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Mixed and pure states
® Properties of traces
® Density operators

® Properties of density operators

Reading assignment: 10.2 — 10.3

Homework Assignment #06:
See Blackboard
Due Tuesday, April 05, 2022

Quantum circuit simulator https://algassert.com/quirk
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In order to better understand what can be measured in a quantum system it is useful to
understand the difference between pure and mixed quantum states

An example of a pure state is the |+) = \%(\m + |1)) state

By measuring this state in the standard basis, there is a 50% chance of getting |0) and 50%
chance of getting |1) but a single measurement will only measure one of these

In order to reveal the probabilities, it is necessary to prepare a pool of many such systems and
measure them in the same way

A mixed state is a statistical distribution of the possible states
Many states are prepared in an equat distribution of |0) and |1) states and then are measured

When all these systems are measured, the results are the same as for the measurement of the
pure states but the system is fundamentally different since pure states have phase information
that can produce interference effects not found in mixed states

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 29, 2022 2/13



Quantum subsystems and mixed states A
It is often the case that one has access only to a part of a larger quantum system

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 29, 2022 3/13



Quantum subsystems and mixed states \ i
It is often the case that one has access only to a part of a larger quantum system

For example, if Alice only has access to the first qubit of an EPR pair, [¢)) = %(]OO) + [11))

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 29, 2022 3/13



Quantum subsystems and mixed states YV
It is often the case that one has access only to a part of a larger quantum system

For example, if Alice only has access to the first qubit of an EPR pair, [¢)) = %(]00) + [11))

If she measures in the standard basis, she has a 50% chance of getting |0) or |1) but her qubit
cannot be described as being in the state %(|O> +|1)) because if it is measured in the

Hadamard basis, there is a 50% chance of getting |+) or |—)

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 29, 2022 3/13



Quantum subsystems and mixed states YV
It is often the case that one has access only to a part of a larger quantum system

For example, if Alice only has access to the first qubit of an EPR pair, [¢)) = %(]00) + [11))

If she measures in the standard basis, she has a 50% chance of getting |0) or |1) but her qubit
cannot be described as being in the state %(|0> +|1)) because if it is measured in the
Hadamard basis, there is a 50% chance of getting |+) or |—)

It is therefore important to be able to describe measurements on m-qubit subsystems of
identically prepared n-qubit systems and what can be learned from such

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 29, 2022 3/13



Quantum subsystems and mixed states YV
It is often the case that one has access only to a part of a larger quantum system

For example, if Alice only has access to the first qubit of an EPR pair, [¢)) = %(]00) + [11))

If she measures in the standard basis, she has a 50% chance of getting |0) or |1) but her qubit
cannot be described as being in the state %(|0> +|1)) because if it is measured in the
Hadamard basis, there is a 50% chance of getting |+) or |—)

It is therefore important to be able to describe measurements on m-qubit subsystems of
identically prepared n-qubit systems and what can be learned from such

This information is encapsulated in a structure called the mixed state of the m-qubit subsystem

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 29, 2022 3/13



Quantum subsystems and mixed states YV
It is often the case that one has access only to a part of a larger quantum system

For example, if Alice only has access to the first qubit of an EPR pair, [¢)) = %(]00) + [11))

If she measures in the standard basis, she has a 50% chance of getting |0) or |1) but her qubit
cannot be described as being in the state %(|0> +|1)) because if it is measured in the
Hadamard basis, there is a 50% chance of getting |+) or |—)

It is therefore important to be able to describe measurements on m-qubit subsystems of
identically prepared n-qubit systems and what can be learned from such

This information is encapsulated in a structure called the mixed state of the m-qubit subsystem

Density operators are transformations which can be used to extract this information

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 29, 2022 3/13



Quantum subsystems and mixed states \ i
It is often the case that one has access only to a part of a larger quantum system

For example, if Alice only has access to the first qubit of an EPR pair, [¢)) = %(]00) + [11))

If she measures in the standard basis, she has a 50% chance of getting |0) or |1) but her qubit
cannot be described as being in the state %(|0> +|1)) because if it is measured in the

Hadamard basis, there is a 50% chance of getting |+) or |—)

It is therefore important to be able to describe measurements on m-qubit subsystems of
identically prepared n-qubit systems and what can be learned from such

This information is encapsulated in a structure called the mixed state of the m-qubit subsystem
Density operators are transformations which can be used to extract this information

Just because the subsystem can be described as a mixed state, does not mean that they are
well-defined and not entangled in the larger system

