
Today’s outline - March 29, 2022

• Mixed and pure states

• Properties of traces

• Density operators

• Properties of density operators

Reading assignment: 10.2 – 10.3

Homework Assignment #06:
See Blackboard
Due Tuesday, April 05, 2022

Quantum circuit simulator https://algassert.com/quirk
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Mixed and pure states (ensembles)

In order to better understand what can be measured in a quantum system it is useful to
understand the difference between pure and mixed quantum states

An example of a pure state is the |+⟩ = 1√
2
(|0⟩+ |1⟩) state

By measuring this state in the standard basis, there is a 50% chance of getting |0⟩ and 50%
chance of getting |1⟩ but a single measurement will only measure one of these

In order to reveal the probabilities, it is necessary to prepare a pool of many such systems and
measure them in the same way

A mixed state is a statistical distribution of the possible states

Many states are prepared in an equat distribution of |0⟩ and |1⟩ states and then are measured

When all these systems are measured, the results are the same as for the measurement of the
pure states but the system is fundamentally different since pure states have phase information
that can produce interference effects not found in mixed states
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Quantum subsystems and mixed states
It is often the case that one has access only to a part of a larger quantum system

For example, if Alice only has access to the first qubit of an EPR pair, |ψ⟩ = 1√
2
(|00⟩+ |11⟩)

If she measures in the standard basis, she has a 50% chance of getting |0⟩ or |1⟩ but her qubit
cannot be described as being in the state 1√

2
(|0⟩+ |1⟩) because if it is measured in the

Hadamard basis, there is a 50% chance of getting |+⟩ or |−⟩

It is therefore important to be able to describe measurements on m-qubit subsystems of
identically prepared n-qubit systems and what can be learned from such

This information is encapsulated in a structure called the mixed state of the m-qubit subsystem

Density operators are transformations which can be used to extract this information

Just because the subsystem can be described as a mixed state, does not mean that they are
well-defined and not entangled in the larger system

Knowing the mixed states of all the subsystems only provides full knowledge of the system
when it is unentangled in that specific subspace decomposition
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The trace of an operator

Given a space V with basis {|vi ⟩} and an operator
O : V −→ V with a matrix representation M
whose trace is

Given that Tr(M1M2) = Tr(M2M1), if C is an
invertible matrix then

Tr(M) =
∑
i

⟨vi |M|vi ⟩

Tr(C−1MC ) = Tr(MCC−1) = Tr(M)

Since C−1MC can represent a change of basis for M it follows that the trace of a matrix is
invariant under basis change which can be written Tr(O)

Given a basis {|αi ⟩} for space V

Tr(|ψ1⟩⟨ψ2|O) =
∑
i

⟨αi |ψ2⟩⟨ψ1|O|αi ⟩ =
∑
i

⟨ψ1|O|αi ⟩⟨αi |ψ2⟩ = ⟨ψ1|O
(∑

i

|αi ⟩⟨αi |
)
|ψ2⟩

= ⟨ψ1|OI |ψ2⟩ = ⟨ψ1|O|ψ2⟩

This is a useful method of computing an inner product
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Restricting operators to subsystems

For any operator OAB on A⊗ B, there is a family of operators on subsystem A that is defined
by any pair of states |b1⟩ and |b2⟩ in B as ⟨b1|OAB |b2⟩ : A → A

Suppose both {|αi ⟩} and {|a′j⟩} are basis for A with |a′j⟩ =
∑

i aij |αi ⟩

Apply ⟨b1|OAB |b2⟩ to a state |a⟩ and convert it to a trace as shown previously

⟨b1|OAB |b2⟩|a⟩ =
∑
j

⟨a′j |⟨b1|OAB |b2⟩|a⟩|a′j⟩

=
∑
j

(∑
i

aij⟨αi |
)
⟨b1|OAB |a⟩|b2⟩

(∑
k

akj |αk⟩
)

