Today's outline - March 22, 2022 vV

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022 1/11



Today's outline - March 22, 2022 vV

® Generalization of Grover's algorithm

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022 1/11



Today's outline - March 22, 2022 vV

® Generalization of Grover's algorithm

® Geometry of amplitude amplification

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022 1/11



Today's outline - March 22, 2022 vV

® Generalization of Grover's algorithm
® Geometry of amplitude amplification

® Optimality of Grover's algorithm

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022 1/11



Today's outline - March 22, 2022 i

® Generalization of Grover's algorithm
® Geometry of amplitude amplification

® Optimality of Grover's algorithm

Reading assignment: 9.5 - 9.6, 10.1

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022 1/11



Today's outline - March 22, 2022 i

® Generalization of Grover's algorithm
® Geometry of amplitude amplification

® Optimality of Grover's algorithm

Reading assignment: 9.5 - 9.6, 10.1

Homework Assignment #06:
See Blackboard
Due Thursday, March 31, 2022

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022 1/11



Today's outline - March 22, 2022 3

® Generalization of Grover's algorithm
® Geometry of amplitude amplification

® Optimality of Grover's algorithm

Reading assignment: 9.5 - 9.6, 10.1

Homework Assignment #06:
See Blackboard
Due Thursday, March 31, 2022

Quantum circuit simulator https://algassert.com/quirk

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022 1/11



Generalization of Grover's algorithm A

The first step in Grover's algorithm is to apply the @ = —WS7 WSZ operator to an initial

state [¢)]—)

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022 2/11



Generalization of Grover's algorithm

A\

The first step in Grover's algorithm is to apply the @ = —WS7 WSZ operator to an initial
state [¢)|—)

The initial state created by W|0) = |¢) has uniformly distributed intensities in all states

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing

March 22, 2022 2/11



Generalization of Grover's algorithm

The first step in Grover's algorithm is to apply the @ = —WS7 WSZ operator to an initial
state [¢)|—)

The initial state created by W|0) = |¢) has uniformly distributed intensities in all states

If, instead, we have a transformation U which applied to |0) gives a solution with higher
probability, it is possible to generalize Grover's algorithm

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022

2/11



Generalization of Grover's algorithm VY

The first step in Grover's algorithm is to apply the @ = —WS7 WSZ operator to an initial

state [¢)|—)
The initial state created by W|0) = |¢) has uniformly distributed intensities in all states

If, instead, we have a transformation U which applied to |0) gives a solution with higher
probability, it is possible to generalize Grover's algorithm

As before, divide the space spanned by |x) into a good subspace G spanned by {|x)|x € G} and
a bad subspace B spanned by {|x)|x ¢ G} with projection operators Pg and Ppg respectively

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022 2/11



Generalization of Grover's algorithm VY

The first step in Grover's algorithm is to apply the @ = —WS7 WSZ operator to an initial

state [1))|-)

The initial state created by W|0) = |¢) has uniformly distributed intensities in all states

If, instead, we have a transformation U which applied to |0) gives a solution with higher
probability, it is possible to generalize Grover's algorithm

As before, divide the space spanned by |x) into a good subspace G spanned by {|x)|x € G} and
a bad subspace B spanned by {|x)|x ¢ G} with projection operators Pg and Ppg respectively

The state [¢) is generated by U

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022 2/11



Generalization of Grover's algorithm VY

The first step in Grover's algorithm is to apply the @ = —WS7 WSZ operator to an initial

state [1))|-)

The initial state created by W|0) = |¢) has uniformly distributed intensities in all states

If, instead, we have a transformation U which applied to |0) gives a solution with higher
probability, it is possible to generalize Grover's algorithm

As before, divide the space spanned by |x) into a good subspace G spanned by {|x)|x € G} and
a bad subspace B spanned by {|x)|x ¢ G} with projection operators Pg and Ppg respectively

The state [¢) is generated by U ) = U|0)

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022 2/11



Generalization of Grover's algorithm VY

The first step in Grover's algorithm is to apply the @ = —WS7 WSZ operator to an initial

state [1))|-)

The initial state created by W|0) = |¢) has uniformly distributed intensities in all states

If, instead, we have a transformation U which applied to |0) gives a solution with higher
probability, it is possible to generalize Grover's algorithm

