
Today’s outline - March 22, 2022

• Generalization of Grover’s algorithm

• Geometry of amplitude amplification

• Optimality of Grover’s algorithm

Reading assignment: 9.5 – 9.6, 10.1

Homework Assignment #06:
See Blackboard
Due Thursday, March 31, 2022

Quantum circuit simulator https://algassert.com/quirk
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Generalization of Grover’s algorithm

The first step in Grover’s algorithm is to apply the Q = −WSπ
0 WSπ

G operator to an initial
state |ψ⟩|−⟩

The initial state created by W |0⟩ = |ψ⟩ has uniformly distributed intensities in all states

If, instead, we have a transformation U which applied to |0⟩ gives a solution with higher
probability, it is possible to generalize Grover’s algorithm

As before, divide the space spanned by |x⟩ into a good subspace G spanned by {|x⟩|x ∈ G} and
a bad subspace B spanned by {|x⟩|x /∈ G} with projection operators PG and PB respectively

The state |ψ⟩ is generated by U

and can be written

Since all states are normalized we can write

|ψ⟩ = U|0⟩ = g0|ψG ⟩+ b0|ψB⟩
|ψG ⟩ = 1

g0
PG |ψ⟩, |ψB⟩ = 1

b0
PB|ψ⟩

g0 = |PG |ψ⟩|, b0 = |PB|ψ⟩|
Note that U does not necessarily produce an equal superposition of all the good states and
thus g0 and b0 are not determined only by the number of solutions
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Generalization of Grover’s algorithm

Since g0 and b0 are real, define t = g2
0 and 1− t = b20 so that t is the probability that the

reversible algorithm U maps |0⟩ to a set of solutions in G

The goal of determining the effect of the transformation Q = −USπ
0 U

−1Sπ
G can be simplified

by recalling that Sπ
0 |ϕ⟩ ≡ |ϕ⟩ − 2⟨0|ϕ⟩|0⟩

Thus, for an arbitrary state |ψ⟩
USπ

0 U
−1|ψ⟩ = U

(
U−1|ψ⟩ − 2⟨0|U−1|ψ⟩|0⟩

)
= |ψ⟩ − 2⟨0|U−1|ψ⟩U|0⟩ = |ψ⟩ − 2⟨ψ|U|0⟩U|0⟩

Since Sπ
G |ψG ⟩ = −|ψG ⟩ and Sπ

G |ψB⟩ = |ψB⟩
Q|ψG ⟩ = −USπ

0 U
−1Sπ

G |ψG ⟩ = USπ
0 U

−1|ψG ⟩ = |ψG ⟩ − 2g0U|0⟩

= |ψG ⟩ − 2g0g0|ψG ⟩ − 2g0b0|ψB⟩ = (1− 2t)|ψG ⟩ − 2
√

t(1− t)|ψB⟩
Q|ψB⟩ = −USπ

0 U
−1Sπ

G |ψB⟩ = −|ψB⟩+ 2b0U|0⟩ = −|ψB⟩+ 2b0g0|ψG ⟩+ 2b0b0|ψB⟩

= −|ψB⟩+ 2(1− t)g0b0 |ψG ⟩+ 2(1− t)|ψB⟩ = (1− 2t)|ψB⟩ − 2
√
t(1− t)|ψG ⟩
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Generalization of Grover’s algorithm

Q|ψG ⟩ = (1− 2t)|ψG ⟩ − 2
√

t(1− t)|ψB⟩, Q|ψB⟩ = (1− 2t)|ψB⟩ − 2
√

t(1− t)|ψG ⟩

Thus, applied to an arbitrary real superposition of |ψG ⟩ and |ψB⟩

Q(gi |ψG ⟩+ bi |ψB⟩) =
(
gi (1− 2t) + 2bi

√
t(1− t)

)
|ψG ⟩+

(
bi (1− 2t)− 2gi

√
t(1− t)