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 29, 2022 3/13



Quantum subsystems and mixed states YV
It is often the case that one has access only to a part of a larger quantum system

For example, if Alice only has access to the first qubit of an EPR pair, [¢)) = %(]00) + [11))

If she measures in the standard basis, she has a 50% chance of getting |0) or |1) but her qubit
cannot be described as being in the state %(|0> +|1)) because if it is measured in the

Hadamard basis, there is a 50% chance of getting |+) or |—)

It is therefore important to be able to describe measurements on m-qubit subsystems of
identically prepared n-qubit systems and what can be learned from such

This information is encapsulated in a structure called the mixed state of the m-qubit subsystem
Density operators are transformations which can be used to extract this information

Just because the subsystem can be described as a mixed state, does not mean that they are
well-defined and not entangled in the larger system

Knowing the mixed states of all the subsystems only provides full knowledge of the system

when it is unentangled in that specific subspace decomposition
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The partial trace vV
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The partial trace i
Ong = > a8 (axl (8]

For this case, the partial trace of Oxpg is given by

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 29, 2022 7/13



The partial trace e
Oas = ST xRl 8) (8]

For this case, the partial trace of Oxpg is given by

Tre(0Oag) = Tra(|x)(x|)
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The partial trace
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The partial trace

Tr(Oag) = Tra(|x)(x]) = (8] > . x| ) | B;) (e LUBABA™
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|_|

xiiXui|i) (B1] Bj) (o

i=0 j=0 k=0 /=0
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The partial trace
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The partial trace
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The partial trace V

N-1M-1N-1M-1 1
Trg(Oag) = Tra(|x)(x]) = (3 xiXki| i) | B;) (o [{BHATT™
i—0 j=0 k=0 /=0
N-1M-1N-1M-1 s N—-1M-1N-1
_ lj _
= il o) BBk = > > ) xiXigle) {ou]
i=0 j=0 k=0 /=0 i=0 j=0 k=0

If the operator is the tensor product of two operators on the separate subsystems
Oag = Oa ® Og then the partial trace is particularly simple since («;|(/3;|0Oa ® Og|o)|f5;)
can be decomposed
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The partial trace
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The partial trace
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Density operators vV

Suppose A is an m-qubit subsystem for a larger n-qubit system, X = A® B
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Density operators
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tem X with states given by |x)
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Density operators V

Suppose A is an m-qubit subsystem for a larger n-qubit system, X = A® B
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Let O be an observable which measures only on A with projection operators {P;}, 0 < i < M
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Density operators VYV
We can write the identity operator for subspace A in terms of
the the {|a,)} basis
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Density operators VYV
We can write the identity operator for subspace A in terms of Yt

the the {|a,)} basis = Z lovy) (ol

u=0
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Density operators N

We can write the identity operator for subspace A in terms of
the the {|a,)} basis

M—1
I = |y ) (a
Substituting into the expression just derived for (x|P ® /|x) UE_;) e
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Density operators

We can write the identity operator for subspace A in terms of
the the {|a,)} basis
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Density operators 7

We can write the identity operator for subspace A in terms of
the the {|a,)} basis

o L . = Z |t ) (o]
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Density operators S

We can write the identity operator for subspace A in terms of
the the {|a,)} basis

I = |y ) (a
Substituting into the expression just derived for (x|P ® /|x) Z: el
M—1L—1M-1 M—1L-1M-1 M—1
x|P & I|x) = ZZZ glaalPllag) = 33 a,\P(Z|au><au|)|ak>
i=0 j=0 k=0 i=0 j=0 k=0 u=0
M—1M-1L-1M-1
= ZZ XijXij (| o) (| Plavy)
u=0 /=0 j=0 k=0
M—1 1L-1M-1
= au\( ZZ XijXijl i) { a,]P)\au> Tr(p2P)
u=0 i=0 j=0 k=0

Where pZ is the density operator for |x) on
subsystem A
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Density operators S

We can write the identity operator for subspace A in terms of
the the {|a,)} basis
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Where p' is the density operator for |x) on _ il ) (]
subsystem A i—0 j—0 k=0
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Density operators

We can write the identity operator for subspace A in terms of
the the {|a,)} basis

<

I = |y ) (a
Substituting into the expression just derived for (x|P ® /|x) Z: el
M—1L-1M—-1 M-1L-1M—-1 M—1
x|P & I|x) = ZZZ ol P 1) = i <a,\P<Z |au)<au|)|ak>
i=0 j=0 k=0 i=0 j=0 k=0 u=0
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= S oo ol Pl
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u=0 i=0 j=0 k=0
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Where p' is the density operator for |x) on Z xigloud) (o] = Tr(x)(x|)
subsystem A

i j=0 k=0
All information from subsystem A alone can be obtained with the density operator
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Properties of density operators

