = \sum_{k=0}^{K-1} \lambda_k^2 |\psi_k^B\rangle\langle\psi_k^B|$$

Given that $\{|\psi_k^A\rangle\}$ is an orthonormal set

Similarly for the basis set $\{|\psi_k^B\rangle\}$

Clearly, $S(\text{Tr}_A(\rho)) = S(\text{Tr}_B(\rho))$ which means that the von Neumann entropy of the partial trace of a bipartite system is consistent when measured on either subsystem

$$S(\text{Tr}_A(\rho)) = - \sum_{k=0}^{K-1} \lambda_k^2 \log_2 \lambda_k^2$$
$$S(\text{Tr}_B(\rho)) = - \sum_{k=0}^{K-1} \lambda_k^2 \log_2 \lambda_k^2$$

Von Neumann entropy of bipartite systems

$$\text{Tr}_B(\rho) = \sum_{k=0}^{K-1} \lambda_k^2 |\psi_k^A\rangle\langle\psi_k^A|, \quad \text{Tr}_A(\rho) = \sum_{k=0}^{K-1} \lambda_k^2 |\psi_k^B\rangle\langle\psi_k^B|$$

Given that $\{|\psi_k^A\rangle\}$ is an orthonormal set

Similarly for the basis set $\{|\psi_k^B\rangle\}$

$$S(\text{Tr}_A(\rho)) = - \sum_{k=0}^{K-1} \lambda_k^2 \log_2 \lambda_k^2$$
$$S(\text{Tr}_B(\rho)) = - \sum_{k=0}^{K-1} \lambda_k^2 \log_2 \lambda_k^2$$

Clearly, $S(\text{Tr}_A(\rho)) = S(\text{Tr}_B(\rho))$ which means that the von Neumann entropy of the partial trace of a bipartite system is consistent when measured on either subsystem

The amount of entanglement between the two parts of a pure state $|\psi\rangle \in X = A \otimes B$ with density operator $\rho = |\psi\rangle\langle\psi|$ is defined to be $S(\text{Tr}_A(\rho))$ or $S(\text{Tr}_B(\rho))$

Example 10.2.1

Given a 2-qubit system in the maximally entangled Bell state

Example 10.2.1

Given a 2-qubit system in the maximally entangled Bell state

$$|x\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

Example 10.2.1

Given a 2-qubit system in the maximally entangled Bell state

$$|x\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

The partial trace with respect to subsystem B is

Example 10.2.1

Given a 2-qubit system in the maximally entangled Bell state

The partial trace with respect to subsystem B is

$$|x\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$\rho_x^A = \text{Tr}_B(|x\rangle\langle x|)$$

Example 10.2.1

Given a 2-qubit system in the maximally entangled Bell state

The partial trace with respect to subsystem B is

$$|x\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$\rho_x^A = \text{Tr}_B(|x\rangle\langle x|) = \rho_{ME} = \frac{1}{2}I$$

Example 10.2.1

Given a 2-qubit system in the maximally entangled Bell state

The partial trace with respect to subsystem B is

The von Neumann entropy is thus

$$|x\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$\rho_x^A = \text{Tr}_B(|x\rangle\langle x|) = \rho_{ME} = \frac{1}{2}I$$

Example 10.2.1

Given a 2-qubit system in the maximally entangled Bell state

The partial trace with respect to subsystem B is

The von Neumann entropy is thus

$$|x\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$\rho_x^A = \text{Tr}_B(|x\rangle\langle x|) = \rho_{ME} = \frac{1}{2}I$$

$$S(\rho_{ME}) = -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2}$$

Example 10.2.1

Given a 2-qubit system in the maximally entangled Bell state

The partial trace with respect to subsystem B is

The von Neumann entropy is thus

$$|x\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$\rho_x^A = \text{Tr}_B(|x\rangle\langle x|) = \rho_{ME} = \frac{1}{2}I$$

$$\begin{aligned} S(\rho_{ME}) &= -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \\ &= -\frac{1}{2}(-1 - 1) = 1 \end{aligned}$$

Example 10.2.1

Given a 2-qubit system in the maximally entangled Bell state

The partial trace with respect to subsystem B is

The von Neumann entropy is thus

What about other maximally entangled states?

$$|x\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$\rho_x^A = \text{Tr}_B(|x\rangle\langle x|) = \rho_{ME} = \frac{1}{2}I$$

$$\begin{aligned} S(\rho_{ME}) &= -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \\ &= -\frac{1}{2}(-1 - 1) = 1 \end{aligned}$$

Example 10.2.1

Given a 2-qubit system in the maximally entangled Bell state

The partial trace with respect to subsystem B is

The von Neumann entropy is thus

What about other maximally entangled states?

$$|x\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

$$\rho_x^A = \text{Tr}_B(|x\rangle\langle x|) = \rho_{ME} = \frac{1}{2}I$$

$$\begin{aligned} S(\rho_{ME}) &= -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \\ &= -\frac{1}{2}(-1 - 1) = 1 \end{aligned}$$

$$|y\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle)$$

Example 10.2.1

Given a 2-qubit system in the maximally entangled Bell state

$$|x\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

The partial trace with respect to subsystem B is

$$\rho_x^A = \text{Tr}_B(|x\rangle\langle x|) = \rho_{ME} = \frac{1}{2}I$$

The von Neumann entropy is thus

$$\begin{aligned} S(\rho_{ME}) &= -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \\ &= -\frac{1}{2}(-1 - 1) = 1 \end{aligned}$$

What about other maximally entangled states?

$$|y\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle) \longrightarrow \rho_y = |y\rangle\langle y| = \frac{1}{2}(|01\rangle\langle 01| + |01\rangle\langle 10| + |10\rangle\langle 01| + |10\rangle\langle 10|)$$

Example 10.2.1

Given a 2-qubit system in the maximally entangled Bell state

$$|x\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

The partial trace with respect to subsystem B is

$$\rho_x^A = \text{Tr}_B(|x\rangle\langle x|) = \rho_{ME} = \frac{1}{2}I$$

The von Neumann entropy is thus

$$\begin{aligned} S(\rho_{ME}) &= -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \\ &= -\frac{1}{2}(-1 - 1) = 1 \end{aligned}$$

