

Today's outline - March 10, 2022

Today's outline - March 10, 2022

- Introduction to Grover's algorithm

Today's outline - March 10, 2022

- Introduction to Grover's algorithm
- Amplitude inversion step

Today's outline - March 10, 2022

- Introduction to Grover's algorithm
- Amplitude inversion step
- Amplitude inversion

Today's outline - March 10, 2022

- Introduction to Grover's algorithm
- Amplitude inversion step
- Amplitude inversion
- Calculation of optimal iterations

Today's outline - March 10, 2022

- Introduction to Grover's algorithm
- Amplitude inversion step
- Amplitude inversion
- Calculation of optimal iterations

Reading assignment: 9.3 – 9.4

Today's outline - March 10, 2022

- Introduction to Grover's algorithm
- Amplitude inversion step
- Amplitude inversion
- Calculation of optimal iterations

Reading assignment: 9.3 – 9.4

Homework Assignment #06:
TBA on (still working on it)

Today's outline - March 10, 2022

- Introduction to Grover's algorithm
- Amplitude inversion step
- Amplitude inversion
- Calculation of optimal iterations

Reading assignment: 9.3 – 9.4

Homework Assignment #06:
TBA on (still working on it)

Quantum circuit simulator <https://algassert.com/quirk>

Grover's algorithm

Grover's algorithm is a black box algorithm that uses amplitude amplification to obtain a quantum solution in $O(\sqrt{N})$ instead of $O(\frac{N}{2})$ for the classical solution

Grover's algorithm

Grover's algorithm is a black box algorithm that uses amplitude amplification to obtain a quantum solution in $O(\sqrt{N})$ instead of $O(\frac{N}{2})$ for the classical solution

Given a function $P(x)$ which returns either 0 or 1, find the elements x such that $P(x) = 1$

Grover's algorithm

Grover's algorithm is a black box algorithm that uses amplitude amplification to obtain a quantum solution in $O(\sqrt{N})$ instead of $O(\frac{N}{2})$ for the classical solution

Given a function $P(x)$ which returns either 0 or 1, find the elements x such that $P(x) = 1$

The oracle function U_P is defined by

Grover's algorithm

Grover's algorithm is a black box algorithm that uses amplitude amplification to obtain a quantum solution in $O(\sqrt{N})$ instead of $O(\frac{N}{2})$ for the classical solution

Given a function $P(x)$ which returns either 0 or 1, find the elements x such that $P(x) = 1$

The oracle function U_P is defined by

$$U_P \sum_{x=0}^{N-1} c_x |x\rangle |0\rangle = \sum_{x=0}^{N-1} c_x |x\rangle |P(x)\rangle$$

Grover's algorithm

Grover's algorithm is a black box algorithm that uses amplitude amplification to obtain a quantum solution in $O(\sqrt{N})$ instead of $O(\frac{N}{2})$ for the classical solution

Given a function $P(x)$ which returns either 0 or 1, find the elements x such that $P(x) = 1$

The oracle function U_P is defined by

Grover's algorithm increases the amplitudes c_x of those values x with $P(x) = 1$

$$U_P \sum_{x=0}^{N-1} c_x |x\rangle |0\rangle = \sum_{x=0}^{N-1} c_x |x\rangle |P(x)\rangle$$

Grover's algorithm

Grover's algorithm is a black box algorithm that uses amplitude amplification to obtain a quantum solution in $O(\sqrt{N})$ instead of $O(\frac{N}{2})$ for the classical solution

Given a function $P(x)$ which returns either 0 or 1, find the elements x such that $P(x) = 1$

The oracle function U_P is defined by

Grover's algorithm increases the amplitudes c_x of those values x with $P(x) = 1$

$$U_P \sum_{x=0}^{N-1} c_x |x\rangle |0\rangle = \sum_{x=0}^{N-1} c_x |x\rangle |P(x)\rangle$$

Starting with an equal superposition $|\psi\rangle = \frac{1}{\sqrt{N}} \sum_x |x\rangle$

Grover's algorithm

Grover's algorithm is a black box algorithm that uses amplitude amplification to obtain a quantum solution in $O(\sqrt{N})$ instead of $O(\frac{N}{2})$ for the classical solution

Given a function $P(x)$ which returns either 0 or 1, find the elements x such that $P(x) = 1$

The oracle function U_P is defined by

Grover's algorithm increases the amplitudes c_x of those values x with $P(x) = 1$

$$U_P \sum_{x=0}^{N-1} c_x |x\rangle |0\rangle = \sum_{x=0}^{N-1} c_x |x\rangle |P(x)\rangle$$

Starting with an equal superposition $|\psi\rangle = \frac{1}{\sqrt{N}} \sum_x |x\rangle$

1. Apply U_P to $|\psi\rangle$

Grover's algorithm

Grover's algorithm is a black box algorithm that uses amplitude amplification to obtain a quantum solution in $O(\sqrt{N})$ instead of $O(\frac{N}{2})$ for the classical solution

Given a function $P(x)$ which returns either 0 or 1, find the elements x such that $P(x) = 1$

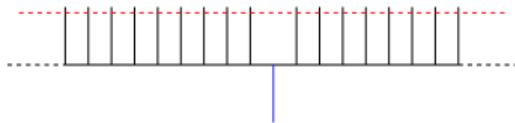
The oracle function U_P is defined by

Grover's algorithm increases the amplitudes c_x of those values x with $P(x) = 1$

$$U_P \sum_{x=0}^{N-1} c_x |x\rangle |0\rangle = \sum_{x=0}^{N-1} c_x |x\rangle |P(x)\rangle$$

Starting with an equal superposition $|\psi\rangle = \frac{1}{\sqrt{N}} \sum_x |x\rangle$

1. Apply U_P to $|\psi\rangle$
2. Flip the sign of all basis vectors that represent a solution



Grover's algorithm

Grover's algorithm is a black box algorithm that uses amplitude amplification to obtain a quantum solution in $O(\sqrt{N})$ instead of $O(\frac{N}{2})$ for the classical solution

Given a function $P(x)$ which returns either 0 or 1, find the elements x such that $P(x) = 1$

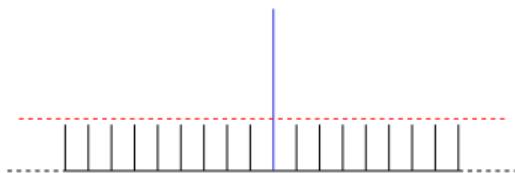
The oracle function U_P is defined by

Grover's algorithm increases the amplitudes c_x of those values x with $P(x) = 1$

$$U_P \sum_{x=0}^{N-1} c_x |x\rangle |0\rangle = \sum_{x=0}^{N-1} c_x |x\rangle |P(x)\rangle$$

Starting with an equal superposition $|\psi\rangle = \frac{1}{\sqrt{N}} \sum_x |x\rangle$

1. Apply U_P to $|\psi\rangle$
2. Flip the sign of all basis vectors that represent a solution
3. Perform an inversion about the average value of the amplitude



Grover's algorithm

Grover's algorithm is a black box algorithm that uses amplitude amplification to obtain a quantum solution in $O(\sqrt{N})$ instead of $O(\frac{N}{2})$ for the classical solution

Given a function $P(x)$ which returns either 0 or 1, find the elements x such that $P(x) = 1$

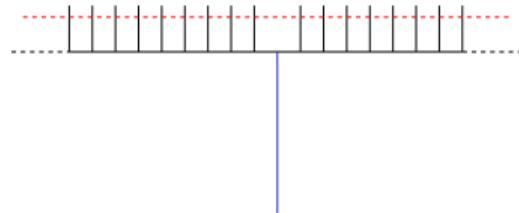
The oracle function U_P is defined by

Grover's algorithm increases the amplitudes c_x of those values x with $P(x) = 1$

$$U_P \sum_{x=0}^{N-1} c_x |x\rangle |0\rangle = \sum_{x=0}^{N-1} c_x |x\rangle |P(x)\rangle$$

Starting with an equal superposition $|\psi\rangle = \frac{1}{\sqrt{N}} \sum_x |x\rangle$

1. Apply U_P to $|\psi\rangle$
2. Flip the sign of all basis vectors that represent a solution
3. Perform an inversion about the average value of the amplitude
4. Repeat as necessary



Grover's algorithm

Grover's algorithm is a black box algorithm that uses amplitude amplification to obtain a quantum solution in $O(\sqrt{N})$ instead of $O(\frac{N}{2})$ for the classical solution

Given a function $P(x)$ which returns either 0 or 1, find the elements x such that $P(x) = 1$

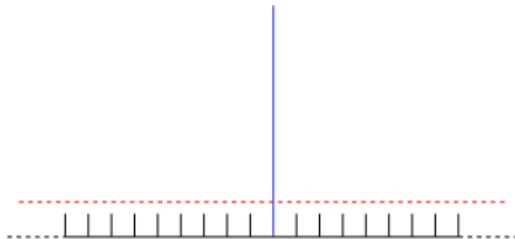
The oracle function U_P is defined by

Grover's algorithm increases the amplitudes c_x of those values x with $P(x) = 1$

$$U_P \sum_{x=0}^{N-1} c_x |x\rangle |0\rangle = \sum_{x=0}^{N-1} c_x |x\rangle |P(x)\rangle$$

Starting with an equal superposition $|\psi\rangle = \frac{1}{\sqrt{N}} \sum_x |x\rangle$

1. Apply U_P to $|\psi\rangle$
2. Flip the sign of all basis vectors that represent a solution
3. Perform an inversion about the average value of the amplitude
4. Repeat as necessary



