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Up is a quantum oracle that acts as Up : |x,a) — |x, P(x) @ a) for all x € X and single qubit
states |a)

Denote good (G) and bad (B) values as G = {X|p( )}, B = {x|-P(x)}
Assume that |G| < N define superpositions Ig) = x), |vg) = Ix)
of good and bad states A% ‘G Z \/F);

The uniform superposition of all N states, ) = W/|0), can be written as

N—-1
)= 2 S =L (S 0+ 10) = solve) + boliis). g0 = YIS by = V12!
x=0

xeG xEB
Grover's algorithm is achieved by repeated application of a unitary transformation,
Q : gi|ve) + bilvs) — grilte) + bit1]ve) such that the g increase to a maximal value with

corresponding decrease in the b;
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The g; are now enhanced by inverting the amplitudes about the average, a|x) — (2A — a)|x)

where A is the average of all the amplitudes
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i=0 i=0
can be done with a unitary matrix of the
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The g; are now enhanced by inverting the amplitudes about the average, a|x) — (2A — a)|x)
where A is the average of all the amplitudes

The transformation 2 _1q 2 2
N-1 N-1 N N N
2 24 2
D ailxi) = > (24— ap)lx) D— NN N
i=0 i=0
can be done with a unitary matrix of the 2 2 2 _q
‘ N N N
orm
Supp.o.se there are J negativg and K1 positive CJ{ — _ﬁ(% -1+ LN(K —J+ 1)%
coefficients each with magnitude —=
VN 1 [y 2(K—J)]
In the first application, the coefficients N N
which flipped are transformed to = ﬁ(% —-1)+ ﬁ(K —J-1)3
The coefficients which are positive are trans- — 1 [2(KA7J) _ 1]
formed to N
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Inversion about the average

The g; are now enhanced by inverting the amplitudes about the average, a|x) — (2A — a)|x)
where A is the average of all the amplitudes

The transformation 2 _1q 2 2
N-1 N—1 N , N
2 2 _1 2
D ailxi) = > (24— ap)lx) D— NN N
i=0 i=0
can be done with a unitary matrix of the 2 2 2 _q
form N N N
Supp.o.se there are J negativg and K1 positive ¢/ = _ﬁ(% -1+ LN(K —J+ 1)%
coefficients each with magnitude —=
VN 1 [y 2(K—J)]
In the first application, the coefficients N N
which flipped are transformed to = LN(% —-1)+ ﬁ(K —J-1)3
The coefficients which are positive are trans- — 1 [2(KA7J) _ 1]
formed to VN

Since J < K, the ¢ grow and the ¢, shrink quickly with each iteration
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The full iterative transform

The D transformation can be implemented with

O(n) quantum gates by realizing that D
—WSFW where
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—WSFW where

This operator applies a phase shift of 7 to the basis
vector |0) and we can write 5§ =/ — R where
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™ __
O(n) quantum gates by realizing that D = S0 =
—WSFW where
This operator applies a phase shift of 7 to the basis R_
vector |0) and we can write 5§ =/ — R where
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The full iterative transform

The D transformation can be implemented with
O(n) quantum gates by realizing that D =
—WSFW where

This operator applies a phase shift of 7 to the basis
vector |0) and we can write 5§ =/ — R where

Now —WSJ W becomes

-1 0 --- 0

_ 0o 1 0

- 0 e 0
0 0 1
2 0 0
0O 0 0 ---
0 - -0
0 0 0

—WSTW = —W(I — R)W
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The full iterative transform

-1 0 --- 0
The D transformation can be implemented with - 0 1 0
O(n) quantum gates by realizing that D = S = 0 o0
—WSFW where 0 0 1

2 0 --- 0
This operator applies a phase shift of 7 to the basis R_ o o o --
vector |0) and we can write 5§ =/ — R where 10 -0

0 0 0
Now —WSJ W becomes

- WS§W = -W(l — R)W

Since Rjj = 0 when i # 0 and j # 0, the el-
ements of the WRW matrix can be written
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The full iterative transform \ i

-1 0 --- 0
The D transformation can be implemented with - o 1 0 ---
O(n) quantum gates by realizing that D = S0 = 0 --- --- 0
—WSFW where 0 0 1