)
|ψB⟩

= gi+1|ψG ⟩+ bi+1|ψB⟩

Which give the same recursion relations and solutions as for U = W

gi+1 = gi (1− 2t) + 2bi
√
t(1− t), bi+1 = bi (1− 2t)− 2gi

√
t(1− t)

gi = sin
(
(2i + 1)θ

)
, bi = cos

(
(2i + 1)θ

)
, sin θ =

√
t = g0

For small g0, gi will be maximal after i ≈ π
4g0

iterations

Amplitude amplification allows a solution to be found in O(
√
1/t) iterations unless, g0 = 0 or

if it is large
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Geometry of amplitude amplification

The transformation consists of repeated applications of Q = −USπ
0 U

−1Sπ
G

Consider the hyperplane spanned by
{|ψG ⟩, |ψB⟩}

The application of U to |0⟩ produces a state
|ψ0⟩ = g0|ψG ⟩+ b0|ψB⟩

The transformation Sπ
G is a reflection about

a plane perpendicular to |ψG ⟩, in this case
|ψB⟩

The transformation USπ
0 U

−1 is a reflection
about a plane perpendicular to U|0⟩

The negative sign simply inverts the state
which is seen to have been rotated by π−2β

a

b

0
g

β
1

g

π−2β

B

G

1

i

U 0

0
b

i
g

Repeated applications bring gi to its maximum whatever the arbitrary initial state
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Optimality of Grover’s algorithm

It is useful to prove that Grover’s algorithm is the optimal search algorithm

Suppose there is a single solution, x , to the oracle transformation, UP

Recall that the transformation Sπ
x can be computed from the oracle, UP , thus S

π
x can be used

as the interface to the oracle with out loss of generality

An arbitrary quantum search algorithm can be described as an alternating sequence of unitary
transformations independent of x , Ui and calls to the oracle, Sπ

x

|ψx
k ⟩ = UkS

π
x Uk−1S

π
x . . .U1S

π
x U0|0⟩, |⟨x |ψx

k ⟩|2 ≥ 1
2

with the constraint that the probability of finding the solution in k steps is at least 50%

The proof of optimality lies in comparing three classes of quantum states:

|x ′k⟩ = e iθ
x
k |x⟩ – the phase adjusted solution with e iθ

x
k = ⟨x |ψx

k ⟩/|⟨x |ψx
k ⟩| and ⟨x ′k |ψx

k ⟩ real
|ψx

k ⟩ – the state of the computation after k steps

|ψk⟩ = UkUk−1 . . .U1U0|0⟩ – k transformations without consulting the oracle

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022 6 / 11



Optimality of Grover’s algorithm

It is useful to prove that Grover’s algorithm is the optimal search algorithm

Suppose there is a single solution, x , to the oracle transformation, UP

Recall that the transformation Sπ
x can be computed from the oracle, UP , thus S

π
x can be used

as the interface to the oracle with out loss of generality

An arbitrary quantum search algorithm can be described as an alternating sequence of unitary
transformations independent of x , Ui and calls to the oracle, Sπ

x

|ψx
k ⟩ = UkS

π
x Uk−1S

π
x . . .U1S

π
x U0|0⟩, |⟨x |ψx

k ⟩|2 ≥ 1
2

with the constraint that the probability of finding the solution in k steps is at least 50%

The proof of optimality lies in comparing three classes of quantum states:

|x ′k⟩ = e iθ
x
k |x⟩ – the phase adjusted solution with e iθ

x
k = ⟨x |ψx

k ⟩/|⟨x |ψx
k ⟩| and ⟨x ′k |ψx

k ⟩ real
|ψx

k ⟩ – the state of the computation after k steps

|ψk⟩ = UkUk−1 . . .U1U0|0⟩ – k transformations without consulting the oracle

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022 6 / 11



Optimality of Grover’s algorithm

It is useful to prove that Grover’s algorithm is the optimal search algorithm

Suppose there is a single solution, x , to the oracle transformation, UP

Recall that the transformation Sπ
x can be computed from the oracle, UP , thus S

π
x can be used

as the interface to the oracle with out loss of generality

An arbitrary quantum search algorithm can be described as an alternating sequence of unitary
transformations independent of x , Ui and calls to the oracle, Sπ

x

|ψx
k ⟩ = UkS

π
x Uk−1S

π
x . . .U1S

π
x U0|0⟩, |⟨x |ψx

k ⟩|2 ≥ 1
2

with the constraint that the probability of finding the solution in k steps is at least 50%

