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® Improving Grover's algorithm

(a) Modifying the iteration distance
(b) Modifying the last iteration

® Solving for t
(a) Repeated random iterations
(b) Quantum counting

Reading assignment: 10.1 — 10.3

Homework Assignment #06:
See Blackboard
Due Thursday, March 31, 2022

Quantum circuit simulator https://algassert.com/quirk
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Improving Grover's algorithm

When | chose the angles for the geometric
argument, | selected gop = sin (%)

This leads to an optimal case where we can
obtain g; = 1 as can be seen from the dia-
gram

Grover’s algorithm is not inherently proba-
bilstic as evident from the geometric discus-
sion

Thus it is possible to improve on it and guar-
antee a solution with quadratic speedup

There are two different methods to accom-
plish this
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Modifying each step 7

Recall that the probability t is related to an angle 8 Vt=sinf = g0

The optimal number of iterations is given by i = 4Lg0 ~ :—9

If the quantity 7 — % is an integer then for T 1 R _1
40 2 &=

Thus the strategy to getting the solution with certainty is to replace U by U’ with success
probability gy < go such that for sin 0 = gy, 7% — % is an integer

This can be done by using an additional qubit b

Given U with success probability ggp which acts on an 362 g62
n-qubit register |s), define U’ = U ® B acting on an Bl0) = - ?|0> + ?|1>
0 0

(n + 1)-qubit register |s)|b) where

Amplitude amplification is performed on the (n+ 1)- Q = _U’Sg(U’)—lsg,
qubit state using an iteration operator

This algorithm now succeeds with certainty in i = 737 — % steps
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A second method is to modify just the last step to obtain gi =1

Consider transformations of the form
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o _ {e"¢\x> Ix) € X
ol kgx
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Modifying the last step i

N— 1
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Modifying the last step vV
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Modifying the last step i
Q. 7)[¥) = (9. 7)lve) + b(o, 7))

g(¢,7) =sin[(2s + 1)0]e’ [(1 — €'®) g§ — 1] + cos[(2s + 1)6](1 — €'*) bogo
b(¢, ) = sin[(2s + 1)0]e"T(1 — €'?) gobo + cos[(2s + 1)) [(1- e'®) b3 — 1]
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Modifying the last step i
Q(d)v T)|17Z}> = g(¢a T)|¢G> + b(¢7 T)|¢B>
g(6,7) = sin[(2s + 1)6]e’™ [(1- ei¢)g§ — 1] + cos[(2s + 1)d](1 — ei¢) bogo
b(¢,T) = sin[(2s + 1)8]e™ (1 — '?) gobo + cos[(2s + 1)0] [ (1 — ") b — 1]

The goal is to find values for ¢ and 7 such that when the final iteration Q(¢,7) = US{U~1S
is applied the solution is obtained with certainty
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Modifying the last step

<

Q(d)v T)|17Z}> = g(¢a T)|¢G> + b(¢7 T)|¢B>
g(¢,7) =sin[(2s + 1)0]e’ [(1 — €'®) g§ — 1] + cos[(2s + 1)6](1 — €'*) bogo
b(¢,T) = sin[(2s + 1)8]e™ (1 — '?) gobo + cos[(2s + 1)0] [ (1 — ") b — 1]

The goal is to find values for ¢ and 7 such that when the final iteration Q(¢,7) = USSSUASE
is applied the solution is obtained with certainty

This boils down to finding a solution to b(¢,7) = 0 and recalling that by = /1 — g2
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is applied the solution is obtained with certainty
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Modifying the last step vV

(1 e?)go\/1 - g5
cot[(2s + 1)0] = \/70

go(1 — e®) + ei®
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Modifying the last step i

(1~ e?)go\/1~ g5
cot[(2s + 1)0] = °

ga(1—e®) + ei®

First find ¢ and then choose 7 to make the right side of the equation real
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Compute the modulus squared of the right side of the equation to make it real
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cot[(2s + 1)0] = °
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Compute the modulus squared of the right side of the equation to make it real
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Modifying the last step

