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Classical period-finding
In 1994 Shor developed an algorithm for factoring integers which coupled with the quantum
Fourier transform threatened to crack the standard encryption algorithms of the time

The factoring algorithm relies finding the period of a function f(k)

The order of an integer a mod M is the smallest integer r such that r > 0 and 3" =1 mod M

If the two integers a and M are relatively prime (i.e. they share no prime factors) then r exists
and the order of a is finite

Consider the function f(k) f(k) = a* mod M = a**" mod M
Since 3" = 1 mod M we can write and r is the
period of f(k)

r a a" modM
1 5 5
For example, take a =5 and M =13 2 25 12
Thus r = 4 is the period of the function 3 125 8
f(k) = ak = 5k 4 625 1
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Factoring strategy

If a¥ =1 mod M and r is even then (@72 +1)(@7?>—-1)=0 mod M

In our example r = 4 so we have (52 + 1)(52 —1)=126-24=13-48

If neither a”/2 + 1 is a multiple of M then they both likely have common factors with M and
so suggest a method for factoring M

. Randomly choose an integer a and determine the period r of f(k) = a¥ mod M

If r is even use the Euclidean algorithm to compute the greatest common divisor of
a"’?+1and M

3. Repeat as necessary

Given that an encryption key, M, is generally a large number, this is still a computationally

expensive operation for a classical computer, however Shor’'s quantum algorithm makes it
possible efficiently perform step 2.
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1. Randomly choose an integer a such that 0 < a < M and apply the Euclidean algorithm
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The implementation of Shor’s algorithm can be summarized in a few steps

1. Randomly choose an integer a such that 0 < a < M and apply the Euclidean algorithm

a. If aand M have a common factor, this is a factor of M, save and start over at step 1
b. If a and M are relatively prime, continue to 2.

2. Use quantum parallelism to compute f(x) = a* mod M on the superposition of
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Shor’s factoring algorithm YV

The implementation of Shor’s algorithm can be summarized in a few steps

1.

o~ w

Randomly choose an integer a such that 0 < a < M and apply the Euclidean algorithm

a. If aand M have a common factor, this is a factor of M, save and start over at step 1
b. If a and M are relatively prime, continue to 2.

Use quantum parallelism to compute f(x) = a* mod M on the superposition of
n: M? < 2" < 2M? inputs and apply a quantum Fourier transform to the result

Measure. With high probability, a value v close to a multiple of 27" will be obtained
Use classical methods to obtain a possible period g from v
For g even, use the Euclidean algorithm to find any common factors of M and a%/2 + 1

Start over with step 1 if more factors are needed
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The implementation of Shor’s algorithm can be summarized in a few steps

1. Randomly choose an integer a such that 0 < a < M and apply the Euclidean algorithm

a. If aand M have a common factor, this is a factor of M, save and start over at step 1
b. If a and M are relatively prime, continue to 2.

2. Use quantum parallelism to compute f(x) = a* mod M on the superposition of
n: M? < 2" < 2M? inputs and apply a quantum Fourier transform to the result

Measure. With high probability, a value v close to a multiple of 27" will be obtained
Use classical methods to obtain a possible period g from v

For g even, use the Euclidean algorithm to find any common factors of M and a%/2 + 1

o~ w

Start over with step 1 if more factors are needed

Only steps 2 and 3 require a quantum computer since the other steps are efficiently performed
with a classical computer
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The quantum core

Start by preparing a uniform superposition
state of an n-qubit register

The function f(x) = & mod M can be
computed with an efficiently implemented
transformation Ur

This requires a second m-qubit register such
that

The second register is now measured ran-
domly and this returns a value u for f(x) so
that the two registers are no longer entan-
gled and the state is

N—-1

N-1 N-1
Ur 75 Z(:) %)[0) = 75 Z_(:) X)[f(x))
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The quantum core

Start by preparing a uniform superposition
state of an n-qubit register

The function f(x) = & mod M can be
computed with an efficiently implemented
transformation Ur

