

Today's outline - March 29, 2022

Today's outline - March 29, 2022

- Mixed and pure states

Today's outline - March 29, 2022

- Mixed and pure states
- Properties of traces

Today's outline - March 29, 2022

- Mixed and pure states
- Properties of traces
- Density operators

Today's outline - March 29, 2022

- Mixed and pure states
- Properties of traces
- Density operators
- Properties of density operators

Today's outline - March 29, 2022

- Mixed and pure states
- Properties of traces
- Density operators
- Properties of density operators

Reading assignment: 10.2 – 10.3

Today's outline - March 29, 2022

- Mixed and pure states
- Properties of traces
- Density operators
- Properties of density operators

Reading assignment: 10.2 – 10.3

Homework Assignment #06:

See Blackboard

Due Tuesday, April 05, 2022

Quantum circuit simulator <https://algassert.com/quirk>

Mixed and pure states (ensembles)

In order to better understand what can be measured in a quantum system it is useful to understand the difference between **pure** and **mixed** quantum states

Mixed and pure states (ensembles)

In order to better understand what can be measured in a quantum system it is useful to understand the difference between **pure** and **mixed** quantum states

An example of a **pure** state is the $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ state

Mixed and pure states (ensembles)

In order to better understand what can be measured in a quantum system it is useful to understand the difference between **pure** and **mixed** quantum states

An example of a **pure** state is the $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ state

By measuring this state in the standard basis, there is a 50% chance of getting $|0\rangle$ and 50% chance of getting $|1\rangle$ but a single measurement will only measure one of these

Mixed and pure states (ensembles)

In order to better understand what can be measured in a quantum system it is useful to understand the difference between **pure** and **mixed** quantum states

An example of a **pure** state is the $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ state

By measuring this state in the standard basis, there is a 50% chance of getting $|0\rangle$ and 50% chance of getting $|1\rangle$ but a single measurement will only measure one of these

In order to reveal the probabilities, it is necessary to prepare a pool of many such systems and measure them in the same way

Mixed and pure states (ensembles)

In order to better understand what can be measured in a quantum system it is useful to understand the difference between **pure** and **mixed** quantum states

An example of a **pure** state is the $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ state

By measuring this state in the standard basis, there is a 50% chance of getting $|0\rangle$ and 50% chance of getting $|1\rangle$ but a single measurement will only measure one of these

In order to reveal the probabilities, it is necessary to prepare a pool of many such systems and measure them in the same way

A **mixed** state is a statistical distribution of the possible states

Mixed and pure states (ensembles)

In order to better understand what can be measured in a quantum system it is useful to understand the difference between **pure** and **mixed** quantum states

An example of a **pure** state is the $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ state

By measuring this state in the standard basis, there is a 50% chance of getting $|0\rangle$ and 50% chance of getting $|1\rangle$ but a single measurement will only measure one of these

In order to reveal the probabilities, it is necessary to prepare a pool of many such systems and measure them in the same way

A **mixed** state is a statistical distribution of the possible states

Many states are prepared in an equal distribution of $|0\rangle$ and $|1\rangle$ states and then are measured

Mixed and pure states (ensembles)

In order to better understand what can be measured in a quantum system it is useful to understand the difference between **pure** and **mixed** quantum states

An example of a **pure** state is the $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ state

By measuring this state in the standard basis, there is a 50% chance of getting $|0\rangle$ and 50% chance of getting $|1\rangle$ but a single measurement will only measure one of these

In order to reveal the probabilities, it is necessary to prepare a pool of many such systems and measure them in the same way

A **mixed** state is a statistical distribution of the possible states

Many states are prepared in an equal distribution of $|0\rangle$ and $|1\rangle$ states and then are measured

When all these systems are measured, the results are the same as for the measurement of the **pure** states but the system is fundamentally different since **pure** states have phase information that can produce interference effects not found in **mixed** states

Quantum subsystems and mixed states

It is often the case that one has access only to a part of a larger quantum system

Quantum subsystems and mixed states

It is often the case that one has access only to a part of a larger quantum system

For example, if Alice only has access to the first qubit of an EPR pair, $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

Quantum subsystems and mixed states

It is often the case that one has access only to a part of a larger quantum system

For example, if Alice only has access to the first qubit of an EPR pair, $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

If she measures in the standard basis, she has a 50% chance of getting $|0\rangle$ or $|1\rangle$ but her qubit cannot be described as being in the state $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ because if it is measured in the Hadamard basis, there is a 50% chance of getting $|+\rangle$ or $|-\rangle$

Quantum subsystems and mixed states

It is often the case that one has access only to a part of a larger quantum system

For example, if Alice only has access to the first qubit of an EPR pair, $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

If she measures in the standard basis, she has a 50% chance of getting $|0\rangle$ or $|1\rangle$ but her qubit cannot be described as being in the state $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ because if it is measured in the Hadamard basis, there is a 50% chance of getting $|+\rangle$ or $|-\rangle$

It is therefore important to be able to describe measurements on m -qubit subsystems of identically prepared n -qubit systems and what can be learned from such

Quantum subsystems and mixed states

It is often the case that one has access only to a part of a larger quantum system

For example, if Alice only has access to the first qubit of an EPR pair, $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

If she measures in the standard basis, she has a 50% chance of getting $|0\rangle$ or $|1\rangle$ but her qubit cannot be described as being in the state $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ because if it is measured in the Hadamard basis, there is a 50% chance of getting $|+\rangle$ or $|-\rangle$

It is therefore important to be able to describe measurements on m -qubit subsystems of identically prepared n -qubit systems and what can be learned from such

This information is encapsulated in a structure called the **mixed** state of the m -qubit subsystem

Quantum subsystems and mixed states

It is often the case that one has access only to a part of a larger quantum system

For example, if Alice only has access to the first qubit of an EPR pair, $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

If she measures in the standard basis, she has a 50% chance of getting $|0\rangle$ or $|1\rangle$ but her qubit cannot be described as being in the state $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ because if it is measured in the Hadamard basis, there is a 50% chance of getting $|+\rangle$ or $|-\rangle$

It is therefore important to be able to describe measurements on m -qubit subsystems of identically prepared n -qubit systems and what can be learned from such

This information is encapsulated in a structure called the **mixed** state of the m -qubit subsystem

Density operators are transformations which can be used to extract this information

Quantum subsystems and mixed states

It is often the case that one has access only to a part of a larger quantum system

For example, if Alice only has access to the first qubit of an EPR pair, $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

If she measures in the standard basis, she has a 50% chance of getting $|0\rangle$ or $|1\rangle$ but her qubit cannot be described as being in the state $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ because if it is measured in the Hadamard basis, there is a 50% chance of getting $|+\rangle$ or $|-\rangle$

It is therefore important to be able to describe measurements on m -qubit subsystems of identically prepared n -qubit systems and what can be learned from such

This information is encapsulated in a structure called the **mixed** state of the m -qubit subsystem

Density operators are transformations which can be used to extract this information

Just because the subsystem can be described as a **mixed** state, does not mean that they are well-defined and not entangled in the larger system

Quantum subsystems and mixed states

It is often the case that one has access only to a part of a larger quantum system

For example, if Alice only has access to the first qubit of an EPR pair, $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

If she measures in the standard basis, she has a 50% chance of getting $|0\rangle$ or $|1\rangle$ but her qubit cannot be described as being in the state $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ because if it is measured in the Hadamard basis, there is a 50% chance of getting $|+\rangle$ or $|-\rangle$

It is therefore important to be able to describe measurements on m -qubit subsystems of identically prepared n -qubit systems and what can be learned from such

This information is encapsulated in a structure called the **mixed** state of the m -qubit subsystem

Density operators are transformations which can be used to extract this information

Just because the subsystem can be described as a **mixed** state, does not mean that they are well-defined and not entangled in the larger system

Knowing the **mixed** states of all the subsystems only provides full knowledge of the system when it is unentangled in that specific subspace decomposition

The trace of an operator

Given a space V with basis $\{|v_i\rangle\}$ and an operator $O : V \rightarrow V$ with a matrix representation M whose trace is

The trace of an operator

Given a space V with basis $\{|v_i\rangle\}$ and an operator $O : V \rightarrow V$ with a matrix representation M whose trace is

$$\text{Tr}(M) = \sum_i \langle v_i | M | v_i \rangle$$

The trace of an operator

Given a space V with basis $\{|v_i\rangle\}$ and an operator $O : V \rightarrow V$ with a matrix representation M whose trace is

$$\text{Tr}(M) = \sum_i \langle v_i | M | v_i \rangle$$

Given that $\text{Tr}(M_1 M_2) = \text{Tr}(M_2 M_1)$, if C is an invertible matrix then

The trace of an operator

Given a space V with basis $\{|v_i\rangle\}$ and an operator $O : V \rightarrow V$ with a matrix representation M whose trace is

Given that $\text{Tr}(M_1 M_2) = \text{Tr}(M_2 M_1)$, if C is an invertible matrix then

$$\text{Tr}(M) = \sum_i \langle v_i | M | v_i \rangle$$

$$\text{Tr}(C^{-1}MC) = \text{Tr}(MCC^{-1}) = \text{Tr}(M)$$

The trace of an operator

Given a space V with basis $\{|v_i\rangle\}$ and an operator $O : V \rightarrow V$ with a matrix representation M whose trace is

Given that $\text{Tr}(M_1 M_2) = \text{Tr}(M_2 M_1)$, if C is an invertible matrix then

Since $C^{-1}MC$ can represent a change of basis for M it follows that the trace of a matrix is invariant under basis change which can be written $\text{Tr}(O)$

$$\text{Tr}(M) = \sum_i \langle v_i | M | v_i \rangle$$

$$\text{Tr}(C^{-1}MC) = \text{Tr}(MCC^{-1}) = \text{Tr}(M)$$

The trace of an operator

Given a space V with basis $\{|v_i\rangle\}$ and an operator $O : V \rightarrow V$ with a matrix representation M whose trace is

Given that $\text{Tr}(M_1 M_2) = \text{Tr}(M_2 M_1)$, if C is an invertible matrix then

Since $C^{-1}MC$ can represent a change of basis for M it follows that the trace of a matrix is invariant under basis change which can be written $\text{Tr}(O)$

Given a basis $\{|\alpha_i\rangle\}$ for space V

$$\text{Tr}(M) = \sum_i \langle v_i | M | v_i \rangle$$

$$\text{Tr}(C^{-1}MC) = \text{Tr}(MCC^{-1}) = \text{Tr}(M)$$

The trace of an operator

Given a space V with basis $\{|v_i\rangle\}$ and an operator $O : V \rightarrow V$ with a matrix representation M whose trace is

Given that $\text{Tr}(M_1 M_2) = \text{Tr}(M_2 M_1)$, if C is an invertible matrix then

Since $C^{-1}MC$ can represent a change of basis for M it follows that the trace of a matrix is invariant under basis change which can be written $\text{Tr}(O)$

Given a basis $\{|\alpha_i\rangle\}$ for space V

$$\text{Tr}(|\psi_1\rangle\langle\psi_2|O)$$

$$\text{Tr}(M) = \sum_i \langle v_i | M | v_i \rangle$$

$$\text{Tr}(C^{-1}MC) = \text{Tr}(MCC^{-1}) = \text{Tr}(M)$$

The trace of an operator

Given a space V with basis $\{|v_i\rangle\}$ and an operator $O : V \rightarrow V$ with a matrix representation M whose trace is

Given that $\text{Tr}(M_1 M_2) = \text{Tr}(M_2 M_1)$, if C is an invertible matrix then

Since $C^{-1}MC$ can represent a change of basis for M it follows that the trace of a matrix is invariant under basis change which can be written $\text{Tr}(O)$

Given a basis $\{|\alpha_i\rangle\}$ for space V

$$\text{Tr}(M) = \sum_i \langle v_i | M | v_i \rangle$$

$$\text{Tr}(C^{-1}MC) = \text{Tr}(MCC^{-1}) = \text{Tr}(M)$$

$$\text{Tr}(|\psi_1\rangle\langle\psi_2|O) = \sum_i \langle\alpha_i|\psi_2\rangle\langle\psi_1|O|\alpha_i\rangle$$

The trace of an operator

Given a space V with basis $\{|v_i\rangle\}$ and an operator $O : V \rightarrow V$ with a matrix representation M whose trace is

Given that $\text{Tr}(M_1 M_2) = \text{Tr}(M_2 M_1)$, if C is an invertible matrix then

Since $C^{-1}MC$ can represent a change of basis for M it follows that the trace of a matrix is invariant under basis change which can be written $\text{Tr}(O)$