As before, divide the space spanned by |x) into a good subspace G spanned by {|x)|x € G} and
a bad subspace B spanned by {|x)|x ¢ G} with projection operators Pg and Ppg respectively

The state [¢) is generated by U ) = U]0)

and can be written

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022 2/11



Generalization of Grover's algorithm VY

The first step in Grover's algorithm is to apply the @ = —WS7 WSZ operator to an initial

state [1))|-)

The initial state created by W|0) = |¢) has uniformly distributed intensities in all states

If, instead, we have a transformation U which applied to |0) gives a solution with higher
probability, it is possible to generalize Grover's algorithm

As before, divide the space spanned by |x) into a good subspace G spanned by {|x)|x € G} and
a bad subspace B spanned by {|x)|x ¢ G} with projection operators Pg and Ppg respectively

The state [¢) is generated by U |v) = U|0) = go|vg) + bolts)

and can be written

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022 2/11



Generalization of Grover's algorithm

The first step in Grover's algorithm is to apply the @ = —WS7 WSZ operator to an initial

state [1))|-)

The initial state created by W|0) = |¢) has uniformly distributed intensities in all states

If, instead, we have a transformation U which applied to |0) gives a solution with higher
probability, it is possible to generalize Grover's algorithm

As before, divide the space spanned by |x) into a good subspace G spanned by {|x)|x € G} and
a bad subspace B spanned by {|x)|x ¢ G} with projection operators Pg and Ppg respectively

The state [¢) is generated by U |v) = U|0) = go|vg) + bolts)
and can be written le) = éPQW% lYg) = b%PBW)

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022 2/11



Generalization of Grover's algorithm VY

The first step in Grover's algorithm is to apply the @ = —WS7 WSZ operator to an initial

state [¢)|—)
The initial state created by W|0) = |¢) has uniformly distributed intensities in all states

If, instead, we have a transformation U which applied to |0) gives a solution with higher
probability, it is possible to generalize Grover's algorithm

As before, divide the space spanned by |x) into a good subspace G spanned by {|x)|x € G} and
a bad subspace B spanned by {|x)|x ¢ G} with projection operators Pg and Ppg respectively

The state [¢) is generated by U |v) = U|0) = go|vg) + bolts)
and can be written le) = éPQW% lYg) = b%PBW)

Since all states are normalized we can write

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022 2/11



Generalization of Grover's algorithm

The first step in Grover's algorithm is to apply the @ = —WS7 WSZ operator to an initial

state [¢)|—)
The initial state created by W|0) = |¢) has uniformly distributed intensities in all states

If, instead, we have a transformation U which applied to |0) gives a solution with higher
probability, it is possible to generalize Grover's algorithm

As before, divide the space spanned by |x) into a good subspace G spanned by {|x)|x € G} and
a bad subspace B spanned by {|x)|x ¢ G} with projection operators Pg and Ppg respectively

The state [¢) is generated by U |v) = U|0) = go|vg) + bolts)
and can be written le) = éPQW% lYg) = b%PBW)
Since all states are normalized we can write go = |Pgl)l, bo = |Pglt)|

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022 2/11



Generalization of Grover's algorithm VY
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and can be written le) = éPQW% lYg) = b%PBW))
Since all states are normalized we can write go = |Pgl)l, bo = |Pglt)|

Note that U does not necessarily produce an equal superposition of all the good states and
thus gp and by are not determined only by the number of solutions
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= git1|Ye) + bit1|vs)

Which give the same recursion relations and solutions as for U = W

gi+1 = g,-(l — 2t) + 2b;+/ t(l — t), b,'+1 = b,'(]. — 2t) — 2g; t(]. — t)
gi =sin ((2i +1)9), bi = cos ((2i +1)8), sinf = vt = go
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= git1lv6) + biy1|vs)
Which give the same recursion relations and solutions as for U = W
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Qlvg) = (1 —2t)|[vg) —2/t(1 —t)[vg), Qlvs) = (1 —2t)[¢g) — 2v/t(1 — t)|vbg)
Thus, applied to an arbitrary real superposition of |¢g) and [¢g)
Q(gilte) + bilvs)) = (&i(1 — 2t) + 2b;/t(1 — 1)) [vo6) + (bi(1 — 2t) — 2giV/t(1 — 1)) [vo)
= git1lv6) + biy1|vs)
Which give the same recursion relations and solutions as for U = W
gir1 = &1 —2t) + 2bi/t(1 — 1), biy1 = bi(1 —2t) — 2gj\/t(1 — t)
gi =sin ((2i +1)9), bi = cos ((2i +1)8), sinf = vt = go

o . S .
For small gp, gi will be maximal after i =~ 1, Iterations

Amplitude amplification allows a solution to be found in O(/1/t) iterations unless, go = 0 or
if it is large
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Geometry of amplitude amplification \ 74