This requires a second m-qubit register such
that

The second register is now measured ran-
domly and this returns a value u for f(x) so
that the two registers are no longer entan-
gled and the state is

N-1

CY g()x)lu), glx)=

x=0

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing

L3 x)IF(x)

x=0

{1 if £(x) =

0 otherwise

march 03, 2022

u

5/11



The quantum core V

Start by preparing a uniform superposition N1
state of an n-qubit register W|0- . ,0> — ﬁ Z |x>
The function f(x) = & mod M can be x=0

computed with an efficiently implemented
transformation Ur

This requires a second m-qubit register such . N-1 . N-1
that Ur 5 3 10)[0) = 2 37 ()17 ()
x=0 x=0
The second register is now measured ran-
domly and this returns a value u for f(x) so N-1 1 if f(x)=u
that the two registers are no longer entan- C Z g(x)[x)|u), g(x)= .
. — 0 otherwise
gled and the state is x=0

C is the normalization constant and g(x) must, by definition, have the same period as f(x)
but is sparse and only has non-zero values at intervals of the period
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Applying the quantum Fourier transform V'

The second register can be thrown away as
it is no longer entangled with the first
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Applying the quantum Fourier transform i3

N—1
The second register can be thrown away as ) = C Z g(x)|x)
it is no longer entangled with the first —o

Now apply the quantum Fourier transform,
UE, to the first register to get
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Applying the quantum Fourier transform NG

N—1
The second register can be thrown away as ) = C Z g(x)|x)
it is no longer entangled with the first —o

N—1
Now apply the quantum Fourier transform, Urly) = C’ Z G(o)c)
UE, to the first register to get c=0
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Applying the quantum Fourier transform

The second register can be thrown away as
it is no longer entangled with the first

Now apply the quantum Fourier transform,
UE, to the first register to get

Where G(c) is given by
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Applying the quantum Fourier transform A\

N—1
The second register can be thrown away as ) = C Z g(x)]x)
it is no longer entangled with the first =0
N—1
Now apply the quantum Fourier transform, Ugly) = C' Z G(c)lc)
UE, to the first register to get c=0
N-1 '
Where G(c) is given by G(c) = Z g(x)e’me /2
x=0

Recalling the properties of the quantum Fourier transform, if the period, r, of the function
g(x) is a power of two, G(c) = 0 except when c is a multiple of %
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Applying the quantum Fourier transform A\

N—1
The second register can be thrown away as ) = C Z g(x)]x)
it is no longer entangled with the first =0
N—1
Now apply the quantum Fourier transform, Ugly) = C' Z G(c)lc)
UE, to the first register to get c=0
N-1 '
Where G(c) is given by G(c) = Z g(x)e’me /2
x=0

Recalling the properties of the quantum Fourier transform, if the period, r, of the function
g(x) is a power of two, G(c) = 0 except when c is a multiple of %

When the period is not a power of two, the quantum Fourier transform approximates the exact
case and yields a value v close to a multiple of 27"

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing march 03, 2022 6/11



Continued fraction expansion A

In the case where r is a power of 2,the measured output v :jz—rn and the period is
straightforward to extract
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Continued fraction expansion

In the case where r is a power of 2,the measured output v :jz—rn and the period is
straightforward to extract

It is more challenging when the Fourier transform produces values which are only approximate
multiples of the scaled frequency
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Continued fraction expansion VY

In the case where r is a power of 2,the measured output v :jz—rn and the period is
straightforward to extract

It is more challenging when the Fourier transform produces values which are only approximate
multiples of the scaled frequency

In this case, a good guess for the period is obtained by the continued fraction expansion of 55
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Continued fraction expansion VY

In the case where r is a power of 2,the measured output v :jz—rn and the period is
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It is more challenging when the Fourier transform produces values which are only approximate
multiples of the scaled frequency

In this case, a good guess for the period is obtained by the continued fraction expansion of 55

Define [x] = trunc(x) as the greatest integer less than x and define the quantities
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Continued fraction expansion VY