Suppose the subsystem is the whole system,
that is A = X, then the system is in a pure
state |x) = >, xj|x;) with basis {|x;)}
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Properties of density operators NG

Suppose the subsystem is the whole system, B X N—-1N-1
that is A = X, then the system is in a pure Px = Px = Xixi| X k) (X
state |x) = >, xj|x;) with basis {|x;)} i=0 k=0
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Properties of density operators \ 74

Suppose the subsystem is the whole system, B
that is A = X, then the system is in a pure Px =
state |x) = >, xj|x;) with basis {|x;)}

||
A;MZ

1N—
= 3 Sde) Gl =
k=0
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Properties of density operators V

Suppose the subsystem is the whole system, B
that is A = X, then the system is in a pure Px =
state |x) = >, xj|x;) with basis {|x;)} i

Clearly, the density operator of a pure state such as |x) is not basis-dependent

Z
»—\

N—-1

Xixi | xi) (xil = 1x)(x]

I
o

k=0
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Properties of density operators vV

Suppose the subsystem is the whole system, A N-1
that is A = X, then the system is in a pure Px = Xixixr) (il = [x) (x|
state |x) = >, xj|x;) with basis {|x;)} i=0 k=0

Clearly, the density operator of a pure state such as |x) is not basis-dependent

Z
._\

I
o

Given a basis {|x;)}, the matrix elements of the
density operator are
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Properties of density operators

Suppose the subsystem is the whole system,

Z
._\

N—-1

that is A = X, then the system is in a pure Pf Xixixr) (il = [x) (x|

I
o

state |x) = >, xj|x;) with basis {|x;)} i

Clearly, the density operator of a pure state such as |x) is not basis-dependent

k=0

X — Y Y-
Given a basis {|x;)}, the matrix elements of the (p%)ij = Xjxi
density operator are
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state |x) = >, xj|x;) with basis {|x;)} i=0 k=0

Clearly, the density operator of a pure state such as |x) is not basis-dependent
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Given a basis {|x;)}, the matrix elements of the (5 )ij = Xjxi
density operator are

and the diagonal elements, X;x; are related to the
projection operator P; = |x;){xil
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Properties of density operators

Suppose the subsystem is the whole system, B N-1N-1
that is A = X, then the system is in a pure Px = =
state |x) = >, xj|x;) with basis {|x;)} i=0 k=0

Clearly, the density operator of a pure state such as |x) is not basis-dependent

X — Y Y-
Given a basis {|x;)}, the matrix elements of the (p%)ij = Xjxi
density operator are

and the diagonal elements, X;x; are related to the
projection operator P; = |x;){xil
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Properties of density operators

Suppose the subsystem is the whole system, B X N—-1N-1
that is A = X, then the system is in a pure Px = Px = Xixk [ xi) (il = [x) (x|
state |x) = >, xj|x;) with basis {|x;)} i=0 k=0

Clearly, the density operator of a pure state such as |x) is not basis-dependent

X — Y Y-
Given a basis {|x;)}, the matrix elements of the (p%)ij = Xjxi
density operator are

and the diagonal elements, X;x; are related to the
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X — Y Y-
Given a basis {|x;)}, the matrix elements of the (p%)ij = Xjxi
density operator are
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Properties of density operators \ 74

Suppose the subsystem is the whole system, B X N—-1N-1
that is A = X, then the system is in a pure Px = Px = Xixk [ xi) (il = [x) (x|
state |x) = >, xj|x;) with basis {|x;)} i=0 k=0

Clearly, the density operator of a pure state such as |x) is not basis-dependent

X — Y Y-
Given a basis {|x;)}, the matrix elements of the (p%)ij = Xjxi
density operator are

and the diagonal elements, X;x; are related to the
projection operator P; = |x;){xil M—1L-1

) =Y xilai)|B)
i=0

In the more general case where X = A® B with
bases {|a;)} and {|5)}

(PX)ij = Xgxui

The density operator is thus p))f = TUXk/|ak>\5/><ai\</3j|

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 29, 2022 10/13



Properties of density operators N

To obtain the density matrix p2 use the partial trace over B of pf
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Properties of density operators

To obtain the density matrix p2 use the partial trace over B of pf

M-1L-1M-1L-1

L—
= TrB(pX) TrB < Z Z

i=0 j=0 k=0 /=0

XijXut| i) | Br) <a:|<ﬁﬂ>
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Properties of density operators i