What about other maximally entangled states?

$$|y\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle) \quad \rightarrow \quad \rho_y = |y\rangle\langle y| = \frac{1}{2}(|01\rangle\langle 01| + |01\rangle\langle 10| + |10\rangle\langle 01| + |10\rangle\langle 10|)$$

$$\rho_y^A = \text{Tr}_B(\rho_y),$$

Example 10.2.1

Given a 2-qubit system in the maximally entangled Bell state

$$|x\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

The partial trace with respect to subsystem B is

$$\rho_x^A = \text{Tr}_B(|x\rangle\langle x|) = \rho_{ME} = \frac{1}{2}I$$

The von Neumann entropy is thus

$$\begin{aligned} S(\rho_{ME}) &= -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \\ &= -\frac{1}{2}(-1 - 1) = 1 \end{aligned}$$

What about other maximally entangled states?

$$|y\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle) \longrightarrow \rho_y = |y\rangle\langle y| = \frac{1}{2}(|01\rangle\langle 01| + |01\rangle\langle 10| + |10\rangle\langle 01| + |10\rangle\langle 10|)$$

$$\rho_y^A = \text{Tr}_B(\rho_y), \quad (\rho_y^A)_{ik} = \sum_{i,k=0}^1 \sum_{j=0}^1 \langle ij|y\rangle\langle y|kj\rangle$$

Example 10.2.1

Given a 2-qubit system in the maximally entangled Bell state

$$|x\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

The partial trace with respect to subsystem B is

$$\rho_x^A = \text{Tr}_B(|x\rangle\langle x|) = \rho_{ME} = \frac{1}{2}I$$

The von Neumann entropy is thus

$$\begin{aligned} S(\rho_{ME}) &= -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \\ &= -\frac{1}{2}(-1 - 1) = 1 \end{aligned}$$

What about other maximally entangled states?

$$|y\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle) \longrightarrow \rho_y = |y\rangle\langle y| = \frac{1}{2}(|01\rangle\langle 01| + |01\rangle\langle 10| + |10\rangle\langle 01| + |10\rangle\langle 10|)$$

$$\rho_y^A = \text{Tr}_B(\rho_y), \quad (\rho_y^A)_{ik} = \sum_{i,k=0}^1 \sum_{j=0}^1 \langle ij|y\rangle\langle y|kj\rangle$$

$$(\rho_y^A)_{00} = \frac{1}{2}(\langle 00|01\rangle + \langle 00|10\rangle)(\langle 01|00\rangle + \langle 10|00\rangle) + \frac{1}{2}(\langle 01|01\rangle + \langle 01|10\rangle)(\langle 01|01\rangle + \langle 10|01\rangle)$$

Example 10.2.1

Given a 2-qubit system in the maximally entangled Bell state

$$|x\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$

The partial trace with respect to subsystem B is

$$\rho_x^A = \text{Tr}_B(|x\rangle\langle x|) = \rho_{ME} = \frac{1}{2}I$$

The von Neumann entropy is thus

$$\begin{aligned} S(\rho_{ME}) &= -\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \\ &= -\frac{1}{2}(-1 - 1) = 1 \end{aligned}$$

What about other maximally entangled states?

$$|y\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle) \longrightarrow \rho_y = |y\rangle\langle y| = \frac{1}{2}(|01\rangle\langle 01| + |01\rangle\langle 10| + |10\rangle\langle 01| + |10\rangle\langle 10|)$$

$$\rho_y^A = \text{Tr}_B(\rho_y), \quad (\rho_y^A)_{ik} = \sum_{i,k=0}^1 \sum_{j=0}^1 \langle ij|y\rangle\langle y|kj\rangle$$

$$\begin{aligned} (\rho_y^A)_{00} &= \frac{1}{2}(\cancel{\langle 00|01\rangle} + \cancel{\langle 00|10\rangle})(\cancel{\langle 01|00\rangle} + \cancel{\langle 10|00\rangle}) + \frac{1}{2}(\cancel{\langle 01|01\rangle} + \cancel{\langle 01|10\rangle})(\cancel{\langle 01|01\rangle} + \cancel{\langle 10|01\rangle}) \\ &= \frac{1}{2} \end{aligned}$$

Example 10.2.1 (cont.)

$$(\rho_y^A)_{01} = \frac{1}{2}(\langle 00|01\rangle + \langle 00|10\rangle)(\langle 01|10\rangle + \langle 10|10\rangle) + \frac{1}{2}(\langle 01|01\rangle + \langle 01|10\rangle)(\langle 01|11\rangle + \langle 10|11\rangle)$$

Example 10.2.1 (cont.)

$$\begin{aligned}(\rho_y^A)_{01} &= \frac{1}{2}(\cancel{\langle 00|01\rangle} + \cancel{\langle 00|10\rangle})(\cancel{\langle 01|10\rangle} + \langle 10|10\rangle) + \frac{1}{2}(\langle 01|01\rangle + \cancel{\langle 01|10\rangle})(\cancel{\langle 01|11\rangle} + \cancel{\langle 10|11\rangle}) \\&= 0\end{aligned}$$

Example 10.2.1 (cont.)

$$(\rho_y^A)_{01} = \frac{1}{2}(\cancel{\langle 00|01\rangle} + \cancel{\langle 00|10\rangle})(\cancel{\langle 01|10\rangle} + \langle 10|10\rangle) + \frac{1}{2}(\langle 01|01\rangle + \cancel{\langle 01|10\rangle})(\cancel{\langle 01|11\rangle} + \cancel{\langle 10|11\rangle}) \\ = 0$$

$$(\rho_y^A)_{10} = \frac{1}{2}(\langle 10|01\rangle + \langle 10|10\rangle)(\langle 01|00\rangle + \langle 10|00\rangle) + \frac{1}{2}(\langle 11|01\rangle + \langle 11|10\rangle)(\langle 01|01\rangle + \langle 10|01\rangle)$$