In the case where r is a power of 2,the measured output v :jz—rn and the period is
straightforward to extract

It is more challenging when the Fourier transform produces values which are only approximate
multiples of the scaled frequency

In this case, a good guess for the period is obtained by the continued fraction expansion of 55

Define [x] = trunc(x) as the greatest integer less than x and define the quantities

0= (3],
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Continued fraction expansion \ i

In the case where r is a power of 2,the measured output v :jz—rn and the period is
straightforward to extract

It is more challenging when the Fourier transform produces values which are only approximate
multiples of the scaled frequency

In this case, a good guess for the period is obtained by the continued fraction expansion of 55

Define [x] = trunc(x) as the greatest integer less than x and define the quantities

a0 =[], €= —ao,
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Continued fraction expansion \ i

In the case where r is a power of 2,the measured output v :jz—rn and the period is
straightforward to extract

It is more challenging when the Fourier transform produces values which are only approximate
multiples of the scaled frequency

In this case, a good guess for the period is obtained by the continued fraction expansion of 55

Define [x] = trunc(x) as the greatest integer less than x and define the quantities

1
a =[], €=z —a, a= LH}?
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Continued fraction expansion \ i

In the case where r is a power of 2,the measured output v :jz—rn and the period is
straightforward to extract

It is more challenging when the Fourier transform produces values which are only approximate
multiples of the scaled frequency

In this case, a good guess for the period is obtained by the continued fraction expansion of 55

Define [x] = trunc(x) as the greatest integer less than x and define the quantities

v v 1 1
ap = [?] ) €0 = on 40, aj = |:€i71:| ) € = €i_1 — 4
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Continued fraction expansion \ i

In the case where r is a power of 2,the measured output v :jz—rn and the period is
straightforward to extract

It is more challenging when the Fourier transform produces values which are only approximate
multiples of the scaled frequency

In this case, a good guess for the period is obtained by the continued fraction expansion of 55

Define [x] = trunc(x) as the greatest integer less than x and define the quantities

v v 1 1
ap = [?] ) €0 = on 40, aj = |:€i71:| ) € = €i_1 — 4

Po = 4o,
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Continued fraction expansion \ i

In the case where r is a power of 2,the measured output v :jz—rn and the period is
straightforward to extract

It is more challenging when the Fourier transform produces values which are only approximate
multiples of the scaled frequency

In this case, a good guess for the period is obtained by the continued fraction expansion of 55

Define [x] = trunc(x) as the greatest integer less than x and define the quantities

v v 1 1
ap = [?] ) €0 = on 40, aj = |:€i71:| ) € = €i_1 — 4

Po = a0, p1= aiao+1,
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Continued fraction expansion

In the case where r is a power of 2,the measured output v :jz—rn and the period is

straightforward to extract

It is more challenging when the Fourier transform produces values which are only approximate

multiples of the scaled frequency

In this case, a good guess for the period is obtained by the continued fraction expansion of 55

Define [x] = trunc(x) as the greatest integer less than x and define the quantities

—[v - v _ R | 1 .
aO - |:2n:| ) €0 = on 307 aI - |:€i71:| ) € = €i_1 al

po=ao, pr=aa+1, pi=aipi-1+pi-2,
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Continued fraction expansion \ i

In the case where r is a power of 2,the measured output v :jz—rn and the period is
straightforward to extract

It is more challenging when the Fourier transform produces values which are only approximate
multiples of the scaled frequency

In this case, a good guess for the period is obtained by the continued fraction expansion of 55

Define [x] = trunc(x) as the greatest integer less than x and define the quantities

v v 1 1
ap = [?] ) €0 = on 40, aj = |:€i71:| ) € = €i_1 — 4
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Continued fraction expansion

In the case where r is a power of 2,the measured output v :jz—rn and the period is
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It is more challenging when the Fourier transform produces values which are only approximate

multiples of the scaled frequency
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Continued fraction expansion \ i