To obtain the density matrix p2 use the partial trace over B of pf

M-1L-1M-1L-1

= TrB pX TrB < Z

i=0 j=0 k=0 /=0

Sl 181) a,IW)

L-1 M— 1M-1L-1

S ol (33 el |5 ul(5] ) a1 | b o]

w=0 i=0 j=0 k=0 /=0

i
i

—
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Properties of density operators i

To obtain the density matrix p2 use the partial trace over B of pf

M-1L-1M-1L-1

= TrB pX TrB < Z

Sl 181) a,IW)

i=0 j=0 k=0 /=0
M—-1M-1  L-1 M-1L-1M-1L-1
- PIUIENIS 9p el |5 ul(5] ) a1 | b o]
u=0 v=0 ~w=0 i=0 j=0 k=0 /=0
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Properties of density operators i

To obtain the density matrix p2 use the partial trace over B of pf

M-1L-1M-1L-1

= TrB pX TrB < Z

Sl 181) a,IW)

i=0 j=0 k=0 /=0
M—-1M-1  L-1 M-1L-1M-1L-1
- PIUIENIS 9p el |5 ul(5] ) a1 | b o]
u=0 v=0 ~w=0 i=0 j=0 k=0 /=0
M—-1M-1L-1
= XVWXuW‘aU><aV|
u=0 v=0 w=0

Because the partial trace is basis-independent, so is the density operator
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Properties of density operators \ 74

To obtain the density matrix p2 use the partial trace over B of pf

M-1L-1M-1L-1

= TrB(pX =Trp ( Z Z Z kl‘ak |BI <al|<ﬁj’>

i=0 j=0 0 /=0
M—-1M-1 - L-1 M— 1M-1L-1
-y Y [ <au!<5w!< il 181) <a,\<m)rav>ww>} o) o]
u=0 v=0 ~w=0 i=0 j=0 k=0 /=0
M—-1M-1L-1
= Z vwqu‘au><av|
u=0 v=0 w=0

Because the partial trace is basis-independent, so is the density operator

However, it is not possible to recover the state of the entire system from the set of all
subsystem density operators
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Example 10.1.1 V

Alice controls the first qubit of an EPR pair, |¢)) = %UOO) +111))
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Example 10.1.1 i

Alice controls the first qubit of an EPR pair, |¢)) = \%(|00> +111))

The density matrix for the pure state |¢)) € A® B is
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Example 10.1.1

Alice controls the first qubit of an EPR pair, |¢)) = \%(|00> +111))

The density matrix for the pure state |¢)) € A® B is

1 001

11 00O0O

pi = 16) (] = (100} (00] +[00)(11] + [11)(00] + 1) (1) = 5 | o ¢ o g
1 001

The density matrix which holds all information that can be obtained from Alice's qubit is given
by pf} = Tra(py) with components a;; = >, XXk
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Example 10.1.1

Alice controls the first qubit of an EPR pair, |¢)) = \%(|00> +111))

The density matrix for the pure state |¢)) € A® B is

pu = ) (Y] = 5(/00){00] +[00)(11] +[11)(00] + [11)(11]) = ;

= O O~
o O O O
o O O o
= O O =

The density matrix which holds all information that can be obtained from Alice's qubit is given
by pf} = Tra(py) with components a;; = >, XXk
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Example 10.1.1

Alice controls the first qubit of an EPR pair, |¢)) = \%(|00> +111))

The density matrix for the pure state |¢)) € A® B is

pu = ) (Y] = 5(/00){00] +[00)(11] +[11)(00] + [11)(11]) = ;

= O O~
o O O O
o O O o
= O O =

The density matrix which holds all information that can be obtained from Alice's qubit is given
by pf} = Tra(py) with components a;; = >, XXk

1
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Example 10.1.1 (cont.) \id

1

ao1 = Y _(Ok|eh) (1| 1k)

k=0
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Example 10.1.1 (cont.) V

1
201 = > (OK|) (¥]1k) =-1((00]00) + {00[11))L;((00]10) + (11[10))
k=0
+ 7((01\00} <01|11>)i(<00|11) + (11]11))

2
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Example 10.1.1 (cont.) V

1

aon = ) _(Ok|9))(1[1k) =5((00]00) + (00fET}) J5 (004207 + (114107
k=0
75 ({01607 + (01411)) I ({0017 + (11]11))

+ gl
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Example 10.1.1 (cont.) V