2 0 --- 0
This operator applies a phase shift of 7 to the basis R_ o o o --
vector |0) and we can write 5§ =/ — R where 0 -0

0 0 0

Now —WSJ W becomes

Since Rjj = 0 when i # 0 and j # 0, the el-
ements of the WRW matrix can be written

CWSIW = —W(Il — R)W
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The full iterative transform

The D transformation can be implemented with
O(n) quantum gates by realizing that D = 0
—WSFW where

This operator applies a phase shift of 7 to the basis

vector |0) and we can write 5§ =/ — R where R=
Now —WSJ W becomes

: . . — WSgW =
Since Rjj = 0 when i # 0 and j # 0, the el- B
ements of the WRW matrix can be written -
and we have that —WS§W = D as defined (WRW);; =
previously with the full iterative transforma-
tion being
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The full iterative transform

-1 0 ---
The D transformation can be implemented with - 0 1 0
O(n) quantum gates by realizing that D = S = 0
—WSFW where 0 0

2 0 .-
This operator applies a phase shift of 7 to the basis R_ 0 0 O
vector |0) and we can write 5§ =/ — R where 10

0 0
Now —WSJ W becomes
Since Ry = 0 when i # 0 and j # 0, the el —WRW =Wl = R)W

Ince iKjj = U when / and J , the el- B .

ements of the WRW matrix can be written =W({R-W=WRW -1
and we have that —WS§W = D as defined (WRW);; = WioRooWo; = %
previously with the full iterative transforma- Q = —WST WSE

tion being
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Computing the number of iterations \4

The iterative operator @ = DSZ transforms gj|tg) + bi|¢g) to git1|1g) + bit1|¢s) in two
steps, first
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Computing the number of iterations

A\

The iterative operator @ = DSZ transforms gj|tg) + bi|¢g) to git1|1g) + bit1|¢s) in two
steps, first

SG : &ilYe) + bilvs) — —gile) + bilys)

The average amplitude at each iteration, A;, can be computed by realizing
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Computing the number of iterations v

The iterative operator @ = DSZ transforms gj|tg) + bi|¢g) to git1|1g) + bit1|¢s) in two
steps, first

5G : &ilve) + bilvs) — —gilve) + bilvs)
The average amplitude at each iteration, A;, can be computed by realizing

The term —g;|Yg) contributes |G| amplitudes with weight —g;/+/|G]|
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The iterative operator @ = DSZ transforms gj|tg) + bi|¢g) to git1|1g) + bit1|¢s) in two
steps, first

5G : &ilve) + bilvs) — —gilve) + bilvs)
The average amplitude at each iteration, A;, can be computed by realizing
The term —gi|ig) contributes |G| amplitudes with weight —g;//|G|
and the term b;|1)g) contributes |B| amplitudes of weight b;/+/|B]
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Computing the number of iterations \ 74

The iterative operator @ = DSZ transforms gj|tg) + bi|¢g) to git1|1g) + bit1|¢s) in two
steps, first
S¢ : &ilYe) + bilve) — —gilve) + bilvs)
The average amplitude at each iteration, A;, can be computed by realizing
The term —gi|ig) contributes |G| amplitudes with weight —g;//|G|
and the term b;|1)g) contributes |B| amplitudes of weight b;/+/|B]

The average amplitude for the it" iteration
is thus
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Computing the number of iterations \ 74

The iterative operator @ = DSZ transforms gj|tg) + bi|¢g) to git1|1g) + bit1|¢s) in two
steps, first
S¢ : &ilYe) + bilve) — —gilve) + bilvs)
The average amplitude at each iteration, A;, can be computed by realizing
The term —gi|ig) contributes |G| amplitudes with weight —g;//|G|
and the term b;|1)g) contributes |B| amplitudes of weight b;/+/|B]

The average amplitude for the it" iteration A — |B|bi—+/|G|gi
is thus '
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Computing the number of iterations A\
The iterative operator @ = DSZ transforms gj|tg) + bi|¢g) to git1|1g) + bit1|¢s) in two
steps, first

5G : &ilve) + bilvs) — —gilve) + bilvs)
The average amplitude at each iteration, A;, can be computed by realizing
The term —gi|ig) contributes |G| amplitudes with weight —g;//|G|
and the term b;|1)g) contributes |B| amplitudes of weight b;/+/|B]