Grover's algorithm in detail

Starting with an n -qubit system, define $N = 2^n$ and let X be the state space generated by $\{|0\rangle, \dots, |N-1\rangle\}$

Grover's algorithm in detail

Starting with an n -qubit system, define $N = 2^n$ and let X be the state space generated by $\{|0\rangle, \dots, |N-1\rangle\}$

U_P is a quantum oracle that acts as $U_P : |x, a\rangle \rightarrow |x, P(x) \oplus a\rangle$ for all $x \in X$ and single qubit states $|a\rangle$

Grover's algorithm in detail

Starting with an n -qubit system, define $N = 2^n$ and let X be the state space generated by $\{|0\rangle, \dots, |N-1\rangle\}$

U_P is a quantum oracle that acts as $U_P : |x, a\rangle \rightarrow |x, P(x) \oplus a\rangle$ for all $x \in X$ and single qubit states $|a\rangle$

Denote good (G) and bad (B) values as

Grover's algorithm in detail

Starting with an n -qubit system, define $N = 2^n$ and let X be the state space generated by $\{|0\rangle, \dots, |N-1\rangle\}$

U_P is a quantum oracle that acts as $U_P : |x, a\rangle \rightarrow |x, P(x) \oplus a\rangle$ for all $x \in X$ and single qubit states $|a\rangle$

Denote good (G) and bad (B) values as

$$G = \{x | P(x)\}, \quad B = \{x | \neg P(x)\}$$

Grover's algorithm in detail

Starting with an n -qubit system, define $N = 2^n$ and let X be the state space generated by $\{|0\rangle, \dots, |N-1\rangle\}$

U_P is a quantum oracle that acts as $U_P : |x, a\rangle \rightarrow |x, P(x) \oplus a\rangle$ for all $x \in X$ and single qubit states $|a\rangle$

Denote good (G) and bad (B) values as

$$G = \{x | P(x)\}, \quad B = \{x | \neg P(x)\}$$

Assume that $|G| \ll N$ define superpositions of good and bad states

Grover's algorithm in detail

Starting with an n -qubit system, define $N = 2^n$ and let X be the state space generated by $\{|0\rangle, \dots, |N-1\rangle\}$

U_P is a quantum oracle that acts as $U_P : |x, a\rangle \rightarrow |x, P(x) \oplus a\rangle$ for all $x \in X$ and single qubit states $|a\rangle$

Denote good (G) and bad (B) values as

$$G = \{x | P(x)\}, \quad B = \{x | \neg P(x)\}$$

Assume that $|G| \ll N$ define superpositions of good and bad states

$$|\psi_G\rangle = \frac{1}{\sqrt{|G|}} \sum_{x \in G} |x\rangle,$$

Grover's algorithm in detail

Starting with an n -qubit system, define $N = 2^n$ and let X be the state space generated by $\{|0\rangle, \dots, |N-1\rangle\}$

U_P is a quantum oracle that acts as $U_P : |x, a\rangle \rightarrow |x, P(x) \oplus a\rangle$ for all $x \in X$ and single qubit states $|a\rangle$

Denote good (G) and bad (B) values as

$$G = \{x | P(x)\}, \quad B = \{x | \neg P(x)\}$$

Assume that $|G| \ll N$ define superpositions of good and bad states

$$|\psi_G\rangle = \frac{1}{\sqrt{|G|}} \sum_{x \in G} |x\rangle, \quad |\psi_B\rangle = \frac{1}{\sqrt{|B|}} \sum_{x \in B} |x\rangle$$

Grover's algorithm in detail

Starting with an n -qubit system, define $N = 2^n$ and let X be the state space generated by $\{|0\rangle, \dots, |N-1\rangle\}$

U_P is a quantum oracle that acts as $U_P : |x, a\rangle \rightarrow |x, P(x) \oplus a\rangle$ for all $x \in X$ and single qubit states $|a\rangle$

Denote good (G) and bad (B) values as

$$G = \{x | P(x)\}, \quad B = \{x | \neg P(x)\}$$

Assume that $|G| \ll N$ define superpositions of good and bad states

$$|\psi_G\rangle = \frac{1}{\sqrt{|G|}} \sum_{x \in G} |x\rangle, \quad |\psi_B\rangle = \frac{1}{\sqrt{|B|}} \sum_{x \in B} |x\rangle$$

The uniform superposition of all N states, $|\psi\rangle = W|0\rangle$, can be written as

Grover's algorithm in detail

Starting with an n -qubit system, define $N = 2^n$ and let X be the state space generated by $\{|0\rangle, \dots, |N-1\rangle\}$

U_P is a quantum oracle that acts as $U_P : |x, a\rangle \rightarrow |x, P(x) \oplus a\rangle$ for all $x \in X$ and single qubit states $|a\rangle$

Denote good (G) and bad (B) values as

$$G = \{x | P(x)\}, \quad B = \{x | \neg P(x)\}$$

Assume that $|G| \ll N$ define superpositions of good and bad states

$$|\psi_G\rangle = \frac{1}{\sqrt{|G|}} \sum_{x \in G} |x\rangle, \quad |\psi_B\rangle = \frac{1}{\sqrt{|B|}} \sum_{x \in B} |x\rangle$$

The uniform superposition of all N states, $|\psi\rangle = W|0\rangle$, can be written as

$$|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle$$

Grover's algorithm in detail

Starting with an n -qubit system, define $N = 2^n$ and let X be the state space generated by $\{|0\rangle, \dots, |N-1\rangle\}$

U_P is a quantum oracle that acts as $U_P : |x, a\rangle \rightarrow |x, P(x) \oplus a\rangle$ for all $x \in X$ and single qubit states $|a\rangle$

Denote good (G) and bad (B) values as

$$G = \{x | P(x)\}, \quad B = \{x | \neg P(x)\}$$

Assume that $|G| \ll N$ define superpositions of good and bad states

$$|\psi_G\rangle = \frac{1}{\sqrt{|G|}} \sum_{x \in G} |x\rangle, \quad |\psi_B\rangle = \frac{1}{\sqrt{|B|}} \sum_{x \in B} |x\rangle$$

The uniform superposition of all N states, $|\psi\rangle = W|0\rangle$, can be written as

$$|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle = \frac{1}{\sqrt{N}} \left(\sum_{x \in G} |x\rangle + \sum_{x \in B} |x\rangle \right)$$

Grover's algorithm in detail

Starting with an n -qubit system, define $N = 2^n$ and let X be the state space generated by $\{|0\rangle, \dots, |N-1\rangle\}$

U_P is a quantum oracle that acts as $U_P : |x, a\rangle \rightarrow |x, P(x) \oplus a\rangle$ for all $x \in X$ and single qubit states $|a\rangle$

Denote good (G) and bad (B) values as

$$G = \{x | P(x)\}, \quad B = \{x | \neg P(x)\}$$

Assume that $|G| \ll N$ define superpositions of good and bad states

$$|\psi_G\rangle = \frac{1}{\sqrt{|G|}} \sum_{x \in G} |x\rangle, \quad |\psi_B\rangle = \frac{1}{\sqrt{|B|}} \sum_{x \in B} |x\rangle$$

The uniform superposition of all N states, $|\psi\rangle = W|0\rangle$, can be written as

$$|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle = \frac{1}{\sqrt{N}} \left(\sum_{x \in G} |x\rangle + \sum_{x \in B} |x\rangle \right) = g_0 |\psi_G\rangle + b_0 |\psi_B\rangle,$$

Grover's algorithm in detail

Starting with an n -qubit system, define $N = 2^n$ and let X be the state space generated by $\{|0\rangle, \dots, |N-1\rangle\}$

U_P is a quantum oracle that acts as $U_P : |x, a\rangle \rightarrow |x, P(x) \oplus a\rangle$ for all $x \in X$ and single qubit states $|a\rangle$

Denote good (G) and bad (B) values as

$$G = \{x | P(x)\}, \quad B = \{x | \neg P(x)\}$$

Assume that $|G| \ll N$ define superpositions of good and bad states

$$|\psi_G\rangle = \frac{1}{\sqrt{|G|}} \sum_{x \in G} |x\rangle, \quad |\psi_B\rangle = \frac{1}{\sqrt{|B|}} \sum_{x \in B} |x\rangle$$

The uniform superposition of all N states, $|\psi\rangle = W|0\rangle$, can be written as

$$|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle = \frac{1}{\sqrt{N}} \left(\sum_{x \in G} |x\rangle + \sum_{x \in B} |x\rangle \right) = g_0 |\psi_G\rangle + b_0 |\psi_B\rangle, \quad g_0 = \frac{\sqrt{|G|}}{\sqrt{N}}, \quad b_0 = \frac{\sqrt{|B|}}{\sqrt{N}}$$

Grover's algorithm in detail

Starting with an n -qubit system, define $N = 2^n$ and let X be the state space generated by $\{|0\rangle, \dots, |N-1\rangle\}$

U_P is a quantum oracle that acts as $U_P : |x, a\rangle \rightarrow |x, P(x) \oplus a\rangle$ for all $x \in X$ and single qubit states $|a\rangle$

Denote good (G) and bad (B) values as

$$G = \{x | P(x)\}, \quad B = \{x | \neg P(x)\}$$

Assume that $|G| \ll N$ define superpositions of good and bad states

$$|\psi_G\rangle = \frac{1}{\sqrt{|G|}} \sum_{x \in G} |x\rangle, \quad |\psi_B\rangle = \frac{1}{\sqrt{|B|}} \sum_{x \in B} |x\rangle$$