=
∑
i

∑
k

∑
j

aijakj⟨αi |⟨b1|OAB |a⟩|b2⟩|αk⟩

Because |a′j⟩ =
∑

i aij |αi ⟩,
∑

j aijakj ≡ δik and we have

⟨b1|OAB |b2⟩|a⟩ =
∑
i

⟨αi |⟨b1|OAB |a⟩|b2⟩|αi ⟩
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The partial trace

For any operator OAB on A⊗B, the partial trace of
OAB with respect to subsystem B and basis {|βi ⟩}
is an operator TrB(OAB) on subsystem A

As a trace, this operator is basis-independent and
has entries in terms of bases {|αi ⟩} and {|βj⟩}

TrB(OAB) =
∑
j

⟨βj |OAB |βj⟩

TrB(OAB)ik =
M−1∑
j=0

⟨αi |⟨βj |OAB |αk⟩|βj⟩

The matrix representation for the TrB(OAB) operator is given by

TrB(OAB) =
N−1∑
i=0

N−1∑
k=0

(M−1∑
j=0

⟨αi |⟨βj |OAB |αk⟩|βj⟩
)
|αi ⟩⟨αk |

If OAB = |x⟩⟨x | such that xijxkl are the entries of the OAB matrix in the {|αi ⟩|βj⟩} basis

OAB =
N−1∑
i=0

M−1∑
j=0

xij |αi ⟩|βj⟩
N−1∑
k=0

M−1∑
l=0

xkl⟨αk |⟨βl | =
N−1∑
i=0

M−1∑
j=0

N−1∑
k=0

M−1∑
l=0

xijxkl |αi ⟩|βj⟩⟨αk |⟨βl |
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Density operators

Suppose A is an m-qubit subsystem for a larger n-qubit system, X = A⊗ B

Let M = 2m, L = 2n−m with bases {|α0⟩, . . . , |αM−1⟩} and {|β0⟩, . . . , |βL−1⟩} for subsystems
A and B

The basis {|αi ⟩⊗ |βi ⟩} spans the entire sys-
tem X with states given by |x⟩

|x⟩ =
M−1∑
i=0

L−1∑
j=0

xij |αi ⟩|βj⟩

Let O be an observable which measures only on A with projection operators {Pi}, 0 ≤ i < M

When applied to the entire space, X , these measurements take the form O ⊗ I with projectors
PI ⊗ I and the probability that measurement of |x⟩ by O ⊗ I is given by

⟨x |P ⊗ I |x⟩ =

(
M−1∑
i=0

L−1∑
j=0

xij⟨αi | ⊗ ⟨βj |
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P ⊗ I
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Density operators
We can write the identity operator for subspace A in terms of
the the {|αu⟩} basis

Substituting into the expression just derived for ⟨x |P ⊗ I |x⟩
I =

M−1∑
u=0

|αu⟩⟨αu|

⟨x |P ⊗ I |x⟩ =
M−1∑
i=0

L−1∑
j=0

M−1∑
k=0

xijxkj⟨αi |P I |αk⟩ =
M−1∑
i=0

L−1∑
j=0

M−1∑
k=0

xijxkj⟨αi |P
(M−1∑

u=0

|αu⟩⟨αu|
)
|αk⟩

=
M−1∑
u=0

M−1∑
i=0

L−1∑
j=0

M−1∑
k=0

xijxkj⟨αu|αk⟩⟨αi |P|αu⟩

=
M−1∑
u=0

⟨αu|
(M−1∑

i=0

L−1∑
j=0

M−1∑
k=0

xijxkj |αk⟩⟨αi |P
)
|αu⟩ = Tr(ρAx P)

Where ρAx is the density operator for |x⟩ on
subsystem A

ρAx =
M−1∑
i=0

L−1∑
j=0

M−1∑
k=0

xijxkj |αk⟩⟨αi | = TrB(|x⟩⟨x |)

All information from subsystem A alone can be obtained with the density operator
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the the {|αu⟩} basis