(1~ e?)go\/1~ g5
cot[(2s + 1)0] = °

ga(1—e®) + ei®

First find ¢ and then choose 7 to make the right side of the equation real

Compute the modulus squared of the right side of the equation to make it real

e T(1—e)goy/1—gf €eT(1—e?)go/1 - g}

G- rei®  gi- o)+ el
B (2—el® — e ?)g2(1 — g2) B g2b3(2 — 2 cos ¢)
Cgl(2—e? — e i?) 4 g2(ed + e i?—2)+1 gf(2—2cos¢) — gi(2 —2cos¢) + 1
This can be maximized when cos¢ = —1

which then gives

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 24, 2022 7/11



Modifying the last step

(1~ e?)go\/1~ g5
cot[(2s + 1)0] = °

ga(1—e®) + ei®

First find ¢ and then choose 7 to make the right side of the equation real

Compute the modulus squared of the right side of the equation to make it real

e T(1—e)goy/1—gf €eT(1—e?)go/1 - g}

G- rei®  gi- o)+ el
_ (2—el® — e ?)g2(1 — g2) _ g2b3(2 — 2 cos ¢)
gi(2— el — e i?) + g2(el® + e —2)+1 gf(2—2cos¢) — g2(2 —2cosp) + 1
This can be maximized when cos¢ = —1 4g§bg
which then gives 4g(‘)1 — 4g§ +1
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Modifying the last step
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cot[(2s + 1)0] = °

ga(1—e®) + ei®

First find ¢ and then choose 7 to make the right side of the equation real

Compute the modulus squared of the right side of the equation to make it real
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Modifying the last step

(1~ e?)go\/1~ g5
cot[(2s + 1)0] = °

ga(1—e®) + ei®

First find ¢ and then choose 7 to make the right side of the equation real

Compute the modulus squared of the right side of the equation to make it real

e T(1—e)goy/1—gf €eT(1—e?)go/1 - g}

G—e @) +ei  gl-e)+eld
_ (2—el® — e ?)g2(1 — g2) _ g2b3(2 — 2 cos ¢)
gi(2— el — e i?) + g2(el® + e —2)+1 gf(2—2cos¢) — g2(2 —2cosp) + 1
This can be maximized when cos¢ = —1 4g§bg B 4g§b(2)
which then gives 4g(‘)1 — 4g§ +1 (2&? —1)2
Taking the square root gives the maximum
magnitude
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ga(1—e®) + ei®
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Modifying the last step

(1~ e?)go\/1~ g5
cot[(2s + 1)0] = °

ga(1—e®) + ei®

First find ¢ and then choose 7 to make the right side of the equation real

Compute the modulus squared of the right side of the equation to make it real
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which then gives 4g8 —4gd +1 - (288 — 1)2
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Modifying the last step

(1~ e?)go\/1~ g5
cot[(2s + 1)0] = °

ga(1—e®) + ei®

First find ¢ and then choose 7 to make the right side of the equation real

Compute the modulus squared of the right side of the equation to make it real

e T(1—e)goy/1—gf €eT(1—e?)go/1 - g}

gl—e ) te s gi(l—ei?)+ei
B (2—el® — e ?)g2(1 — g2) B g2b3(2 — 2 cos ¢)
Cgl(2—e? — e i?) 4 g2(ed + e i?—2)+1 gf(2—2cos¢) — gi(2 —2cos¢) + 1
This can be maximized when cos¢ = —1 4g2b3 B 4g2b3
which then gives 4gd —4g2+1 (283 —1)2
Taking the square root gives the maximum 2g0bo _ 280bo
magnitude and recalling that gy = sin6 2g3 -1 g§ - b(2>
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Modifying the last step

(1~ e?)go\/1~ g5
cot[(2s + 1)0] = °

ga(1—e®) + ei®

First find ¢ and then choose 7 to make the right side of the equation real

Compute the modulus squared of the right side of the equation to make it real

e T(1—e)goy/1—gf €eT(1—e?)go/1 - g}

G- rei®  gi- o)+ el
B (2—el® — e ?)g2(1 — g2) B g2b3(2 — 2 cos ¢)
Cgl(2—e? — e i?) 4 g2(ed + e i?—2)+1 gf(2—2cos¢) — gi(2 —2cos¢) + 1
This can be maximized when cos¢ = —1 4g2b3 _ 4géh}
which then gives 4g8 —4gd +1 - (288 — 1)2
Taking the square root gives the m?ximum 2%Obo _ 22g0b02 — tan(20)
magnitude and recalling that gy = sin6 2g5 —1 gy — by
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Modifying the last step \ 4

e'™(1—e)goy/1 — g The right side can be any value from 0 to
cot[(2s +1)0] = 2(1_ oid P tan(26) so the last step can be adjusted
gs(l1—e?)+e
as needed