Example 10.2.1 (cont.)

$$(\rho_y^A)_{01} = \frac{1}{2}(\cancel{\langle 00|01\rangle} + \cancel{\langle 00|10\rangle})(\cancel{\langle 01|10\rangle} + \langle 10|10\rangle) + \frac{1}{2}(\langle 01|01\rangle + \cancel{\langle 01|10\rangle})(\cancel{\langle 01|11\rangle} + \cancel{\langle 10|11\rangle}) \\ = 0$$

$$(\rho_y^A)_{10} = \frac{1}{2}(\cancel{\langle 10|01\rangle} + \langle 10|10\rangle)(\cancel{\langle 01|00\rangle} + \cancel{\langle 10|00\rangle}) + \frac{1}{2}(\cancel{\langle 11|01\rangle} + \cancel{\langle 11|10\rangle})(\cancel{\langle 01|01\rangle} + \cancel{\langle 10|01\rangle}) \\ = 0$$

Example 10.2.1 (cont.)

$$(\rho_y^A)_{01} = \frac{1}{2}(\cancel{\langle 00|01\rangle} + \cancel{\langle 00|10\rangle})(\cancel{\langle 01|10\rangle} + \langle 10|10\rangle) + \frac{1}{2}(\langle 01|01\rangle + \cancel{\langle 01|10\rangle})(\cancel{\langle 01|11\rangle} + \cancel{\langle 10|11\rangle}) \\ = 0$$

$$(\rho_y^A)_{10} = \frac{1}{2}(\cancel{\langle 10|01\rangle} + \langle 10|10\rangle)(\cancel{\langle 01|00\rangle} + \cancel{\langle 10|00\rangle}) + \frac{1}{2}(\cancel{\langle 11|01\rangle} + \cancel{\langle 11|10\rangle})(\langle 01|01\rangle + \cancel{\langle 10|01\rangle}) \\ = 0$$

$$(\rho_y^A)_{11} = \frac{1}{2}(\langle 10|01\rangle + \langle 10|10\rangle)(\langle 01|10\rangle + \langle 10|10\rangle) + \frac{1}{2}(\langle 11|01\rangle + \langle 11|10\rangle)(\langle 01|11\rangle + \langle 10|11\rangle)$$

Example 10.2.1 (cont.)

$$(\rho_y^A)_{01} = \frac{1}{2}(\cancel{\langle 00|01\rangle} + \cancel{\langle 00|10\rangle})(\cancel{\langle 01|10\rangle} + \langle 10|10\rangle) + \frac{1}{2}(\cancel{\langle 01|01\rangle} + \cancel{\langle 01|10\rangle})(\cancel{\langle 01|11\rangle} + \cancel{\langle 10|11\rangle}) \\ = 0$$

$$(\rho_y^A)_{10} = \frac{1}{2}(\cancel{\langle 10|01\rangle} + \langle 10|10\rangle)(\cancel{\langle 01|00\rangle} + \cancel{\langle 10|00\rangle}) + \frac{1}{2}(\cancel{\langle 11|01\rangle} + \cancel{\langle 11|10\rangle})(\cancel{\langle 01|01\rangle} + \cancel{\langle 10|01\rangle}) \\ = 0$$

$$(\rho_y^A)_{11} = \frac{1}{2}(\cancel{\langle 10|01\rangle} + \langle 10|10\rangle)(\cancel{\langle 01|10\rangle} + \langle 10|10\rangle) + \frac{1}{2}(\cancel{\langle 11|01\rangle} + \cancel{\langle 11|10\rangle})(\cancel{\langle 01|11\rangle} + \cancel{\langle 10|11\rangle}) \\ = \frac{1}{2}$$

Example 10.2.1 (cont.)

$$(\rho_y^A)_{01} = \frac{1}{2}(\cancel{\langle 00|01\rangle} + \cancel{\langle 00|10\rangle})(\cancel{\langle 01|10\rangle} + \langle 10|10\rangle) + \frac{1}{2}(\cancel{\langle 01|01\rangle} + \cancel{\langle 01|10\rangle})(\cancel{\langle 01|11\rangle} + \cancel{\langle 10|11\rangle}) \\ = 0$$

$$(\rho_y^A)_{10} = \frac{1}{2}(\cancel{\langle 10|01\rangle} + \langle 10|10\rangle)(\cancel{\langle 01|00\rangle} + \cancel{\langle 10|00\rangle}) + \frac{1}{2}(\cancel{\langle 11|01\rangle} + \cancel{\langle 11|10\rangle})(\cancel{\langle 01|01\rangle} + \cancel{\langle 10|01\rangle}) \\ = 0$$

$$(\rho_y^A)_{11} = \frac{1}{2}(\cancel{\langle 10|01\rangle} + \langle 10|10\rangle)(\cancel{\langle 01|10\rangle} + \langle 10|10\rangle) + \frac{1}{2}(\cancel{\langle 11|01\rangle} + \cancel{\langle 11|10\rangle})(\cancel{\langle 01|11\rangle} + \cancel{\langle 10|11\rangle}) \\ = \frac{1}{2}$$

Thus $\rho_y^A = \frac{1}{2}I = \rho_y^B = \rho_{ME}$ and the entropy, $S(\rho_{ME}) = 1$ for this state also

Example 10.2.1 (cont.)

$$(\rho_y^A)_{01} = \frac{1}{2}(\cancel{\langle 00|01\rangle} + \cancel{\langle 00|10\rangle})(\cancel{\langle 01|10\rangle} + \langle 10|10\rangle) + \frac{1}{2}(\cancel{\langle 01|01\rangle} + \cancel{\langle 01|10\rangle})(\cancel{\langle 01|11\rangle} + \cancel{\langle 10|11\rangle}) \\ = 0$$

$$(\rho_y^A)_{10} = \frac{1}{2}(\cancel{\langle 10|01\rangle} + \langle 10|10\rangle)(\cancel{\langle 01|00\rangle} + \cancel{\langle 10|00\rangle}) + \frac{1}{2}(\cancel{\langle 11|01\rangle} + \cancel{\langle 11|10\rangle})(\cancel{\langle 01|01\rangle} + \cancel{\langle 10|01\rangle}) \\ = 0$$

$$(\rho_y^A)_{11} = \frac{1}{2}(\cancel{\langle 10|01\rangle} + \langle 10|10\rangle)(\cancel{\langle 01|10\rangle} + \langle 10|10\rangle) + \frac{1}{2}(\cancel{\langle 11|01\rangle} + \cancel{\langle 11|10\rangle})(\cancel{\langle 01|11\rangle} + \cancel{\langle 10|11\rangle}) \\ = \frac{1}{2}$$