Substituting into the expression just derived for ⟨x |P ⊗ I |x⟩
I =

M−1∑
u=0

|αu⟩⟨αu|

⟨x |P ⊗ I |x⟩ =
M−1∑
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xijxkj⟨αi |P I |αk⟩
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)
|αu⟩ = Tr(ρAx P)

Where ρAx is the density operator for |x⟩ on
subsystem A

ρAx =
M−1∑
i=0

L−1∑
j=0

M−1∑
k=0

xijxkj |αk⟩⟨αi | = TrB(|x⟩⟨x |)
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Properties of density operators

Suppose the subsystem is the whole system,
that is A = X , then the system is in a pure
state |x⟩ =

∑
i xi |χi ⟩ with basis {|χi ⟩}

ρAx = ρXx =
N−1∑
i=0

N−1∑
k=0

xixk |χk⟩⟨χi | = |x⟩⟨x |

Clearly, the density operator of a pure state such as |x⟩ is not basis-dependent

Given a basis {|χi ⟩}, the matrix elements of the
density operator are

and the diagonal elements, xixi are related to the
projection operator Pi = |χi ⟩⟨χi |

In the more general case where X = A ⊗ B with
bases {|αi ⟩} and {|βi ⟩}

The density operator is thus

(ρXx )ij = xjxi

⟨x |Pi |x⟩ = ⟨x |χi ⟩⟨χi |x⟩ = xjxi

|x⟩ =
M−1∑
i=0

L−1∑
j=0

xij |αi ⟩|βj⟩

(ρXx )ij = xijxkl

ρXx =
M−1∑
i ,k=0

L−1∑
j ,l=0

xijxkl |αk⟩|βl⟩⟨αi |⟨βj |
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Properties of density operators

To obtain the density matrix ρAx use the partial trace over B of ρXx

ρAx = TrB(ρ
X
x ) = TrB

(M−1∑
i=0

L−1∑
j=0

M−1∑
k=0

L−1∑
l=0

xijxkl |αk⟩|βl⟩⟨αi |⟨βj |
)

=
M−1∑
u=0

M−1∑
v=0

[ L−1∑
w=0

⟨αu|⟨βw |
(M−1∑

i=0

L−1∑
j=0

M−1∑
k=0

L−1∑
l=0

xijxkl |αk⟩|βl⟩⟨αi |⟨βj |
)
|αv ⟩|βw ⟩

]
|αu⟩⟨αv |

=
M−1∑
u=0

M−1∑
v=0

L−1∑
w=0

xvwxuw |αu⟩⟨αv |

Because the partial trace is basis-independent, so is the density operator

However, it is not possible to recover the state of the entire system from the set of all
subsystem density operators
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Example 10.1.1

Alice controls the first qubit of an EPR pair, |ψ⟩ = 1√
2
(|00⟩+ |11⟩)

The density matrix for the pure state |ψ⟩ ∈ A⊗ B is

ρψ = |ψ⟩⟨ψ| = 1
2(|00⟩⟨00|+ |00⟩⟨11|+ |11⟩⟨00|+ |11⟩⟨11|) = 1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


The density matrix which holds all information that can be obtained from Alice’s qubit is given
by ρAψ = TrB(ρψ) with components aij =

∑
k xjkxik

a00 =
1∑

k=0

⟨0k |ψ⟩⟨ψ|0k⟩ = 1√
2
(⟨00|00⟩+ ⟨00|11⟩) 1√

2
(⟨00|00⟩+ ⟨11|00⟩)

+ 1√
2
(⟨01|00⟩+ ⟨01|11⟩) 1√

2
(⟨00|01⟩+ ⟨11|01⟩) = 1

2 + 0 = 1
2
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The density operators for the individual
qubits subsystems are

ρAψ =
1

2

(
1 0
0 1

)
, ρBψ =

1

2

(
1 0
0 1

)
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(����⟨00|01⟩+����⟨11|01⟩) = 0 + 0 = 0
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(
1 0
0 1
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Example 10.1.1 (cont.)
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Example 10.1.1 (cont.)
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