Given a basis $\{|\alpha_i\rangle\}$ for space V

$$\text{Tr}(M) = \sum_i \langle v_i | M | v_i \rangle$$

$$\text{Tr}(C^{-1}MC) = \text{Tr}(MCC^{-1}) = \text{Tr}(M)$$

$$\text{Tr}(|\psi_1\rangle\langle\psi_2|O) = \sum_i \langle\alpha_i|\psi_2\rangle\langle\psi_1|O|\alpha_i\rangle = \sum_i \langle\psi_1|O|\alpha_i\rangle\langle\alpha_i|\psi_2\rangle$$

The trace of an operator

Given a space V with basis $\{|v_i\rangle\}$ and an operator $O : V \rightarrow V$ with a matrix representation M whose trace is

Given that $\text{Tr}(M_1 M_2) = \text{Tr}(M_2 M_1)$, if C is an invertible matrix then

Since $C^{-1}MC$ can represent a change of basis for M it follows that the trace of a matrix is invariant under basis change which can be written $\text{Tr}(O)$

Given a basis $\{|\alpha_i\rangle\}$ for space V

$$\text{Tr}(M) = \sum_i \langle v_i | M | v_i \rangle$$

$$\text{Tr}(C^{-1}MC) = \text{Tr}(MCC^{-1}) = \text{Tr}(M)$$

$$\text{Tr}(|\psi_1\rangle\langle\psi_2|O) = \sum_i \langle\alpha_i|\psi_2\rangle\langle\psi_1|O|\alpha_i\rangle = \sum_i \langle\psi_1|O|\alpha_i\rangle\langle\alpha_i|\psi_2\rangle = \langle\psi_1|O\left(\sum_i |\alpha_i\rangle\langle\alpha_i|\right)|\psi_2\rangle$$

The trace of an operator

Given a space V with basis $\{|v_i\rangle\}$ and an operator $O : V \rightarrow V$ with a matrix representation M whose trace is

Given that $\text{Tr}(M_1 M_2) = \text{Tr}(M_2 M_1)$, if C is an invertible matrix then

Since $C^{-1}MC$ can represent a change of basis for M it follows that the trace of a matrix is invariant under basis change which can be written $\text{Tr}(O)$

Given a basis $\{|\alpha_i\rangle\}$ for space V

$$\begin{aligned}\text{Tr}(|\psi_1\rangle\langle\psi_2|O) &= \sum_i \langle\alpha_i|\psi_2\rangle\langle\psi_1|O|\alpha_i\rangle = \sum_i \langle\psi_1|O|\alpha_i\rangle\langle\alpha_i|\psi_2\rangle = \langle\psi_1|O\left(\sum_i |\alpha_i\rangle\langle\alpha_i|\right)|\psi_2\rangle \\ &= \langle\psi_1|OI|\psi_2\rangle\end{aligned}$$

$$\text{Tr}(M) = \sum_i \langle v_i | M | v_i \rangle$$

$$\text{Tr}(C^{-1}MC) = \text{Tr}(MCC^{-1}) = \text{Tr}(M)$$

The trace of an operator

Given a space V with basis $\{|v_i\rangle\}$ and an operator $O : V \rightarrow V$ with a matrix representation M whose trace is

Given that $\text{Tr}(M_1 M_2) = \text{Tr}(M_2 M_1)$, if C is an invertible matrix then

$$\text{Tr}(M) = \sum_i \langle v_i | M | v_i \rangle$$

$$\text{Tr}(C^{-1}MC) = \text{Tr}(MCC^{-1}) = \text{Tr}(M)$$

Since $C^{-1}MC$ can represent a change of basis for M it follows that the trace of a matrix is invariant under basis change which can be written $\text{Tr}(O)$

Given a basis $\{|\alpha_i\rangle\}$ for space V

$$\begin{aligned} \text{Tr}(|\psi_1\rangle\langle\psi_2|O) &= \sum_i \langle\alpha_i|\psi_2\rangle\langle\psi_1|O|\alpha_i\rangle = \sum_i \langle\psi_1|O|\alpha_i\rangle\langle\alpha_i|\psi_2\rangle = \langle\psi_1|O\left(\sum_i |\alpha_i\rangle\langle\alpha_i|\right)|\psi_2\rangle \\ &= \langle\psi_1|OI|\psi_2\rangle = \langle\psi_1|O|\psi_2\rangle \end{aligned}$$

The trace of an operator

Given a space V with basis $\{|v_i\rangle\}$ and an operator $O : V \rightarrow V$ with a matrix representation M whose trace is

Given that $\text{Tr}(M_1 M_2) = \text{Tr}(M_2 M_1)$, if C is an invertible matrix then

$$\text{Tr}(M) = \sum_i \langle v_i | M | v_i \rangle$$

$$\text{Tr}(C^{-1}MC) = \text{Tr}(MCC^{-1}) = \text{Tr}(M)$$

Since $C^{-1}MC$ can represent a change of basis for M it follows that the trace of a matrix is invariant under basis change which can be written $\text{Tr}(O)$

Given a basis $\{|\alpha_i\rangle\}$ for space V

$$\begin{aligned} \text{Tr}(|\psi_1\rangle\langle\psi_2|O) &= \sum_i \langle\alpha_i|\psi_2\rangle\langle\psi_1|O|\alpha_i\rangle = \sum_i \langle\psi_1|O|\alpha_i\rangle\langle\alpha_i|\psi_2\rangle = \langle\psi_1|O\left(\sum_i |\alpha_i\rangle\langle\alpha_i|\right)|\psi_2\rangle \\ &= \langle\psi_1|OI|\psi_2\rangle = \langle\psi_1|O|\psi_2\rangle \end{aligned}$$

This is a useful method of computing an inner product

Restricting operators to subsystems

For any operator O_{AB} on $A \otimes B$, there is a family of operators on subsystem A that is defined by any pair of states $|b_1\rangle$ and $|b_2\rangle$ in B as $\langle b_1|O_{AB}|b_2\rangle : A \rightarrow A$

Restricting operators to subsystems

For any operator O_{AB} on $A \otimes B$, there is a family of operators on subsystem A that is defined by any pair of states $|b_1\rangle$ and $|b_2\rangle$ in B as $\langle b_1|O_{AB}|b_2\rangle : A \rightarrow A$

Suppose both $\{|\alpha_i\rangle\}$ and $\{|a'_j\rangle\}$ are basis for A with $|a'_j\rangle = \sum_i a_{ij}|\alpha_i\rangle$

Restricting operators to subsystems

For any operator O_{AB} on $A \otimes B$, there is a family of operators on subsystem A that is defined by any pair of states $|b_1\rangle$ and $|b_2\rangle$ in B as $\langle b_1|O_{AB}|b_2\rangle : A \rightarrow A$

Suppose both $\{|\alpha_i\rangle\}$ and $\{|a'_j\rangle\}$ are basis for A with $|a'_j\rangle = \sum_i a_{ij}|\alpha_i\rangle$

Apply $\langle b_1|O_{AB}|b_2\rangle$ to a state $|a\rangle$

Restricting operators to subsystems

For any operator O_{AB} on $A \otimes B$, there is a family of operators on subsystem A that is defined by any pair of states $|b_1\rangle$ and $|b_2\rangle$ in B as $\langle b_1|O_{AB}|b_2\rangle : A \rightarrow A$

Suppose both $\{|\alpha_i\rangle\}$ and $\{|a'_j\rangle\}$ are basis for A with $|a'_j\rangle = \sum_i a_{ij}|\alpha_i\rangle$

Apply $\langle b_1|O_{AB}|b_2\rangle$ to a state $|a\rangle$

$$\langle b_1|O_{AB}|b_2\rangle|a\rangle$$

Restricting operators to subsystems

For any operator O_{AB} on $A \otimes B$, there is a family of operators on subsystem A that is defined by any pair of states $|b_1\rangle$ and $|b_2\rangle$ in B as $\langle b_1|O_{AB}|b_2\rangle : A \rightarrow A$

Suppose both $\{|\alpha_i\rangle\}$ and $\{|a'_j\rangle\}$ are basis for A with $|a'_j\rangle = \sum_i a_{ij}|\alpha_i\rangle$

Apply $\langle b_1|O_{AB}|b_2\rangle$ to a state $|a\rangle$ and convert it to a trace as shown previously

$$\langle b_1|O_{AB}|b_2\rangle|a\rangle$$

Restricting operators to subsystems

For any operator O_{AB} on $A \otimes B$, there is a family of operators on subsystem A that is defined by any pair of states $|b_1\rangle$ and $|b_2\rangle$ in B as $\langle b_1|O_{AB}|b_2\rangle : A \rightarrow A$

Suppose both $\{|\alpha_i\rangle\}$ and $\{|a'_j\rangle\}$ are basis for A with $|a'_j\rangle = \sum_i a_{ij}|\alpha_i\rangle$

Apply $\langle b_1|O_{AB}|b_2\rangle$ to a state $|a\rangle$ and convert it to a trace as shown previously

$$\langle b_1|O_{AB}|b_2\rangle|a\rangle = \sum_j \langle a'_j| \langle b_1|O_{AB}|b_2\rangle|a\rangle|a'_j\rangle$$

Restricting operators to subsystems

For any operator O_{AB} on $A \otimes B$, there is a family of operators on subsystem A that is defined by any pair of states $|b_1\rangle$ and $|b_2\rangle$ in B as $\langle b_1|O_{AB}|b_2\rangle : A \rightarrow A$

Suppose both $\{|\alpha_i\rangle\}$ and $\{|a'_j\rangle\}$ are basis for A with $|a'_j\rangle = \sum_i a_{ij}|\alpha_i\rangle$

Apply $\langle b_1|O_{AB}|b_2\rangle$ to a state $|a\rangle$ and convert it to a trace as shown previously

$$\begin{aligned}\langle b_1|O_{AB}|b_2\rangle|a\rangle &= \sum_j \langle a'_j| \langle b_1|O_{AB}|b_2\rangle|a\rangle|a'_j\rangle \\ &= \sum_j \left(\sum_i \overline{a_{ij}} \langle \alpha_i | \right) \langle b_1|O_{AB}|a\rangle|b_2\rangle \left(\sum_k a_{kj} |\alpha_k\rangle \right)\end{aligned}$$

Restricting operators to subsystems

For any operator O_{AB} on $A \otimes B$, there is a family of operators on subsystem A that is defined by any pair of states $|b_1\rangle$ and $|b_2\rangle$ in B as $\langle b_1|O_{AB}|b_2\rangle : A \rightarrow A$

Suppose both $\{|\alpha_i\rangle\}$ and $\{|a'_j\rangle\}$ are basis for A with $|a'_j\rangle = \sum_i a_{ij}|\alpha_i\rangle$

Apply $\langle b_1|O_{AB}|b_2\rangle$ to a state $|a\rangle$ and convert it to a trace as shown previously

$$\begin{aligned}\langle b_1|O_{AB}|b_2\rangle|a\rangle &= \sum_j \langle a'_j| \langle b_1|O_{AB}|b_2\rangle|a\rangle|a'_j\rangle \\ &= \sum_j \left(\sum_i \overline{a_{ij}} \langle \alpha_i| \right) \langle b_1|O_{AB}|a\rangle|b_2\rangle \left(\sum_k a_{kj} |\alpha_k\rangle \right) \\ &= \sum_i \sum_k \sum_j \overline{a_{ij}} a_{kj} \langle \alpha_i| \langle b_1|O_{AB}|a\rangle|b_2\rangle|\alpha_k\rangle\end{aligned}$$

Restricting operators to subsystems

For any operator O_{AB} on $A \otimes B$, there is a family of operators on subsystem A that is defined by any pair of states $|b_1\rangle$ and $|b_2\rangle$ in B as $\langle b_1|O_{AB}|b_2\rangle : A \rightarrow A$

Suppose both $\{|\alpha_i\rangle\}$ and $\{|a'_j\rangle\}$ are basis for A with $|a'_j\rangle = \sum_i a_{ij} |\alpha_i\rangle$

Apply $\langle b_1|O_{AB}|b_2\rangle$ to a state $|a\rangle$ and convert it to a trace as shown previously

$$\begin{aligned}\langle b_1|O_{AB}|b_2\rangle|a\rangle &= \sum_j \langle a'_j| \langle b_1|O_{AB}|b_2\rangle|a\rangle|a'_j\rangle \\ &= \sum_j \left(\sum_i \overline{a_{ij}} \langle \alpha_i| \right) \langle b_1|O_{AB}|a\rangle|b_2\rangle \left(\sum_k a_{kj} |\alpha_k\rangle \right) \\ &= \sum_i \sum_k \sum_j \overline{a_{ij}} a_{kj} \langle \alpha_i| \langle b_1|O_{AB}|a\rangle|b_2\rangle|\alpha_k\rangle\end{aligned}$$