Thus $\rho_y^A = \frac{1}{2}I = \rho_y^B = \rho_{ME}$ and the entropy, $S(\rho_{ME}) = 1$ for this state also

Any other 2-qubit maximally entangled state will give the same results

Example 10-2-2

Compute the partial density operator for the first qubit of the state

Example 10-2-2

Compute the partial density operator for the first qubit of the state

$$|x\rangle = \frac{7}{10}|00\rangle + \frac{1}{10}|01\rangle + \frac{1}{10}|10\rangle + \frac{7}{10}|11\rangle$$

Example 10-2-2

Compute the partial density operator for the first qubit of the state

$$|x\rangle = \frac{7}{10}|00\rangle + \frac{1}{10}|01\rangle + \frac{1}{10}|10\rangle + \frac{7}{10}|11\rangle$$

The partial density matrix is defined as $\rho_x^A = \text{Tr}_B(|x\rangle\langle x|)$, a matrix which has 4 elements

Example 10-2-2

Compute the partial density operator for the first qubit of the state

$$|x\rangle = \frac{7}{10}|00\rangle + \frac{1}{10}|01\rangle + \frac{1}{10}|10\rangle + \frac{7}{10}|11\rangle$$

The partial density matrix is defined as $\rho_x^A = \text{Tr}_B(|x\rangle\langle x|)$, a matrix which has 4 elements

$$\sum_{j=0}^1 \langle 0j|x\rangle\langle x|0j\rangle|0\rangle\langle 0| = \left[\left(\frac{7}{10}\right)^2 + \left(\frac{1}{10}\right)^2 \right] |0\rangle\langle 0|$$

Example 10-2-2

Compute the partial density operator for the first qubit of the state

$$|x\rangle = \frac{7}{10}|00\rangle + \frac{1}{10}|01\rangle + \frac{1}{10}|10\rangle + \frac{7}{10}|11\rangle$$

The partial density matrix is defined as $\rho_x^A = \text{Tr}_B(|x\rangle\langle x|)$, a matrix which has 4 elements

$$\sum_{j=0}^1 \langle 0j|x\rangle\langle x|0j\rangle|0\rangle\langle 0| = \left[\left(\frac{7}{10}\right)^2 + \left(\frac{1}{10}\right)^2 \right] |0\rangle\langle 0| = \frac{1}{2}|0\rangle\langle 0|$$

Example 10-2-2

Compute the partial density operator for the first qubit of the state

$$|x\rangle = \frac{7}{10}|00\rangle + \frac{1}{10}|01\rangle + \frac{1}{10}|10\rangle + \frac{7}{10}|11\rangle$$

The partial density matrix is defined as $\rho_x^A = \text{Tr}_B(|x\rangle\langle x|)$, a matrix which has 4 elements

$$\sum_{j=0}^1 \langle 0j|x\rangle\langle x|0j\rangle|0\rangle\langle 0| = \left[\left(\frac{7}{10}\right)^2 + \left(\frac{1}{10}\right)^2 \right] |0\rangle\langle 0| = \frac{1}{2}|0\rangle\langle 0|$$

$$\sum_{j=0}^1 \langle 0j|x\rangle\langle x|1j\rangle|0\rangle\langle 1| = \left[\frac{7}{10} \frac{1}{10} + \frac{1}{10} \frac{7}{10} \right] |0\rangle\langle 1|$$

Example 10-2-2

Compute the partial density operator for the first qubit of the state

$$|x\rangle = \frac{7}{10}|00\rangle + \frac{1}{10}|01\rangle + \frac{1}{10}|10\rangle + \frac{7}{10}|11\rangle$$

The partial density matrix is defined as $\rho_x^A = \text{Tr}_B(|x\rangle\langle x|)$, a matrix which has 4 elements

$$\sum_{j=0}^1 \langle 0j|x\rangle\langle x|0j\rangle|0\rangle\langle 0| = \left[\left(\frac{7}{10}\right)^2 + \left(\frac{1}{10}\right)^2 \right] |0\rangle\langle 0| = \frac{1}{2}|0\rangle\langle 0|$$

$$\sum_{j=0}^1 \langle 0j|x\rangle\langle x|1j\rangle|0\rangle\langle 1| = \left[\frac{7}{10} \frac{1}{10} + \frac{1}{10} \frac{7}{10} \right] |0\rangle\langle 1| = \frac{7}{50}|0\rangle\langle 1|$$

Example 10-2-2

Compute the partial density operator for the first qubit of the state

$$|x\rangle = \frac{7}{10}|00\rangle + \frac{1}{10}|01\rangle + \frac{1}{10}|10\rangle + \frac{7}{10}|11\rangle$$

The partial density matrix is defined as $\rho_x^A = \text{Tr}_B(|x\rangle\langle x|)$, a matrix which has 4 elements

$$\sum_{j=0}^1 \langle 0j|x\rangle\langle x|0j\rangle|0\rangle\langle 0| = \left[\left(\frac{7}{10}\right)^2 + \left(\frac{1}{10}\right)^2 \right] |0\rangle\langle 0| = \frac{1}{2}|0\rangle\langle 0|$$

$$\sum_{j=0}^1 \langle 0j|x\rangle\langle x|1j\rangle|0\rangle\langle 1| = \left[\frac{7}{10} \frac{1}{10} + \frac{1}{10} \frac{7}{10} \right] |0\rangle\langle 1| = \frac{7}{50}|0\rangle\langle 1|$$

$$\sum_{j=0}^1 \langle 1j|x\rangle\langle x|0j\rangle|1\rangle\langle 0| = \left[\frac{1}{10} \frac{7}{10} + \frac{7}{10} \frac{1}{10} \right] |1\rangle\langle 0|$$