The transformation consists of repeated applications of Q = —US§ U—lsg
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The transformation consists of repeated applications of Q = —US§ U—lsg
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Geometry of amplitude amplification

The transformation consists of repeated applications of Q = —US§ U—lsg
Y]

Consider the hyperplane spanned by
{lve), [vB)}
The application of U to |0) produces a state

1v0) = golY6) + bolY)

The transformation S7. is a reflection about
a plane perpendicular to |1¢), in this case

[vB)

The transformation US(’,TU*1 is a reflection
about a plane perpendicular to U|0)

. . : )
The negative sign simply inverts the state %
which is seen to have been rotated by m—23
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Geometry of amplitude amplification

The transformation consists of repeated applications of Q = —US§ U—lsg

Consider the hyperplane spanned by
{lve), [vB)}

The application of U to |0) produces a state

1v0) = goltG) + bolvs)

The transformation S7. is a reflection about
a plane perpendicular to |1¢), in this case

[vB)

The transformation US(’,TU*1 is a reflection
about a plane perpendicular to U|0)

The negative sign simply inverts the state
which is seen to have been rotated by m—23

()

uloy

Repeated applications bring g; to its maximum whatever the arbitrary initial state

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing

March 22, 2022

(Y

5/11



Optimality of Grover's algorithm YV

It is useful to prove that Grover's algorithm is the optimal search algorithm
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Optimality of Grover's algorithm A\

It is useful to prove that Grover's algorithm is the optimal search algorithm
Suppose there is a single solution, x, to the oracle transformation, Up

Recall that the transformation S can be computed from the oracle, Up, thus S can be used
as the interface to the oracle with out loss of generality

An arbitrary quantum search algorithm can be described as an alternating sequence of unitary
transformations independent of x, U; and calls to the oracle, ST
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Recall that the transformation S can be computed from the oracle, Up, thus S can be used
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transformations independent of x, U; and calls to the oracle, ST

V) = UkST U1 ST UiSTUl0), [0 * > 5
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Optimality of Grover's algorithm A\

It is useful to prove that Grover's algorithm is the optimal search algorithm
Suppose there is a single solution, x, to the oracle transformation, Up

Recall that the transformation S can be computed from the oracle, Up, thus S can be used
as the interface to the oracle with out loss of generality

An arbitrary quantum search algorithm can be described as an alternating sequence of unitary
transformations independent of x, U; and calls to the oracle, ST

k) = UkSE Up-1SY - .. U1 ST U |0), [(x|vi? > 3
with the constraint that the probability of finding the solution in k steps is at least 50%
The proof of optimality lies in comparing three classes of quantum states:
Ix;) = e'%|x) — the phase adjusted solution with €% = (x|¢%)/|(x|e})| and (x}|17) real

|g) — the state of the computation after k steps
|thk) = UgUk_1 ... U1 Up|0) — k transformations without consulting the oracle
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Optimality of Grover's algorithm YV

Consider the distances between the three pairs of states and their averages
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Optimality of Grover's algorithm

Consider the distances between the three pairs of states and their averages

dix = |[U5) = 10 ane = [103) = X)), i = [Ixk) — [0 ]
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Optimality of Grover's algorithm

Consider the distances between the three pairs of states and their averages

dix = |[U5) = 10 ane = [103) = X)), i = [Ixk) — [0 ]

D=y Yk A=y d.  G=3Y
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Optimality of Grover's algorithm

Consider the distances between the three pairs of states and their averages

e = 100 = 1], ae = 108D — x|, ai = [Ixi0) = [90i)|
1 1 1
_delng Ak:ﬁzaixv Ck:NZCI%X