Because $|a'_j\rangle = \sum_i a_{ij} |\alpha_i\rangle$, $\sum_j \overline{a_{ij}} a_{kj} \equiv \delta_{ik}$ and we have

Restricting operators to subsystems

For any operator O_{AB} on $A \otimes B$, there is a family of operators on subsystem A that is defined by any pair of states $|b_1\rangle$ and $|b_2\rangle$ in B as $\langle b_1|O_{AB}|b_2\rangle : A \rightarrow A$

Suppose both $\{|\alpha_i\rangle\}$ and $\{|a'_j\rangle\}$ are basis for A with $|a'_j\rangle = \sum_i a_{ij} |\alpha_i\rangle$

Apply $\langle b_1|O_{AB}|b_2\rangle$ to a state $|a\rangle$ and convert it to a trace as shown previously

$$\begin{aligned}\langle b_1|O_{AB}|b_2\rangle|a\rangle &= \sum_j \langle a'_j| \langle b_1|O_{AB}|b_2\rangle|a\rangle |a'_j\rangle \\ &= \sum_j \left(\sum_i \overline{a_{ij}} \langle \alpha_i| \right) \langle b_1|O_{AB}|a\rangle |b_2\rangle \left(\sum_k a_{kj} |\alpha_k\rangle \right) \\ &= \sum_i \sum_k \sum_j \overline{a_{ij}} a_{kj} \langle \alpha_i| \langle b_1|O_{AB}|a\rangle |b_2\rangle |\alpha_k\rangle\end{aligned}$$

Because $|a'_j\rangle = \sum_i a_{ij} |\alpha_i\rangle$, $\sum_j \overline{a_{ij}} a_{kj} \equiv \delta_{ik}$ and we have

$$\langle b_1|O_{AB}|b_2\rangle|a\rangle = \sum_i \langle \alpha_i| \langle b_1|O_{AB}|a\rangle |b_2\rangle |\alpha_i\rangle$$

The partial trace

For any operator O_{AB} on $A \otimes B$, the partial trace of O_{AB} with respect to subsystem B and basis $\{|\beta_i\rangle\}$ is an operator $\text{Tr}_B(O_{AB})$ on subsystem A

The partial trace

For any operator O_{AB} on $A \otimes B$, the partial trace of O_{AB} with respect to subsystem B and basis $\{|\beta_i\rangle\}$ is an operator $\text{Tr}_B(O_{AB})$ on subsystem A

$$\text{Tr}_B(O_{AB}) = \sum_j \langle \beta_j | O_{AB} | \beta_j \rangle$$

The partial trace

For any operator O_{AB} on $A \otimes B$, the partial trace of O_{AB} with respect to subsystem B and basis $\{|\beta_i\rangle\}$ is an operator $\text{Tr}_B(O_{AB})$ on subsystem A

As a trace, this operator is basis-independent and has entries in terms of bases $\{|\alpha_i\rangle\}$ and $\{|\beta_j\rangle\}$

$$\text{Tr}_B(O_{AB}) = \sum_j \langle \beta_j | O_{AB} | \beta_j \rangle$$

The partial trace

For any operator O_{AB} on $A \otimes B$, the partial trace of O_{AB} with respect to subsystem B and basis $\{|\beta_i\rangle\}$ is an operator $\text{Tr}_B(O_{AB})$ on subsystem A

As a trace, this operator is basis-independent and has entries in terms of bases $\{|\alpha_i\rangle\}$ and $\{|\beta_j\rangle\}$

$$\text{Tr}_B(O_{AB}) = \sum_j \langle \beta_j | O_{AB} | \beta_j \rangle$$

$$\text{Tr}_B(O_{AB})_{ik} = \sum_{j=0}^{M-1} \langle \alpha_i | \langle \beta_j | O_{AB} | \alpha_k \rangle | \beta_j \rangle$$

The partial trace

For any operator O_{AB} on $A \otimes B$, the partial trace of O_{AB} with respect to subsystem B and basis $\{|\beta_i\rangle\}$ is an operator $\text{Tr}_B(O_{AB})$ on subsystem A

As a trace, this operator is basis-independent and has entries in terms of bases $\{|\alpha_i\rangle\}$ and $\{|\beta_j\rangle\}$

The matrix representation for the $\text{Tr}_B(O_{AB})$ operator is given by

$$\text{Tr}_B(O_{AB}) = \sum_j \langle \beta_j | O_{AB} | \beta_j \rangle$$

$$\text{Tr}_B(O_{AB})_{ik} = \sum_{j=0}^{M-1} \langle \alpha_i | \langle \beta_j | O_{AB} | \alpha_k \rangle | \beta_j \rangle$$

The partial trace

For any operator O_{AB} on $A \otimes B$, the partial trace of O_{AB} with respect to subsystem B and basis $\{|\beta_i\rangle\}$ is an operator $\text{Tr}_B(O_{AB})$ on subsystem A

As a trace, this operator is basis-independent and has entries in terms of bases $\{|\alpha_i\rangle\}$ and $\{|\beta_j\rangle\}$

The matrix representation for the $\text{Tr}_B(O_{AB})$ operator is given by

$$\text{Tr}_B(O_{AB}) = \sum_{i=0}^{N-1} \sum_{k=0}^{N-1} \left(\sum_{j=0}^{M-1} \langle \alpha_i | \langle \beta_j | O_{AB} | \alpha_k \rangle | \beta_j \rangle \right) | \alpha_i \rangle \langle \alpha_k |$$

$$\text{Tr}_B(O_{AB}) = \sum_j \langle \beta_j | O_{AB} | \beta_j \rangle$$

$$\text{Tr}_B(O_{AB})_{ik} = \sum_{j=0}^{M-1} \langle \alpha_i | \langle \beta_j | O_{AB} | \alpha_k \rangle | \beta_j \rangle$$

The partial trace

For any operator O_{AB} on $A \otimes B$, the partial trace of O_{AB} with respect to subsystem B and basis $\{|\beta_i\rangle\}$ is an operator $\text{Tr}_B(O_{AB})$ on subsystem A

As a trace, this operator is basis-independent and has entries in terms of bases $\{|\alpha_i\rangle\}$ and $\{|\beta_j\rangle\}$

The matrix representation for the $\text{Tr}_B(O_{AB})$ operator is given by

$$\text{Tr}_B(O_{AB}) = \sum_{i=0}^{N-1} \sum_{k=0}^{N-1} \left(\sum_{j=0}^{M-1} \langle \alpha_i | \langle \beta_j | O_{AB} | \alpha_k \rangle | \beta_j \rangle \right) | \alpha_i \rangle \langle \alpha_k |$$

If $O_{AB} = |x\rangle\langle x|$ such that $x_{ij}\overline{x_{kl}}$ are the entries of the O_{AB} matrix in the $\{|\alpha_i\rangle|\beta_j\rangle\}$ basis

$$\text{Tr}_B(O_{AB}) = \sum_j \langle \beta_j | O_{AB} | \beta_j \rangle$$

$$\text{Tr}_B(O_{AB})_{ik} = \sum_{j=0}^{M-1} \langle \alpha_i | \langle \beta_j | O_{AB} | \alpha_k \rangle | \beta_j \rangle$$

The partial trace

For any operator O_{AB} on $A \otimes B$, the partial trace of O_{AB} with respect to subsystem B and basis $\{|\beta_i\rangle\}$ is an operator $\text{Tr}_B(O_{AB})$ on subsystem A

As a trace, this operator is basis-independent and has entries in terms of bases $\{|\alpha_i\rangle\}$ and $\{|\beta_j\rangle\}$

The matrix representation for the $\text{Tr}_B(O_{AB})$ operator is given by

$$\text{Tr}_B(O_{AB}) = \sum_{i=0}^{N-1} \sum_{k=0}^{N-1} \left(\sum_{j=0}^{M-1} \langle \alpha_i | \langle \beta_j | O_{AB} | \alpha_k \rangle | \beta_j \rangle \right) | \alpha_i \rangle \langle \alpha_k |$$

If $O_{AB} = |x\rangle\langle x|$ such that $x_{ij}\overline{x_{kl}}$ are the entries of the O_{AB} matrix in the $\{|\alpha_i\rangle|\beta_j\rangle\}$ basis

$$O_{AB} = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} x_{ij} | \alpha_i \rangle | \beta_j \rangle \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} \overline{x_{kl}} \langle \alpha_k | \langle \beta_l |$$

$$\text{Tr}_B(O_{AB}) = \sum_j \langle \beta_j | O_{AB} | \beta_j \rangle$$

$$\text{Tr}_B(O_{AB})_{ik} = \sum_{j=0}^{M-1} \langle \alpha_i | \langle \beta_j | O_{AB} | \alpha_k \rangle | \beta_j \rangle$$

The partial trace

For any operator O_{AB} on $A \otimes B$, the partial trace of O_{AB} with respect to subsystem B and basis $\{|\beta_j\rangle\}$ is an operator $\text{Tr}_B(O_{AB})$ on subsystem A

As a trace, this operator is basis-independent and has entries in terms of bases $\{|\alpha_i\rangle\}$ and $\{|\beta_j\rangle\}$

The matrix representation for the $\text{Tr}_B(O_{AB})$ operator is given by

$$\text{Tr}_B(O_{AB}) = \sum_{i=0}^{N-1} \sum_{k=0}^{N-1} \left(\sum_{j=0}^{M-1} \langle \alpha_i | \langle \beta_j | O_{AB} | \alpha_k \rangle | \beta_j \rangle \right) | \alpha_i \rangle \langle \alpha_k |$$

If $O_{AB} = |x\rangle\langle x|$ such that $x_{ij}\overline{x_{kl}}$ are the entries of the O_{AB} matrix in the $\{|\alpha_i\rangle|\beta_j\rangle\}$ basis

$$O_{AB} = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} x_{ij} | \alpha_i \rangle | \beta_j \rangle \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} \overline{x_{kl}} \langle \alpha_k | \langle \beta_l | = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} x_{ij} \overline{x_{kl}} | \alpha_i \rangle | \beta_j \rangle \langle \alpha_k | \langle \beta_l |$$

The partial trace

$$O_{AB} = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} x_{ij} \overline{x_{kl}} |\alpha_i\rangle |\beta_j\rangle \langle \alpha_k| \langle \beta_l|$$

The partial trace

$$O_{AB} = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} x_{ij} \overline{x_{kl}} |\alpha_i\rangle |\beta_j\rangle \langle \alpha_k| \langle \beta_l|$$

For this case, the partial trace of O_{AB} is given by

The partial trace

$$O_{AB} = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} x_{ij} \overline{x_{kl}} |\alpha_i\rangle |\beta_j\rangle \langle \alpha_k| \langle \beta_l|$$

For this case, the partial trace of O_{AB} is given by

$$\text{Tr}_B(O_{AB}) = \text{Tr}_B(|x\rangle\langle x|)$$

The partial trace

$$O_{AB} = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} x_{ij} \overline{x_{kl}} |\alpha_i\rangle |\beta_j\rangle \langle \alpha_k| \langle \beta_l|$$

For this case, the partial trace of O_{AB} is given by

$$\text{Tr}_B(O_{AB}) = \text{Tr}_B(|x\rangle\langle x|) = \langle \beta_I| \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} x_{ij} \overline{x_{kl}} |\alpha_i\rangle |\beta_j\rangle \langle \alpha_k| \langle \beta_l| \beta_I\rangle$$

The partial trace

$$O_{AB} = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} x_{ij} \overline{x_{kl}} |\alpha_i\rangle |\beta_j\rangle \langle \alpha_k| \langle \beta_l|$$

For this case, the partial trace of O_{AB} is given by

$$\begin{aligned} \text{Tr}_B(O_{AB}) &= \text{Tr}_B(|x\rangle\langle x|) = \langle \beta_I | \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} x_{ij} \overline{x_{kl}} |\alpha_i\rangle |\beta_j\rangle \langle \alpha_k| \langle \beta_l| \rightarrow^1 \\ &= \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} x_{ij} \overline{x_{kl}} |\alpha_i\rangle \langle \beta_l| \langle \beta_j| \langle \alpha_k| \end{aligned}$$

The partial trace

$$O_{AB} = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} x_{ij} \overline{x_{kl}} |\alpha_i\rangle |\beta_j\rangle \langle \alpha_k| \langle \beta_l|$$