In the case where r is a power of 2,the measured output v :jz—rn and the period is
straightforward to extract

It is more challenging when the Fourier transform produces values which are only approximate
multiples of the scaled frequency

In this case, a good guess for the period is obtained by the continued fraction expansion of 55

Define [x] = trunc(x) as the greatest integer less than x and define the quantities

v v 1 1
ap = [?] ) €0 = on 40, aj = |:€i71:| ) € = €i_1 — 4

Po=ap, pr=aa+1l, pi=api-1+pi—2, G=1, g =a, g =ajqi-1+qgi-2
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Continued fraction expansion V
In the case where r is a power of 2,the measured output v :jz—rn and the period is
straightforward to extract

It is more challenging when the Fourier transform produces values which are only approximate
multiples of the scaled frequency

In this case, a good guess for the period is obtained by the continued fraction expansion of 55

Define [x] = trunc(x) as the greatest integer less than x and define the quantities

v v 1 1
ap = [?] ) €0 = on 40, aj = |:€i71:| ) € = €i_1 — 4

Po=ap, pr=aa+1l, pi=api-1+pi—2, G=1, g =a, g =ajqi-1+qgi-2

Compute the first fraction % such that g; < M < giy1

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing march 03, 2022 7/11



Continued fraction expansion V
In the case where r is a power of 2,the measured output v :jz—rn and the period is
straightforward to extract

It is more challenging when the Fourier transform produces values which are only approximate
multiples of the scaled frequency

In this case, a good guess for the period is obtained by the continued fraction expansion of 55

Define [x] = trunc(x) as the greatest integer less than x and define the quantities

a =[], €=z —a, a= Lil} , €= 6,.: —aj
po=a, pPr=aa+1, pi=api-1+pi2, G=1, q=a, g =aq-1+7gi-2
Compute the first fraction % such that g; < M < giy1

This is the unique fraction with denominator less than M that is within ﬁ of 5
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Continued fraction expansion V
In the case where r is a power of 2,the measured output v :jz—rn and the period is
straightforward to extract

It is more challenging when the Fourier transform produces values which are only approximate
multiples of the scaled frequency

In this case, a good guess for the period is obtained by the continued fraction expansion of 55

Define [x] = trunc(x) as the greatest integer less than x and define the quantities

po=ao, pr=aa+1l, pi=api-1+tpi-2, G=1, q=a, g =agi-1+4Gi-2
Compute the first fraction % such that g; < M < giy1
This is the unique fraction with denominator less than M that is within ﬁ of 5

Shor showed that this fraction is within % of a multiple of %
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Period extraction VYV

Recall that we chose the size of the qubit register to be n: M? < 2" < 2M?
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According to Shor, in the high probability
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Period extraction

Recall that we chose the size of the qubit register to be n: M? < 2" < 2M?

According to Shor, in the high probability
case that

For some j, M? < 2" so that
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Period extraction

Recall that we chose the size of the qubit register to be n: M? < 2" < 2M?

According to Shor, in the high probability

2" 1
vV — [ — —_
case that 7 2
For some j, M? < 2" so that v _J 1
on T r| S 2.2n
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Period extraction

Recall that we chose the size of the qubit register to be n: M? < 2" < 2M?

According to Shor, in the high probability

2" 1
case that LR Y
For some j, M? < 2" so that v _J 1 < 1
2n  r 2.2 — 2M?2
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Period extraction iid

Recall that we chose the size of the qubit register to be n: M? < 2" < 2M?

According to Shor, in the high probability 2n 1

case that LR Y

For some j, M? < 2" so that v _J 1 < 1
2"y 2.2n — 2M?

The difference between two fractions g

and & with denominators less than M is
bounded
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Period extraction

Recall that we chose the size of the qubit register to be n: M? < 2" < 2M?

According to Shor, in the high probability
case that

For some j, M? < 2" so that

The difference between two fractions g
and Z—: with denominators less than M is
bounded
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Period extraction

Recall that we chose the size of the qubit register to be n: M? < 2" < 2M?