The uniform superposition of all N states, $|\psi\rangle = W|0\rangle$, can be written as

$$|\psi\rangle = \frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} |x\rangle = \frac{1}{\sqrt{N}} \left(\sum_{x \in G} |x\rangle + \sum_{x \in B} |x\rangle \right) = g_0 |\psi_G\rangle + b_0 |\psi_B\rangle, \quad g_0 = \frac{\sqrt{|G|}}{\sqrt{N}}, \quad b_0 = \frac{\sqrt{|B|}}{\sqrt{N}}$$

Grover's algorithm is achieved by repeated application of a unitary transformation, $Q : g_i |\psi_G\rangle + b_i |\psi_B\rangle \rightarrow g_{i+1} |\psi_G\rangle + b_{i+1} |\psi_B\rangle$ such that the g_i increase to a maximal value with corresponding decrease in the b_i

Flipping the sign of the “good” states

In order to increase the weight of the g_i the transformation Q must first change the sign the sign in a superposition $\sum c_x|x\rangle$ of only those c_x where $x \in G$

Flipping the sign of the “good” states

In order to increase the weight of the g_i the transformation Q must first change the sign the sign in a superposition $\sum c_x|x\rangle$ of only those c_x where $x \in G$

This can be done by applying the operator

S_G^π recalling

Flipping the sign of the “good” states

In order to increase the weight of the g_i the transformation Q must first change the sign the sign in a superposition $\sum c_x|x\rangle$ of only those c_x where $x \in G$

This can be done by applying the operator

S_G^π recalling

$$U_P(|\psi\rangle \otimes H|1\rangle) = (S_G^\pi|\psi\rangle) \otimes H|1\rangle$$

Flipping the sign of the “good” states

In order to increase the weight of the g_i the transformation Q must first change the sign the sign in a superposition $\sum c_x|x\rangle$ of only those c_x where $x \in G$

This can be done by applying the operator

S_G^π recalling

$$U_P(|\psi\rangle \otimes H|1\rangle) = (S_G^\pi|\psi\rangle) \otimes H|1\rangle$$

Since $P(x) = 1$ if $x \in G$, the operation of flipping the coefficients of the good states is done with U_P

Flipping the sign of the “good” states

In order to increase the weight of the g_i the transformation Q must first change the sign the sign in a superposition $\sum c_x|x\rangle$ of only those c_x where $x \in G$

This can be done by applying the operator

S_G^π recalling

$$U_P(|\psi\rangle \otimes H|1\rangle) = (S_G^\pi|\psi\rangle) \otimes H|1\rangle$$

Since $P(x) = 1$ if $x \in G$, the operation of flipping the coefficients of the good states is done with U_P

$$U_P : (g_i|\psi_G\rangle + b_i|\psi_B\rangle) \otimes H|1\rangle \longrightarrow (-g_i|\psi_G\rangle + b_i|\psi_B\rangle) \otimes H|1\rangle$$

Flipping the sign of the “good” states

In order to increase the weight of the g_i the transformation Q must first change the sign the sign in a superposition $\sum c_x|x\rangle$ of only those c_x where $x \in G$

This can be done by applying the operator

S_G^π recalling

$$U_P(|\psi\rangle \otimes H|1\rangle) = (S_G^\pi|\psi\rangle) \otimes H|1\rangle$$

Since $P(x) = 1$ if $x \in G$, the operation of flipping the coefficients of the good states is done with U_P

$$U_P : (g_i|\psi_G\rangle + b_i|\psi_B\rangle) \otimes H|1\rangle \longrightarrow (-g_i|\psi_G\rangle + b_i|\psi_B\rangle) \otimes H|1\rangle$$

The implementation of U_P determines the number of gates needed for this operation, not N

Flipping the sign of the “good” states

In order to increase the weight of the g_i the transformation Q must first change the sign the sign in a superposition $\sum c_x |x\rangle$ of only those c_x where $x \in G$

This can be done by applying the operator

S_G^π recalling

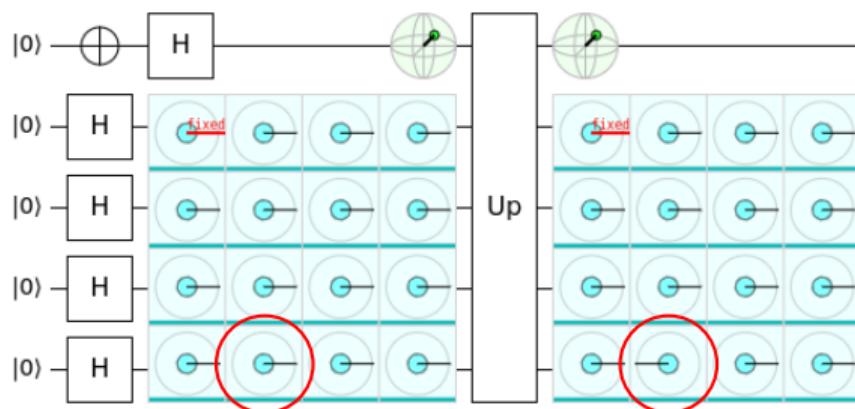
$$U_P(|\psi\rangle \otimes H|1\rangle) = (S_G^\pi|\psi\rangle) \otimes H|1\rangle$$

Since $P(x) = 1$ if $x \in G$, the operation of flipping the coefficients of the good states is done with U_P

$$U_P : (g_i|\psi_G\rangle + b_i|\psi_B\rangle) \otimes H|1\rangle \longrightarrow (-g_i|\psi_G\rangle + b_i|\psi_B\rangle) \otimes H|1\rangle$$

The implementation of U_P determines the number of gates needed for this operation, not N

<https://tinyurl.com/yc32wam>



Flipping the sign of the “good” states

In order to increase the weight of the g , the transformation Q must first change the sign the sign in a superposition $\sum c_x |x\rangle$ of only those c_x where $x \in G$

This can be done by applying the operator

S_G^π recalling

$$U_P(|\psi\rangle \otimes H|1\rangle) = (S_G^\pi|\psi\rangle) \otimes H|1\rangle$$

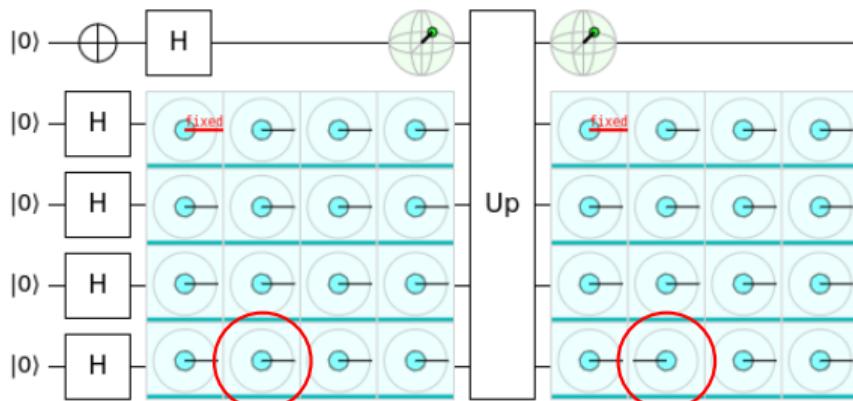
Since $P(x) = 1$ if $x \in G$, the operation of flipping the coefficients of the good states is done with U_P

$$U_P : (g_i|\psi_G\rangle + b_i|\psi_B\rangle) \otimes H|1\rangle \longrightarrow (-g_i|\psi_G\rangle + b_i|\psi_B\rangle) \otimes H|1\rangle$$

The implementation of U_P determines the number of gates needed for this operation, not N

<https://tinyurl.com/yc32wam>

Only one of the superimposed states has its sign flipped and the ancilla bit is unchanged



Inversion about the average

The g_i are now enhanced by inverting the amplitudes about the average, $a|x\rangle \rightarrow (2A - a)|x\rangle$ where A is the average of all the amplitudes

Inversion about the average

The g_i are now enhanced by inverting the amplitudes about the average, $a|x\rangle \rightarrow (2A - a)|x\rangle$ where A is the average of all the amplitudes

The transformation

$$\sum_{i=0}^{N-1} a_i |x_i\rangle \rightarrow \sum_{i=0}^{N-1} (2A - a_i) |x_i\rangle$$

can be done with a unitary matrix of the form

Inversion about the average

The g_i are now enhanced by inverting the amplitudes about the average, $a|x\rangle \rightarrow (2A - a)|x\rangle$ where A is the average of all the amplitudes

The transformation

$$\sum_{i=0}^{N-1} a_i |x_i\rangle \rightarrow \sum_{i=0}^{N-1} (2A - a_i) |x_i\rangle$$

can be done with a unitary matrix of the form

$$D = \begin{pmatrix} \frac{2}{N} - 1 & \frac{2}{N} & \cdots & \frac{2}{N} \\ \frac{2}{N} & \frac{2}{N} - 1 & \cdots & \frac{2}{N} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{2}{N} & \frac{2}{N} & \cdots & \frac{2}{N} - 1 \end{pmatrix}$$

Inversion about the average

The g_i are now enhanced by inverting the amplitudes about the average, $a|x\rangle \rightarrow (2A - a)|x\rangle$ where A is the average of all the amplitudes

The transformation

$$\sum_{i=0}^{N-1} a_i |x_i\rangle \rightarrow \sum_{i=0}^{N-1} (2A - a_i) |x_i\rangle$$

can be done with a unitary matrix of the form

Suppose there are J negative and K positive coefficients each with magnitude $\frac{1}{\sqrt{N}}$

$$D = \begin{pmatrix} \frac{2}{N} - 1 & \frac{2}{N} & \cdots & \frac{2}{N} \\ \frac{2}{N} & \frac{2}{N} - 1 & \cdots & \frac{2}{N} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{2}{N} & \frac{2}{N} & \cdots & \frac{2}{N} - 1 \end{pmatrix}$$

