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Classical period-finding

In 1994 Shor developed an algorithm for factoring integers which coupled with the quantum
Fourier transform threatened to crack the standard encryption algorithms of the time

The factoring algorithm relies finding the period of a function f (k)

The order of an integer a mod M is the smallest integer r such that r > 0 and ar = 1 mod M

If the two integers a and M are relatively prime (i.e. they share no prime factors) then r exists
and the order of a is finite

Consider the function f (k)
Since ar = 1 mod M we can write and r is the
period of f (k)

For example, take a = 5 and M = 13

Thus r = 4 is the period of the function
f (k) = ak = 5k

f (k) = ak mod M = ak+r mod M

r ar ar mod M
1 5 5
2 25 12
3 125 8
4 625 1
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Factoring strategy

If ar = 1 mod M and r is even then

In our example r = 4 so we have

(ar/2 + 1)(ar/2 − 1) ≡ 0 mod M

(52 + 1)(52 − 1) = 26 · 24 = 13 · 48

If neither ar/2 ± 1 is a multiple of M then they both likely have common factors with M and
so suggest a method for factoring M

1. Randomly choose an integer a and determine the period r of f (k) = ak mod M

2. If r is even use the Euclidean algorithm to compute the greatest common divisor of
ar/2 ± 1 and M

3. Repeat as necessary

Given that an encryption key, M, is generally a large number, this is still a computationally
expensive operation for a classical computer, however Shor’s quantum algorithm makes it
possible efficiently perform step 2.
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Shor’s factoring algorithm

The implementation of Shor’s algorithm can be summarized in a few steps

1. Randomly choose an integer a such that 0 < a < M and apply the Euclidean algorithm

a. If a and M have a common factor, this is a factor of M, save and start over at step 1
b. If a and M are relatively prime, continue to 2.

2. Use quantum parallelism to compute f (x) = ax mod M on the superposition of
n : M2 ≤ 2n < 2M2 inputs and apply a quantum Fourier transform to the result

3. Measure. With high probability, a value v close to a multiple of 2n

r will be obtained

4. Use classical methods to obtain a possible period q from v

5. For q even, use the Euclidean algorithm to find any common factors of M and aq/2 ± 1

6. Start over with step 1 if more factors are needed

Only steps 2 and 3 require a quantum computer since the other steps are efficiently performed
with a classical computer
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The quantum core

Start by preparing a uniform superposition
state of an n-qubit register

The function f (x) = ax mod M can be
computed with an efficiently implemented
transformation Uf

This requires a second m-qubit register such
that

The second register is now measured ran-
domly and this returns a value u for f (x) so
that the two registers are no longer entan-
gled and the state is

W |0 · · · 0⟩ = 1√
N

N−1∑
x=0

|x⟩

Uf : |x⟩|0⟩ → |x⟩|f (x)⟩

Uf
1√
N

N−1∑
x=0

|x⟩|0⟩ = 1√
N

N−1∑
x=0

|x⟩|f (x)⟩

C
N−1∑
x=0

g(x)|x⟩|u⟩, g(x) =

{
1 if f (x) = u

0 otherwise

C is the normalization constant and g(x) must, by definition, have the same period as f (x)
but is sparse and only has non-zero values at intervals of the period
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Applying the quantum Fourier transform

The second register can be thrown away as
it is no longer entangled with the first

Now apply the quantum Fourier transform,
UF , to the first register to get

Where G (c) is given by

|ψ⟩ = C
N−1∑
x=0

g(x)|x⟩

UF |ψ⟩ = C ′
N−1∑
c=0

G (c)|c⟩

G (c) =
N−1∑
x=0

g(x)e2πicx/2
n

Recalling the properties of the quantum Fourier transform, if the period, r , of the function
g(x) is a power of two, G (c) ≡ 0 except when c is a multiple of 2n

r

When the period is not a power of two, the quantum Fourier transform approximates the exact
case and yields a value v close to a multiple of 2n

r
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Continued fraction expansion

In the case where r is a power of 2,the measured output v = j 2
n

r and the period is
straightforward to extract

It is more challenging when the Fourier transform produces values which are only approximate
multiples of the scaled frequency

In this case, a good guess for the period is obtained by the continued fraction expansion of v
2n

Define [x ] = trunc(x) as the greatest integer less than x and define the quantities

a0 =
[
v
2n

]
, ϵ0 =

v
2n − a0, ai =

[
1

ϵi−1

]
, ϵi =

1
ϵi−1

− ai

p0 = a0, p1 = a1a0 + 1, pi = aipi−1 + pi−2, q0 = 1, q1 = a1, qi = aiqi−1 + qi−2

Compute the first fraction pi
qi

such that qi < M ≤ qi+1

This is the unique fraction with denominator less than M that is within 1
M2 of v

2n

Shor showed that this fraction is within 1
2 of a multiple of 2n

r
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Period extraction

Recall that we chose the size of the qubit register to be n : M2 ≤ 2n < 2M2

According to Shor, in the high probability
case that

For some j , M2 ≤ 2n so that

The difference between two fractions p
q

and p′

q′ with denominators less than M is
bounded

There is at most one fraction p
q with denom-

inator q < M such that

∣∣∣∣v − j
2n

r

∣∣∣∣ < 1

2∣∣∣∣ v2n − j

r

∣∣∣∣ < 1

2 · 2n
≤ 1

2M2∣∣∣∣pq − p′

q′

∣∣∣∣ = ∣∣∣∣pq′ − p′q

qq′

∣∣∣∣ > 1

M2∣∣∣∣ v2n − p

q

∣∣∣∣ < 1

M2

This fraction, computed by fraction expansion will likely be equal to j
r so the denominator q is

the guess for the period r which will be correct if r and j are relatively prime
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Shor’s algorithm example

In order to factor M = 21, note that M2 = 441 so that 29 = 512 is the power of 2 between
M2 and M2

With n = 9 as the size of the first register, the size of the second is set by the ceiling
⌈lnM⌉+ 1 = m = 5

The state, after applying Uf is therefore, a
14-qubit state with 9 qubits in the first reg-
ister and 5 in the second

|ψ⟩ = 1√
29

29−1∑
x=0

|x⟩|f (x)⟩

If the randomly selected integer a = 11
and the measurement of the second regis-
ter gives u = 8

The state of the first register after the mea-
surement shows the periodicity of f (x)
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Shor’s algorithm example

The result of the Fourier transform UF is
applied to |ψ⟩ clearly shows that the period
of f (x) is not a multiple of 2

Measurement of |ψ⟩ now returns a value v =
427 which is relative prime to 2n

The continued fraction algorithm is then ap-
plied, giving

The computation is terminated when
6 = q2 < M ≤ q3 = 253 since M = 21

q = 6 is thus the guess for the period of
f (x)

i ai pi qi ϵi
0 0 0 1 0.8339844
1 1 1 1 0.1990632
2 5 5 6 0.02352941
3 42 211 253 0.5
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Shor’s algorithm example

With q = 6 being even we can now find the greatest common factor of aq/2 ± 1 and M where
M = 21 and a = 11 by applying the Euclidean algorithm

aq/2 + 1 = 113 + 1 = 1332

M n m
1332 21 63
9 21 2
9 3 3
0

aq/2 − 1 = 113 + 1 = 1330

M n m
1330 21 63
7 21 3

0

With a single Fourier transform application we have factored M = 21 into 3 and 7

Clearly this is a trivial example but the potential efficiency of the algorithm is evident
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