For this case, the partial trace of O_{AB} is given by

$$\begin{aligned} \text{Tr}_B(O_{AB}) &= \text{Tr}_B(|x\rangle\langle x|) = \langle \beta_l| \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} x_{ij} \overline{x_{kl}} |\alpha_i\rangle |\beta_j\rangle \langle \alpha_k| \langle \beta_l| \xrightarrow{1} \\ &= \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} x_{ij} \overline{x_{kl}} |\alpha_i\rangle \langle \beta_j| \xrightarrow{\delta_{lj}} \langle \alpha_k| \end{aligned}$$

The partial trace

$$O_{AB} = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} x_{ij} \overline{x_{kl}} |\alpha_i\rangle |\beta_j\rangle \langle \alpha_k| \langle \beta_l|$$

For this case, the partial trace of O_{AB} is given by

$$\text{Tr}_B(O_{AB}) = \text{Tr}_B(|x\rangle \langle x|) = \langle \beta_I| \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} x_{ij} \overline{x_{kl}} |\alpha_i\rangle |\beta_j\rangle \langle \alpha_k| \langle \beta_l| \xrightarrow{1}$$

$$= \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} x_{ij} \overline{x_{kl}} |\alpha_i\rangle \langle \beta_l| \delta_{jl} \langle \alpha_k| = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \sum_{k=0}^{N-1} x_{ij} \overline{x_{kj}} |\alpha_i\rangle \langle \alpha_k|$$

The partial trace

$$O_{AB} = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} x_{ij} \overline{x_{kl}} |\alpha_i\rangle |\beta_j\rangle \langle \alpha_k| \langle \beta_l|$$

For this case, the partial trace of O_{AB} is given by

$$\begin{aligned} \text{Tr}_B(O_{AB}) &= \text{Tr}_B(|x\rangle\langle x|) = \langle \beta_l| \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} x_{ij} \overline{x_{kl}} |\alpha_i\rangle |\beta_j\rangle \langle \alpha_k| \langle \beta_l| \xrightarrow{1} \\ &= \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} x_{ij} \overline{x_{kl}} |\alpha_i\rangle \langle \beta_l| \xrightarrow{\delta_{lj}} \langle \alpha_k| = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \sum_{k=0}^{N-1} x_{ij} \overline{x_{kj}} |\alpha_i\rangle \langle \alpha_k| \end{aligned}$$

If the operator is the tensor product of two operators on the separate subsystems $O_{AB} = O_A \otimes O_B$ then the partial trace is particularly simple since $\langle \alpha_i| \langle \beta_j| O_A \otimes O_B | \alpha_k \rangle | \beta_l \rangle$ can be decomposed

The partial trace

$$O_{AB} = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} x_{ij} \overline{x_{kl}} |\alpha_i\rangle |\beta_j\rangle \langle \alpha_k| \langle \beta_l|$$

For this case, the partial trace of O_{AB} is given by

$$\begin{aligned} \text{Tr}_B(O_{AB}) &= \text{Tr}_B(|x\rangle\langle x|) = \langle \beta_l| \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} x_{ij} \overline{x_{kl}} |\alpha_i\rangle |\beta_j\rangle \langle \alpha_k| \langle \beta_l| \xrightarrow{1} \\ &= \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} x_{ij} \overline{x_{kl}} |\alpha_i\rangle \langle \beta_l| \delta_{lj} \langle \alpha_k| = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \sum_{k=0}^{N-1} x_{ij} \overline{x_{kj}} |\alpha_i\rangle \langle \alpha_k| \end{aligned}$$

If the operator is the tensor product of two operators on the separate subsystems $O_{AB} = O_A \otimes O_B$ then the partial trace is particularly simple since $\langle \alpha_i| \langle \beta_j| O_A \otimes O_B | \alpha_k \rangle | \beta_j \rangle$ can be decomposed

$$\text{Tr}_B(O_{AB}) = \sum_{i=0}^{N-1} \sum_{k=0}^{N-1} \langle \alpha_i| O_A | \alpha_k \rangle \cdot \left(\sum_{j=0}^{M-1} \langle \beta_j| O_B | \beta_j \rangle \right) |\alpha_i\rangle \langle \alpha_k|$$

The partial trace

$$O_{AB} = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} x_{ij} \overline{x_{kl}} |\alpha_i\rangle |\beta_j\rangle \langle \alpha_k| \langle \beta_l|$$

For this case, the partial trace of O_{AB} is given by

$$\begin{aligned} \text{Tr}_B(O_{AB}) &= \text{Tr}_B(|x\rangle\langle x|) = \langle \beta_l| \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} x_{ij} \overline{x_{kl}} |\alpha_i\rangle |\beta_j\rangle \langle \alpha_k| \langle \beta_l| \xrightarrow{1} \\ &= \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \sum_{k=0}^{N-1} \sum_{l=0}^{M-1} x_{ij} \overline{x_{kl}} |\alpha_i\rangle \langle \beta_l| \delta_{lj} \langle \alpha_k| = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} \sum_{k=0}^{N-1} x_{ij} \overline{x_{kj}} |\alpha_i\rangle \langle \alpha_k| \end{aligned}$$

If the operator is the tensor product of two operators on the separate subsystems $O_{AB} = O_A \otimes O_B$ then the partial trace is particularly simple since $\langle \alpha_i| \langle \beta_j| O_A \otimes O_B | \alpha_k \rangle | \beta_j \rangle$ can be decomposed

$$\text{Tr}_B(O_{AB}) = \sum_{i=0}^{N-1} \sum_{k=0}^{N-1} \langle \alpha_i| O_A | \alpha_k \rangle \cdot \left(\sum_{j=0}^{M-1} \langle \beta_j| O_B | \beta_j \rangle \right) |\alpha_i\rangle \langle \alpha_k| = O_A \text{Tr}(O_B)$$

Density operators

Suppose A is an m -qubit subsystem for a larger n -qubit system, $X = A \otimes B$

Density operators

Suppose A is an m -qubit subsystem for a larger n -qubit system, $X = A \otimes B$

Let $M = 2^m$, $L = 2^{n-m}$ with bases $\{|\alpha_0\rangle, \dots, |\alpha_{M-1}\rangle\}$ and $\{|\beta_0\rangle, \dots, |\beta_{L-1}\rangle\}$ for subsystems A and B

Density operators

Suppose A is an m -qubit subsystem for a larger n -qubit system, $X = A \otimes B$

Let $M = 2^m$, $L = 2^{n-m}$ with bases $\{|\alpha_0\rangle, \dots, |\alpha_{M-1}\rangle\}$ and $\{|\beta_0\rangle, \dots, |\beta_{L-1}\rangle\}$ for subsystems A and B

The basis $\{|\alpha_i\rangle \otimes |\beta_i\rangle\}$ spans the entire system X with states given by $|x\rangle$

Density operators

Suppose A is an m -qubit subsystem for a larger n -qubit system, $X = A \otimes B$

Let $M = 2^m$, $L = 2^{n-m}$ with bases $\{|\alpha_0\rangle, \dots, |\alpha_{M-1}\rangle\}$ and $\{|\beta_0\rangle, \dots, |\beta_{L-1}\rangle\}$ for subsystems A and B

The basis $\{|\alpha_i\rangle \otimes |\beta_j\rangle\}$ spans the entire system X with states given by $|x\rangle$

$$|x\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} x_{ij} |\alpha_i\rangle |\beta_j\rangle$$

Density operators

Suppose A is an m -qubit subsystem for a larger n -qubit system, $X = A \otimes B$

Let $M = 2^m$, $L = 2^{n-m}$ with bases $\{|\alpha_0\rangle, \dots, |\alpha_{M-1}\rangle\}$ and $\{|\beta_0\rangle, \dots, |\beta_{L-1}\rangle\}$ for subsystems A and B

The basis $\{|\alpha_i\rangle \otimes |\beta_j\rangle\}$ spans the entire system X with states given by $|x\rangle$

$$|x\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} x_{ij} |\alpha_i\rangle |\beta_j\rangle$$

Let O be an observable which measures only on A with projection operators $\{P_i\}$, $0 \leq i < M$

Density operators

Suppose A is an m -qubit subsystem for a larger n -qubit system, $X = A \otimes B$

Let $M = 2^m$, $L = 2^{n-m}$ with bases $\{|\alpha_0\rangle, \dots, |\alpha_{M-1}\rangle\}$ and $\{|\beta_0\rangle, \dots, |\beta_{L-1}\rangle\}$ for subsystems A and B

The basis $\{|\alpha_i\rangle \otimes |\beta_j\rangle\}$ spans the entire system X with states given by $|x\rangle$

$$|x\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} x_{ij} |\alpha_i\rangle |\beta_j\rangle$$

Let O be an observable which measures only on A with projection operators $\{P_i\}$, $0 \leq i < M$

When applied to the entire space, X , these measurements take the form $O \otimes I$ with projectors $P_i \otimes I$ and the probability that measurement of $|x\rangle$ by $O \otimes I$ is given by

Density operators

Suppose A is an m -qubit subsystem for a larger n -qubit system, $X = A \otimes B$

Let $M = 2^m$, $L = 2^{n-m}$ with bases $\{|\alpha_0\rangle, \dots, |\alpha_{M-1}\rangle\}$ and $\{|\beta_0\rangle, \dots, |\beta_{L-1}\rangle\}$ for subsystems A and B

The basis $\{|\alpha_i\rangle \otimes |\beta_j\rangle\}$ spans the entire system X with states given by $|x\rangle$

$$|x\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} x_{ij} |\alpha_i\rangle \otimes |\beta_j\rangle$$

Let O be an observable which measures only on A with projection operators $\{P_i\}$, $0 \leq i < M$

When applied to the entire space, X , these measurements take the form $O \otimes I$ with projectors $P_i \otimes I$ and the probability that measurement of $|x\rangle$ by $O \otimes I$ is given by

$$\langle x | P \otimes I | x \rangle = \left(\sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \overline{x_{ij}} \langle \alpha_i | \otimes \langle \beta_j | \right) (P \otimes I) \left(\sum_{k=0}^{M-1} \sum_{l=0}^{L-1} x_{kl} |\alpha_k\rangle \otimes |\beta_l\rangle \right)$$

Density operators

Suppose A is an m -qubit subsystem for a larger n -qubit system, $X = A \otimes B$

Let $M = 2^m$, $L = 2^{n-m}$ with bases $\{|\alpha_0\rangle, \dots, |\alpha_{M-1}\rangle\}$ and $\{|\beta_0\rangle, \dots, |\beta_{L-1}\rangle\}$ for subsystems A and B

The basis $\{|\alpha_i\rangle \otimes |\beta_j\rangle\}$ spans the entire system X with states given by $|x\rangle$

$$|x\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} x_{ij} |\alpha_i\rangle \otimes |\beta_j\rangle$$

Let O be an observable which measures only on A with projection operators $\{P_i\}$, $0 \leq i < M$

When applied to the entire space, X , these measurements take the form $O \otimes I$ with projectors $P_i \otimes I$ and the probability that measurement of $|x\rangle$ by $O \otimes I$ is given by

$$\begin{aligned} \langle x | O \otimes I | x \rangle &= \left(\sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \overline{x_{ij}} \langle \alpha_i | \otimes \langle \beta_j | \right) (O \otimes I) \left(\sum_{k=0}^{M-1} \sum_{l=0}^{L-1} x_{kl} |\alpha_k\rangle \otimes |\beta_l\rangle \right) \\ &= \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \sum_{l=0}^{L-1} \overline{x_{ij}} x_{kl} \langle \alpha_i | O | \alpha_k \rangle \langle \beta_j | \beta_l \rangle \end{aligned}$$

Density operators

Suppose A is an m -qubit subsystem for a larger n -qubit system, $X = A \otimes B$

Let $M = 2^m$, $L = 2^{n-m}$ with bases $\{|\alpha_0\rangle, \dots, |\alpha_{M-1}\rangle\}$ and $\{|\beta_0\rangle, \dots, |\beta_{L-1}\rangle\}$ for subsystems A and B

The basis $\{|\alpha_i\rangle \otimes |\beta_j\rangle\}$ spans the entire system X with states given by $|x\rangle$

$$|x\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} x_{ij} |\alpha_i\rangle \otimes |\beta_j\rangle$$

Let O be an observable which measures only on A with projection operators $\{P_i\}$, $0 \leq i < M$