Inversion about the average

The g_i are now enhanced by inverting the amplitudes about the average, $a|x\rangle \rightarrow (2A - a)|x\rangle$ where A is the average of all the amplitudes

The transformation

$$\sum_{i=0}^{N-1} a_i |x_i\rangle \rightarrow \sum_{i=0}^{N-1} (2A - a_i) |x_i\rangle$$

can be done with a unitary matrix of the form

Suppose there are J negative and K positive coefficients each with magnitude $\frac{1}{\sqrt{N}}$

In the first application, the coefficients which flipped are transformed to

$$D = \begin{pmatrix} \frac{2}{N} - 1 & \frac{2}{N} & \cdots & \frac{2}{N} \\ \frac{2}{N} & \frac{2}{N} - 1 & \cdots & \frac{2}{N} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{2}{N} & \frac{2}{N} & \cdots & \frac{2}{N} - 1 \end{pmatrix}$$

Inversion about the average

The g_i are now enhanced by inverting the amplitudes about the average, $a|x\rangle \rightarrow (2A - a)|x\rangle$ where A is the average of all the amplitudes

The transformation

$$\sum_{i=0}^{N-1} a_i |x_i\rangle \rightarrow \sum_{i=0}^{N-1} (2A - a_i) |x_i\rangle$$

can be done with a unitary matrix of the form

Suppose there are J negative and K positive coefficients each with magnitude $\frac{1}{\sqrt{N}}$

In the first application, the coefficients which flipped are transformed to

$$D = \begin{pmatrix} \frac{2}{N} - 1 & \frac{2}{N} & \dots & \frac{2}{N} \\ \frac{2}{N} & \frac{2}{N} - 1 & \dots & \frac{2}{N} \\ \dots & \dots & \dots & \dots \\ \frac{2}{N} & \frac{2}{N} & \dots & \frac{2}{N} - 1 \end{pmatrix}$$

$$c'_j = -\frac{1}{\sqrt{N}}\left(\frac{2}{N} - 1\right) + \frac{1}{\sqrt{N}}(K - J + 1)\frac{2}{N}$$

Inversion about the average

The g_i are now enhanced by inverting the amplitudes about the average, $a|x\rangle \rightarrow (2A - a)|x\rangle$ where A is the average of all the amplitudes

The transformation

$$\sum_{i=0}^{N-1} a_i |x_i\rangle \rightarrow \sum_{i=0}^{N-1} (2A - a_i) |x_i\rangle$$

can be done with a unitary matrix of the form

Suppose there are J negative and K positive coefficients each with magnitude $\frac{1}{\sqrt{N}}$

In the first application, the coefficients which flipped are transformed to

$$D = \begin{pmatrix} \frac{2}{N} - 1 & \frac{2}{N} & \dots & \frac{2}{N} \\ \frac{2}{N} & \frac{2}{N} - 1 & \dots & \frac{2}{N} \\ \dots & \dots & \dots & \dots \\ \frac{2}{N} & \frac{2}{N} & \dots & \frac{2}{N} - 1 \end{pmatrix}$$

$$\begin{aligned} c'_j &= -\frac{1}{\sqrt{N}}\left(\frac{2}{N} - 1\right) + \frac{1}{\sqrt{N}}(K - J + 1)\frac{2}{N} \\ &= \frac{1}{\sqrt{N}} \left[1 + \frac{2(K-J)}{N} \right] \end{aligned}$$

Inversion about the average

The g_i are now enhanced by inverting the amplitudes about the average, $a|x\rangle \rightarrow (2A - a)|x\rangle$ where A is the average of all the amplitudes

The transformation

$$\sum_{i=0}^{N-1} a_i |x_i\rangle \rightarrow \sum_{i=0}^{N-1} (2A - a_i) |x_i\rangle$$

can be done with a unitary matrix of the form

Suppose there are J negative and K positive coefficients each with magnitude $\frac{1}{\sqrt{N}}$

In the first application, the coefficients which flipped are transformed to

The coefficients which are positive are transformed to

$$D = \begin{pmatrix} \frac{2}{N} - 1 & \frac{2}{N} & \dots & \frac{2}{N} \\ \frac{2}{N} & \frac{2}{N} - 1 & \dots & \frac{2}{N} \\ \dots & \dots & \dots & \dots \\ \frac{2}{N} & \frac{2}{N} & \dots & \frac{2}{N} - 1 \end{pmatrix}$$

$$\begin{aligned} c'_j &= -\frac{1}{\sqrt{N}}\left(\frac{2}{N} - 1\right) + \frac{1}{\sqrt{N}}(K - J + 1)\frac{2}{N} \\ &= \frac{1}{\sqrt{N}} \left[1 + \frac{2(K - J)}{N} \right] \end{aligned}$$

Inversion about the average

The g_i are now enhanced by inverting the amplitudes about the average, $a|x\rangle \rightarrow (2A - a)|x\rangle$ where A is the average of all the amplitudes

The transformation

$$\sum_{i=0}^{N-1} a_i |x_i\rangle \rightarrow \sum_{i=0}^{N-1} (2A - a_i) |x_i\rangle$$

can be done with a unitary matrix of the form

Suppose there are J negative and K positive coefficients each with magnitude $\frac{1}{\sqrt{N}}$

In the first application, the coefficients which flipped are transformed to

The coefficients which are positive are transformed to

$$D = \begin{pmatrix} \frac{2}{N} - 1 & \frac{2}{N} & \dots & \frac{2}{N} \\ \frac{2}{N} & \frac{2}{N} - 1 & \dots & \frac{2}{N} \\ \dots & \dots & \dots & \dots \\ \frac{2}{N} & \frac{2}{N} & \dots & \frac{2}{N} - 1 \end{pmatrix}$$

$$c'_j = -\frac{1}{\sqrt{N}}\left(\frac{2}{N} - 1\right) + \frac{1}{\sqrt{N}}(K - J + 1)\frac{2}{N}$$
$$= \frac{1}{\sqrt{N}} \left[1 + \frac{2(K - J)}{N} \right]$$

$$c'_k = \frac{1}{\sqrt{N}}\left(\frac{2}{N} - 1\right) + \frac{1}{\sqrt{N}}(K - J - 1)\frac{2}{N}$$

Inversion about the average

The g_i are now enhanced by inverting the amplitudes about the average, $a|x\rangle \rightarrow (2A - a)|x\rangle$ where A is the average of all the amplitudes

The transformation

$$\sum_{i=0}^{N-1} a_i |x_i\rangle \rightarrow \sum_{i=0}^{N-1} (2A - a_i) |x_i\rangle$$

can be done with a unitary matrix of the form

Suppose there are J negative and K positive coefficients each with magnitude $\frac{1}{\sqrt{N}}$

In the first application, the coefficients which flipped are transformed to

The coefficients which are positive are transformed to

$$D = \begin{pmatrix} \frac{2}{N} - 1 & \frac{2}{N} & \dots & \frac{2}{N} \\ \frac{2}{N} & \frac{2}{N} - 1 & \dots & \frac{2}{N} \\ \dots & \dots & \dots & \dots \\ \frac{2}{N} & \frac{2}{N} & \dots & \frac{2}{N} - 1 \end{pmatrix}$$

$$c'_j = -\frac{1}{\sqrt{N}}\left(\frac{2}{N} - 1\right) + \frac{1}{\sqrt{N}}(K - J + 1)\frac{2}{N}$$
$$= \frac{1}{\sqrt{N}} \left[1 + \frac{2(K-J)}{N} \right]$$

$$c'_k = \frac{1}{\sqrt{N}}\left(\frac{2}{N} - 1\right) + \frac{1}{\sqrt{N}}(K - J - 1)\frac{2}{N}$$
$$= \frac{1}{\sqrt{N}} \left[\frac{2(K-J)}{N} - 1 \right]$$

Inversion about the average

The g_i are now enhanced by inverting the amplitudes about the average, $a|x\rangle \rightarrow (2A - a)|x\rangle$ where A is the average of all the amplitudes

The transformation

$$\sum_{i=0}^{N-1} a_i |x_i\rangle \rightarrow \sum_{i=0}^{N-1} (2A - a_i) |x_i\rangle$$

can be done with a unitary matrix of the form

Suppose there are J negative and K positive coefficients each with magnitude $\frac{1}{\sqrt{N}}$

In the first application, the coefficients which flipped are transformed to

The coefficients which are positive are transformed to

Since $J \ll K$, the c_j grow and the c_k shrink quickly with each iteration

$$D = \begin{pmatrix} \frac{2}{N} - 1 & \frac{2}{N} & \dots & \frac{2}{N} \\ \frac{2}{N} & \frac{2}{N} - 1 & \dots & \frac{2}{N} \\ \dots & \dots & \dots & \dots \\ \frac{2}{N} & \frac{2}{N} & \dots & \frac{2}{N} - 1 \end{pmatrix}$$

$$c'_j = -\frac{1}{\sqrt{N}}\left(\frac{2}{N} - 1\right) + \frac{1}{\sqrt{N}}(K - J + 1)\frac{2}{N}$$

$$= \frac{1}{\sqrt{N}}\left[1 + \frac{2(K - J)}{N}\right]$$

$$c'_k = \frac{1}{\sqrt{N}}\left(\frac{2}{N} - 1\right) + \frac{1}{\sqrt{N}}(K - J - 1)\frac{2}{N}$$

$$= \frac{1}{\sqrt{N}}\left[\frac{2(K - J)}{N} - 1\right]$$

The full iterative transform

The D transformation can be implemented with $O(n)$ quantum gates by realizing that $D = -WS_0^\pi W$ where