By the definition of |x;) we have that (¢{|x;) > and
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Optimality of Grover's algorithm

Consider the distances between the three pairs of states and their averages

dix = |[U5) = 10 ane = [103) = X)), i = [Ixk) — [0 ]

1 1
e DO SRR 3E S
By the definition of |x;) we have that (¢{|x;) > % and

B = |[05) — x| ? = (WRIUE) — 20xk[0) + (xklxk)
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Optimality of Grover's algorithm i
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Optimality of Grover's algorithm NG

Consider the distances between the three pairs of states and their averages
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Optimality of Grover's algorithm NG

Consider the distances between the three pairs of states and their averages

e = 100 = 1], ae = 108D — x|, ai = [Ixi0) = [90i)|
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Optimality of Grover's algorithm NG

Consider the distances between the three pairs of states and their averages

e = 100 = 1], ae = 108D — x|, ai = [Ixi0) = [90i)|
1 1 1
_delng Ak:NZaixv Ck:NZCI%X

By the definition of |x;) we have that (¢{|x;) > \% and

B = |[05) — X0 ? = (WRIUE) — 20k [05) + (xklxk) <2 — V2 — Ak <242

Similarly, we can put a bound on ¢2,

o = |IXk) — |¢k>‘ | k|x) — Wk)\z = (Wilhk) — e (Wie|x) — e (1) + (x[x)
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Optimality of Grover's algorithm YV

Ci =2 — |(vulx)|
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Optimality of Grover's algorithm i
Ck 2—‘¢k\x 2—7 le/)k|x

In order to evaluate this, we need to use the Cauchy-Schwartz inequality

doumis D oud v
i j k

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022 8/11



Optimality of Grover's algorithm i
Cie > 2 — [ (¢hx|x) | >2—7 Z| (elx)|

In order to evaluate this, we need to use the Cauchy-Schwartz inequality

doumis D oud v
i j k

Thus C, > 1 for N > 4
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Optimality of Grover's algorithm \ 74
G > 2 — |[(vx]x)| >2—7 Z| ¢k|x

In order to evaluate this, we need to use the Cauchy-Schwartz inequality

Suwvi< [Ty M 3w < VN Y
i j k i=0 =

Thus C, > 1 for N > 4

Turning to dy, first determine how much the distance between [¢¥) and [¢,) can increase
with each iteration, consider
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Optimality of Grover's algorithm
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1 , _ 4K?
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We have established the following bounds on the distances of interest
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Recalling that Dy is bounded, we can write
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Recalling that Ck21onlyforN24and122—\/§2Ak, ifg=1- 242

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022 11/11



Optimality of Grover's algorithm i
Recalling that Dy is bounded, we can write

ez A VAGH G- (VG- VA 2 (12 v2)
Recalling that C, > 1 only for N > 4 and 1>2—V2> A, ifg=1- 242

4k
v =

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022 11/11



Optimality of Grover's algorithm i
Recalling that Dy is bounded, we can write
ez A VAGH G- (VG- VA 2 (12 v2)
Recalling that C, > 1 only for N > 4 and 1>2—V2> A, ifg=1- 242
42

q
2> s k> 2N
N =9 =9

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022 11/11



Optimality of Grover's algorithm i

Recalling that Dy is bounded, we can write

4k2 2 2
2 Dz A= VAG+ Go= (VG- VA z(1—\/2—\6>

Recalling that Ck21onlyforN24and122—\/§2Ak, ifg=1- 242

4k2 5 q
- > — k> =VN
N =9 =2

Thus O(v/N) queries of the oracle are needed to obtain an answer with a probability of
success of |(x|)[? > 3

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022 11/11



Optimality of Grover's algorithm

Recalling that Dy is bounded, we can write

4k2 2 2
WZDkZAk—\/erCk:(\/Ck—\/Ak) 2(1—\/2—\[2>
RecallingthatCk21onlyforN24and122—\@2Ak, ifg=1- 242

4k2 5 q
— > — k>ZVN
N =1 25 VN
Thus O(v/N) queries of the oracle are needed to obtain an answer with a probability of
success of |(x|)[? > 3

Since no quantum search algorithm can use fewer than Q(v/N) queries then Grover's
algorithm must be optimal
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