According to Shor, in the high probability 2n
case that VoI
For some j, M? < 2" so that v _i.

2n  r
The difference between two fractions g ’p P
and 2 with denominators less than M is qg q

bounded

There is at most one fraction s with denom-
inator g < M such that
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Period extraction

Recall that we chose the size of the qubit register to be

According to Shor, in the high probability
case that

For some j, M? < 2" so that

The difference between two fractions g

and g, with denominators less than M is

bounded
There is at most one fraction s with denom-
inator g < M such that
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Period extraction \ i

Recall that we chose the size of the qubit register to be n: M? < 2" < 2M?

According to Shor, in the high probability 2n 1

case that VoI < 2

For some j, M? < 2" so that v _J < 1 1
2"y 2.2n — 2M?

The difference between two fractions 2 ’p 7 ‘pq’ —p'q‘ - 1
and % with denominators less than M is g q| qq’ M2
bounded v p 1
There is at most one fraction s with denom- on 5 < M2

inator g < M such that

This fraction, computed by fraction expansion will likely be equal to J; so the denominator g is
the guess for the period r which will be correct if r and j are relatively prime
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Shor's algorithm example V

In order to factor M = 21, note that M? = 441 so that 22 = 512 is the power of 2 between
M? and M?
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Shor's algorithm example V

In order to factor M = 21, note that M? = 441 so that 22 = 512 is the power of 2 between
M? and M?

With n = 9 as the size of the first register, the size of the second is set by the ceiling
[InM]+1=m=5
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Shor's algorithm example V
In order to factor M = 21, note that M? = 441 so that 2° = 512 is the power of 2 between
M? and M?

With n = 9 as the size of the first register, the size of the second is set by the ceiling
[InM]+1=m=5

The state, after applying Uy is therefore,

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing march 03, 2022 9/11



Shor's algorithm example v
In order to factor M = 21, note that M? = 441 so that 22 = 512 is the power of 2 between
M? and M?

With n = 9 as the size of the first register, the size of the second is set by the ceiling
[InM]+1=m=5

The state, after applying Uy is therefore, 20-1

0) = % 3 IFC)
x=0
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Shor's algorithm example V

In order to factor M = 21, note that M? = 441 so that 22 = 512 is the power of 2 between
M? and M?

With n = 9 as the size of the first register, the size of the second is set by the ceiling
[InM]+1=m=5

The state, after applying Uy is therefore, a 20-1
14-qubit state with 9 qubits in the first reg- [) = \/% Z |x)|f(x))
ister and 5 in the second x=0
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Shor's algorithm example V

In order to factor M = 21, note that M? = 441 so that 22 = 512 is the power of 2 between
M? and M?

With n = 9 as the size of the first register, the size of the second is set by the ceiling
[InM]+1=m=5

The state, after applying Uy is therefore, a 20-1
14-qubit state with 9 qubits in the first reg- [) = \/% Z |x)|f(x))
ister and 5 in the second x=0

If the randomly selected integer a = 11
and the measurement of the second regis-
ter gives u =8
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Shor's algorithm example YV
In order to factor M = 21, note that M? = 441 so that 2° = 512 is the power of 2 between
M? and M?

With n = 9 as the size of the first register, the size of the second is set by the ceiling
[InM]+1=m=5

The state, after applying Uy is therefore, a 20-1
14-qubit state with 9 qubits in the first reg- [) = \/% Z |x)|f(x))
ister and 5 in the second x=0

If the randomly selected integer a = 11
and the measurement of the second regis-
ter gives u =8

The state of the first register after the mea-
surement shows the periodicity of f(x)
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Shor's algorithm example V

In order to factor M = 21, note that M? = 441 so that 22 = 512 is the power of 2 between
M? and M?