The full iterative transform

The D transformation can be implemented with $O(n)$ quantum gates by realizing that $D = -WS_0^\pi W$ where

$$S_0^\pi = \begin{pmatrix} -1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots \\ 0 & \cdots & \cdots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

The full iterative transform

The D transformation can be implemented with $O(n)$ quantum gates by realizing that $D = -WS_0^\pi W$ where

$$S_0^\pi = \begin{pmatrix} -1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots \\ 0 & \cdots & \cdots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

This operator applies a phase shift of π to the basis vector $|0\rangle$ and we can write $S_0^\pi = I - R$ where

The full iterative transform

The D transformation can be implemented with $O(n)$ quantum gates by realizing that $D = -WS_0^\pi W$ where

This operator applies a phase shift of π to the basis vector $|0\rangle$ and we can write $S_0^\pi = I - R$ where

$$S_0^\pi = \begin{pmatrix} -1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots \\ 0 & \cdots & \cdots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

$$R = \begin{pmatrix} 2 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots \\ 0 & \cdots & \cdots & 0 \\ 0 & \cdots & 0 & 0 \end{pmatrix}$$

The full iterative transform

The D transformation can be implemented with $O(n)$ quantum gates by realizing that $D = -WS_0^\pi W$ where

This operator applies a phase shift of π to the basis vector $|0\rangle$ and we can write $S_0^\pi = I - R$ where

Now $-WS_0^\pi W$ becomes

$$S_0^\pi = \begin{pmatrix} -1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots \\ 0 & \cdots & \cdots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

$$R = \begin{pmatrix} 2 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots \\ 0 & \cdots & \cdots & 0 \\ 0 & \cdots & 0 & 0 \end{pmatrix}$$

The full iterative transform

The D transformation can be implemented with $O(n)$ quantum gates by realizing that $D = -WS_0^\pi W$ where

This operator applies a phase shift of π to the basis vector $|0\rangle$ and we can write $S_0^\pi = I - R$ where

Now $-WS_0^\pi W$ becomes

$$S_0^\pi = \begin{pmatrix} -1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots \\ 0 & \cdots & \cdots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$
$$R = \begin{pmatrix} 2 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots \\ 0 & \cdots & \cdots & 0 \\ 0 & \cdots & 0 & 0 \end{pmatrix}$$
$$-WS_0^\pi W = -W(I - R)W$$

The full iterative transform

The D transformation can be implemented with $O(n)$ quantum gates by realizing that $D = -WS_0^\pi W$ where

This operator applies a phase shift of π to the basis vector $|0\rangle$ and we can write $S_0^\pi = I - R$ where

Now $-WS_0^\pi W$ becomes

$$S_0^\pi = \begin{pmatrix} -1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots \\ 0 & \cdots & \cdots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

$$R = \begin{pmatrix} 2 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots \\ 0 & \cdots & \cdots & 0 \\ 0 & \cdots & 0 & 0 \end{pmatrix}$$

$$\begin{aligned} -WS_0^\pi W &= -W(I - R)W \\ &= W(R - I)W = WRW - I \end{aligned}$$

The full iterative transform

The D transformation can be implemented with $O(n)$ quantum gates by realizing that $D = -WS_0^\pi W$ where

This operator applies a phase shift of π to the basis vector $|0\rangle$ and we can write $S_0^\pi = I - R$ where

Now $-WS_0^\pi W$ becomes

Since $R_{ij} = 0$ when $i \neq 0$ and $j \neq 0$, the elements of the WRW matrix can be written

$$S_0^\pi = \begin{pmatrix} -1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots \\ 0 & \cdots & \cdots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

$$R = \begin{pmatrix} 2 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots \\ 0 & \cdots & \cdots & 0 \\ 0 & \cdots & 0 & 0 \end{pmatrix}$$

$$\begin{aligned} -WS_0^\pi W &= -W(I - R)W \\ &= W(R - I)W = WRW - I \end{aligned}$$

The full iterative transform

The D transformation can be implemented with $O(n)$ quantum gates by realizing that $D = -WS_0^\pi W$ where

This operator applies a phase shift of π to the basis vector $|0\rangle$ and we can write $S_0^\pi = I - R$ where

Now $-WS_0^\pi W$ becomes

Since $R_{ij} = 0$ when $i \neq 0$ and $j \neq 0$, the elements of the WRW matrix can be written

$$S_0^\pi = \begin{pmatrix} -1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots \\ 0 & \cdots & \cdots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

$$R = \begin{pmatrix} 2 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots \\ 0 & \cdots & \cdots & 0 \\ 0 & \cdots & 0 & 0 \end{pmatrix}$$

$$\begin{aligned} -WS_0^\pi W &= -W(I - R)W \\ &= W(R - I)W = WRW - I \\ (WRW)_{ij} &= W_{i0}R_{00}W_{0j} \end{aligned}$$

The full iterative transform

The D transformation can be implemented with $O(n)$ quantum gates by realizing that $D = -WS_0^\pi W$ where

This operator applies a phase shift of π to the basis vector $|0\rangle$ and we can write $S_0^\pi = I - R$ where

Now $-WS_0^\pi W$ becomes

Since $R_{ij} = 0$ when $i \neq 0$ and $j \neq 0$, the elements of the WRW matrix can be written

$$S_0^\pi = \begin{pmatrix} -1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots \\ 0 & \cdots & \cdots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

$$R = \begin{pmatrix} 2 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots \\ 0 & \cdots & \cdots & 0 \\ 0 & \cdots & 0 & 0 \end{pmatrix}$$

$$\begin{aligned} -WS_0^\pi W &= -W(I - R)W \\ &= W(R - I)W = WRW - I \\ (WRW)_{ij} &= W_{i0}R_{00}W_{0j} = \frac{2}{N} \end{aligned}$$

The full iterative transform

The D transformation can be implemented with $O(n)$ quantum gates by realizing that $D = -WS_0^\pi W$ where

This operator applies a phase shift of π to the basis vector $|0\rangle$ and we can write $S_0^\pi = I - R$ where

Now $-WS_0^\pi W$ becomes

Since $R_{ij} = 0$ when $i \neq 0$ and $j \neq 0$, the elements of the WRW matrix can be written and we have that $-WS_0^\pi W = D$ as defined previously with the full iterative transformation being

$$S_0^\pi = \begin{pmatrix} -1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots \\ 0 & \cdots & \cdots & 0 \\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

$$R = \begin{pmatrix} 2 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots \\ 0 & \cdots & \cdots & 0 \\ 0 & \cdots & 0 & 0 \end{pmatrix}$$

$$\begin{aligned} -WS_0^\pi W &= -W(I - R)W \\ &= W(R - I)W = WRW - I \\ (WRW)_{ij} &= W_{i0}R_{00}W_{0j} = \frac{2}{N} \end{aligned}$$

The full iterative transform

The D transformation can be implemented with $O(n)$ quantum gates by realizing that $D = -WS_0^\pi W$ where

This operator applies a phase shift of π to the basis vector $|0\rangle$ and we can write $S_0^\pi = I - R$ where

Now $-WS_0^\pi W$ becomes

Since $R_{ij} = 0$ when $i \neq 0$ and $j \neq 0$, the elements of the WRW matrix can be written and we have that $-WS_0^\pi W = D$ as defined previously with the full iterative transformation being

$$S_0^\pi = \begin{pmatrix} -1 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots \\ 0 & \dots & \dots & 0 \\ 0 & \dots & 0 & 1 \end{pmatrix}$$

$$R = \begin{pmatrix} 2 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots \\ 0 & \dots & \dots & 0 \\ 0 & \dots & 0 & 0 \end{pmatrix}$$

$$\begin{aligned} -WS_0^\pi W &= -W(I - R)W \\ &= W(R - I)W = WRW - I \end{aligned}$$

$$(WRW)_{ij} = W_{i0} R_{00} W_{0j} = \frac{2}{N}$$

$$Q = -WS_0^\pi WS_G^\pi$$

Computing the number of iterations

The iterative operator $Q = DS_G^\pi$ transforms $g_i|\psi_G\rangle + b_i|\psi_B\rangle$ to $g_{i+1}|\psi_G\rangle + b_{i+1}|\psi_B\rangle$ in two steps, first

Computing the number of iterations

The iterative operator $Q = DS_G^\pi$ transforms $g_i|\psi_G\rangle + b_i|\psi_B\rangle$ to $g_{i+1}|\psi_G\rangle + b_{i+1}|\psi_B\rangle$ in two steps, first

$$S_G^\pi : g_i|\psi_G\rangle + b_i|\psi_B\rangle \longrightarrow -g_i|\psi_G\rangle + b_i|\psi_B\rangle$$

Computing the number of iterations

The iterative operator $Q = DS_G^\pi$ transforms $g_i|\psi_G\rangle + b_i|\psi_B\rangle$ to $g_{i+1}|\psi_G\rangle + b_{i+1}|\psi_B\rangle$ in two steps, first

$$S_G^\pi : g_i|\psi_G\rangle + b_i|\psi_B\rangle \longrightarrow -g_i|\psi_G\rangle + b_i|\psi_B\rangle$$

The average amplitude at each iteration, A_i , can be computed by realizing

Computing the number of iterations

The iterative operator $Q = DS_G^\pi$ transforms $g_i|\psi_G\rangle + b_i|\psi_B\rangle$ to $g_{i+1}|\psi_G\rangle + b_{i+1}|\psi_B\rangle$ in two steps, first

$$S_G^\pi : g_i|\psi_G\rangle + b_i|\psi_B\rangle \longrightarrow -g_i|\psi_G\rangle + b_i|\psi_B\rangle$$

