
Today’s outline - March 24, 2022

• Improving Grover’s algorithm

(a) Modifying the iteration distance
(b) Modifying the last iteration

• Solving for t

(a) Repeated random iterations
(b) Quantum counting

Reading assignment: 10.1 – 10.3

Homework Assignment #06:
See Blackboard
Due Thursday, March 31, 2022

Quantum circuit simulator https://algassert.com/quirk
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Improving Grover’s algorithm

When I chose the angles for the geometric
argument, I selected g0 = sin

(
π
18

)

This leads to an optimal case where we can
obtain gi = 1 as can be seen from the dia-
gram

Grover’s algorithm is not inherently proba-
bilstic as evident from the geometric discus-
sion

Thus it is possible to improve on it and guar-
antee a solution with quadratic speedup

There are two different methods to accom-
plish this

B

G

1

U 0
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Modifying each step
Recall that the probability t is related to an angle θ

The optimal number of iterations is given by

If the quantity π
4θ −

1
2 is an integer then for

√
t = sin θ = g0

i ≈ π

4g0
≈ π

4θ

i =
π

4θ
− 1

2
−→ gi ≡ 1

Thus the strategy to getting the solution with certainty is to replace U by U ′ with success
probability g ′

0 < g0 such that for sin θ′ = g ′
0,

π
4θ′ −

1
2 is an integer

This can be done by using an additional qubit b

Given U with success probability g0 which acts on an
n-qubit register |s⟩, define U ′ = U ⊗ B acting on an
(n + 1)-qubit register |s⟩|b⟩ where

Amplitude amplification is performed on the (n+ 1)-
qubit state using an iteration operator

B|0⟩ =

√
1−

g ′
0
2

g2
0

|0⟩+

√
g ′
0
2

g2
0

|1⟩

Q ′ = −U ′Sπ
0 (U

′)−1Sπ
G ′

This algorithm now succeeds with certainty in i = π
4θ′ −

1
2 steps
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Modifying the last step

A second method is to modify just the last step to obtain gi ≡ 1

Consider transformations of the form

Sϕ
X can be implemented efficiently using

an ancilla qubit as shown previously

Given any quantum state |v⟩, we can
write the general form of the relation ob-
tained for ϕ = π

This can be derived by representing |v⟩
in the U|i⟩ basis and applying USϕ

0 U
−1

Q(ϕ, τ) = −USϕ
0 U

−1Sτ
G

Sϕ
X =

{
e iϕ|x⟩ |x⟩ ∈ X

|x⟩ |x⟩ /∈ X

USϕ
0 U

−1|v⟩ = |v⟩ −
(
1− e iϕ

)
⟨v |U|v⟩U|0⟩

|v⟩ =
N−1∑
i=1

⟨v |U|i⟩U|i⟩+ ⟨v |U|0⟩U|0⟩

USϕ
0 U

−1|v⟩ = USϕ
0

(
N−1∑
i=1

⟨v |U|i⟩|i⟩+ ⟨v |U|0⟩|0⟩

)
= U

(
N−1∑
i=1

⟨v |U|i⟩|i⟩+ ⟨v |Ue iϕ|0⟩|0⟩

)
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Modifying the last step

USϕ
0 U

−1|v⟩ = U

(
N−1∑
i=1

⟨v |U|i⟩|i⟩+ ⟨v |U|0⟩e iϕ|0⟩

)

=
N−1∑
i=1

⟨v |U|i⟩U|i⟩+ e iϕ⟨v |U|0⟩U|0⟩

=
N−1∑
i=0

⟨v |U|i⟩U|i⟩ − ⟨v |U|0⟩U|0⟩+ e iϕ⟨v |U|0⟩U|0⟩ = |v⟩ −
(
1− e iϕ

)
⟨v |U|0⟩U|0⟩

Now applying Q(ϕ, τ) = USϕ
0 U

−1Sτ
G on the superposition |v⟩ = g |vG ⟩+ b|vB⟩

Q(ϕ, τ)|v⟩ = g
[
− e iτ |vG ⟩+ e iτ

(
1− e iϕ

)
⟨vG |U|0⟩U|0⟩

]
+ b
[
− |vB⟩+

(
1− e iϕ

)
⟨vB |U|0⟩U|0⟩

]
After s = ⌊ π

4θ −
1
2⌋ iterations of amplification, we have the state

|ψs⟩ = sin[(2s + 1)θ]|ψG ⟩+ cos[(2s + 1)θ]|ψB⟩, sin θ =
√
t = g0

Q(ϕ, τ)|ψG ⟩ = e iτ
[(
1− e iϕ

)
g2
0 − 1

]
|ψG ⟩+ e iτ

(
1− e iϕ

)
g0b0|ψB⟩

Q(ϕ, τ)|ψB⟩ = e iτ
(
1− e iϕ

)
b0g0|ψG ⟩+ e iτ

[(
1− e iϕ

)
b20 − 1

]
|ψB⟩

Q(ϕ, τ)|ψ⟩ = g(ϕ, τ)|ψG ⟩+ b(ϕ, τ)|ψB⟩
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Q(ϕ, τ)|ψ⟩ = g(ϕ, τ)|ψG ⟩+ b(ϕ, τ)|ψB⟩

g(ϕ, τ) = sin[(2s + 1)θ]e iτ
[(
1− e iϕ

)
g2
0 − 1

]
+ cos[(2s + 1)θ]