1
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Example 10.1.1 (cont.) y
1
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k=0

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 29, 2022 13/13



Example 10.1.1 (cont.) i

1

aor = (O[3} ({1} = 1((00]00) + (00f1)) & ({00207 + (114307)
k=0
L ({0H607 + (OLTY) L ((00R1) + (11[11)) = 0+ 0 = 0

+
Ny

1
a0 = (1| (1]0k) =-((10]00) + (10[11))L((00]00) + (11/00))
k=0
_.I_

75((11]00) + (11]11)) 75((00/01) + (11]01))

Sl
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Example 10.1.1 (cont.) i

1
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k=0
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k=0
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Example 10.1.1 (cont.) i
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Example 10.1.1 (cont.) i
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Example 10.1.1 (cont.) i

1

ao1 = 3Ok {[1K) = 15((00]00) + (00FTY) L ({0007 + (11}H0))
k=0
+ 1 ((03400) + (OLETY) L (00T + (11[11)) = 0+0 =0

1

a10= 3 (TkJ) (14{0K) =1 ({10}607 + (10fT7) L((00]00) -+ (11}607)
k=0
(34007 + (11[11)) L ((00}6T7 + (1461)) = 0+ 0 = 0

1
au =) _(Lk|y){([1k) =75((10]00) + (10[11)) J5((00]10) + (11[10))
k=0
+

11[00) + (11]11))35((00[11) + (11]11))

7(< 2
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Example 10.1.1 (cont.) N

1

ao1 = 3Ok {[1K) = 15((00]00) + (00FTY) L ({0007 + (11}H0))
k=0
+ 1 ((03400) + (OLETY) L (00T + (11[11)) = 0+0 =0

1

a10= 3 (TkJ) (14{0K) =1 ({10}607 + (10fT7) L((00]00) -+ (11}607)
k=0
(34007 + (11[11)) L ((00}6T7 + (1461)) = 0+ 0 = 0

1

an =) (Lk[Y)(¥|1k) =

k=0

75 ({10160) + (10f11}) 7 ((00H0) + (114167)
75 ({11067 + (11]11)) J5({00K 1) + (11[11))
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Example 10.1.1 (cont.) NG

1

a01 = ) (Ok[v)(w|1k) =75({00]00) + (00HT)) 5 (00T + (11107)

k=0

+ 1 ((03400) + (OLETY) L (00T + (11[11)) = 0+0 =0

1

a0 = ) (1K) (v|0k) =5 ({10{607 + (1011}) J5((00]00) + (11607)

k=0

(34007 + (11[11)) L ((00}6T7 + (1461)) = 0+ 0 = 0

1

au =) _(Lk|y))(t[1k) =5 ((10{60T + (10f1T}) 5 (004207 + (11107)
k=0
+ 75 (14607 + (11]11)) 75 ((00RT) + (11]11)) =0+ 5 = 3
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Example 10.1.1 (cont.)

1

201 = 3 (OK|) (1| 1k) =15 ((0000) -+ (00}17) 1 ({00K07 + (11L4165)
k=0
+ 15 ({01607 + (L) 5 (00R1Y + (11[11) =0+ 0 =0

1

a10 = (K[ (4]0k) =15((104067 -+ (10f117) 15((00]00) + (11{067)
k=0
+ 1 (11007 + (11[11)) 5 ((00f01] + (11461]) =0+ 0 = 0

1

au =) _(Lk|y))(t[1k) =5 ((10{60T + (10f1T}) 5 (004207 + (11107)

k=0

+ 75 ({11607 + (11[11)) 75 ({001} + (11[11)) = 0+ 5 = 3

The density operators for the individual
qubits subsystems are
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Example 10.1.1 (cont.)

1

201 = 3 (OK|) (1| 1k) =15 ((0000) -+ (00}17) 1 ({00K07 + (11L4165)
k=0
+ 15 ({01607 + (L) 5 (00R1Y + (11[11) =0+ 0 =0

1

a10 = (K[ (4]0k) =15((104067 -+ (10f117) 15((00]00) + (11{067)
k=0
+ 1 (11007 + (11[11)) 5 ((00f01] + (11461]) =0+ 0 = 0

1

au =) _(Lk|y))(t[1k) =5 ((10{60T + (10f1T}) 5 (004207 + (11107)

k=0
+ (1007 + (1L/11) 35 (00fT + (11/11) = 0+ § = §
The density operators for the individual Aa_1(10 g_1/10
qubits subsystems are Po=5\0 1) P72\01
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