Example 10-2-2

Compute the partial density operator for the first qubit of the state

$$|x\rangle = \frac{7}{10}|00\rangle + \frac{1}{10}|01\rangle + \frac{1}{10}|10\rangle + \frac{7}{10}|11\rangle$$

The partial density matrix is defined as $\rho_x^A = \text{Tr}_B(|x\rangle\langle x|)$, a matrix which has 4 elements

$$\sum_{j=0}^1 \langle 0j|x\rangle\langle x|0j\rangle|0\rangle\langle 0| = \left[\left(\frac{7}{10}\right)^2 + \left(\frac{1}{10}\right)^2 \right] |0\rangle\langle 0| = \frac{1}{2}|0\rangle\langle 0|$$

$$\sum_{j=0}^1 \langle 0j|x\rangle\langle x|1j\rangle|0\rangle\langle 1| = \left[\frac{7}{10} \frac{1}{10} + \frac{1}{10} \frac{7}{10} \right] |0\rangle\langle 1| = \frac{7}{50}|0\rangle\langle 1|$$

$$\sum_{j=0}^1 \langle 1j|x\rangle\langle x|0j\rangle|1\rangle\langle 0| = \left[\frac{1}{10} \frac{7}{10} + \frac{7}{10} \frac{1}{10} \right] |1\rangle\langle 0| = \frac{7}{50}|1\rangle\langle 0|$$

Example 10-2-2

Compute the partial density operator for the first qubit of the state

$$|x\rangle = \frac{7}{10}|00\rangle + \frac{1}{10}|01\rangle + \frac{1}{10}|10\rangle + \frac{7}{10}|11\rangle$$

The partial density matrix is defined as $\rho_x^A = \text{Tr}_B(|x\rangle\langle x|)$, a matrix which has 4 elements

$$\sum_{j=0}^1 \langle 0j|x\rangle\langle x|0j\rangle|0\rangle\langle 0| = \left[\left(\frac{7}{10}\right)^2 + \left(\frac{1}{10}\right)^2 \right] |0\rangle\langle 0| = \frac{1}{2}|0\rangle\langle 0|$$

$$\sum_{j=0}^1 \langle 0j|x\rangle\langle x|1j\rangle|0\rangle\langle 1| = \left[\frac{7}{10} \frac{1}{10} + \frac{1}{10} \frac{7}{10} \right] |0\rangle\langle 1| = \frac{7}{50}|0\rangle\langle 1|$$

$$\sum_{j=0}^1 \langle 1j|x\rangle\langle x|0j\rangle|1\rangle\langle 0| = \left[\frac{1}{10} \frac{7}{10} + \frac{7}{10} \frac{1}{10} \right] |1\rangle\langle 0| = \frac{7}{50}|1\rangle\langle 0|$$

$$\sum_{j=0}^1 \langle 1j|x\rangle\langle x|1j\rangle|1\rangle\langle 1| = \left[\left(\frac{1}{10}\right)^2 + \left(\frac{7}{10}\right)^2 \right] |1\rangle\langle 1|$$

Example 10-2-2

Compute the partial density operator for the first qubit of the state

$$|x\rangle = \frac{7}{10}|00\rangle + \frac{1}{10}|01\rangle + \frac{1}{10}|10\rangle + \frac{7}{10}|11\rangle$$

The partial density matrix is defined as $\rho_x^A = \text{Tr}_B(|x\rangle\langle x|)$, a matrix which has 4 elements

$$\sum_{j=0}^1 \langle 0j|x\rangle\langle x|0j\rangle|0\rangle\langle 0| = \left[\left(\frac{7}{10}\right)^2 + \left(\frac{1}{10}\right)^2 \right] |0\rangle\langle 0| = \frac{1}{2}|0\rangle\langle 0|$$

$$\sum_{j=0}^1 \langle 0j|x\rangle\langle x|1j\rangle|0\rangle\langle 1| = \left[\frac{7}{10} \frac{1}{10} + \frac{1}{10} \frac{7}{10} \right] |0\rangle\langle 1| = \frac{7}{50}|0\rangle\langle 1|$$

$$\sum_{j=0}^1 \langle 1j|x\rangle\langle x|0j\rangle|1\rangle\langle 0| = \left[\frac{1}{10} \frac{7}{10} + \frac{7}{10} \frac{1}{10} \right] |1\rangle\langle 0| = \frac{7}{50}|1\rangle\langle 0|$$

$$\sum_{j=0}^1 \langle 1j|x\rangle\langle x|1j\rangle|1\rangle\langle 1| = \left[\left(\frac{1}{10}\right)^2 + \left(\frac{7}{10}\right)^2 \right] |1\rangle\langle 1| = \frac{1}{2}|1\rangle\langle 1|$$

Example 10-2-2 (cont.)

Thus the partial density matrix becomes

Example 10-2-2 (cont.)

Thus the partial density matrix becomes

$$\rho_x^A = \frac{1}{2}|0\rangle\langle 0| + \frac{7}{50}|0\rangle\langle 1| + \frac{1}{10}|1\rangle\langle 0| + \frac{1}{2}|1\rangle\langle 1|$$

Example 10-2-2 (cont.)

Thus the partial density matrix becomes

$$\rho_x^A = \frac{1}{2}|0\rangle\langle 0| + \frac{7}{50}|0\rangle\langle 1| + \frac{1}{10}|1\rangle\langle 0| + \frac{1}{2}|1\rangle\langle 1| \frac{1}{100} \begin{pmatrix} 50 & 14 \\ 14 & 50 \end{pmatrix}$$

Example 10-2-2 (cont.)