With n = 9 as the size of the first register, the size of the second is set by the ceiling
[InM]+1=m=5

The state, after applying Uy is therefore, a 20-1
14-qubit state with 9 qubits in the first reg- [) = \/% Z |x)|f(x))
ister and 5 in the second x=0
0.012
0.0108
If the randomly selected integer a = 11 o
and the measurement of the second regis- 0.0072
ter gives u =8 oo
0.0036
The state of the first register after the mea- 0.0024
surement shows the periodicity of f(x) o
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Shor's algorithm example V
The result of the Fourier transform Uf is

applied to [¢) clearly shows that the period
of f(x) is not a multiple of 2
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Shor's algorithm example

The result of the Fourier transform Uf is
applied to [¢) clearly shows that the period
of f(x) is not a multiple of 2
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Shor's algorithm example v/

The result of the Fourier transform Uf is 0171
applied to |1)) clearly shows that the period .l
of f(x) is not a multiple of 2 o119

0.102 4
Measurement of |¢)) now returns a value v = 0085 1

. . . . 0.068 4
427 which is relative prime to 2" 0051 ]
0.034 1

0.017 q

0.0 T T — —l T T
0 64 128 192 256 320 384 448 512
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Shor's algorithm example

The result of the Fourier transform Uf is
applied to [¢) clearly shows that the period
of f(x) is not a multiple of 2

Measurement of |¢)) now returns a value v =
427 which is relative prime to 2"

The continued fraction algorithm is then ap-
plied, giving
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Shor's algorithm example i
The result of the Fourier transform Uf is 0171
applied to [1) clearly shows that the period .l
of f(x) is not a multiple of 2 o9 ]
0.102
Measurement of |¢)) now returns a value v = 00831
0.068 4
427 which is relative prime to 2" 0051 ]
0.034 q
0.017 q
0.0 T T S —l T T
0 64 128 192 256 320 384 448 512

The continued fraction algorithm is then ap-
plied, giving

Carlo Segre (lllinois Tech) PHYS 407 - Introduction to Quantum Computing march 03, 2022 10/11



Shor's algorithm example

The result of the Fourier transform Uf is
applied to [¢) clearly shows that the period
of f(x) is not a multiple of 2

Measurement of |¢)) now returns a value v =
427 which is relative prime to 2"

The continued fraction algorithm is then ap-
plied, giving
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Shor's algorithm example

The result of the Fourier transform Uf is
applied to [¢) clearly shows that the period
of f(x) is not a multiple of 2

Measurement of |¢)) now returns a value v =
427 which is relative prime to 2"

The continued fraction algorithm is then ap-
plied, giving
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Shor's algorithm example

The result of the Fourier transform Uf is
applied to [¢) clearly shows that the period
of f(x) is not a multiple of 2

Measurement of |¢)) now returns a value v =
427 which is relative prime to 2"

The continued fraction algorithm is then ap-
plied, giving
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Shor's algorithm example i

The result of the Fourier transform Uf is 0171
applied to |¢) clearly shows that the period .l
of f(x) is not a multiple of 2 o9
0.102

Measurement of |¢)) now returns a value v = 00831
. . i . 0.068

427 which is relative prime to 2" 0051 ]
0.034 q

0.017 q

0.0 T T — —il
0

The continued fraction algorithm is then ap-

plied, giving

ai  pi qi €

0 1 0.8339844
1 1 0.1990632
5 6 0.02352941
1

42 211 253 05
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Shor's algorithm example V

The result of the Fourier transform Uf is 0171
applied to |¢) clearly shows that the period .l
of f(x) is not a multiple of 2 o9
0.102

Measurement of |¢)) now returns a value v = 00831
. . i . 0.068

427 which is relative prime to 2" 0051 ]
0.034 q

0.017 q

0.0 T T — —il
0

The continued fraction algorithm is then ap-

plied, giving
Iai  pi qi €

The computation is terminated when 0 0 0 1 0.8339844

6=qg <M< g3=253since M =21 1 1 1 1 0.1990632
2 5 5 6 0.02352941
3 42 211 253 05
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The result of the Fourier transform Uf is 0171
applied to |¢) clearly shows that the period .l
of f(x) is not a multiple of 2 o9
0.102

Measurement of |¢)) now returns a value v = 00831
. . i . 0.068

427 which is relative prime to 2" 0051 ]
0.034 q

0.017 q

0.0
0

<

64 128

The continued fraction algorithm is then ap-
plied, giving .