The average amplitude for the it" iteration
is thus
Applying the inversion about the average gives

B|b;—+/|G|g;
Ai: | |IN |Glg;
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Computing the number of iterations

steps, first
5G : &ilve) + bilvs) — —gilve) + bilvs)
The average amplitude at each iteration, A;, can be computed by realizing
The term —gi|ig) contributes |G| amplitudes with weight —g;//|G|
and the term b;|1)g) contributes |B| amplitudes of weight b;/+/|B]

The average amplitude for the i*f iteration |Blbi—+/|Glgi
. A= Yy
is thus N
Applying the inversion about the average gives

D —gilve) +bilvs) — 3 (244 b)) + 3 (24— 2l

xeG xeB
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Computing the number of iterations

steps, first
5G : &ilve) + bilvs) — —gilve) + bilvs)
The average amplitude at each iteration, A;, can be computed by realizing
The term —gi|ig) contributes |G| amplitudes with weight —g;//|G|
and the term b;|1)g) contributes |B| amplitudes of weight b;/+/|B]

The average amplitude for the i*f iteration |Blbi—+/|Glgi
. A= Yy
is thus N
Applying the inversion about the average gives

D: —gilvc) + bilve) — ; (24 + 1)) +X;§ )
= (2A1V16] + g)lvc) + (2A1V/[B] - bi)[v5)
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Computing the number of iterations v
The iterative operator @ = DSZ transforms gj|tg) + bi|¢g) to git1|1g) + bit1|¢s) in two
steps, first

S¢ : &ilYe) + bilve) — —gilve) + bilvs)
The average amplitude at each iteration, A;, can be computed by realizing
The term —gi|ig) contributes |G| amplitudes with weight —g;//|G|
and the term b;|1)g) contributes |B| amplitudes of weight b;/+/|B]

The average amplitude for the i*f iteration |Blbi—+/|Glgi
. A= Yy
is thus N
Applying the inversion about the average gives

D:—g,-]z/JG>+b,-|¢B>—>X;(2A,—+ﬁ|x>> ;(2A Fe0)
= (2A|Gl + &) |v6) + (2AV|B] — bi) [vg) = git1lve) + biyi|ve)
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Computing the number of iterations \4

The coefficients of the transformed state gi+1|1Yg) + bit1|ts) are given by recursion relations
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Computing the number of iterations \4

The coefficients of the transformed state gi+1|1Yg) + bit1|ts) are given by recursion relations

gi+1 =2AiV|G| +gi, bit1 =2A;/|B| - b
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Computing the number of iterations v

The coefficients of the transformed state gi+1|1Yg) + bit1|ts) are given by recursion relations

gi+1 =2Ai\ |G|+ g, bit1 =2A\/|B| - b;
If t is the probability that a random

state |x) in {|0),...,|N—1)} such
that P(x) =1 then
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Computing the number of iterations

A\

The coefficients of the transformed state gi+1|1Yg) + bit1|ts) are given by recursion relations

gi+1 =2Ai\ |G|+ g, bit1 =2A\/|B| - b;
If t is the probability that a random |G|

state |x) in {|0),...,|N—1)} such t
that P(x) =1 then

B
1-t="""
N’ N

BGb,-—Gg,-
A iG] — VIEI LE
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Computing the number of iterations v

The coefficients of the transformed state gi+1|1Yg) + bit1|ts) are given by recursion relations

gi+1 =2Ai\ |G|+ g, bit1 =2A\/|B| - b;
If t is the probability that a random |G|

state |x) in {|0),...,|N—1)} such t
that P(x) =1 then
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Computing the number of iterations v

The coefficients of the transformed state gi+1|1Yg) + bit1|ts) are given by recursion relations

gi+1 =2Ai\ |G|+ g, bit1 =2A\/|B| - b;
If t is the probability that a random |G|

state |x) in {|0),...,|N—1)} such t
that P(x) =1 then

B
1-t="""
N’ N

6] = LS b
B|bi — /B G]bi
51 - 18— VBT
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Computing the number of iterations v