First find ¢ and then choose 7 to make the right side of the equation real

Compute the modulus squared of the right side of the equation to make it real

e T(1—e)goy/1—gf €eT(1—e?)go/1 - g}

G- rei®  gi- o)+ el
B (2—el® —e7?)g2(1 — g2) B g2b3(2 — 2 cos ¢)
gl(2—e? — e i?) 4 g2(e® + e i?—2)+1 gf(2—2cos¢) — gd(2 —2cos¢) + 1
This can be maximized when cos¢ = —1 4g2b3 _ 4géh}
which then gives 4g8 —4gd +1 - (288 — 1)2
Taking the square root gives the m?ximum 2%Obo _ 22g0b02 — tan(20)
magnitude and recalling that gy = sin6 2g5 —1 gy — by
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Unknown number of solutions i

In order to achieve a solution with certainty using a Grover-like search algorithm, it is
necessary to know how many iterations to apply
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Unknown number of solutions

In order to achieve a solution with certainty using a Grover-like search algorithm, it is
necessary to know how many iterations to apply

This requires a knowledge of gy, which is a measure of how many solutions exist, so what if
the number of solutions is unknown?
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In order to achieve a solution with certainty using a Grover-like search algorithm, it is
necessary to know how many iterations to apply

This requires a knowledge of gy, which is a measure of how many solutions exist, so what if
the number of solutions is unknown?

Two methods are available: (1) repeated searches with a random number of iterations of Q,
and (2) quantum counting using the quantum Fourier transform
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the number of solutions is unknown?

Two methods are available: (1) repeated searches with a random number of iterations of Q,
and (2) quantum counting using the quantum Fourier transform

Consider a problem with tN solutions and t is unknown
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In order to achieve a solution with certainty using a Grover-like search algorithm, it is
necessary to know how many iterations to apply

This requires a knowledge of gy, which is a measure of how many solutions exist, so what if
the number of solutions is unknown?

Two methods are available: (1) repeated searches with a random number of iterations of Q,
and (2) quantum counting using the quantum Fourier transform

Consider a problem with tN solutions and t is unknown

The strategy is to repeatedly execute Grover's algorithm with a number of iterations chosen
randomly from between 0 and 7/ N times
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Unknown number of solutions \ i

In order to achieve a solution with certainty using a Grover-like search algorithm, it is
necessary to know how many iterations to apply

This requires a knowledge of gy, which is a measure of how many solutions exist, so what if
the number of solutions is unknown?

Two methods are available: (1) repeated searches with a random number of iterations of Q,
and (2) quantum counting using the quantum Fourier transform

Consider a problem with tN solutions and t is unknown

The strategy is to repeatedly execute Grover's algorithm with a number of iterations chosen
randomly from between 0 and 7/ N times

The average probability of success for a run
with a randomly chosen i iterations of @
between 0 and r is
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Unknown number of solutions \ i

In order to achieve a solution with certainty using a Grover-like search algorithm, it is
necessary to know how many iterations to apply

This requires a knowledge of gy, which is a measure of how many solutions exist, so what if
the number of solutions is unknown?

Two methods are available: (1) repeated searches with a random number of iterations of Q,
and (2) quantum counting using the quantum Fourier transform

Consider a problem with tN solutions and t is unknown

The strategy is to repeatedly execute Grover's algorithm with a number of iterations chosen
randomly from between 0 and 7/ N times

The average probability of success for a run

with a randomly chosen i iterations of Q (i< r) Zsm [(2i +1)0], sinf =/t
between 0 and r is
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Repeated random searches N

P (i <r) Zsm2[(2/ +1)6]
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Repeated random searches

P.(i<r) Zsmz[(2/ +1)6]

For example, for t = 0.0001 and 6 ~ 0.01 we
can plot the probability P, of finding the solu-
tion when choosing a random number of iter-
ations along choosing exactly r iterations as a
function of r
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Repeated random searches

P.(i<r) Zsmz[(2/ +1)6]

For example, for t = 0.0001 and 6 ~ 0.01 we
can plot the probability P, of finding the solu-
tion when choosing a random number of iter-
ations along choosing exactly r iterations as a
function of r

For all r > %\/% ~ 7z there is a constant ¢
such that P, (i <r)>c
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Repeated random searches i

P.(i<r) Zsmz[(2l +1)6]

For example, for t = 0.0001 and 6 ~ 0.01 we
can plot the probability P, of finding the solu- o~ 05|
tion when choosing a random number of iter-
ations along choosing exactly r iterations as a
function of r

1 ~ T there is a constant ¢
t 40 00 .