The average amplitude at each iteration, A_i , can be computed by realizing

The term $-g_i|\psi_G\rangle$ contributes $|G|$ amplitudes with weight $-g_i/\sqrt{|G|}$

Computing the number of iterations

The iterative operator $Q = DS_G^\pi$ transforms $g_i|\psi_G\rangle + b_i|\psi_B\rangle$ to $g_{i+1}|\psi_G\rangle + b_{i+1}|\psi_B\rangle$ in two steps, first

$$S_G^\pi : g_i|\psi_G\rangle + b_i|\psi_B\rangle \longrightarrow -g_i|\psi_G\rangle + b_i|\psi_B\rangle$$

The average amplitude at each iteration, A_i , can be computed by realizing

The term $-g_i|\psi_G\rangle$ contributes $|G|$ amplitudes with weight $-g_i/\sqrt{|G|}$

and the term $b_i|\psi_B\rangle$ contributes $|B|$ amplitudes of weight $b_i/\sqrt{|B|}$

Computing the number of iterations

The iterative operator $Q = DS_G^\pi$ transforms $g_i|\psi_G\rangle + b_i|\psi_B\rangle$ to $g_{i+1}|\psi_G\rangle + b_{i+1}|\psi_B\rangle$ in two steps, first

$$S_G^\pi : g_i|\psi_G\rangle + b_i|\psi_B\rangle \longrightarrow -g_i|\psi_G\rangle + b_i|\psi_B\rangle$$

The average amplitude at each iteration, A_i , can be computed by realizing

The term $-g_i|\psi_G\rangle$ contributes $|G|$ amplitudes with weight $-g_i/\sqrt{|G|}$

and the term $b_i|\psi_B\rangle$ contributes $|B|$ amplitudes of weight $b_i/\sqrt{|B|}$

The average amplitude for the i^{th} iteration
is thus

Computing the number of iterations

The iterative operator $Q = DS_G^\pi$ transforms $g_i|\psi_G\rangle + b_i|\psi_B\rangle$ to $g_{i+1}|\psi_G\rangle + b_{i+1}|\psi_B\rangle$ in two steps, first

$$S_G^\pi : g_i|\psi_G\rangle + b_i|\psi_B\rangle \longrightarrow -g_i|\psi_G\rangle + b_i|\psi_B\rangle$$

The average amplitude at each iteration, A_i , can be computed by realizing

The term $-g_i|\psi_G\rangle$ contributes $|G|$ amplitudes with weight $-g_i/\sqrt{|G|}$

and the term $b_i|\psi_B\rangle$ contributes $|B|$ amplitudes of weight $b_i/\sqrt{|B|}$

The average amplitude for the i^{th} iteration
is thus

$$A_i = \frac{\sqrt{|B|}b_i - \sqrt{|G|}g_i}{N}$$

Computing the number of iterations

The iterative operator $Q = DS_G^\pi$ transforms $g_i|\psi_G\rangle + b_i|\psi_B\rangle$ to $g_{i+1}|\psi_G\rangle + b_{i+1}|\psi_B\rangle$ in two steps, first

$$S_G^\pi : g_i|\psi_G\rangle + b_i|\psi_B\rangle \longrightarrow -g_i|\psi_G\rangle + b_i|\psi_B\rangle$$

The average amplitude at each iteration, A_i , can be computed by realizing

The term $-g_i|\psi_G\rangle$ contributes $|G|$ amplitudes with weight $-g_i/\sqrt{|G|}$

and the term $b_i|\psi_B\rangle$ contributes $|B|$ amplitudes of weight $b_i/\sqrt{|B|}$

The average amplitude for the i^{th} iteration
is thus

$$A_i = \frac{\sqrt{|B|}b_i - \sqrt{|G|}g_i}{N}$$

Applying the inversion about the average gives

Computing the number of iterations

The iterative operator $Q = DS_G^\pi$ transforms $g_i|\psi_G\rangle + b_i|\psi_B\rangle$ to $g_{i+1}|\psi_G\rangle + b_{i+1}|\psi_B\rangle$ in two steps, first

$$S_G^\pi : g_i|\psi_G\rangle + b_i|\psi_B\rangle \longrightarrow -g_i|\psi_G\rangle + b_i|\psi_B\rangle$$

The average amplitude at each iteration, A_i , can be computed by realizing

The term $-g_i|\psi_G\rangle$ contributes $|G|$ amplitudes with weight $-g_i/\sqrt{|G|}$

and the term $b_i|\psi_B\rangle$ contributes $|B|$ amplitudes of weight $b_i/\sqrt{|B|}$

The average amplitude for the i^{th} iteration
is thus

$$A_i = \frac{\sqrt{|B|}b_i - \sqrt{|G|}g_i}{N}$$

Applying the inversion about the average gives

$$D : -g_i|\psi_G\rangle + b_i|\psi_B\rangle \longrightarrow \sum_{x \in G} \left(2A_i + \frac{g_i}{\sqrt{|G|}} |x\rangle \right) + \sum_{x \in B} \left(2A_i - \frac{b_i}{\sqrt{|B|}} |x\rangle \right)$$

Computing the number of iterations

The iterative operator $Q = DS_G^\pi$ transforms $g_i|\psi_G\rangle + b_i|\psi_B\rangle$ to $g_{i+1}|\psi_G\rangle + b_{i+1}|\psi_B\rangle$ in two steps, first

$$S_G^\pi : g_i|\psi_G\rangle + b_i|\psi_B\rangle \longrightarrow -g_i|\psi_G\rangle + b_i|\psi_B\rangle$$

The average amplitude at each iteration, A_i , can be computed by realizing

The term $-g_i|\psi_G\rangle$ contributes $|G|$ amplitudes with weight $-g_i/\sqrt{|G|}$

and the term $b_i|\psi_B\rangle$ contributes $|B|$ amplitudes of weight $b_i/\sqrt{|B|}$

The average amplitude for the i^{th} iteration
is thus

$$A_i = \frac{\sqrt{|B|}b_i - \sqrt{|G|}g_i}{N}$$

Applying the inversion about the average gives

$$\begin{aligned} D : -g_i|\psi_G\rangle + b_i|\psi_B\rangle &\longrightarrow \sum_{x \in G} \left(2A_i + \frac{g_i}{\sqrt{|G|}} |x\rangle \right) + \sum_{x \in B} \left(2A_i - \frac{b_i}{\sqrt{|B|}} |x\rangle \right) \\ &= (2A_i\sqrt{|G|} + g_i)|\psi_G\rangle + (2A_i\sqrt{|B|} - b_i)|\psi_B\rangle \end{aligned}$$

Computing the number of iterations

The iterative operator $Q = DS_G^\pi$ transforms $g_i|\psi_G\rangle + b_i|\psi_B\rangle$ to $g_{i+1}|\psi_G\rangle + b_{i+1}|\psi_B\rangle$ in two steps, first

$$S_G^\pi : g_i|\psi_G\rangle + b_i|\psi_B\rangle \longrightarrow -g_i|\psi_G\rangle + b_i|\psi_B\rangle$$

The average amplitude at each iteration, A_i , can be computed by realizing

The term $-g_i|\psi_G\rangle$ contributes $|G|$ amplitudes with weight $-g_i/\sqrt{|G|}$

and the term $b_i|\psi_B\rangle$ contributes $|B|$ amplitudes of weight $b_i/\sqrt{|B|}$

The average amplitude for the i^{th} iteration
is thus

$$A_i = \frac{\sqrt{|B|}b_i - \sqrt{|G|}g_i}{N}$$

Applying the inversion about the average gives

$$\begin{aligned} D : -g_i|\psi_G\rangle + b_i|\psi_B\rangle &\longrightarrow \sum_{x \in G} \left(2A_i + \frac{g_i}{\sqrt{|G|}} |x\rangle \right) + \sum_{x \in B} \left(2A_i - \frac{b_i}{\sqrt{|B|}} |x\rangle \right) \\ &= (2A_i\sqrt{|G|} + g_i)|\psi_G\rangle + (2A_i\sqrt{|B|} - b_i)|\psi_B\rangle = g_{i+1}|\psi_G\rangle + b_{i+1}|\psi_B\rangle \end{aligned}$$

Computing the number of iterations

The coefficients of the transformed state $g_{i+1}|\psi_G\rangle + b_{i+1}|\psi_B\rangle$ are given by recursion relations

Computing the number of iterations

The coefficients of the transformed state $g_{i+1}|\psi_G\rangle + b_{i+1}|\psi_B\rangle$ are given by recursion relations

$$g_{i+1} = 2A_i\sqrt{|G|} + g_i, \quad b_{i+1} = 2A_i\sqrt{|B|} - b_i$$

Computing the number of iterations

The coefficients of the transformed state $g_{i+1}|\psi_G\rangle + b_{i+1}|\psi_B\rangle$ are given by recursion relations

$$g_{i+1} = 2A_i\sqrt{|G|} + g_i, \quad b_{i+1} = 2A_i\sqrt{|B|} - b_i$$

If t is the probability that a random state $|x\rangle$ in $\{|0\rangle, \dots, |N-1\rangle\}$ such that $P(x) = 1$ then