The proof of optimality lies in comparing three classes of quantum states:

|x ′k⟩ = e iθ
x
k |x⟩ – the phase adjusted solution with e iθ

x
k = ⟨x |ψx

k ⟩/|⟨x |ψx
k ⟩| and ⟨x ′k |ψx

k ⟩ real
|ψx

k ⟩ – the state of the computation after k steps

|ψk⟩ = UkUk−1 . . .U1U0|0⟩ – k transformations without consulting the oracle

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022 6 / 11



Optimality of Grover’s algorithm

It is useful to prove that Grover’s algorithm is the optimal search algorithm

Suppose there is a single solution, x , to the oracle transformation, UP

Recall that the transformation Sπ
x can be computed from the oracle, UP , thus S

π
x can be used

as the interface to the oracle with out loss of generality

An arbitrary quantum search algorithm can be described as an alternating sequence of unitary
transformations independent of x , Ui and calls to the oracle, Sπ

x

|ψx
k ⟩ = UkS

π
x Uk−1S

π
x . . .U1S

π
x U0|0⟩, |⟨x |ψx

k ⟩|2 ≥ 1
2

with the constraint that the probability of finding the solution in k steps is at least 50%

The proof of optimality lies in comparing three classes of quantum states:

|x ′k⟩ = e iθ
x
k |x⟩ – the phase adjusted solution with e iθ

x
k = ⟨x |ψx

k ⟩/|⟨x |ψx
k ⟩| and ⟨x ′k |ψx

k ⟩ real
|ψx

k ⟩ – the state of the computation after k steps

|ψk⟩ = UkUk−1 . . .U1U0|0⟩ – k transformations without consulting the oracle

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022 6 / 11



Optimality of Grover’s algorithm

It is useful to prove that Grover’s algorithm is the optimal search algorithm

Suppose there is a single solution, x , to the oracle transformation, UP

Recall that the transformation Sπ
x can be computed from the oracle, UP , thus S

π
x can be used

as the interface to the oracle with out loss of generality

An arbitrary quantum search algorithm can be described as an alternating sequence of unitary
transformations independent of x , Ui and calls to the oracle, Sπ

x

|ψx
k ⟩ = UkS

π
x Uk−1S

π
x . . .U1S

π
x U0|0⟩,

|⟨x |ψx
k ⟩|2 ≥ 1

2

with the constraint that the probability of finding the solution in k steps is at least 50%

The proof of optimality lies in comparing three classes of quantum states:

|x ′k⟩ = e iθ
x
k |x⟩ – the phase adjusted solution with e iθ

x
k = ⟨x |ψx

k ⟩/|⟨x |ψx
k ⟩| and ⟨x ′k |ψx

k ⟩ real
|ψx

k ⟩ – the state of the computation after k steps

|ψk⟩ = UkUk−1 . . .U1U0|0⟩ – k transformations without consulting the oracle

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022 6 / 11



Optimality of Grover’s algorithm

It is useful to prove that Grover’s algorithm is the optimal search algorithm

Suppose there is a single solution, x , to the oracle transformation, UP

Recall that the transformation Sπ
x can be computed from the oracle, UP , thus S

π
x can be used

as the interface to the oracle with out loss of generality

An arbitrary quantum search algorithm can be described as an alternating sequence of unitary
transformations independent of x , Ui and calls to the oracle, Sπ

x

|ψx
k ⟩ = UkS

π
x Uk−1S

π
x . . .U1S

π
x U0|0⟩,

|⟨x |ψx
k ⟩|2 ≥ 1

2

with the constraint that the probability of finding the solution in k steps is at least 50%