) > c 0 /26 /o 3m/260
r

For all r > %
such that P,(i < r

If % < N, that is if there is at least one solution, choosing r = 7+/N guarantees a probability
of at least ¢ of finding the solution with a single run of the algorithm
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Repeated random searches i

(i< r) Zsm (2i +1)6]

For example, for t = 0.0001 and 6 ~ 0.01 we
can plot the probability P, of finding the solu- o~ 05 [
tion when choosing a random number of iter-
ations along choosing exactly r iterations as a
function of r

0.0 ‘
) > c 0 /26 /o 3m/260

r

For all r > %\/% ~ 7z there is a constant ¢
such that P,(i < r

If % < N, that is if there is at least one solution, choosing r = 7+/N guarantees a probability
of at least ¢ of finding the solution with a single run of the algorithm

This means that the expected number of calls to the oracle is O(v/N)
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Quantum counting V

Instead of brute force repetition, quantum counting is a more quantum-like approach which is
also O(V/N) in oracle queries
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Quantum counting V
Instead of brute force repetition, quantum counting is a more quantum-like approach which is
also O(V/'N) in oracle queries

The strategy is to create a superposition of results for different applications of @ and then use
the quantum Fourier transform to get an estimate of the relative number of solutions t which

can then be used to apply Grover's algorithm optimally
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Quantum counting \ 74

Instead of brute force repetition, quantum counting is a more quantum-like approach which is
also O(V/'N) in oracle queries

The strategy is to create a superposition of results for different applications of @ and then use
the quantum Fourier transform to get an estimate of the relative number of solutions t which
can then be used to apply Grover's algorithm optimally

If U and @ be defined as for Grover's algorithm,

define a transformation Rq with inputs |k) and |¢))
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Instead of brute force repetition, quantum counting is a more quantum-like approach which is
also O(V/'N) in oracle queries

The strategy is to create a superposition of results for different applications of @ and then use
the quantum Fourier transform to get an estimate of the relative number of solutions t which
can then be used to apply Grover's algorithm optimally

If U and @ be defined as for Grover's algorithm, k
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Quantum counting \

Instead of brute force repetition, quantum counting is a more quantum-like approach which is
also O(V/'N) in oracle queries

The strategy is to create a superposition of results for different applications of @ and then use
the quantum Fourier transform to get an estimate of the relative number of solutions t which
can then be used to apply Grover's algorithm optimally

If U and @ be defined as for Grover's algorithm, k
Ro : |k k
define a transformation Rq with inputs |k) and |¢)) o:lk@ly)  — |k eQTY)
Apply Rg to a superposition of all k < M = 2™ tensored with U|0)
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Quantum counting V
Instead of brute force repetition, quantum counting is a more quantum-like approach which is
also O(V/'N) in oracle queries

The strategy is to create a superposition of results for different applications of @ and then use
the quantum Fourier transform to get an estimate of the relative number of solutions t which
can then be used to apply Grover's algorithm optimally

If U and @ be defined as for Grover's algorithm,

Rq : |k k g
define a transformation Rq with inputs |k) and |¢)) o:lk@ly)  — |k eQTY)

Apply Rg to a superposition of all k < M = 2™ tensored with U|0)

1 M-1 1 M-1
— ) _|k)®U|0) —— ) k) ® (gklve) + bilis)
M ; M kzz;) (gk G k|¥B )

Measureing the right register gives a state |x) that is a good state or a bad state so that the
left register collapses to

Rq
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Apply Rg to a superposition of all k < M = 2™ tensored with U|0)

1 M-1 1 M-1
— ) _|k)®U|0) —— ) k) ® (gklve) + bilis)
M ; M kzz;) (gk G k|¥B )

Measureing the right register gives a state |x) that is a good state or a bad state so that the
left register collapses to