When applied to the entire space, X , these measurements take the form $O \otimes I$ with projectors $P_i \otimes I$ and the probability that measurement of $|x\rangle$ by $O \otimes I$ is given by

$$\begin{aligned} \langle x | O \otimes I | x \rangle &= \left(\sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \overline{x_{ij}} \langle \alpha_i | \otimes \langle \beta_j | \right) (O \otimes I) \left(\sum_{k=0}^{M-1} \sum_{l=0}^{L-1} x_{kl} |\alpha_k\rangle \otimes |\beta_l\rangle \right) \\ &= \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \sum_{l=0}^{L-1} \overline{x_{ij}} x_{kl} \langle \alpha_i | O | \alpha_k \rangle \langle \beta_j | \beta_l | \xrightarrow{\delta_{jl}} \end{aligned}$$

Density operators

Suppose A is an m -qubit subsystem for a larger n -qubit system, $X = A \otimes B$

Let $M = 2^m$, $L = 2^{n-m}$ with bases $\{|\alpha_0\rangle, \dots, |\alpha_{M-1}\rangle\}$ and $\{|\beta_0\rangle, \dots, |\beta_{L-1}\rangle\}$ for subsystems A and B

The basis $\{|\alpha_i\rangle \otimes |\beta_j\rangle\}$ spans the entire system X with states given by $|x\rangle$

$$|x\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} x_{ij} |\alpha_i\rangle \otimes |\beta_j\rangle$$

Let O be an observable which measures only on A with projection operators $\{P_i\}$, $0 \leq i < M$

When applied to the entire space, X , these measurements take the form $O \otimes I$ with projectors $P_i \otimes I$ and the probability that measurement of $|x\rangle$ by $O \otimes I$ is given by

$$\begin{aligned} \langle x | O \otimes I | x \rangle &= \left(\sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \overline{x_{ij}} \langle \alpha_i | \otimes \langle \beta_j | \right) (O \otimes I) \left(\sum_{k=0}^{M-1} \sum_{l=0}^{L-1} x_{kl} |\alpha_k\rangle \otimes |\beta_l\rangle \right) \\ &= \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \sum_{l=0}^{L-1} \overline{x_{ij}} x_{kl} \langle \alpha_i | O | \alpha_k \rangle \langle \beta_j | \beta_l | \xrightarrow{\delta_{jl}} = \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \overline{x_{ij}} x_{kj} \langle \alpha_i | O | \alpha_k \rangle \end{aligned}$$

Density operators

We can write the identity operator for subspace A in terms of the the $\{|\alpha_u\rangle\}$ basis

Density operators

We can write the identity operator for subspace A in terms of the the $\{|\alpha_u\rangle\}$ basis

$$I = \sum_{u=0}^{M-1} |\alpha_u\rangle\langle\alpha_u|$$

Density operators

We can write the identity operator for subspace A in terms of the the $\{|\alpha_u\rangle\}$ basis

Substituting into the expression just derived for $\langle x|P \otimes I|x\rangle$

$$I = \sum_{u=0}^{M-1} |\alpha_u\rangle\langle\alpha_u|$$

Density operators

We can write the identity operator for subspace A in terms of the the $\{|\alpha_u\rangle\}$ basis

Substituting into the expression just derived for $\langle x|P \otimes I|x\rangle$

$$\langle x|P \otimes I|x\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} \langle \alpha_i| P | \alpha_k \rangle$$

$$I = \sum_{u=0}^{M-1} |\alpha_u\rangle\langle\alpha_u|$$

Density operators

We can write the identity operator for subspace A in terms of the the $\{|\alpha_u\rangle\}$ basis

Substituting into the expression just derived for $\langle x|P \otimes I|x\rangle$

$$\langle x|P \otimes I|x\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} \langle \alpha_i | P I | \alpha_k \rangle$$

$$I = \sum_{u=0}^{M-1} |\alpha_u\rangle\langle\alpha_u|$$

Density operators

We can write the identity operator for subspace A in terms of the the $\{|\alpha_u\rangle\}$ basis

Substituting into the expression just derived for $\langle x|P \otimes I|x\rangle$

$$I = \sum_{u=0}^{M-1} |\alpha_u\rangle\langle\alpha_u|$$

$$\langle x|P \otimes I|x\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \overline{x_{ij}} x_{kj} \langle\alpha_i|P I|\alpha_k\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \overline{x_{ij}} x_{kj} \langle\alpha_i|P \left(\sum_{u=0}^{M-1} |\alpha_u\rangle\langle\alpha_u| \right) |\alpha_k\rangle$$

Density operators

We can write the identity operator for subspace A in terms of the the $\{|\alpha_u\rangle\}$ basis

Substituting into the expression just derived for $\langle x|P \otimes I|x\rangle$

$$I = \sum_{u=0}^{M-1} |\alpha_u\rangle\langle\alpha_u|$$

$$\begin{aligned}\langle x|P \otimes I|x\rangle &= \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} \langle\alpha_i|P|I|\alpha_k\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} \langle\alpha_i|P\left(\sum_{u=0}^{M-1} |\alpha_u\rangle\langle\alpha_u|\right)|\alpha_k\rangle \\ &= \sum_{u=0}^{M-1} \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} \langle\alpha_u|\alpha_k\rangle\langle\alpha_i|P|\alpha_u\rangle\end{aligned}$$

Density operators

We can write the identity operator for subspace A in terms of the the $\{|\alpha_u\rangle\}$ basis

Substituting into the expression just derived for $\langle x|P \otimes I|x\rangle$

$$I = \sum_{u=0}^{M-1} |\alpha_u\rangle\langle\alpha_u|$$

$$\begin{aligned}\langle x|P \otimes I|x\rangle &= \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} \langle\alpha_i|P|I|\alpha_k\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} \langle\alpha_i|P\left(\sum_{u=0}^{M-1} |\alpha_u\rangle\langle\alpha_u|\right)|\alpha_k\rangle \\ &= \sum_{u=0}^{M-1} \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} \langle\alpha_u|\alpha_k\rangle\langle\alpha_i|P|\alpha_u\rangle \\ &= \sum_{u=0}^{M-1} \langle\alpha_u| \left(\sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} |\alpha_k\rangle\langle\alpha_i|P \right) |\alpha_u\rangle\end{aligned}$$

Density operators

We can write the identity operator for subspace A in terms of the the $\{|\alpha_u\rangle\}$ basis

Substituting into the expression just derived for $\langle x|P \otimes I|x\rangle$

$$I = \sum_{u=0}^{M-1} |\alpha_u\rangle\langle\alpha_u|$$

$$\begin{aligned} \langle x|P \otimes I|x\rangle &= \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} \langle\alpha_i|P|I|\alpha_k\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} \langle\alpha_i|P\left(\sum_{u=0}^{M-1} |\alpha_u\rangle\langle\alpha_u|\right)|\alpha_k\rangle \\ &= \sum_{u=0}^{M-1} \sum_{i=0}^{L-1} \sum_{j=0}^{M-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} \langle\alpha_u|\alpha_k\rangle\langle\alpha_i|P|\alpha_u\rangle \\ &= \sum_{u=0}^{M-1} \langle\alpha_u| \left(\sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} |\alpha_k\rangle\langle\alpha_i|P \right) |\alpha_u\rangle = \text{Tr}(\rho_x^A P) \end{aligned}$$

Density operators

We can write the identity operator for subspace A in terms of the the $\{|\alpha_u\rangle\}$ basis

Substituting into the expression just derived for $\langle x|P \otimes I|x\rangle$

$$I = \sum_{u=0}^{M-1} |\alpha_u\rangle\langle\alpha_u|$$

$$\begin{aligned} \langle x|P \otimes I|x\rangle &= \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} \langle\alpha_i|P|I|\alpha_k\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} \langle\alpha_i|P\left(\sum_{u=0}^{M-1} |\alpha_u\rangle\langle\alpha_u|\right)|\alpha_k\rangle \\ &= \sum_{u=0}^{M-1} \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} \langle\alpha_u|\alpha_k\rangle\langle\alpha_i|P|\alpha_u\rangle \\ &= \sum_{u=0}^{M-1} \langle\alpha_u| \left(\sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} |\alpha_k\rangle\langle\alpha_i|P \right) |\alpha_u\rangle = \text{Tr}(\rho_x^A P) \end{aligned}$$

Where ρ_x^A is the density operator for $|x\rangle$ on subsystem A

Density operators

We can write the identity operator for subspace A in terms of the the $\{|\alpha_u\rangle\}$ basis

Substituting into the expression just derived for $\langle x|P \otimes I|x\rangle$

$$I = \sum_{u=0}^{M-1} |\alpha_u\rangle\langle\alpha_u|$$

$$\begin{aligned} \langle x|P \otimes I|x\rangle &= \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} \langle\alpha_i|P|I|\alpha_k\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} \langle\alpha_i|P\left(\sum_{u=0}^{M-1} |\alpha_u\rangle\langle\alpha_u|\right)|\alpha_k\rangle \\ &= \sum_{u=0}^{M-1} \sum_{i=0}^{L-1} \sum_{j=0}^{M-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} \langle\alpha_u|\alpha_k\rangle\langle\alpha_i|P|\alpha_u\rangle \\ &= \sum_{u=0}^{M-1} \langle\alpha_u| \left(\sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} |\alpha_k\rangle\langle\alpha_i|P \right) |\alpha_u\rangle = \text{Tr}(\rho_x^A P) \end{aligned}$$

Where ρ_x^A is the density operator for $|x\rangle$ on subsystem A

$$\rho_x^A = \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} |\alpha_k\rangle\langle\alpha_i|$$

Density operators

We can write the identity operator for subspace A in terms of the the $\{|\alpha_u\rangle\}$ basis

Substituting into the expression just derived for $\langle x|P \otimes I|x\rangle$

$$I = \sum_{u=0}^{M-1} |\alpha_u\rangle\langle\alpha_u|$$

$$\begin{aligned} \langle x|P \otimes I|x\rangle &= \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} \langle\alpha_i|P|I|\alpha_k\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} \langle\alpha_i|P\left(\sum_{u=0}^{M-1} |\alpha_u\rangle\langle\alpha_u|\right)|\alpha_k\rangle \\ &= \sum_{u=0}^{M-1} \sum_{i=0}^{L-1} \sum_{j=0}^{M-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} \langle\alpha_u|\alpha_k\rangle\langle\alpha_i|P|\alpha_u\rangle \\ &= \sum_{u=0}^{M-1} \langle\alpha_u| \left(\sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} |\alpha_k\rangle\langle\alpha_i|P \right) |\alpha_u\rangle = \text{Tr}(\rho_x^A P) \end{aligned}$$

Where ρ_x^A is the density operator for $|x\rangle$ on subsystem A

$$\rho_x^A = \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} |\alpha_k\rangle\langle\alpha_i| = \text{Tr}_B(|x\rangle\langle x|)$$

Density operators

We can write the identity operator for subspace A in terms of the the $\{|\alpha_u\rangle\}$ basis

Substituting into the expression just derived for $\langle x|P \otimes I|x\rangle$

$$I = \sum_{u=0}^{M-1} |\alpha_u\rangle\langle\alpha_u|$$

$$\begin{aligned} \langle x|P \otimes I|x\rangle &= \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} \langle\alpha_i|P|I|\alpha_k\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} \langle\alpha_i|P\left(\sum_{u=0}^{M-1} |\alpha_u\rangle\langle\alpha_u|\right)|\alpha_k\rangle \\ &= \sum_{u=0}^{M-1} \sum_{i=0}^{L-1} \sum_{j=0}^{M-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} \langle\alpha_u|\alpha_k\rangle\langle\alpha_i|P|\alpha_u\rangle \\ &= \sum_{u=0}^{M-1} \langle\alpha_u| \left(\sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} |\alpha_k\rangle\langle\alpha_i|P \right) |\alpha_u\rangle = \text{Tr}(\rho_x^A P) \end{aligned}$$

Where ρ_x^A is the density operator for $|x\rangle$ on subsystem A

$$\rho_x^A = \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \bar{x}_{ij} x_{kj} |\alpha_k\rangle\langle\alpha_i| = \text{Tr}_B(|x\rangle\langle x|)$$

All information from subsystem A alone can be obtained with the density operator

Properties of density operators

Suppose the subsystem is the whole system, that is $A = X$, then the system is in a pure state $|x\rangle = \sum_i x_i |\chi_i\rangle$ with basis $\{|\chi_i\rangle\}$

Properties of density operators

Suppose the subsystem is the whole system, that is $A = X$, then the system is in a pure state $|x\rangle = \sum_i x_i |\chi_i\rangle$ with basis $\{|\chi_i\rangle\}$

$$\rho_x^A = \rho_x^X = \sum_{i=0}^{N-1} \sum_{k=0}^{N-1} \bar{x}_i x_k |\chi_k\rangle \langle \chi_i|$$