The proof of optimality lies in comparing three classes of quantum states:

|x ′k⟩ = e iθ
x
k |x⟩ – the phase adjusted solution with e iθ

x
k = ⟨x |ψx

k ⟩/|⟨x |ψx
k ⟩| and ⟨x ′k |ψx

k ⟩ real
|ψx

k ⟩ – the state of the computation after k steps

|ψk⟩ = UkUk−1 . . .U1U0|0⟩ – k transformations without consulting the oracle

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022 6 / 11



Optimality of Grover’s algorithm

It is useful to prove that Grover’s algorithm is the optimal search algorithm

Suppose there is a single solution, x , to the oracle transformation, UP

Recall that the transformation Sπ
x can be computed from the oracle, UP , thus S

π
x can be used

as the interface to the oracle with out loss of generality

An arbitrary quantum search algorithm can be described as an alternating sequence of unitary
transformations independent of x , Ui and calls to the oracle, Sπ

x

|ψx
k ⟩ = UkS

π
x Uk−1S

π
x . . .U1S

π
x U0|0⟩, |⟨x |ψx

k ⟩|2 ≥ 1
2

with the constraint that the probability of finding the solution in k steps is at least 50%

The proof of optimality lies in comparing three classes of quantum states:

|x ′k⟩ = e iθ
x
k |x⟩ – the phase adjusted solution with e iθ

x
k = ⟨x |ψx

k ⟩/|⟨x |ψx
k ⟩| and ⟨x ′k |ψx

k ⟩ real
|ψx

k ⟩ – the state of the computation after k steps

|ψk⟩ = UkUk−1 . . .U1U0|0⟩ – k transformations without consulting the oracle

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022 6 / 11



Optimality of Grover’s algorithm

It is useful to prove that Grover’s algorithm is the optimal search algorithm

Suppose there is a single solution, x , to the oracle transformation, UP

Recall that the transformation Sπ
x can be computed from the oracle, UP , thus S

π
x can be used

as the interface to the oracle with out loss of generality

An arbitrary quantum search algorithm can be described as an alternating sequence of unitary
transformations independent of x , Ui and calls to the oracle, Sπ

x

|ψx
k ⟩ = UkS

π
x Uk−1S

π
x . . .U1S

π
x U0|0⟩, |⟨x |ψx

k ⟩|2 ≥ 1
2

with the constraint that the probability of finding the solution in k steps is at least 50%

The proof of optimality lies in comparing three classes of quantum states:

|x ′k⟩ = e iθ
x
k |x⟩ – the phase adjusted solution with e iθ

x
k = ⟨x |ψx

k ⟩/|⟨x |ψx
k ⟩| and ⟨x ′k |ψx

k ⟩ real

|ψx
k ⟩ – the state of the computation after k steps

|ψk⟩ = UkUk−1 . . .U1U0|0⟩ – k transformations without consulting the oracle

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022 6 / 11



Optimality of Grover’s algorithm

It is useful to prove that Grover’s algorithm is the optimal search algorithm

Suppose there is a single solution, x , to the oracle transformation, UP

Recall that the transformation Sπ
x can be computed from the oracle, UP , thus S

π
x can be used

as the interface to the oracle with out loss of generality

An arbitrary quantum search algorithm can be described as an alternating sequence of unitary
transformations independent of x , Ui and calls to the oracle, Sπ

x

|ψx
k ⟩ = UkS

π
x Uk−1S

π
x . . .U1S

π
x U0|0⟩, |⟨x |ψx

k ⟩|2 ≥ 1
2

with the constraint that the probability of finding the solution in k steps is at least 50%