Rq

M-1 M-1
) = C > bulk) or [¢) =C" Y gxlk)
k=0 k=0

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 24, 2022 10/11



Quantum counting V

M-1 M—1
) = C > bulk) ) =0 k)
k=0 k=0
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Quantum counting V
M-1 M—1

) =C " bilk) =Y aldk
k=0 —o

We know that gx = sin[(2k + 1)6] and by = cos[(2k + 1)6] so we can write
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Quantum counting i

M—1 M—-1 M—-1
) = C Y belk) = C > cos[(2k + 1)A][k), [v)' = C" > exlk)
k=0 k=0 k=0

We know that gx = sin[(2k + 1)6] and by = cos[(2k + 1)6] so we can write
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Quantum counting V

M—-1 M—-1 M—-1 M—1
) = C > bilk) = C > cos[(2k + 1)0][k), [) =C" > gulk) = C' > sin[(2k + 1)0]|k)
k=0 k=0 k=0 k=0

We know that gx = sin[(2k + 1)6] and by = cos[(2k + 1)6] so we can write
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Quantum counting V'

M—-1 M-1 M—-1
=C > blk)=C Y cos[(2k + 1)0][k), [)' = C' Z gulk) = C' Y sin[(2k + 1)0][k)
k=0 k=0 k=0

We know that gx = sin[(2k + 1)6] and by = cos[(2k + 1)6] so we can write

Suppose [1)) is the result, we apply the quan-
tum Fourier transform to get

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 24, 2022 11/11



Quantum counting V'

M—-1 M-1 M—-1
=C > blk)=C Y cos[(2k + 1)0][k), [)' = C' Z gulk) = C' Y sin[(2k + 1)0][k)
k=0 k=0 k=0

We know that gx = sin[(2k + 1)6] and by = cos[(2k + 1)6] so we can write

Suppose [1)) is the result, we apply the quan- . — _
tum Fourier transform to get F:C Z by|k) — Z BJ|J>
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Quantum counting vV

M-1 M-1 M-1 M—-1
) =C > belk) = C Y cos[(2k + 1)0)|k), [ib)' =C" Y gilk) =C" > sin[(2k + 1)0]|k)
k=0 k=0 k=0 k=0

We know that gx = sin[(2k + 1)6] and by = cos[(2k + 1)6] so we can write

Suppose [1)) is the result, we apply the quan- r.c M-1 bl M-1 oy
tum Fourier transform to get ' kz;) klk) — z; L)
_ =

Recall from the previous discussion that for a cosine function of period 7, most of the

amplitude appears in the B; which are close to the single value M79
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Quantum counting vV

M-1 M-1 M-1 M—-1
) =C > belk) = C Y cos[(2k + 1)0)|k), [ib)' =C" Y gilk) =C" > sin[(2k + 1)0]|k)
k=0 k=0 k=0 k=0

We know that gx = sin[(2k + 1)6] and by = cos[(2k + 1)6] so we can write

Suppose [1)) is the result, we apply the quan- r.c M-1 bl M-1 oy
tum Fourier transform to get ' kz;) klk) — z; L)
_ =

Recall from the previous discussion that for a cosine function of period 7, most of the

amplitude appears in the B; which are close to the single value M79

By measuring the Fourier transformed state, we obtain a state |j) which permits good

approximation to 6 by taking 6 = 77 and thus t ~ v/sin @ with high probability
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Quantum counting \ 74

M-1 M-1 M-1 M-1
) =C > belk) = C Y cos[(2k + 1)0)|k), [ib)' =C" Y gilk) =C" > sin[(2k + 1)0]|k)
k=0 k=0 k=0 k=0

We know that gx = sin[(2k + 1)6] and by = cos[(2k + 1)6] so we can write

Suppose [1)) is the result, we apply the quan- r.c M-1 bl M-1 oy
tum Fourier transform to get ' kz;) klk) — z; L)
_ =

Recall from the previous discussion that for a cosine function of period %, most of the

amplitude appears in the B; which are close to the single value M79

By measuring the Fourier transformed state, we obtain a state |j) which permits good

approximation to 6 by taking 6 = Wm and thus t ~ +/sin 8 with high probability
M can be determined by repeating this algorithm with increasing values of M until j is
measured to be a non-zero value
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