I aj Pi
The computation is terminated when 0 0 0
6=qgo <M< g3 =253 since M =21 1 1 1
g = 6 is thus the guess for the period of 2.5 5
f(x) 3 42 211
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qi
1
1
6
253

256 320 384 448 512
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Shor's algorithm example V

With g = 6 being even we can now find the greatest common factor of a%/2 + 1 and M where
M =21 and a = 11 by applying the Euclidean algorithm
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Shor's algorithm example V

With g = 6 being even we can now find the greatest common factor of a%/2 + 1 and M where
M =21 and a = 11 by applying the Euclidean algorithm

292 41 =113+1=1332
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Shor's algorithm example V

With g = 6 being even we can now find the greatest common factor of a%/2 + 1 and M where
M =21 and a = 11 by applying the Euclidean algorithm
a¥? +1=11341=1332

M n m
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Shor's algorithm example v
With g = 6 being even we can now find the greatest common factor of a%/2 + 1 and M where
M =21 and a = 11 by applying the Euclidean algorithm

a¥? +1=11341=1332

M n m
1332 21 63
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Shor's algorithm example

With g = 6 being even we can now find the greatest common factor of a%/2 + 1 and M where
M =21 and a = 11 by applying the Euclidean algorithm

292 41 =113+1=1332

M n m
1332 21 63
9 21 2
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Shor's algorithm example

With g = 6 being even we can now find the greatest common factor of a%/2 + 1 and M where
M =21 and a = 11 by applying the Euclidean algorithm

292 41 =113+1=1332

M n m

1332 21 63
9 21 2

9 3 3
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Shor's algorithm example

With g = 6 being even we can now find the greatest common factor of a%/2 + 1 and M where
M =21 and a = 11 by applying the Euclidean algorithm

292 41 =113+1=1332

M n m

1332 21 63
9 21 2

9 3 3
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Shor's algorithm example v
With g = 6 being even we can now find the greatest common factor of a%/2 + 1 and M where
M =21 and a = 11 by applying the Euclidean algorithm

a9 +1=11"+1=1332 29?2 1 =1134+1=1330

M n m
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9 21 2

9 3 3
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Shor's algorithm example v
With g = 6 being even we can now find the greatest common factor of a%/2 + 1 and M where
M =21 and a = 11 by applying the Euclidean algorithm

a9 +1=11"+1=1332 29?2 1 =1134+1=1330

M n m M n m
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Shor's algorithm example v
With g = 6 being even we can now find the greatest common factor of a%/2 + 1 and M where
M =21 and a = 11 by applying the Euclidean algorithm

a9 +1=11"+1=1332 29?2 1 =1134+1=1330

M n m M n m
1332 21 03 1330 21 63
9 2 2 7 21 3
9 3 3 0
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Shor's algorithm example

With g = 6 being even we can now find the greatest common factor of a%/2 + 1 and M where

M =21 and a = 11 by applying the Euclidean algorithm

a¥* +1=11°>+1=1332 29?2 1 =1134+1=1330
M n m
M n m
1332 ;1 , 63 1330 21 63
0 ; 7 21 3
X 0

With a single Fourier transform application we have factored M = 21 into 3 and 7
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Shor's algorithm example

With g = 6 being even we can now find the greatest common factor of a%/2 + 1 and M where
M =21 and a = 11 by applying the Euclidean algorithm

a¥* +1=11°>+1=1332 29?2 1 =1134+1=1330
M n m
M n m
1332 ;1 , 63 1330 21 63
0 ; 7 21 3
X 0

With a single Fourier transform application we have factored M = 21 into 3 and 7

Clearly this is a trivial example but the potential efficiency of the algorithm is evident
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