The coefficients of the transformed state gi+1|1Yg) + bit1|ts) are given by recursion relations

gi+1 =2Ai\ |G|+ g, bit1 =2A\/|B| - b;
If t is the probability that a random |G|

state |x) in {|0),...,|N—1)} such t
that P(x) =1 then

B
1-t="""
N’ N

B i — |Glgi
i~ Y] 6151618 _ /30, -
— |B|bi — +/|B||G|b;

i —Vt(l—t)g
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Computing the number of iterations \ i

The coefficients of the transformed state gi+1|1Yg) + bit1|ts) are given by recursion relations

gi+1 =2AiV/ |G|+ gi,  bir1 =2Ai/|B| — b;

If t is the probability that a random G| 18|
state ‘X> in {|0>,...,|N—1>}such t:W’ 1_t:W

that P(x) =1 then /1BIIGlb: — |Gle:
i 8i
AiV|G| = 151 |N 4] = Vt(1—t)b — tg

The recursion relations become |B|bi — \/|B]|G|bi
Aiv/|B| = N =(1-1t)b

i —Vt(l—t)g
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Computing the number of iterations YV

The coefficients of the transformed state gi+1|1Yg) + bit1|ts) are given by recursion relations

git1=2A1V/[Gl+g, bit1=2A/|B] - b,
If t is the probability that a random G| 18|
state ‘X> in {|0>,,|N—1>} such t:W’ 1_t:W

that P(x) =1 then /1BIIGlb: — |Gle:
i 8i
AiV|G| = 151 |N 4] = Vt(1—t)b — tg

The recursion relations become |B|bi — \/|B]|G|bi
Aiv/|B| = N =(1-1t)b

i —Vt(l—t)g

gi+1 = (]. — 2t)g,- + 24/ 1.'(]. — t)b,'
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Computing the number of iterations YV

The coefficients of the transformed state gi+1|1Yg) + bit1|ts) are given by recursion relations
gi+1 =2Ai |G|+ gi, b1 =2Ai\/|B| - b;i

If t is the probability that a random G| 18|
state ‘X> in {|0>,...,|N—1>}such t:W’ 1_t:W

that P(x) =1 then /1BIIGlb: — |Gle:
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Computing the number of iterations YV

The coefficients of the transformed state gi+1|1Yg) + bit1|ts) are given by recursion relations
gi+1 =2Ai |G|+ gi, b1 =2Ai\/|B| - b;i

If t is the probability that a random G| 18|
state ‘X> in {|0>,...,|N—1>}such t:W’ 1_t:W

that P(x) =1 then /1BIIGlb: — |Gle:
i 8i
A,‘\/|G‘: | H |N | | :\/t(l—t)bi—tg,'
The recursion relations become |B|bi — \/|B]|G|bi
Aiv/|B| = N =(1-1t)b

with go = v/t and bg = V1 — t
gi+1 = (1 —2t)gi +2+/t(1 — t)b;
bi+1 = (1 — 2t)b,' -2 t(]. — t)g;

i —Vt(l—t)g
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Computing the number of iterations A

The coefficients of the transformed state gi+1|1Yg) + bit1|ts) are given by recursion relations
gi+1 =2Ai |G|+ gi, b1 =2Ai\/|B| - b;i

If t is the probability that a random G| 18|
state ‘X> in {|0>,...,|N—1>}such t:W’ 1_t:W

that P(x) =1 then /1BIIGlb: — |Gle:
i 8i
A,‘\/|G‘: | H |N | | :\/t(l—t)bi—tg,'
The recursion relations become B|b; — \/|B]|G|b;
Aiv/|B| = Bl N| el =(1-t)bj—t(l—t)g

with go = v/t and bg = V1 — t i
The general solution for the coef- giv1 = (1 —2t)gi +2v/t(1 - t)bi
ficients is biv1 = (1 —2t)b; —2y/t(1 — t)g;
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Computing the number of iterations

\d

The coefficients of the transformed state gi+1|1Yg) + bit1|ts) are given by recursion relations

gi+1 =2AiV/ |G|+ gi,  bir1 =2Ai/|B| — b;

If t is the probability that a random |G|
state |x) in {|0),...,|N—1)} such t=- 1-
that P(x) =1 then

el

N

with go = v/t and bg = V1 — t

The general solution for the coef-
ficients is biy1=(1-2t)b; —2

t(1—t)g;