Properties of density operators

Suppose the subsystem is the whole system, that is $A = X$, then the system is in a pure state $|x\rangle = \sum_i x_i |\chi_i\rangle$ with basis $\{|\chi_i\rangle\}$

$$\rho_x^A = \rho_x^X = \sum_{i=0}^{N-1} \sum_{k=0}^{N-1} \bar{x}_i x_k |\chi_k\rangle \langle \chi_i| = |x\rangle \langle x|$$

Properties of density operators

Suppose the subsystem is the whole system, that is $A = X$, then the system is in a pure state $|x\rangle = \sum_i x_i |\chi_i\rangle$ with basis $\{|\chi_i\rangle\}$

$$\rho_x^A = \rho_x^X = \sum_{i=0}^{N-1} \sum_{k=0}^{N-1} \bar{x}_i x_k |\chi_k\rangle \langle \chi_i| = |x\rangle \langle x|$$

Clearly, the density operator of a pure state such as $|x\rangle$ is not basis-dependent

Properties of density operators

Suppose the subsystem is the whole system, that is $A = X$, then the system is in a pure state $|x\rangle = \sum_i x_i |\chi_i\rangle$ with basis $\{|\chi_i\rangle\}$

$$\rho_x^A = \rho_x^X = \sum_{i=0}^{N-1} \sum_{k=0}^{N-1} \bar{x}_i x_k |\chi_k\rangle \langle \chi_i| = |x\rangle \langle x|$$

Clearly, the density operator of a pure state such as $|x\rangle$ is not basis-dependent

Given a basis $\{|\chi_i\rangle\}$, the matrix elements of the density operator are

Properties of density operators

Suppose the subsystem is the whole system, that is $A = X$, then the system is in a pure state $|x\rangle = \sum_i x_i |\chi_i\rangle$ with basis $\{|\chi_i\rangle\}$

$$\rho_x^A = \rho_x^X = \sum_{i=0}^{N-1} \sum_{k=0}^{N-1} \bar{x}_i x_k |\chi_k\rangle \langle \chi_i| = |x\rangle \langle x|$$

Clearly, the density operator of a pure state such as $|x\rangle$ is not basis-dependent

Given a basis $\{|\chi_i\rangle\}$, the matrix elements of the density operator are

$$(\rho_x^X)_{ij} = \bar{x}_j x_i$$

Properties of density operators

Suppose the subsystem is the whole system, that is $A = X$, then the system is in a pure state $|x\rangle = \sum_i x_i |\chi_i\rangle$ with basis $\{|\chi_i\rangle\}$

$$\rho_x^A = \rho_x^X = \sum_{i=0}^{N-1} \sum_{k=0}^{N-1} \bar{x}_i x_k |\chi_k\rangle \langle \chi_i| = |x\rangle \langle x|$$

Clearly, the density operator of a pure state such as $|x\rangle$ is not basis-dependent

Given a basis $\{|\chi_i\rangle\}$, the matrix elements of the density operator are

$$(\rho_x^X)_{ij} = \bar{x}_j x_i$$

and the diagonal elements, $\bar{x}_i x_i$ are related to the projection operator $P_i = |\chi_i\rangle \langle \chi_i|$

Properties of density operators

Suppose the subsystem is the whole system, that is $A = X$, then the system is in a pure state $|x\rangle = \sum_i x_i |\chi_i\rangle$ with basis $\{|\chi_i\rangle\}$

$$\rho_x^A = \rho_x^X = \sum_{i=0}^{N-1} \sum_{k=0}^{N-1} \bar{x}_i x_k |\chi_k\rangle \langle \chi_i| = |x\rangle \langle x|$$

Clearly, the density operator of a pure state such as $|x\rangle$ is not basis-dependent

Given a basis $\{|\chi_i\rangle\}$, the matrix elements of the density operator are

$$(\rho_x^X)_{ij} = \bar{x}_j x_i$$

and the diagonal elements, $\bar{x}_i x_i$ are related to the projection operator $P_i = |\chi_i\rangle \langle \chi_i|$

$$\langle x | P_i | x \rangle = \langle x | \chi_i \rangle \langle \chi_i | x \rangle$$

Properties of density operators

Suppose the subsystem is the whole system, that is $A = X$, then the system is in a pure state $|x\rangle = \sum_i x_i |\chi_i\rangle$ with basis $\{|\chi_i\rangle\}$

$$\rho_x^A = \rho_x^X = \sum_{i=0}^{N-1} \sum_{k=0}^{N-1} \bar{x}_i x_k |\chi_k\rangle \langle \chi_i| = |x\rangle \langle x|$$

Clearly, the density operator of a pure state such as $|x\rangle$ is not basis-dependent

Given a basis $\{|\chi_i\rangle\}$, the matrix elements of the density operator are

$$(\rho_x^X)_{ij} = \bar{x}_j x_i$$

and the diagonal elements, $\bar{x}_i x_i$ are related to the projection operator $P_i = |\chi_i\rangle \langle \chi_i|$

$$\langle x | P_i | x \rangle = \langle x | \chi_i \rangle \langle \chi_i | x \rangle = \bar{x}_j x_i$$

Properties of density operators

Suppose the subsystem is the whole system, that is $A = X$, then the system is in a pure state $|x\rangle = \sum_i x_i |\chi_i\rangle$ with basis $\{|\chi_i\rangle\}$

$$\rho_x^A = \rho_x^X = \sum_{i=0}^{N-1} \sum_{k=0}^{N-1} \bar{x}_i x_k |\chi_k\rangle \langle \chi_i| = |x\rangle \langle x|$$

Clearly, the density operator of a pure state such as $|x\rangle$ is not basis-dependent

Given a basis $\{|\chi_i\rangle\}$, the matrix elements of the density operator are

$$(\rho_x^X)_{ij} = \bar{x}_j x_i$$

and the diagonal elements, $\bar{x}_i x_i$ are related to the projection operator $P_i = |\chi_i\rangle \langle \chi_i|$

$$\langle x | P_i | x \rangle = \langle x | \chi_i \rangle \langle \chi_i | x \rangle = \bar{x}_j x_i$$

In the more general case where $X = A \otimes B$ with bases $\{|\alpha_i\rangle\}$ and $\{|\beta_i\rangle\}$

Properties of density operators

Suppose the subsystem is the whole system, that is $A = X$, then the system is in a pure state $|x\rangle = \sum_i x_i |\chi_i\rangle$ with basis $\{|\chi_i\rangle\}$

$$\rho_x^A = \rho_x^X = \sum_{i=0}^{N-1} \sum_{k=0}^{N-1} \bar{x}_i x_k |\chi_k\rangle \langle \chi_i| = |x\rangle \langle x|$$

Clearly, the density operator of a pure state such as $|x\rangle$ is not basis-dependent

Given a basis $\{|\chi_i\rangle\}$, the matrix elements of the density operator are

$$(\rho_x^X)_{ij} = \bar{x}_j x_i$$

and the diagonal elements, $\bar{x}_i x_i$ are related to the projection operator $P_i = |\chi_i\rangle \langle \chi_i|$

$$\langle x | P_i | x \rangle = \langle x | \chi_i \rangle \langle \chi_i | x \rangle = \bar{x}_j x_i$$

In the more general case where $X = A \otimes B$ with bases $\{|\alpha_i\rangle\}$ and $\{|\beta_i\rangle\}$

$$|x\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} x_{ij} |\alpha_i\rangle |\beta_j\rangle$$

Properties of density operators

Suppose the subsystem is the whole system, that is $A = X$, then the system is in a pure state $|x\rangle = \sum_i x_i |\chi_i\rangle$ with basis $\{|\chi_i\rangle\}$

$$\rho_x^A = \rho_x^X = \sum_{i=0}^{N-1} \sum_{k=0}^{N-1} \bar{x}_i x_k |\chi_k\rangle \langle \chi_i| = |x\rangle \langle x|$$

Clearly, the density operator of a pure state such as $|x\rangle$ is not basis-dependent

Given a basis $\{|\chi_i\rangle\}$, the matrix elements of the density operator are

$$(\rho_x^X)_{ij} = \bar{x}_j x_i$$

and the diagonal elements, $\bar{x}_i x_i$ are related to the projection operator $P_i = |\chi_i\rangle \langle \chi_i|$

$$\langle x | P_i | x \rangle = \langle x | \chi_i \rangle \langle \chi_i | x \rangle = \bar{x}_j x_i$$

In the more general case where $X = A \otimes B$ with bases $\{|\alpha_i\rangle\}$ and $\{|\beta_i\rangle\}$

$$|x\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} x_{ij} |\alpha_i\rangle |\beta_j\rangle$$

$$(\rho_x^X)_{ij} = \bar{x}_{ij} x_{kl}$$

Properties of density operators

Suppose the subsystem is the whole system, that is $A = X$, then the system is in a pure state $|x\rangle = \sum_i x_i |\chi_i\rangle$ with basis $\{|\chi_i\rangle\}$

$$\rho_x^A = \rho_x^X = \sum_{i=0}^{N-1} \sum_{k=0}^{N-1} \bar{x}_i x_k |\chi_k\rangle \langle \chi_i| = |x\rangle \langle x|$$

Clearly, the density operator of a pure state such as $|x\rangle$ is not basis-dependent

Given a basis $\{|\chi_i\rangle\}$, the matrix elements of the density operator are

$$(\rho_x^X)_{ij} = \bar{x}_j x_i$$

and the diagonal elements, $\bar{x}_i x_i$ are related to the projection operator $P_i = |\chi_i\rangle \langle \chi_i|$

$$\langle x | P_i | x \rangle = \langle x | \chi_i \rangle \langle \chi_i | x \rangle = \bar{x}_j x_i$$

In the more general case where $X = A \otimes B$ with bases $\{|\alpha_i\rangle\}$ and $\{|\beta_i\rangle\}$

$$|x\rangle = \sum_{i=0}^{M-1} \sum_{j=0}^{L-1} x_{ij} |\alpha_i\rangle |\beta_j\rangle$$

$$(\rho_x^X)_{ij} = \bar{x}_{ij} x_{kl}$$

$$\rho_x^X = \sum_{i,k=0}^{M-1} \sum_{j,l=0}^{L-1} \bar{x}_{ij} x_{kl} |\alpha_k\rangle |\beta_l\rangle \langle \alpha_i| \langle \beta_j|$$

The density operator is thus

Properties of density operators

To obtain the density matrix ρ_x^A use the partial trace over B of ρ_x^X

Properties of density operators

To obtain the density matrix ρ_x^A use the partial trace over B of ρ_x^X

$$\rho_x^A = \text{Tr}_B(\rho_x^X)$$

Properties of density operators

To obtain the density matrix ρ_x^A use the partial trace over B of ρ_x^X

$$\rho_x^A = \text{Tr}_B(\rho_x^X) = \text{Tr}_B \left(\sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \sum_{l=0}^{L-1} \bar{x}_{ij} x_{kl} |\alpha_k\rangle |\beta_l\rangle \langle \alpha_i| \langle \beta_j| \right)$$

Properties of density operators

To obtain the density matrix ρ_x^A use the partial trace over B of ρ_x^X

$$\begin{aligned}\rho_x^A &= \text{Tr}_B(\rho_x^X) = \text{Tr}_B \left(\sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \sum_{l=0}^{L-1} \bar{x}_{ij} x_{kl} |\alpha_k\rangle |\beta_l\rangle \langle \alpha_i| \langle \beta_j| \right) \\ &= \sum_{u=0}^{M-1} \sum_{v=0}^{M-1} \left[\sum_{w=0}^{L-1} \langle \alpha_u | \langle \beta_w | \left(\sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \sum_{l=0}^{L-1} \bar{x}_{ij} x_{kl} |\alpha_k\rangle |\beta_l\rangle \langle \alpha_i| \langle \beta_j| \right) |\alpha_v\rangle |\beta_w\rangle \right] |\alpha_u\rangle \langle \alpha_v|\end{aligned}$$

Properties of density operators

To obtain the density matrix ρ_x^A use the partial trace over B of ρ_x^X

$$\begin{aligned}\rho_x^A &= \text{Tr}_B(\rho_x^X) = \text{Tr}_B \left(\sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \sum_{l=0}^{L-1} \overline{x_{ij}} x_{kl} |\alpha_k\rangle |\beta_l\rangle \langle \alpha_i| \langle \beta_j| \right) \\ &= \sum_{u=0}^{M-1} \sum_{v=0}^{M-1} \left[\sum_{w=0}^{L-1} \langle \alpha_u | \langle \beta_w | \left(\sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \sum_{l=0}^{L-1} \overline{x_{ij}} x_{kl} |\alpha_k\rangle |\beta_l\rangle \langle \alpha_i| \langle \beta_j| \right) |\alpha_v\rangle |\beta_w\rangle \right] |\alpha_u\rangle \langle \alpha_v| \\ &= \sum_{u=0}^{M-1} \sum_{v=0}^{M-1} \sum_{w=0}^{L-1} \overline{x_{vw}} x_{uw} |\alpha_u\rangle \langle \alpha_v|\end{aligned}$$