Computing the number of iterations

The coefficients of the transformed state $g_{i+1}|\psi_G\rangle + b_{i+1}|\psi_B\rangle$ are given by recursion relations

$$g_{i+1} = 2A_i\sqrt{|G|} + g_i, \quad b_{i+1} = 2A_i\sqrt{|B|} - b_i$$

If t is the probability that a random state $|x\rangle$ in $\{|0\rangle, \dots, |N-1\rangle\}$ such that $P(x) = 1$ then

$$t = \frac{|G|}{N}, \quad 1 - t = \frac{|B|}{N}$$

Computing the number of iterations

The coefficients of the transformed state $g_{i+1}|\psi_G\rangle + b_{i+1}|\psi_B\rangle$ are given by recursion relations

$$g_{i+1} = 2A_i\sqrt{|G|} + g_i, \quad b_{i+1} = 2A_i\sqrt{|B|} - b_i$$

If t is the probability that a random state $|x\rangle$ in $\{|0\rangle, \dots, |N-1\rangle\}$ such that $P(x) = 1$ then

$$t = \frac{|G|}{N}, \quad 1 - t = \frac{|B|}{N}$$

$$A_i\sqrt{|G|} = \frac{\sqrt{|B||G|}b_i - |G|g_i}{N}$$

Computing the number of iterations

The coefficients of the transformed state $g_{i+1}|\psi_G\rangle + b_{i+1}|\psi_B\rangle$ are given by recursion relations

$$g_{i+1} = 2A_i\sqrt{|G|} + g_i, \quad b_{i+1} = 2A_i\sqrt{|B|} - b_i$$

If t is the probability that a random state $|x\rangle$ in $\{|0\rangle, \dots, |N-1\rangle\}$ such that $P(x) = 1$ then

$$t = \frac{|G|}{N}, \quad 1 - t = \frac{|B|}{N}$$

$$A_i\sqrt{|G|} = \frac{\sqrt{|B||G|}b_i - |G|g_i}{N} = \sqrt{t(1-t)}b_i - tg_i$$

Computing the number of iterations

The coefficients of the transformed state $g_{i+1}|\psi_G\rangle + b_{i+1}|\psi_B\rangle$ are given by recursion relations

$$g_{i+1} = 2A_i\sqrt{|G|} + g_i, \quad b_{i+1} = 2A_i\sqrt{|B|} - b_i$$

If t is the probability that a random state $|x\rangle$ in $\{|0\rangle, \dots, |N-1\rangle\}$ such that $P(x) = 1$ then

$$t = \frac{|G|}{N}, \quad 1 - t = \frac{|B|}{N}$$

$$A_i\sqrt{|G|} = \frac{\sqrt{|B||G|}b_i - |G|g_i}{N} = \sqrt{t(1-t)}b_i - tg_i$$

$$A_i\sqrt{|B|} = \frac{|B|b_i - \sqrt{|B||G|}b_i}{N}$$

Computing the number of iterations

The coefficients of the transformed state $g_{i+1}|\psi_G\rangle + b_{i+1}|\psi_B\rangle$ are given by recursion relations

$$g_{i+1} = 2A_i\sqrt{|G|} + g_i, \quad b_{i+1} = 2A_i\sqrt{|B|} - b_i$$

If t is the probability that a random state $|x\rangle$ in $\{|0\rangle, \dots, |N-1\rangle\}$ such that $P(x) = 1$ then

$$t = \frac{|G|}{N}, \quad 1 - t = \frac{|B|}{N}$$

$$A_i\sqrt{|G|} = \frac{\sqrt{|B||G|}b_i - |G|g_i}{N} = \sqrt{t(1-t)}b_i - tg_i$$

$$A_i\sqrt{|B|} = \frac{|B|b_i - \sqrt{|B||G|}b_i}{N} = (1 - t)b_i - \sqrt{t(1-t)}g_i$$

Computing the number of iterations

The coefficients of the transformed state $g_{i+1}|\psi_G\rangle + b_{i+1}|\psi_B\rangle$ are given by recursion relations

$$g_{i+1} = 2A_i\sqrt{|G|} + g_i, \quad b_{i+1} = 2A_i\sqrt{|B|} - b_i$$

If t is the probability that a random state $|x\rangle$ in $\{|0\rangle, \dots, |N-1\rangle\}$ such that $P(x) = 1$ then

$$t = \frac{|G|}{N}, \quad 1 - t = \frac{|B|}{N}$$

$$A_i\sqrt{|G|} = \frac{\sqrt{|B||G|}b_i - |G|g_i}{N} = \sqrt{t(1-t)}b_i - tg_i$$

$$A_i\sqrt{|B|} = \frac{|B|b_i - \sqrt{|B||G|}b_i}{N} = (1-t)b_i - \sqrt{t(1-t)}g_i$$

The recursion relations become

Computing the number of iterations

The coefficients of the transformed state $g_{i+1}|\psi_G\rangle + b_{i+1}|\psi_B\rangle$ are given by recursion relations

$$g_{i+1} = 2A_i\sqrt{|G|} + g_i, \quad b_{i+1} = 2A_i\sqrt{|B|} - b_i$$

If t is the probability that a random state $|x\rangle$ in $\{|0\rangle, \dots, |N-1\rangle\}$ such that $P(x) = 1$ then

$$t = \frac{|G|}{N}, \quad 1 - t = \frac{|B|}{N}$$

$$A_i\sqrt{|G|} = \frac{\sqrt{|B||G|}b_i - |G|g_i}{N} = \sqrt{t(1-t)}b_i - tg_i$$

$$A_i\sqrt{|B|} = \frac{|B|b_i - \sqrt{|B||G|}b_i}{N} = (1-t)b_i - \sqrt{t(1-t)}g_i$$

$$g_{i+1} = (1 - 2t)g_i + 2\sqrt{t(1-t)}b_i$$

Computing the number of iterations

The coefficients of the transformed state $g_{i+1}|\psi_G\rangle + b_{i+1}|\psi_B\rangle$ are given by recursion relations

$$g_{i+1} = 2A_i\sqrt{|G|} + g_i, \quad b_{i+1} = 2A_i\sqrt{|B|} - b_i$$

If t is the probability that a random state $|x\rangle$ in $\{|0\rangle, \dots, |N-1\rangle\}$ such that $P(x) = 1$ then

$$t = \frac{|G|}{N}, \quad 1 - t = \frac{|B|}{N}$$

$$A_i\sqrt{|G|} = \frac{\sqrt{|B||G|}b_i - |G|g_i}{N} = \sqrt{t(1-t)}b_i - tg_i$$

$$A_i\sqrt{|B|} = \frac{|B|b_i - \sqrt{|B||G|}b_i}{N} = (1-t)b_i - \sqrt{t(1-t)}g_i$$

$$g_{i+1} = (1 - 2t)g_i + 2\sqrt{t(1-t)}b_i$$

$$b_{i+1} = (1 - 2t)b_i - 2\sqrt{t(1-t)}g_i$$

Computing the number of iterations

The coefficients of the transformed state $g_{i+1}|\psi_G\rangle + b_{i+1}|\psi_B\rangle$ are given by recursion relations

$$g_{i+1} = 2A_i\sqrt{|G|} + g_i, \quad b_{i+1} = 2A_i\sqrt{|B|} - b_i$$

If t is the probability that a random state $|x\rangle$ in $\{|0\rangle, \dots, |N-1\rangle\}$ such that $P(x) = 1$ then

$$t = \frac{|G|}{N}, \quad 1 - t = \frac{|B|}{N}$$

$$A_i\sqrt{|G|} = \frac{\sqrt{|B||G|}b_i - |G|g_i}{N} = \sqrt{t(1-t)}b_i - tg_i$$

$$A_i\sqrt{|B|} = \frac{|B|b_i - \sqrt{|B||G|}b_i}{N} = (1-t)b_i - \sqrt{t(1-t)}g_i$$

$$g_{i+1} = (1 - 2t)g_i + 2\sqrt{t(1-t)}b_i$$

$$b_{i+1} = (1 - 2t)b_i - 2\sqrt{t(1-t)}g_i$$

Computing the number of iterations

The coefficients of the transformed state $g_{i+1}|\psi_G\rangle + b_{i+1}|\psi_B\rangle$ are given by recursion relations

$$g_{i+1} = 2A_i\sqrt{|G|} + g_i, \quad b_{i+1} = 2A_i\sqrt{|B|} - b_i$$

If t is the probability that a random state $|x\rangle$ in $\{|0\rangle, \dots, |N-1\rangle\}$ such that $P(x) = 1$ then

$$t = \frac{|G|}{N}, \quad 1 - t = \frac{|B|}{N}$$

$$A_i\sqrt{|G|} = \frac{\sqrt{|B||G|}b_i - |G|g_i}{N} = \sqrt{t(1-t)}b_i - tg_i$$

$$A_i\sqrt{|B|} = \frac{|B|b_i - \sqrt{|B||G|}b_i}{N} = (1-t)b_i - \sqrt{t(1-t)}g_i$$