(
1− e iϕ

)
b0g0

b(ϕ, τ) = sin[(2s + 1)θ]e iτ
(
1− e iϕ

)
g0b0 + cos[(2s + 1)θ]

[(
1− e iϕ

)
b20 − 1

]
The goal is to find values for ϕ and τ such that when the final iteration Q(ϕ, τ) = USϕ

0 U
−1Sτ

G

is applied the solution is obtained with certainty

This boils down to finding a solution to b(ϕ, τ) = 0 and recalling that b0 =
√
1− g2

0

sin[(2s + 1)θ]e iτ
(
1− e iϕ

)
g0b0+cos[(2s + 1)θ]

[(
1− e iϕ

)
b20 − 1

]
= 0

e iτ
(
1− e iϕ

)
g0

√
1− g2

0 sin[(2s + 1)θ] =
[
1−

(
1− e iϕ

)
(1− g2

0 )
]
cos[(2s + 1)θ]

cot[(2s + 1)θ] =
e iτ (1− e iϕ)g0

√
1− g2

0

g2
0 (1− e iϕ) + e iϕ
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Unknown number of solutions

In order to achieve a solution with certainty using a Grover-like search algorithm, it is
necessary to know how many iterations to apply

This requires a knowledge of g0, which is a measure of how many solutions exist, so what if
the number of solutions is unknown?

Two methods are available: (1) repeated searches with a random number of iterations of Q,
and (2) quantum counting using the quantum Fourier transform

Consider a problem with tN solutions and t is unknown

The strategy is to repeatedly execute Grover’s algorithm with a number of iterations chosen
randomly from between 0 and π

4

√
N times

The average probability of success for a run
with a randomly chosen i iterations of Q
between 0 and r is

Pr (i < r) =
1

r

r−1∑
i=0

sin2[(2i + 1)θ], sin θ =
√
t
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Repeated random searches

Pr (i < r) =
1

r

r−1∑
i=0

sin2[(2i + 1)θ]

For example, for t = 0.0001 and θ ≈ 0.01 we
can plot the probability Pr of finding the solu-
tion when choosing a random number of iter-
ations along choosing exactly r iterations as a
function of r

For all r ≥ π
4

√
1
t ≈ π

4θ there is a constant c

such that Pr (i < r) > c
0.0

0.5

1.0

0 π/2θ π/θ 3π/2θ

P
r

r

If 1
t ≤ N, that is if there is at least one solution, choosing r = π

4

√
N guarantees a probability

of at least c of finding the solution with a single run of the algorithm

This means that the expected number of calls to the oracle is O(
√
N)
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Quantum counting

Instead of brute force repetition, quantum counting is a more quantum-like approach which is
also O(

√
N) in oracle queries

The strategy is to create a superposition of results for different applications of Q and then use
the quantum Fourier transform to get an estimate of the relative number of solutions t which
can then be used to apply Grover’s algorithm optimally

If U and Q be defined as for Grover’s algorithm,
define a transformation RQ with inputs |k⟩ and |ψ⟩ RQ : |k⟩ ⊗ |ψ⟩ −→ |k⟩ ⊗ Qk |ψ⟩

Apply RQ to a superposition of all k < M = 2m tensored with U|0⟩

1√
M

M−1∑
k=0

|k⟩ ⊗ U|0⟩ RQ−−→ 1√
M

M−1∑
k=0

|k⟩ ⊗
(
gk |ψG ⟩+ bk |ψB⟩

)
Measureing the right register gives a state |x⟩ that is a good state or a bad state so that the
left register collapses to

|ψ⟩ = C
M−1∑
k=0

bk |k⟩ or |ψ⟩′ = C ′
M−1∑
k=0

gk |k⟩
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Quantum counting

|ψ⟩ = C
M−1∑
k=0

bk |k⟩

= C
M−1∑
k=0

cos[(2k + 1)θ]|k⟩

, |ψ⟩′ = C ′
M−1∑
k=0

gk |k⟩

= C ′
M−1∑
k=0

sin[(2k + 1)θ]|k⟩

We know that gk = sin[(2k + 1)θ] and bk = cos[(2k + 1)θ] so we can write

Suppose |ψ⟩ is the result, we apply the quan-
tum Fourier transform to get

F : C
M−1∑
k=0

bk |k⟩ −→
M−1∑
j=0

Bj |j⟩

Recall from the previous discussion that for a cosine function of period π
θ , most of the

amplitude appears in the Bj which are close to the single value Mθ
π

By measuring the Fourier transformed state, we obtain a state |j⟩ which permits good
approximation to θ by taking θ = πj

M and thus t ≈
√
sin θ with high probability

M can be determined by repeating this algorithm with increasing values of M until j is
measured to be a non-zero value
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