Properties of density operators

To obtain the density matrix ρ_x^A use the partial trace over B of ρ_x^X

$$\begin{aligned}\rho_x^A &= \text{Tr}_B(\rho_x^X) = \text{Tr}_B \left(\sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \sum_{l=0}^{L-1} \overline{x_{ij}} x_{kl} |\alpha_k\rangle |\beta_l\rangle \langle \alpha_i| \langle \beta_j| \right) \\ &= \sum_{u=0}^{M-1} \sum_{v=0}^{M-1} \left[\sum_{w=0}^{L-1} \langle \alpha_u | \langle \beta_w | \left(\sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \sum_{l=0}^{L-1} \overline{x_{ij}} x_{kl} |\alpha_k\rangle |\beta_l\rangle \langle \alpha_i| \langle \beta_j| \right) |\alpha_v\rangle |\beta_w\rangle \right] |\alpha_u\rangle \langle \alpha_v| \\ &= \sum_{u=0}^{M-1} \sum_{v=0}^{M-1} \sum_{w=0}^{L-1} \overline{x_{vw}} x_{uw} |\alpha_u\rangle \langle \alpha_v|\end{aligned}$$

Because the partial trace is basis-independent, so is the density operator

Properties of density operators

To obtain the density matrix ρ_x^A use the partial trace over B of ρ_x^X

$$\begin{aligned}\rho_x^A &= \text{Tr}_B(\rho_x^X) = \text{Tr}_B \left(\sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \sum_{l=0}^{L-1} \overline{x_{ij}} x_{kl} |\alpha_k\rangle |\beta_l\rangle \langle \alpha_i| \langle \beta_j| \right) \\ &= \sum_{u=0}^{M-1} \sum_{v=0}^{M-1} \left[\sum_{w=0}^{L-1} \langle \alpha_u | \langle \beta_w | \left(\sum_{i=0}^{M-1} \sum_{j=0}^{L-1} \sum_{k=0}^{M-1} \sum_{l=0}^{L-1} \overline{x_{ij}} x_{kl} |\alpha_k\rangle |\beta_l\rangle \langle \alpha_i| \langle \beta_j| \right) |\alpha_v\rangle |\beta_w\rangle \right] |\alpha_u\rangle \langle \alpha_v| \\ &= \sum_{u=0}^{M-1} \sum_{v=0}^{M-1} \sum_{w=0}^{L-1} \overline{x_{vw}} x_{uw} |\alpha_u\rangle \langle \alpha_v|\end{aligned}$$

Because the partial trace is basis-independent, so is the density operator

However, it is not possible to recover the state of the entire system from the set of all subsystem density operators

Example 10.1.1

Alice controls the first qubit of an EPR pair, $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

Example 10.1.1

Alice controls the first qubit of an EPR pair, $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

The density matrix for the pure state $|\psi\rangle \in A \otimes B$ is

Example 10.1.1

Alice controls the first qubit of an EPR pair, $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

The density matrix for the pure state $|\psi\rangle \in A \otimes B$ is

$$\rho_\psi = |\psi\rangle\langle\psi|$$

Example 10.1.1

Alice controls the first qubit of an EPR pair, $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

The density matrix for the pure state $|\psi\rangle \in A \otimes B$ is

$$\rho_\psi = |\psi\rangle\langle\psi| = \frac{1}{2}(|00\rangle\langle 00| + |00\rangle\langle 11| + |11\rangle\langle 00| + |11\rangle\langle 11|)$$

Example 10.1.1

Alice controls the first qubit of an EPR pair, $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

The density matrix for the pure state $|\psi\rangle \in A \otimes B$ is

$$\rho_\psi = |\psi\rangle\langle\psi| = \frac{1}{2}(|00\rangle\langle 00| + |00\rangle\langle 11| + |11\rangle\langle 00| + |11\rangle\langle 11|) = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

The density matrix which holds all information that can be obtained from Alice's qubit is given by $\rho_\psi^A = \text{Tr}_B(\rho_\psi)$ with components $a_{ij} = \sum_k \overline{x_{jk}}x_{ik}$

Example 10.1.1

Alice controls the first qubit of an EPR pair, $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

The density matrix for the pure state $|\psi\rangle \in A \otimes B$ is

$$\rho_\psi = |\psi\rangle\langle\psi| = \frac{1}{2}(|00\rangle\langle 00| + |00\rangle\langle 11| + |11\rangle\langle 00| + |11\rangle\langle 11|) = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

The density matrix which holds all information that can be obtained from Alice's qubit is given by $\rho_\psi^A = \text{Tr}_B(\rho_\psi)$ with components $a_{ij} = \sum_k \overline{x_{jk}}x_{ik}$

$$a_{00} = \sum_{k=0}^1 \langle 0k|\psi\rangle\langle\psi|0k\rangle$$

Example 10.1.1

Alice controls the first qubit of an EPR pair, $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

The density matrix for the pure state $|\psi\rangle \in A \otimes B$ is

$$\rho_\psi = |\psi\rangle\langle\psi| = \frac{1}{2}(|00\rangle\langle 00| + |00\rangle\langle 11| + |11\rangle\langle 00| + |11\rangle\langle 11|) = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

The density matrix which holds all information that can be obtained from Alice's qubit is given by $\rho_\psi^A = \text{Tr}_B(\rho_\psi)$ with components $a_{ij} = \sum_k \overline{x_{jk}}x_{ik}$

$$\begin{aligned} a_{00} &= \sum_{k=0}^1 \langle 0k|\psi\rangle\langle\psi|0k\rangle = \frac{1}{\sqrt{2}}(\langle 00|00\rangle + \langle 00|11\rangle) \frac{1}{\sqrt{2}}(\langle 00|00\rangle + \langle 11|00\rangle) \\ &\quad + \frac{1}{\sqrt{2}}(\langle 01|00\rangle + \langle 01|11\rangle) \frac{1}{\sqrt{2}}(\langle 00|01\rangle + \langle 11|01\rangle) \end{aligned}$$

Example 10.1.1

Alice controls the first qubit of an EPR pair, $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

The density matrix for the pure state $|\psi\rangle \in A \otimes B$ is

$$\rho_\psi = |\psi\rangle\langle\psi| = \frac{1}{2}(|00\rangle\langle 00| + |00\rangle\langle 11| + |11\rangle\langle 00| + |11\rangle\langle 11|) = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

The density matrix which holds all information that can be obtained from Alice's qubit is given by $\rho_\psi^A = \text{Tr}_B(\rho_\psi)$ with components $a_{ij} = \sum_k \overline{x_{jk}} x_{ik}$

$$\begin{aligned} a_{00} &= \sum_{k=0}^1 \langle 0k|\psi\rangle\langle\psi|0k\rangle = \frac{1}{\sqrt{2}}(\langle 00|00\rangle + \cancel{\langle 00|11\rangle}) \frac{1}{\sqrt{2}}(\langle 00|00\rangle + \cancel{\langle 11|00\rangle}) \\ &\quad + \frac{1}{\sqrt{2}}(\cancel{\langle 01|00\rangle} + \cancel{\langle 01|11\rangle}) \frac{1}{\sqrt{2}}(\cancel{\langle 00|01\rangle} + \cancel{\langle 11|01\rangle}) \end{aligned}$$

Example 10.1.1

Alice controls the first qubit of an EPR pair, $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$

The density matrix for the pure state $|\psi\rangle \in A \otimes B$ is

$$\rho_\psi = |\psi\rangle\langle\psi| = \frac{1}{2}(|00\rangle\langle 00| + |00\rangle\langle 11| + |11\rangle\langle 00| + |11\rangle\langle 11|) = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

The density matrix which holds all information that can be obtained from Alice's qubit is given by $\rho_\psi^A = \text{Tr}_B(\rho_\psi)$ with components $a_{ij} = \sum_k \overline{x_{jk}} x_{ik}$

$$\begin{aligned} a_{00} &= \sum_{k=0}^1 \langle 0k|\psi\rangle\langle\psi|0k\rangle = \frac{1}{\sqrt{2}}(\langle 00|00\rangle + \cancel{\langle 00|11\rangle}) \frac{1}{\sqrt{2}}(\langle 00|00\rangle + \cancel{\langle 11|00\rangle}) \\ &\quad + \frac{1}{\sqrt{2}}(\cancel{\langle 01|00\rangle} + \cancel{\langle 01|11\rangle}) \frac{1}{\sqrt{2}}(\cancel{\langle 00|01\rangle} + \cancel{\langle 11|01\rangle}) = \frac{1}{2} + 0 = \frac{1}{2} \end{aligned}$$

Example 10.1.1 (cont.)

$$a_{01} = \sum_{k=0}^1 \langle 0k | \psi \rangle \langle \psi | 1k \rangle$$

Example 10.1.1 (cont.)

$$a_{01} = \sum_{k=0}^1 \langle 0k | \psi \rangle \langle \psi | 1k \rangle = \frac{1}{\sqrt{2}} (\langle 00 | 00 \rangle + \langle 00 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 10 \rangle + \langle 11 | 10 \rangle) \\ + \frac{1}{\sqrt{2}} (\langle 01 | 00 \rangle + \langle 01 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 11 \rangle + \langle 11 | 11 \rangle)$$

Example 10.1.1 (cont.)

$$a_{01} = \sum_{k=0}^1 \langle 0k | \psi \rangle \langle \psi | 1k \rangle = \frac{1}{\sqrt{2}} (\langle 00 | 00 \rangle + \cancel{\langle 00 | 11 \rangle}) \frac{1}{\sqrt{2}} (\cancel{\langle 00 | 10 \rangle} + \langle 11 | 10 \rangle) \\ + \frac{1}{\sqrt{2}} (\cancel{\langle 01 | 00 \rangle} + \langle 01 | 11 \rangle) \frac{1}{\sqrt{2}} (\cancel{\langle 00 | 11 \rangle} + \langle 11 | 11 \rangle)$$

Example 10.1.1 (cont.)

$$a_{01} = \sum_{k=0}^1 \langle 0k | \psi \rangle \langle \psi | 1k \rangle = \frac{1}{\sqrt{2}} (\langle 00 | 00 \rangle + \cancel{\langle 00 | 11 \rangle}) \frac{1}{\sqrt{2}} (\cancel{\langle 00 | 10 \rangle} + \cancel{\langle 11 | 10 \rangle}) \\ + \frac{1}{\sqrt{2}} (\cancel{\langle 01 | 00 \rangle} + \cancel{\langle 01 | 11 \rangle}) \frac{1}{\sqrt{2}} (\cancel{\langle 00 | 11 \rangle} + \langle 11 | 11 \rangle) = 0 + 0 = 0$$

Example 10.1.1 (cont.)

$$a_{01} = \sum_{k=0}^1 \langle 0k | \psi \rangle \langle \psi | 1k \rangle = \frac{1}{\sqrt{2}} (\langle 00 | 00 \rangle + \cancel{\langle 00 | 11 \rangle}) \frac{1}{\sqrt{2}} (\cancel{\langle 00 | 10 \rangle} + \cancel{\langle 11 | 10 \rangle}) \\ + \frac{1}{\sqrt{2}} (\cancel{\langle 01 | 00 \rangle} + \cancel{\langle 01 | 11 \rangle}) \frac{1}{\sqrt{2}} (\cancel{\langle 00 | 11 \rangle} + \langle 11 | 11 \rangle) = 0 + 0 = 0$$

$$a_{10} = \sum_{k=0}^1 \langle 1k | \psi \rangle \langle \psi | 0k \rangle$$

Example 10.1.1 (cont.)

$$a_{01} = \sum_{k=0}^1 \langle 0k | \psi \rangle \langle \psi | 1k \rangle = \frac{1}{\sqrt{2}} (\langle 00 | 00 \rangle + \cancel{\langle 00 | 11 \rangle}) \frac{1}{\sqrt{2}} (\cancel{\langle 00 | 10 \rangle} + \cancel{\langle 11 | 10 \rangle}) \\ + \frac{1}{\sqrt{2}} (\cancel{\langle 01 | 00 \rangle} + \cancel{\langle 01 | 11 \rangle}) \frac{1}{\sqrt{2}} (\cancel{\langle 00 | 11 \rangle} + \langle 11 | 11 \rangle) = 0 + 0 = 0$$

$$a_{10} = \sum_{k=0}^1 \langle 1k | \psi \rangle \langle \psi | 0k \rangle = \frac{1}{\sqrt{2}} (\langle 10 | 00 \rangle + \langle 10 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 00 \rangle + \langle 11 | 00 \rangle) \\ + \frac{1}{\sqrt{2}} (\langle 11 | 00 \rangle + \langle 11 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 01 \rangle + \langle 11 | 01 \rangle)$$