The proof of optimality lies in comparing three classes of quantum states:

|x ′k⟩ = e iθ
x
k |x⟩ – the phase adjusted solution with e iθ

x
k = ⟨x |ψx

k ⟩/|⟨x |ψx
k ⟩| and ⟨x ′k |ψx

k ⟩ real
|ψx

k ⟩ – the state of the computation after k steps

|ψk⟩ = UkUk−1 . . .U1U0|0⟩ – k transformations without consulting the oracle

Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022 6 / 11



Optimality of Grover’s algorithm

It is useful to prove that Grover’s algorithm is the optimal search algorithm

Suppose there is a single solution, x , to the oracle transformation, UP

Recall that the transformation Sπ
x can be computed from the oracle, UP , thus S

π
x can be used

as the interface to the oracle with out loss of generality

An arbitrary quantum search algorithm can be described as an alternating sequence of unitary
transformations independent of x , Ui and calls to the oracle, Sπ

x

|ψx
k ⟩ = UkS

π
x Uk−1S

π
x . . .U1S

π
x U0|0⟩, |⟨x |ψx

k ⟩|2 ≥ 1
2

with the constraint that the probability of finding the solution in k steps is at least 50%

The proof of optimality lies in comparing three classes of quantum states:

|x ′k⟩ = e iθ
x
k |x⟩ – the phase adjusted solution with e iθ

x
k = ⟨x |ψx

k ⟩/|⟨x |ψx
k ⟩| and ⟨x ′k |ψx

k ⟩ real
|ψx

k ⟩ – the state of the computation after k steps

|ψk⟩ = UkUk−1 . . .U1U0|0⟩ – k transformations without consulting the oracle
Carlo Segre (Illinois Tech) PHYS 407 - Introduction to Quantum Computing March 22, 2022 6 / 11



Optimality of Grover’s algorithm

Consider the distances between the three pairs of states and their averages

dkx =
∣∣|ψx

k ⟩ − |ψk⟩
∣∣, akx =

∣∣|ψx
k ⟩ − |x ′k⟩

∣∣, ckx =
∣∣|x ′k⟩ − |ψk⟩

∣∣
Dk =

1

N

∑
x

d2
kx , Ak =

1

N

∑
x

a2kx , Ck =
1

N

∑
x

c2kx

By the definition of |x ′k⟩ we have that ⟨ψx
k |x ′k⟩ ≥

1√
2
and

a2kx =
∣∣|ψx

k ⟩ − |x ′k⟩
∣∣2 = ⟨ψx

k |ψx
k ⟩ − 2⟨x ′k |ψx

k ⟩+ ⟨x ′k |x ′k⟩ ≤ 2−
√
2 −→ Ak ≤ 2−

√
2

Similarly, we can put a bound on c2kx

c2kx =
∣∣|x ′k⟩ − |ψk⟩

∣∣2 = ∣∣e iθxk |x⟩ − |ψk⟩
∣∣2 = ⟨ψk |ψk⟩ − e iθ

x
k ⟨ψk |x⟩ − e iθ

x
k ⟨ψk |x⟩+ ⟨x |x⟩

= 2− 2Re
{
e iθ

x
k ⟨ψk |x⟩

}
≥ 2−

∣∣⟨ψk |x⟩
∣∣

Ck =
1

N

∑
x

c2kx ≥ 2− 2

N

∑
x

∣∣⟨ψk |x⟩
∣∣
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Optimality of Grover’s algorithm

Ck ≥ 2−
∣∣⟨ψk |x⟩

∣∣

≥ 2− 2√
N

√∑
x

∣∣⟨ψk |x⟩
∣∣2 = 2− 2√

2

In order to evaluate this, we need to use the Cauchy-Schwartz inequality

∑
i

uivi ≤
√∑

j

u2j

∑
k

v2k
vk≡1−−−→

N−1∑
i=0

ui ≤
√
N

√√√√N−1∑
j=0

u2j

Thus Ck ≥ 1 for N ≥ 4

Turning to dkx , first determine how much the distance between |ψx
k ⟩ and |ψk⟩ can increase

with each iteration, consider

dk+1,x =
∣∣|ψx

k+1⟩ − |ψk+1⟩
∣∣ = ∣∣Uk+1S

π
x |ψx

k ⟩ − Uk+1|ψk⟩
∣∣ = ∣∣Sπ

x |ψx
k ⟩ − |ψk⟩

∣∣
=
∣∣Sπ

x (|ψx
k ⟩ − |ψk⟩) + (Sπ

x − I )|ψk⟩
∣∣ ≤ ∣∣Sπ

x (|ψx
k ⟩ − |ψk⟩)