Thus the partial density matrix becomes

$$\rho_x^A = \frac{1}{2}|0\rangle\langle 0| + \frac{7}{50}|0\rangle\langle 1| + \frac{1}{10}|1\rangle\langle 0| + \frac{1}{2}|1\rangle\langle 1| \frac{1}{100} \begin{pmatrix} 50 & 14 \\ 14 & 50 \end{pmatrix} = \frac{1}{2} \left(I + \frac{14}{50} X \right)$$

Example 10-2-2 (cont.)

Thus the partial density matrix becomes

$$\rho_x^A = \frac{1}{2}|0\rangle\langle 0| + \frac{7}{50}|0\rangle\langle 1| + \frac{1}{10}|1\rangle\langle 0| + \frac{1}{2}|1\rangle\langle 1| \frac{1}{100} \begin{pmatrix} 50 & 14 \\ 14 & 50 \end{pmatrix} = \frac{1}{2} \left(I + \frac{14}{50} X \right)$$

This corresponds to the point $(0.28, 0, 0)$ in the Bloch sphere

Example 10-2-2 (cont.)

Thus the partial density matrix becomes

$$\rho_x^A = \frac{1}{2}|0\rangle\langle 0| + \frac{7}{50}|0\rangle\langle 1| + \frac{1}{10}|1\rangle\langle 0| + \frac{1}{2}|1\rangle\langle 1| \frac{1}{100} \begin{pmatrix} 50 & 14 \\ 14 & 50 \end{pmatrix} = \frac{1}{2} \left(I + \frac{14}{50} X \right)$$

This corresponds to the point $(0.28, 0, 0)$ in the Bloch sphere

To get the entropy, diagonalize the ρ_x^A matrix

Example 10-2-2 (cont.)

Thus the partial density matrix becomes

$$\rho_x^A = \frac{1}{2}|0\rangle\langle 0| + \frac{7}{50}|0\rangle\langle 1| + \frac{1}{10}|1\rangle\langle 0| + \frac{1}{2}|1\rangle\langle 1| \frac{1}{100} \begin{pmatrix} 50 & 14 \\ 14 & 50 \end{pmatrix} = \frac{1}{2} \left(I + \frac{14}{50} X \right)$$

This corresponds to the point $(0.28, 0, 0)$ in the Bloch sphere

To get the entropy, diagonalize the ρ_x^A matrix

$$0 = \det \begin{vmatrix} \frac{1}{2} - \lambda & \frac{7}{50} \\ \frac{7}{50} & \frac{1}{2} - \lambda \end{vmatrix}$$

Example 10-2-2 (cont.)

Thus the partial density matrix becomes

$$\rho_x^A = \frac{1}{2}|0\rangle\langle 0| + \frac{7}{50}|0\rangle\langle 1| + \frac{1}{10}|1\rangle\langle 0| + \frac{1}{2}|1\rangle\langle 1| \frac{1}{100} \begin{pmatrix} 50 & 14 \\ 14 & 50 \end{pmatrix} = \frac{1}{2} \left(I + \frac{14}{50} X \right)$$

This corresponds to the point $(0.28, 0, 0)$ in the Bloch sphere

To get the entropy, diagonalize the ρ_x^A matrix

$$0 = \det \begin{vmatrix} \frac{1}{2} - \lambda & \frac{7}{50} \\ \frac{7}{50} & \frac{1}{2} - \lambda \end{vmatrix} = \lambda^2 - \lambda + \frac{1}{4} \left[1 - \left(\frac{7}{50} \right)^2 \right]$$

Example 10-2-2 (cont.)

Thus the partial density matrix becomes

$$\rho_x^A = \frac{1}{2}|0\rangle\langle 0| + \frac{7}{50}|0\rangle\langle 1| + \frac{1}{10}|1\rangle\langle 0| + \frac{1}{2}|1\rangle\langle 1| \frac{1}{100} \begin{pmatrix} 50 & 14 \\ 14 & 50 \end{pmatrix} = \frac{1}{2} \left(I + \frac{14}{50} X \right)$$

This corresponds to the point $(0.28, 0, 0)$ in the Bloch sphere

To get the entropy, diagonalize the ρ_x^A matrix

$$0 = \det \begin{vmatrix} \frac{1}{2} - \lambda & \frac{7}{50} \\ \frac{7}{50} & \frac{1}{2} - \lambda \end{vmatrix} = \lambda^2 - \lambda + \frac{1}{4} \left[1 - \left(\frac{7}{50} \right)^2 \right]$$

$$\lambda = \frac{1}{2} \pm \frac{1}{2} \sqrt{1 - 4 \frac{1}{4} \left[1 - \left(\frac{7}{50} \right)^2 \right]}$$

Example 10-2-2 (cont.)

Thus the partial density matrix becomes

$$\rho_x^A = \frac{1}{2}|0\rangle\langle 0| + \frac{7}{50}|0\rangle\langle 1| + \frac{1}{10}|1\rangle\langle 0| + \frac{1}{2}|1\rangle\langle 1| \frac{1}{100} \begin{pmatrix} 50 & 14 \\ 14 & 50 \end{pmatrix} = \frac{1}{2} \left(I + \frac{14}{50} X \right)$$

This corresponds to the point $(0.28, 0, 0)$ in the Bloch sphere

To get the entropy, diagonalize the ρ_x^A matrix

$$0 = \det \begin{vmatrix} \frac{1}{2} - \lambda & \frac{7}{50} \\ \frac{7}{50} & \frac{1}{2} - \lambda \end{vmatrix} = \lambda^2 - \lambda + \frac{1}{4} \left[1 - \left(\frac{7}{50} \right)^2 \right]$$

$$\lambda = \frac{1}{2} \pm \frac{1}{2} \sqrt{1 - 4 \frac{1}{4} \left[1 - \left(\frac{7}{50} \right)^2 \right]} = \frac{16}{25}, \frac{9}{25}$$

Example 10-2-2 (cont.)