Example 10.1.1 (cont.)

$$a_{01} = \sum_{k=0}^1 \langle 0k | \psi \rangle \langle \psi | 1k \rangle = \frac{1}{\sqrt{2}} (\langle 00 | 00 \rangle + \cancel{\langle 00 | 11 \rangle}) \frac{1}{\sqrt{2}} (\cancel{\langle 00 | 10 \rangle} + \cancel{\langle 11 | 10 \rangle}) \\ + \frac{1}{\sqrt{2}} (\cancel{\langle 01 | 00 \rangle} + \cancel{\langle 01 | 11 \rangle}) \frac{1}{\sqrt{2}} (\cancel{\langle 00 | 11 \rangle} + \langle 11 | 11 \rangle) = 0 + 0 = 0$$

$$a_{10} = \sum_{k=0}^1 \langle 1k | \psi \rangle \langle \psi | 0k \rangle = \frac{1}{\sqrt{2}} (\cancel{\langle 10 | 00 \rangle} + \cancel{\langle 10 | 11 \rangle}) \frac{1}{\sqrt{2}} (\langle 00 | 00 \rangle + \cancel{\langle 11 | 00 \rangle}) \\ + \frac{1}{\sqrt{2}} (\cancel{\langle 11 | 00 \rangle} + \langle 11 | 11 \rangle) \frac{1}{\sqrt{2}} (\cancel{\langle 00 | 01 \rangle} + \cancel{\langle 11 | 01 \rangle})$$

Example 10.1.1 (cont.)

$$a_{01} = \sum_{k=0}^1 \langle 0k | \psi \rangle \langle \psi | 1k \rangle = \frac{1}{\sqrt{2}} (\langle 00 | 00 \rangle + \cancel{\langle 00 | 11 \rangle}) \frac{1}{\sqrt{2}} (\cancel{\langle 00 | 10 \rangle} + \cancel{\langle 11 | 10 \rangle}) \\ + \frac{1}{\sqrt{2}} (\cancel{\langle 01 | 00 \rangle} + \cancel{\langle 01 | 11 \rangle}) \frac{1}{\sqrt{2}} (\cancel{\langle 00 | 11 \rangle} + \langle 11 | 11 \rangle) = 0 + 0 = 0$$

$$a_{10} = \sum_{k=0}^1 \langle 1k | \psi \rangle \langle \psi | 0k \rangle = \frac{1}{\sqrt{2}} (\cancel{\langle 10 | 00 \rangle} + \cancel{\langle 10 | 11 \rangle}) \frac{1}{\sqrt{2}} (\langle 00 | 00 \rangle + \cancel{\langle 11 | 00 \rangle}) \\ + \frac{1}{\sqrt{2}} (\cancel{\langle 11 | 00 \rangle} + \langle 11 | 11 \rangle) \frac{1}{\sqrt{2}} (\cancel{\langle 00 | 01 \rangle} + \cancel{\langle 11 | 01 \rangle}) = 0 + 0 = 0$$

Example 10.1.1 (cont.)

$$a_{01} = \sum_{k=0}^1 \langle 0k | \psi \rangle \langle \psi | 1k \rangle = \frac{1}{\sqrt{2}} (\langle 00 | 00 \rangle + \cancel{\langle 00 | 11 \rangle}) \frac{1}{\sqrt{2}} (\cancel{\langle 00 | 10 \rangle} + \cancel{\langle 11 | 10 \rangle}) \\ + \frac{1}{\sqrt{2}} (\cancel{\langle 01 | 00 \rangle} + \cancel{\langle 01 | 11 \rangle}) \frac{1}{\sqrt{2}} (\cancel{\langle 00 | 11 \rangle} + \langle 11 | 11 \rangle) = 0 + 0 = 0$$

$$a_{10} = \sum_{k=0}^1 \langle 1k | \psi \rangle \langle \psi | 0k \rangle = \frac{1}{\sqrt{2}} (\cancel{\langle 10 | 00 \rangle} + \cancel{\langle 10 | 11 \rangle}) \frac{1}{\sqrt{2}} (\langle 00 | 00 \rangle + \cancel{\langle 11 | 00 \rangle}) \\ + \frac{1}{\sqrt{2}} (\cancel{\langle 11 | 00 \rangle} + \langle 11 | 11 \rangle) \frac{1}{\sqrt{2}} (\cancel{\langle 00 | 01 \rangle} + \cancel{\langle 11 | 01 \rangle}) = 0 + 0 = 0$$

$$a_{11} = \sum_{k=0}^1 \langle 1k | \psi \rangle \langle \psi | 1k \rangle$$

Example 10.1.1 (cont.)

$$a_{01} = \sum_{k=0}^1 \langle 0k | \psi \rangle \langle \psi | 1k \rangle = \frac{1}{\sqrt{2}} (\langle 00 | 00 \rangle + \langle 00 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 10 \rangle + \langle 11 | 10 \rangle) \\ + \frac{1}{\sqrt{2}} (\langle 01 | 00 \rangle + \langle 01 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 11 \rangle + \langle 11 | 11 \rangle) = 0 + 0 = 0$$

$$a_{10} = \sum_{k=0}^1 \langle 1k | \psi \rangle \langle \psi | 0k \rangle = \frac{1}{\sqrt{2}} (\langle 10 | 00 \rangle + \langle 10 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 00 \rangle + \langle 11 | 00 \rangle) \\ + \frac{1}{\sqrt{2}} (\langle 11 | 00 \rangle + \langle 11 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 01 \rangle + \langle 11 | 01 \rangle) = 0 + 0 = 0$$

$$a_{11} = \sum_{k=0}^1 \langle 1k | \psi \rangle \langle \psi | 1k \rangle = \frac{1}{\sqrt{2}} (\langle 10 | 00 \rangle + \langle 10 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 10 \rangle + \langle 11 | 10 \rangle) \\ + \frac{1}{\sqrt{2}} (\langle 11 | 00 \rangle + \langle 11 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 11 \rangle + \langle 11 | 11 \rangle)$$

Example 10.1.1 (cont.)

$$a_{01} = \sum_{k=0}^1 \langle 0k | \psi \rangle \langle \psi | 1k \rangle = \frac{1}{\sqrt{2}} (\langle 00 | 00 \rangle + \langle 00 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 10 \rangle + \langle 11 | 10 \rangle) \\ + \frac{1}{\sqrt{2}} (\langle 01 | 00 \rangle + \langle 01 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 11 \rangle + \langle 11 | 11 \rangle) = 0 + 0 = 0$$

$$a_{10} = \sum_{k=0}^1 \langle 1k | \psi \rangle \langle \psi | 0k \rangle = \frac{1}{\sqrt{2}} (\langle 10 | 00 \rangle + \langle 10 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 00 \rangle + \langle 11 | 00 \rangle) \\ + \frac{1}{\sqrt{2}} (\langle 11 | 00 \rangle + \langle 11 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 01 \rangle + \langle 11 | 01 \rangle) = 0 + 0 = 0$$

$$a_{11} = \sum_{k=0}^1 \langle 1k | \psi \rangle \langle \psi | 1k \rangle = \frac{1}{\sqrt{2}} (\langle 10 | 00 \rangle + \langle 10 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 10 \rangle + \langle 11 | 10 \rangle) \\ + \frac{1}{\sqrt{2}} (\langle 11 | 00 \rangle + \langle 11 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 11 \rangle + \langle 11 | 11 \rangle)$$

Example 10.1.1 (cont.)

$$a_{01} = \sum_{k=0}^1 \langle 0k | \psi \rangle \langle \psi | 1k \rangle = \frac{1}{\sqrt{2}} (\langle 00 | 00 \rangle + \langle 00 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 10 \rangle + \langle 11 | 10 \rangle) \\ + \frac{1}{\sqrt{2}} (\langle 01 | 00 \rangle + \langle 01 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 11 \rangle + \langle 11 | 11 \rangle) = 0 + 0 = 0$$

$$a_{10} = \sum_{k=0}^1 \langle 1k | \psi \rangle \langle \psi | 0k \rangle = \frac{1}{\sqrt{2}} (\langle 10 | 00 \rangle + \langle 10 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 00 \rangle + \langle 11 | 00 \rangle) \\ + \frac{1}{\sqrt{2}} (\langle 11 | 00 \rangle + \langle 11 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 01 \rangle + \langle 11 | 01 \rangle) = 0 + 0 = 0$$

$$a_{11} = \sum_{k=0}^1 \langle 1k | \psi \rangle \langle \psi | 1k \rangle = \frac{1}{\sqrt{2}} (\langle 10 | 00 \rangle + \langle 10 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 10 \rangle + \langle 11 | 10 \rangle) \\ + \frac{1}{\sqrt{2}} (\langle 11 | 00 \rangle + \langle 11 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 11 \rangle + \langle 11 | 11 \rangle) = 0 + \frac{1}{2} = \frac{1}{2}$$

Example 10.1.1 (cont.)

$$a_{01} = \sum_{k=0}^1 \langle 0k | \psi \rangle \langle \psi | 1k \rangle = \frac{1}{\sqrt{2}} (\langle 00 | 00 \rangle + \langle 00 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 10 \rangle + \langle 11 | 10 \rangle) \\ + \frac{1}{\sqrt{2}} (\langle 01 | 00 \rangle + \langle 01 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 11 \rangle + \langle 11 | 11 \rangle) = 0 + 0 = 0$$

$$a_{10} = \sum_{k=0}^1 \langle 1k | \psi \rangle \langle \psi | 0k \rangle = \frac{1}{\sqrt{2}} (\langle 10 | 00 \rangle + \langle 10 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 00 \rangle + \langle 11 | 00 \rangle) \\ + \frac{1}{\sqrt{2}} (\langle 11 | 00 \rangle + \langle 11 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 01 \rangle + \langle 11 | 01 \rangle) = 0 + 0 = 0$$

$$a_{11} = \sum_{k=0}^1 \langle 1k | \psi \rangle \langle \psi | 1k \rangle = \frac{1}{\sqrt{2}} (\langle 10 | 00 \rangle + \langle 10 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 10 \rangle + \langle 11 | 10 \rangle) \\ + \frac{1}{\sqrt{2}} (\langle 11 | 00 \rangle + \langle 11 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 11 \rangle + \langle 11 | 11 \rangle) = 0 + \frac{1}{2} = \frac{1}{2}$$

The density operators for the individual qubits subsystems are

Example 10.1.1 (cont.)

$$a_{01} = \sum_{k=0}^1 \langle 0k | \psi \rangle \langle \psi | 1k \rangle = \frac{1}{\sqrt{2}} (\langle 00 | 00 \rangle + \langle 00 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 10 \rangle + \langle 11 | 10 \rangle) \\ + \frac{1}{\sqrt{2}} (\langle 01 | 00 \rangle + \langle 01 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 11 \rangle + \langle 11 | 11 \rangle) = 0 + 0 = 0$$

$$a_{10} = \sum_{k=0}^1 \langle 1k | \psi \rangle \langle \psi | 0k \rangle = \frac{1}{\sqrt{2}} (\langle 10 | 00 \rangle + \langle 10 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 00 \rangle + \langle 11 | 00 \rangle) \\ + \frac{1}{\sqrt{2}} (\langle 11 | 00 \rangle + \langle 11 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 01 \rangle + \langle 11 | 01 \rangle) = 0 + 0 = 0$$

$$a_{11} = \sum_{k=0}^1 \langle 1k | \psi \rangle \langle \psi | 1k \rangle = \frac{1}{\sqrt{2}} (\langle 10 | 00 \rangle + \langle 10 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 10 \rangle + \langle 11 | 10 \rangle) \\ + \frac{1}{\sqrt{2}} (\langle 11 | 00 \rangle + \langle 11 | 11 \rangle) \frac{1}{\sqrt{2}} (\langle 00 | 11 \rangle + \langle 11 | 11 \rangle) = 0 + \frac{1}{2} = \frac{1}{2}$$

The density operators for the individual qubits subsystems are

$$\rho_{\psi}^A = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \rho_{\psi}^B = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$