∣∣+ ∣∣(Sπ
x − I )|ψk⟩

∣∣
= dkx + 2

∣∣⟨x |ψk⟩
∣∣

Thus 2|⟨x |ψk⟩| bounds the change distance between |ψx
k ⟩ and |ψk⟩ at each iteration
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Optimality of Grover’s algorithm
The constraint on Dk can now be obtained
by induction with the assumption that

For k = 0, |ψx
0 ⟩ = U0|0⟩ = |ψ0⟩ so

Dk =
1

N

N−1∑
x=0

d2
kx

≤ 4k2

N

d0x =
∣∣|ψx

0 ⟩ − |ψ0⟩
∣∣ = 0 −→ D0 = 0

Dk+1 =
1

N

N−1∑
x=0

d2
k+1,x ≤ 1

N

N−1∑
x=0

(
dkx + 2

∣∣⟨x |ψk⟩
∣∣)2

=
1

N

N−1∑
x=0

d2
kx +

4

N

N−1∑
x=0

∣∣⟨x |ψk⟩
∣∣2 + 4

N

N−1∑
x=0

∣∣dkx⟨x |ψk⟩
∣∣ = Dk +

4

N
+

4

N

N−1∑
x=0

∣∣dkx⟨x |ψk⟩
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Applying the Cauchy-Schwartz inequality

4

N

N−1∑
x=0

∣∣dkx⟨x |ψk⟩
∣∣ ≤ 4

N

√√√√N−1∑
y=0

d2
ky

N−1∑
z=0

∣∣⟨z |ψk⟩
∣∣2 = 4

N

√
NDk · 1 = 4

√
Dk

N

Dk+1 ≤ Dk +
4

N
+ 4

√
Dk

N
≤ 4k2

N
+

4

N
+ 4

√
4k2

N2
=

4

N
(k2 + 2k + 1) =

4(k + 1)2

N
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Optimality of Grover’s algorithm

We have established the following bounds on the distances of interest

dkx =
∣∣|ψx

k ⟩ − |ψk⟩
∣∣, akx =

∣∣|ψx
k ⟩ − |x ′k⟩

∣∣, ckx =
∣∣|x ′k⟩ − |ψk⟩

∣∣
Dk =

1

N

∑
x

d2
kx ≤ 4k2

N
, Ak =

1

N

∑
x

a2kx ≤ 2−
√
2, Ck =

1

N

∑
x

c2kx ≥ 1

The three distances are related as

dkx =
∣∣|ψx

k ⟩ − |x ′k⟩+ |x ′k⟩ − |ψk⟩
∣∣ = ∣∣akx + ckx

∣∣ ≥ akx − ckx

Dk ≥ 1

N

(
N−1∑
x=0

a2kx − 2
N−1∑
x=0

akxckx +
N−1∑
x=0

c2kx

)

≥ 1

N

N−1∑
x=0

a2kx −
2

N

√√√√N−1∑
y=0

a2ky

N−1∑
z=0

c2kz +
1

N

N−1∑
x=0

c2kx ≥ Ak − 2
√

AkCk + Ck

4k2

N
≥ Dk ≥ Ak −

√
AkCk + Ck =

(√
Ck −

√
Ak

)2
≥
(
1−

√
2−

√
2

)2
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Optimality of Grover’s algorithm

Recalling that Dk is bounded, we can write

4k2

N
≥ Dk ≥ Ak −

√
AkCk + Ck =

(√
Ck −

√
Ak

)2
≥
(
1−

√
2−

√
2

)2

Recalling that Ck ≥ 1 only for N ≥ 4 and 1 ≥ 2−
√
2 ≥ Ak , if q = 1−

√
2−

√
2

4k2

N
≥ q2 −→ k ≥ q

2

√
N

Thus O(
√
N) queries of the oracle are needed to obtain an answer with a probability of

success of |⟨x |ψx
k ⟩|2 ≥

1
2

Since no quantum search algorithm can use fewer than Q(
√
N) queries then Grover’s

algorithm must be optimal
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