The recursion relations become with $g_0 = \sqrt{t}$ and $b_0 = \sqrt{1-t}$

$$g_{i+1} = (1 - 2t)g_i + 2\sqrt{t(1-t)}b_i$$

$$b_{i+1} = (1 - 2t)b_i - 2\sqrt{t(1-t)}g_i$$

The general solution for the coefficients is

Computing the number of iterations

The coefficients of the transformed state $g_{i+1}|\psi_G\rangle + b_{i+1}|\psi_B\rangle$ are given by recursion relations

$$g_{i+1} = 2A_i\sqrt{|G|} + g_i, \quad b_{i+1} = 2A_i\sqrt{|B|} - b_i$$

If t is the probability that a random state $|x\rangle$ in $\{|0\rangle, \dots, |N-1\rangle\}$ such that $P(x) = 1$ then

$$t = \frac{|G|}{N}, \quad 1 - t = \frac{|B|}{N}$$

$$A_i\sqrt{|G|} = \frac{\sqrt{|B||G|}b_i - |G|g_i}{N} = \sqrt{t(1-t)}b_i - tg_i$$

$$A_i\sqrt{|B|} = \frac{|B|b_i - \sqrt{|B||G|}b_i}{N} = (1-t)b_i - \sqrt{t(1-t)}g_i$$

$$g_{i+1} = (1 - 2t)g_i + 2\sqrt{t(1-t)}b_i$$

$$b_{i+1} = (1 - 2t)b_i - 2\sqrt{t(1-t)}g_i$$

$$g_i = \sin [(2i+1)\theta], \quad b_i = \cos [(2i+1)\theta]$$

The recursion relations become with $g_0 = \sqrt{t}$ and $b_0 = \sqrt{1-t}$

The general solution for the coefficients is

Computing the number of iterations

The coefficients of the transformed state $g_{i+1}|\psi_G\rangle + b_{i+1}|\psi_B\rangle$ are given by recursion relations

$$g_{i+1} = 2A_i\sqrt{|G|} + g_i, \quad b_{i+1} = 2A_i\sqrt{|B|} - b_i$$

If t is the probability that a random state $|x\rangle$ in $\{|0\rangle, \dots, |N-1\rangle\}$ such that $P(x) = 1$ then

$$t = \frac{|G|}{N}, \quad 1 - t = \frac{|B|}{N}$$

$$A_i\sqrt{|G|} = \frac{\sqrt{|B||G|}b_i - |G|g_i}{N} = \sqrt{t(1-t)}b_i - tg_i$$

$$A_i\sqrt{|B|} = \frac{|B|b_i - \sqrt{|B||G|}b_i}{N} = (1-t)b_i - \sqrt{t(1-t)}g_i$$

$$g_{i+1} = (1 - 2t)g_i + 2\sqrt{t(1-t)}b_i$$

$$b_{i+1} = (1 - 2t)b_i - 2\sqrt{t(1-t)}g_i$$

$$g_i = \sin [(2i+1)\theta], \quad b_i = \cos [(2i+1)\theta]$$

The general solution for the coefficients is

where $\sin \theta = \sqrt{t}$

Computing the number of iterations

The coefficients of the transformed state $g_{i+1}|\psi_G\rangle + b_{i+1}|\psi_B\rangle$ are given by recursion relations

$$g_{i+1} = 2A_i\sqrt{|G|} + g_i, \quad b_{i+1} = 2A_i\sqrt{|B|} - b_i$$

If t is the probability that a random state $|x\rangle$ in $\{|0\rangle, \dots, |N-1\rangle\}$ such that $P(x) = 1$ then

$$t = \frac{|G|}{N}, \quad 1 - t = \frac{|B|}{N}$$

$$A_i\sqrt{|G|} = \frac{\sqrt{|B||G|}b_i - |G|g_i}{N} = \sqrt{t(1-t)}b_i - tg_i$$

$$A_i\sqrt{|B|} = \frac{|B|b_i - \sqrt{|B||G|}b_i}{N} = (1-t)b_i - \sqrt{t(1-t)}g_i$$

The recursion relations become with $g_0 = \sqrt{t}$ and $b_0 = \sqrt{1-t}$

$$g_{i+1} = (1 - 2t)g_i + 2\sqrt{t(1-t)}b_i$$

$$b_{i+1} = (1 - 2t)b_i - 2\sqrt{t(1-t)}g_i$$

$$g_i = \sin [(2i+1)\theta], \quad b_i = \cos [(2i+1)\theta]$$

The general solution for the coefficients is

$$\text{where } \sin \theta = \sqrt{t}$$

These relations permit the calculation of the optimal number of iterations

Computing the number of iterations

$$g_i = \sin [(2i + 1)\theta], \quad b_i = \cos [(2i + 1)\theta], \quad \sin \theta = \sqrt{t} = \sqrt{\frac{|G|}{N}}$$

Computing the number of iterations

$$g_i = \sin [(2i + 1)\theta], \quad b_i = \cos [(2i + 1)\theta], \quad \sin \theta = \sqrt{t} = \sqrt{\frac{|G|}{N}}$$

The values of g_i can be maximized by choosing i so that

Computing the number of iterations

$$g_i = \sin [(2i + 1)\theta], \quad b_i = \cos [(2i + 1)\theta], \quad \sin \theta = \sqrt{t} = \sqrt{\frac{|G|}{N}}$$

The values of g_i can be maximized by choosing i so that $\sin [(2i_1)\theta] \approx 1$

Computing the number of iterations

$$g_i = \sin [(2i + 1)\theta], \quad b_i = \cos [(2i + 1)\theta], \quad \sin \theta = \sqrt{t} = \sqrt{\frac{|G|}{N}}$$

The values of g_i can be maximized by choosing i so that

$$\sin [(2i_1)\theta] \approx 1 \quad \rightarrow \quad (2i_1)\theta \approx \frac{\pi}{2}$$

Computing the number of iterations

$$g_i = \sin [(2i+1)\theta], \quad b_i = \cos [(2i+1)\theta], \quad \sin \theta = \sqrt{t} = \sqrt{\frac{|G|}{N}}$$

The values of g_i can be maximized by choosing i so that

$$\sin [(2i_1)\theta] \approx 1 \quad \rightarrow \quad (2i_1)\theta \approx \frac{\pi}{2}$$

When $|G| \ll N$, θ is small and

Computing the number of iterations

$$g_i = \sin [(2i+1)\theta], \quad b_i = \cos [(2i+1)\theta], \quad \sin \theta = \sqrt{t} = \sqrt{\frac{|G|}{N}}$$

The values of g_i can be maximized by choosing i so that

$$\sin [(2i_1)\theta] \approx 1 \quad \rightarrow \quad (2i_1)\theta \approx \frac{\pi}{2}$$

When $|G| \ll N$, θ is small and

$$\theta \approx \sin \theta = \sqrt{\frac{|G|}{N}}$$

Computing the number of iterations

$$g_i = \sin [(2i+1)\theta], \quad b_i = \cos [(2i+1)\theta], \quad \sin \theta = \sqrt{t} = \sqrt{\frac{|G|}{N}}$$

The values of g_i can be maximized by choosing i so that

$$\sin [(2i_1)\theta] \approx 1 \quad \rightarrow \quad (2i_1)\theta \approx \frac{\pi}{2}$$

When $|G| \ll N$, θ is small and

$$\theta \approx \sin \theta = \sqrt{\frac{|G|}{N}}$$

Thus g_i is maximised when

Computing the number of iterations

$$g_i = \sin [(2i+1)\theta], \quad b_i = \cos [(2i+1)\theta], \quad \sin \theta = \sqrt{t} = \sqrt{\frac{|G|}{N}}$$

The values of g_i can be maximized by choosing i so that

$$\sin [(2i_1)\theta] \approx 1 \quad \rightarrow \quad (2i_1)\theta \approx \frac{\pi}{2}$$

When $|G| \ll N$, θ is small and

$$\theta \approx \sin \theta = \sqrt{\frac{|G|}{N}}$$

Thus g_i is maximised when

$$i \approx \frac{\pi}{4} \sqrt{\frac{|G|}{N}}$$

Computing the number of iterations

$$g_i = \sin [(2i+1)\theta], \quad b_i = \cos [(2i+1)\theta], \quad \sin \theta = \sqrt{t} = \sqrt{\frac{|G|}{N}}$$

The values of g_i can be maximized by choosing i so that

$$\sin [(2i_1)\theta] \approx 1 \quad \rightarrow \quad (2i_1)\theta \approx \frac{\pi}{2}$$

When $|G| \ll N$, θ is small and

$$\theta \approx \sin \theta = \sqrt{\frac{|G|}{N}}$$

Thus g_i is maximised when

$$i \approx \frac{\pi}{4} \sqrt{\frac{|G|}{N}}$$

For $t = \frac{1}{8}$, $i \approx 2$, for $t = \frac{1}{4}$ $i \approx 1$, and for $t = \frac{1}{2}$ no improvement is possible

Computing the number of iterations

$$g_i = \sin [(2i+1)\theta], \quad b_i = \cos [(2i+1)\theta], \quad \sin \theta = \sqrt{t} = \sqrt{\frac{|G|}{N}}$$

The values of g_i can be maximized by choosing i so that

$$\sin [(2i_1)\theta] \approx 1 \quad \rightarrow \quad (2i_1)\theta \approx \frac{\pi}{2}$$

When $|G| \ll N$, θ is small and

$$\theta \approx \sin \theta = \sqrt{\frac{|G|}{N}}$$

Thus g_i is maximised when

$$i \approx \frac{\pi}{4} \sqrt{\frac{|G|}{N}}$$

For $t = \frac{1}{8}$, $i \approx 2$, for $t = \frac{1}{4}$ $i \approx 1$, and for $t = \frac{1}{2}$ no improvement is possible

For $n = 4$ and $t = \frac{1}{16}$, $i \approx 3$

Computing the number of iterations

$$g_i = \sin [(2i+1)\theta], \quad b_i = \cos [(2i+1)\theta], \quad \sin \theta = \sqrt{t} = \sqrt{\frac{|G|}{N}}$$

The values of g_i can be maximized by choosing i so that

$$\sin [(2i_1)\theta] \approx 1 \quad \rightarrow \quad (2i_1+1)\theta \approx \frac{\pi}{2}$$

When $|G| \ll N$, θ is small and

$$\theta \approx \sin \theta = \sqrt{\frac{|G|}{N}}$$

Thus g_i is maximised when

$$i \approx \frac{\pi}{4} \sqrt{\frac{|G|}{N}}$$

For $t = \frac{1}{8}$, $i \approx 2$, for $t = \frac{1}{4}$ $i \approx 1$, and for $t = \frac{1}{2}$ no improvement is possible

For $n = 4$ and $t = \frac{1}{16}$, $i \approx 3$

<https://tinyurl.com/5n7jcpuh>