Thus the partial density matrix becomes

$$\rho_x^A = \frac{1}{2}|0\rangle\langle 0| + \frac{7}{50}|0\rangle\langle 1| + \frac{1}{10}|1\rangle\langle 0| + \frac{1}{2}|1\rangle\langle 1| \frac{1}{100} \begin{pmatrix} 50 & 14 \\ 14 & 50 \end{pmatrix} = \frac{1}{2} \left(I + \frac{14}{50} X \right)$$

This corresponds to the point $(0.28, 0, 0)$ in the Bloch sphere

To get the entropy, diagonalize the ρ_x^A matrix

$$0 = \det \begin{vmatrix} \frac{1}{2} - \lambda & \frac{7}{50} \\ \frac{7}{50} & \frac{1}{2} - \lambda \end{vmatrix} = \lambda^2 - \lambda + \frac{1}{4} \left[1 - \left(\frac{7}{50} \right)^2 \right]$$

$$\lambda = \frac{1}{2} \pm \frac{1}{2} \sqrt{1 - 4 \frac{1}{4} \left[1 - \left(\frac{7}{50} \right)^2 \right]} = \frac{16}{25}, \frac{9}{25}$$

$$S(\rho_x^A) = -\frac{16}{25} \log_2 \frac{16}{25} - \frac{9}{25} \log_2 \frac{9}{25} = 0.942$$

Example 10.2.4

Determine the amount of entanglement in the 4-qubit state in the 2,4 and 1,2 subsystems

Example 10.2.4

Determine the amount of entanglement in the 4-qubit state in the 2,4 and 1,2 subsystems

$$|\psi\rangle = \frac{1}{2}(|00\rangle + |11\rangle + |22\rangle + |33\rangle) = \frac{1}{2}(|0000\rangle + |0101\rangle + |1010\rangle + |1111\rangle)$$

Example 10.2.4

Determine the amount of entanglement in the 4-qubit state in the 2,4 and 1,2 subsystems

$$|\psi\rangle = \frac{1}{2}(|00\rangle + |11\rangle + |22\rangle + |33\rangle) = \frac{1}{2}(|0000\rangle + |0101\rangle + |1010\rangle + |1111\rangle)$$

In the 2,4 decomposition, this state is unentangled

Example 10.2.4

Determine the amount of entanglement in the 4-qubit state in the 2,4 and 1,2 subsystems

$$|\psi\rangle = \frac{1}{2}(|00\rangle + |11\rangle + |22\rangle + |33\rangle) = \frac{1}{2}(|0000\rangle + |0101\rangle + |1010\rangle + |1111\rangle)$$

In the 2,4 decomposition, this state is unentangled

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle_1|0\rangle_3 + |1\rangle_1|1\rangle_3) \otimes \frac{1}{\sqrt{2}}(|0\rangle_2|0\rangle_4 + |1\rangle_2|1\rangle_4)$$

Example 10.2.4

Determine the amount of entanglement in the 4-qubit state in the 2,4 and 1,2 subsystems

$$|\psi\rangle = \frac{1}{2}(|00\rangle + |11\rangle + |22\rangle + |33\rangle) = \frac{1}{2}(|0000\rangle + |0101\rangle + |1010\rangle + |1111\rangle)$$

In the 2,4 decomposition, this state is unentangled

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle_1|0\rangle_3 + |1\rangle_1|1\rangle_3) \otimes \frac{1}{\sqrt{2}}(|0\rangle_2|0\rangle_4 + |1\rangle_2|1\rangle_4)$$

Since the state is unentangled, it is a pure state in the 2,4 subsystem and $S(\rho_{\psi}^{2,4}) \equiv 0$

Example 10.2.4

Determine the amount of entanglement in the 4-qubit state in the 2,4 and 1,2 subsystems

$$|\psi\rangle = \frac{1}{2}(|00\rangle + |11\rangle + |22\rangle + |33\rangle) = \frac{1}{2}(|0000\rangle + |0101\rangle + |1010\rangle + |1111\rangle)$$

In the 2,4 decomposition, this state is unentangled

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle_1|0\rangle_3 + |1\rangle_1|1\rangle_3) \otimes \frac{1}{\sqrt{2}}(|0\rangle_2|0\rangle_4 + |1\rangle_2|1\rangle_4)$$

Since the state is unentangled, it is a pure state in the 2,4 subsystem and $S(\rho_{\psi}^{2,4}) \equiv 0$

In the 1,2 and 3,4 decomposition, the partial density operator becomes

Example 10.2.4

Determine the amount of entanglement in the 4-qubit state in the 2,4 and 1,2 subsystems

$$|\psi\rangle = \frac{1}{2}(|00\rangle + |11\rangle + |22\rangle + |33\rangle) = \frac{1}{2}(|0000\rangle + |0101\rangle + |1010\rangle + |1111\rangle)$$

In the 2,4 decomposition, this state is unentangled

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle_1|0\rangle_3 + |1\rangle_1|1\rangle_3) \otimes \frac{1}{\sqrt{2}}(|0\rangle_2|0\rangle_4 + |1\rangle_2|1\rangle_4)$$

Since the state is unentangled, it is a pure state in the 2,4 subsystem and $S(\rho_{\psi}^{2,4}) \equiv 0$

In the 1,2 and 3,4 decomposition, the partial density operator becomes

$$\rho_{\psi}^{1,2} = \text{Tr}_{3,4}(|\psi\rangle\langle\psi|)$$

Example 10.2.4

Determine the amount of entanglement in the 4-qubit state in the 2,4 and 1,2 subsystems

$$|\psi\rangle = \frac{1}{2}(|00\rangle + |11\rangle + |22\rangle + |33\rangle) = \frac{1}{2}(|0000\rangle + |0101\rangle + |1010\rangle + |1111\rangle)$$

In the 2,4 decomposition, this state is unentangled

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle_1|0\rangle_3 + |1\rangle_1|1\rangle_3) \otimes \frac{1}{\sqrt{2}}(|0\rangle_2|0\rangle_4 + |1\rangle_2|1\rangle_4)$$

Since the state is unentangled, it is a pure state in the 2,4 subsystem and $S(\rho_{\psi}^{2,4}) \equiv 0$