1

gi =sin[(2i +1)0], b; = cos[(2i + 1)0]
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Computing the number of iterations V'

The coefficients of the transformed state gi+1|1Yg) + bit1|ts) are given by recursion relations

gi+1 =2AiV/ |G|+ gi,  bir1 =2Ai/|B| — b;

If t is the probability that a random G| 18|
state ‘X> in {|0>,...,|N—1>}such t:W’ 1_t:W

that P(X):lthen BllG|b: — |Glg:

i 8i
arie) = VIBICIZ1Cle _ e, — 1g

The recursion relations become |B|bi — \/|B]|G|bi
with go = v/t and bg = V1 — t Aiv|Bl = N =(1-1t)b
The general solution for the coef- giv1 = (1—2t)gi +2vt(1 — t)b;

ficients is biv1 = (1 —2t)bj —2y/t(1 — t)g;
where sin = \/t gi =sin[(2i + 1)6], bi = cos[(2i + 1)0]

i —Vt(l—t)g
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Computing the number of iterations YV

The coefficients of the transformed state gi+1|1Yg) + bit1|ts) are given by recursion relations

gi+1 =2AiV/ |G|+ gi,  bir1 =2Ai/|B| — b;

If t is the probability that a random G| 18|
state ‘X> in {|0>,...,|N—1>}such t:W’ 1_t:W

that P(X) =1 then BllG|b: — |Glg:
vV i 8i
A,‘\/|G‘: | H |N | | :\/t(l—t)bi—tg,'
The recursion relations become |B|bi — \/|B]|G|bi
with go = v/t and bg = V1 — t Aiv|Bl = N =(1-1t)b
The general solution for the coef- giv1 = (1—2t)gi +2vt(1 — t)b;
ficients is biv1 = (1 —2t)bj —2y/t(1 — t)g;

where sin = \/t gi =sin[(2i + 1)6], bi = cos[(2i + 1)0]

These relations permit the calculation of the optimal number of iterations

i —Vt(l—t)g
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Computing the number of iterations

gi=sin[(2i +1)0], b; =cos[(2i +1)0],

sind =+t = |—,c\;l|
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https://tinyurl.com/5n7jcpuh

Computing the number of iterations

gi=sin[(2i +1)0], b; =cos[(2i +1)0],
The values of gj can be maximized by choos-
ing i so that
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Computing the number of iterations

gi =sin[(2i + 1)6],

The values of gj can be maximized by choos-

ing i so that

b; = cos[(2i + 1)0],

sind =+t = |—,c\;l|

sin[(2i1)0] ~ 1
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sin[(20)0] ~1 — (2 +1)0 ~
ing i so that c

) 0 ~sinf = %
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Thus g; is maximised when
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Computing the number of iterations

. . . . G
g =sin[(2i +1)4], b; =cos[(2i +1)d], sinf=+t= lT/|

The values of gj can be maximized by choos-
ing i so that

When |G| < N, 6 is small and

Thus g; is maximised when

sin[(2h)0l~1 — (2i+1)0~
. G
0 ~sinf = %
i~ Ty /18l
VN

For t = %, i~ 2, fort= % i~ 1, and for t = % no improvement is possible
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Computing the number of iterations i

. . . . G
g =sin[(2i +1)4], b; =cos[(2i +1)d], sinf=+t= lT/|

The values of gj can be maximized by choos- sin[(2h)0]~1 — (2i+1)0 =7
ing i so that c
) 0 ~sinf = %
When |G| < N, 6 is small and
~ /6l
Thus g; is maximised when I'~2VwN

For t = %, i~ 2, fort= % i~ 1, and for t = % no improvement is possible
Forn=4andt=x%, i~3

i6 | &
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g =sin[(2i +1)4], b; =cos[(2i +1)d], sinf=+t= |—,C\';I|
The values of gj can be maximized by choos- sin[(2h)0]~1 — (2i+1)0 =7
ing i so that

. G
) 0 ~sinf = %
When |G| < N, 6 is small and
. . PR SV
Thus g; is maximised when ~aV'N
For t = %, i~ 2, fort= % i~ 1, and for t = % no improvement is possible
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