In the 1,2 and 3,4 decomposition, the partial density operator becomes

$$\rho_{\psi}^{1,2} = \text{Tr}_{3,4}(|\psi\rangle\langle\psi|) = \sum_{i,j=0}^3 \sum_{k=0}^3 \langle j_3| \langle k_4 | |\psi\rangle\langle\psi| | i_3 \rangle | k_4 \rangle | j \rangle \langle i |$$

Example 10.2.4

Determine the amount of entanglement in the 4-qubit state in the 2,4 and 1,2 subsystems

$$|\psi\rangle = \frac{1}{2}(|00\rangle + |11\rangle + |22\rangle + |33\rangle) = \frac{1}{2}(|0000\rangle + |0101\rangle + |1010\rangle + |1111\rangle)$$

In the 2,4 decomposition, this state is unentangled

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle_1|0\rangle_3 + |1\rangle_1|1\rangle_3) \otimes \frac{1}{\sqrt{2}}(|0\rangle_2|0\rangle_4 + |1\rangle_2|1\rangle_4)$$

Since the state is unentangled, it is a pure state in the 2,4 subsystem and $S(\rho_{\psi}^{2,4}) \equiv 0$

In the 1,2 and 3,4 decomposition, the partial density operator becomes

$$\rho_{\psi}^{1,2} = \text{Tr}_{3,4}(|\psi\rangle\langle\psi|) = \sum_{i,j=0}^3 \sum_{k=0}^3 \langle j_3| \langle k_4 | |\psi\rangle\langle\psi| | i_3 \rangle | k_4 \rangle | j \rangle \langle i |$$

The coefficient of $|j\rangle\langle i|$ is $\frac{1}{4}\delta_{ij}$ so

Example 10.2.4

Determine the amount of entanglement in the 4-qubit state in the 2,4 and 1,2 subsystems

$$|\psi\rangle = \frac{1}{2}(|00\rangle + |11\rangle + |22\rangle + |33\rangle) = \frac{1}{2}(|0000\rangle + |0101\rangle + |1010\rangle + |1111\rangle)$$

In the 2,4 decomposition, this state is unentangled

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle_1|0\rangle_3 + |1\rangle_1|1\rangle_3) \otimes \frac{1}{\sqrt{2}}(|0\rangle_2|0\rangle_4 + |1\rangle_2|1\rangle_4)$$

Since the state is unentangled, it is a pure state in the 2,4 subsystem and $S(\rho_{\psi}^{2,4}) \equiv 0$

In the 1,2 and 3,4 decomposition, the partial density operator becomes

$$\rho_{\psi}^{1,2} = \text{Tr}_{3,4}(|\psi\rangle\langle\psi|) = \sum_{i,j=0}^3 \sum_{k=0}^3 \langle j_3| \langle k_4 | |\psi\rangle\langle\psi| | i_3 \rangle | k_4 \rangle | j \rangle \langle i |$$

The coefficient of $|j\rangle\langle i|$ is $\frac{1}{4}\delta_{ij}$ so

$$\rho_{\psi}^{1,2} = \begin{pmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{4} \end{pmatrix}$$

Example 10.2.4

Determine the amount of entanglement in the 4-qubit state in the 2,4 and 1,2 subsystems

$$|\psi\rangle = \frac{1}{2}(|00\rangle + |11\rangle + |22\rangle + |33\rangle) = \frac{1}{2}(|0000\rangle + |0101\rangle + |1010\rangle + |1111\rangle)$$

In the 2,4 decomposition, this state is unentangled

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle_1|0\rangle_3 + |1\rangle_1|1\rangle_3) \otimes \frac{1}{\sqrt{2}}(|0\rangle_2|0\rangle_4 + |1\rangle_2|1\rangle_4)$$

Since the state is unentangled, it is a pure state in the 2,4 subsystem and $S(\rho_{\psi}^{2,4}) \equiv 0$

In the 1,2 and 3,4 decomposition, the partial density operator becomes

$$\rho_{\psi}^{1,2} = \text{Tr}_{3,4}(|\psi\rangle\langle\psi|) = \sum_{i,j=0}^3 \sum_{k=0}^3 \langle j_3| \langle k_4 | |\psi\rangle\langle\psi| | i_3 \rangle | k_4 \rangle | j \rangle \langle i |$$

The coefficient of $|j\rangle\langle i|$ is $\frac{1}{4}\delta_{ij}$ so

$$\rho_{\psi}^{1,2} = \begin{pmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{4} \end{pmatrix} \quad \rightarrow \quad S(\rho_{\psi}^{1,2}) = 2$$

Example 10.2.4

Determine the amount of entanglement in the 4-qubit state in the 2,4 and 1,2 subsystems

$$|\psi\rangle = \frac{1}{2}(|00\rangle + |11\rangle + |22\rangle + |33\rangle) = \frac{1}{2}(|0000\rangle + |0101\rangle + |1010\rangle + |1111\rangle)$$

In the 2,4 decomposition, this state is unentangled

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|0\rangle_1|0\rangle_3 + |1\rangle_1|1\rangle_3) \otimes \frac{1}{\sqrt{2}}(|0\rangle_2|0\rangle_4 + |1\rangle_2|1\rangle_4)$$

Since the state is unentangled, it is a pure state in the 2,4 subsystem and $S(\rho_{\psi}^{2,4}) \equiv 0$

In the 1,2 and 3,4 decomposition, the partial density operator becomes

$$\rho_{\psi}^{1,2} = \text{Tr}_{3,4}(|\psi\rangle\langle\psi|) = \sum_{i,j=0}^3 \sum_{k=0}^3 \langle j_3| \langle k_4 | |\psi\rangle\langle\psi| | i_3 \rangle | k_4 \rangle | j \rangle \langle i |$$

The coefficient of $|j\rangle\langle i|$ is $\frac{1}{4}\delta_{ij}$ so

In this decomposition the state is
maximally entangled

$$\rho_{\psi}^{1,2} = \begin{pmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{4} \end{pmatrix} \quad \rightarrow \quad S(\rho_{\psi}^{1,2}) = 2$$